JP2015504476A - Method for heating a long object in a radiation-type heating furnace and radiation-type heating furnace - Google Patents

Method for heating a long object in a radiation-type heating furnace and radiation-type heating furnace Download PDF

Info

Publication number
JP2015504476A
JP2015504476A JP2014523524A JP2014523524A JP2015504476A JP 2015504476 A JP2015504476 A JP 2015504476A JP 2014523524 A JP2014523524 A JP 2014523524A JP 2014523524 A JP2014523524 A JP 2014523524A JP 2015504476 A JP2015504476 A JP 2015504476A
Authority
JP
Japan
Prior art keywords
long
furnace
steel pipe
hearth
side wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014523524A
Other languages
Japanese (ja)
Other versions
JP5813229B2 (en
Inventor
南部 征一郎
征一郎 南部
健 島本
健 島本
山本 満
満 山本
ジェヨン パク
ジェヨン パク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2015504476A publication Critical patent/JP2015504476A/en
Application granted granted Critical
Publication of JP5813229B2 publication Critical patent/JP5813229B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • F27B17/0016Chamber type furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/02Ohmic resistance heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0006Electric heating elements or system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0006Electric heating elements or system
    • F27D2099/0008Resistor heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0006Electric heating elements or system
    • F27D2099/0008Resistor heating
    • F27D2099/0011The resistor heats a radiant tube or surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Tunnel Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Articles (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

輻射型の箱形加熱炉に装入した複数本の長尺物に対して、均等な加熱履歴を与えて所期した熱処理を実現する。具体的には、横長の箱型炉の長辺を構成する、横側壁に沿って装入した複数の長尺物を、少なくとも前記横側壁からの輻射熱にて加熱するに当たり、前記長尺物を、前記箱型炉の横側壁から炉床の幅中心に向かって下り勾配となる、配列の下に配置する。【選択図】図3A desired heat treatment is realized by giving a uniform heating history to a plurality of long objects charged in a radiation-type box furnace. Specifically, when heating a plurality of long objects charged along the horizontal side wall constituting the long side of the horizontal box furnace at least by radiant heat from the horizontal side wall, the long object is , And arranged below the array, which forms a downward gradient from the lateral side wall of the box furnace toward the center of the width of the hearth. [Selection] Figure 3

Description

本発明は、輻射型加熱炉(radiant heating furnace)、特に側壁(side wall)からの輻射熱(radiant heat)により炉内の長尺物(long object)を加熱する輻射型加熱炉において長尺物を加熱する方法およびその輻射型加熱炉に関する。   The present invention relates to a radiant heating furnace, particularly a radiant heating furnace that heats a long object in a furnace by radiant heat from a side wall. The present invention relates to a heating method and a radiant heating furnace.

鋼製品の製造過程において、製品における機械的品質(mechanical quality)を保証したり、或いは引き抜き加工(drawing process)などの加工性を担保するために、種々の熱処理(heat treatment)が施される(例えば、特許文献1の背景技術を参照)。この熱処理には、該熱処理の目的、被熱処理材の形状や取り扱いなどに応じて、種々の形式の加熱炉が用いられている。すなわち、鋼管(steel pipe)、棒鋼(steel bar)および形鋼(shaped steel)などを典型例とする長尺物は、その寸法や形状からバッチ式の加熱炉(batch type heating furnace)で処理される場合が多い。   In the manufacturing process of steel products, various heat treatments are applied in order to guarantee the mechanical quality of the products or to ensure processability such as drawing process ( For example, see the background art of Patent Document 1). In this heat treatment, various types of heating furnaces are used depending on the purpose of the heat treatment, the shape and handling of the material to be heat treated, and the like. That is, long objects such as steel pipes, steel bars, and shaped steel are typically processed in a batch type heating furnace based on their dimensions and shape. There are many cases.

例えば、鋼管は、製品における機械的品質を最終的に保証するために、所定条件下にて加熱処理を施し、その後大気中での放冷(standing to cool)を経て出荷されるが、この加熱処理には、バッチ式の加熱炉(batch type heating furnace)が適用されている。   For example, in order to finally guarantee the mechanical quality of products, steel pipes are heat-treated under specified conditions and then shipped after standing to cool. For the treatment, a batch type heating furnace is applied.

特開2009−208112号公報JP 2009-208112 A

このバッチ式の加熱炉として、長尺の鋼管の軸長を十分に吸収する炉長を有する横長の箱形炉で、その横側面を構成する側壁内側にヒータ(heater)を設置し、これら側壁を介して熱エネルギー(thermal energy)を鋼管に供給する、輻射型加熱炉を用い、複数の長尺物を炉幅方向に並べて熱処理を行うと、全ての長尺材を均一に加熱することができないという問題が生じた。
そこで、本発明は、輻射型の箱形加熱炉に装入した複数本の長尺物に対して、均等な加熱履歴を与えて所期した熱処理を実現するための方途と、そこに用いる輻射型加熱炉について提供することを目的とする。
This batch-type heating furnace is a horizontally long box furnace that has a furnace length that sufficiently absorbs the axial length of a long steel pipe. A heater is installed inside the side wall that forms the side surface. By using a radiant heating furnace that supplies thermal energy to the steel pipe via the heat treatment, heat treatment is performed by arranging multiple long objects in the furnace width direction, and all long materials can be heated uniformly. The problem of not being able to occur.
Therefore, the present invention provides a method for realizing an intended heat treatment by giving a uniform heating history to a plurality of long objects charged in a radiation-type box furnace, and radiation used therefor. The purpose is to provide a mold heating furnace.

発明者らは、輻射型の箱形加熱炉における横側壁からの輻射熱が、炉内に装入した鋼管によって遮断され、炉床まで到達していないことが、上記した不均一加熱の主原因であることを見出した。   The main reason for the above-mentioned non-uniform heating is that the radiant heat from the side wall in the radiant type box heating furnace is blocked by the steel pipe charged in the furnace and does not reach the hearth. I found out.

すなわち、図1にこの輻射型加熱炉の一例である箱型電気炉(box type electric heating furnace)を示すように、炉床(hearth part)1上の空間を四方から側壁2a、2b、3a、3bで囲み、この囲み空間を天井(top sheating)4にて一体に塞いで成り、長辺を構成する横側壁2aおよび2bの内壁面(internal surface)にヒータ5を設置し、これら横側壁2aおよび2bからの輻射熱にて炉内の鋼管6を加熱した。この箱型電気炉は、側壁2a、2b、3a、3bと天井4とが一体化されて、炉床1に対して蓋(cover)の役目を果たしている。すなわち、図1に示すように、炉床1上に鋼管6を配置したのち、側壁2a、2b、3a、3bと天井4とを炉床1に載置して炉床1上に閉鎖空間を形成することができる。ついで、横側壁2aおよび2bからの輻射熱にて鋼管6を加熱し、所定の加熱が終了したならば、側壁2a、2b、3a、3bと天井4とを炉床1から持ち上げて、炉床1上の鋼管6を大気に曝すことにより鋼管6を大気放冷に供する。   That is, as shown in FIG. 1, a box type electric heating furnace which is an example of the radiation type heating furnace, the space on the hearth part 1 is divided into four side walls 2a, 2b, 3a, 3b, and the enclosed space is integrally closed by a top sheating 4, and a heater 5 is installed on the internal surface of the side walls 2a and 2b constituting the long side, and these side walls 2a And the steel pipe 6 in a furnace was heated with the radiant heat from 2b. In this box-type electric furnace, the side walls 2 a, 2 b, 3 a, 3 b and the ceiling 4 are integrated to serve as a cover for the hearth 1. That is, as shown in FIG. 1, after arranging the steel pipe 6 on the hearth 1, the side walls 2 a, 2 b, 3 a, 3 b and the ceiling 4 are placed on the hearth 1 to form a closed space on the hearth 1. Can be formed. Next, the steel pipe 6 is heated by radiant heat from the lateral side walls 2a and 2b, and when the predetermined heating is completed, the side walls 2a, 2b, 3a, 3b and the ceiling 4 are lifted from the hearth 1 and the hearth 1 The steel pipe 6 is subjected to air cooling by exposing the upper steel pipe 6 to the atmosphere.

なお、天井4にもヒータ5を埋設することは可能であるが、横側壁2aおよび2bからの輻射熱が上昇する結果、天井4直下は十分に加熱されることから、省略した。一方、炉床上には酸化スケールなどが堆積し易く、炉床1にヒータを設けるとヒータの損傷が激しくなることから、炉床1にはヒータを設けなかった。   Although it is possible to embed the heater 5 in the ceiling 4, it is omitted because the radiant heat from the lateral side walls 2 a and 2 b rises and as a result, the area directly below the ceiling 4 is heated sufficiently. On the other hand, oxide scales and the like are easily deposited on the hearth, and if a heater is provided in the hearth 1, damage to the heater becomes severe.

ここで、熱処理効率を確保するために炉内には複数本の鋼管6を装入して加熱した。その装入形態は、図2に炉の断面を示すように、炉床1に設置した台座7上へほぼ等間隔に並べて載置した。このような横並び配列の鋼管6を横側壁2aおよび2bからの輻射熱にて加熱する場合、配列外側の鋼管6から順に輻射熱が供給されるが、横並び配列の中間に位置する鋼管6の特に隣接鋼管の影となる部分の加熱速度が遅くなり、さらにすべての鋼管6における炉床1との対面部分は輻射範囲になく、かつ炉床からの輻射も望めないため、より加熱速度が遅くなることがわかった。   Here, in order to ensure heat treatment efficiency, a plurality of steel pipes 6 were charged in the furnace and heated. As shown in FIG. 2, the charging form was placed on the pedestal 7 installed on the hearth 1 in an approximately equal interval. When the steel pipes 6 arranged side by side are heated by the radiant heat from the lateral side walls 2a and 2b, radiant heat is supplied in order from the steel pipes 6 outside the array, and the adjacent steel pipes of the steel pipes 6 positioned in the middle of the side by side arrangement are arranged. The heating rate of the shadowed part of the steel tube 6 becomes slow, and the part facing the hearth 1 in all the steel pipes 6 is not in the radiation range and the radiation from the hearth cannot be expected. all right.

上記したように、鋼管の加熱は、機械的品質を保証するために行われたり、種々の加工に先立つ前処理であったりと、鋼管の全周にわたり均等の加熱履歴さらには冷却履歴を経ることが必要であるところ、図2に示したように複数の鋼管6を配列して加熱を行うと所期した熱履歴を全ての鋼管に均等に与えられない。   As described above, the heating of the steel pipe is performed in order to guarantee mechanical quality, or is a pretreatment prior to various processing, and the steel pipe undergoes an even heating history and cooling history over the entire circumference. However, if a plurality of steel pipes 6 are arranged and heated as shown in FIG. 2, the desired heat history cannot be equally applied to all the steel pipes.

そこで、発明者らは、輻射型の加熱炉に装入する複数本の長尺物の加熱炉内での配置を見直し、全ての長尺物に対して、横側壁2aおよび2bからの輻射熱が供給され、さらに、炉床1からも輻射熱が供給されるようにすれば、全ての長尺物に対して均等な加熱履歴を与えて所期した熱処理を実現できることを着想し、本発明を導くに至った。
すなわち、本発明の要旨構成は、次のとおりである。
Therefore, the inventors reviewed the arrangement of a plurality of long objects to be charged in the radiation type heating furnace in the heating furnace, and the radiant heat from the lateral side walls 2a and 2b is applied to all the long objects. If the radiant heat is also supplied from the hearth 1, it is conceived that the intended heat treatment can be realized by giving an even heating history to all the long objects, leading to the present invention. It came to.
That is, the gist configuration of the present invention is as follows.

(1)横長の箱型炉の長辺を構成する、横側壁に沿って装入した複数の長尺物を、少なくとも前記横側壁からの輻射熱にて加熱するに当たり、前記長尺物を、前記箱型炉の横側壁から炉床の幅中心に向かって下り勾配となる、配列の下に配置する輻射型加熱炉における長尺物の加熱方法。
(2)前記長尺物の配置は、隣り合う長尺物の軸芯(center core)を結ぶ線分の、炉床面に対する傾き角(inclination angle)Kが10°以上になる前記(1)に記載の輻射型加熱炉における長尺物の加熱方法。
(3)前記長尺物の配置は、隣り合う長尺物の相互間隔(distance)tが長尺物の直径の0.05倍以上である前記(1)または(2)に記載の輻射型加熱炉における長尺物の加熱方法。
(4)炉床上の空間を横長の箱体で区画し、長辺を構成する横側壁の内面にヒータを設置し、該横側壁からの輻射熱にて炉内に装入する複数の長尺物を加熱する箱型炉であって、前記長尺物を載置する複数の台座を、前記横側壁から前記炉床の幅中心に向かって下り勾配となる、配列の下に設置する輻射型加熱炉。
なお、ここで、本発明に用いる輻射型加熱炉の熱源は、電気抵抗発熱体(電気ヒーター)、マッフルまたは、ラジアントチューブである。マッフルまたは、ラジアントチューブは、耐火物内あるいは管内で燃焼または電気抵抗発熱体を設け耐火物あるいは管を介し輻射熱で、処理品を加熱するものである。なお、炉内の雰囲気温度差(たとえば、炉の上部と下部の雰囲気温度の温度差)を均一にするために炉内にファンを設けてもよい。
(1) When heating a plurality of long objects charged along a horizontal side wall constituting the long side of a horizontal box furnace at least by radiant heat from the horizontal side wall, the long object is A method for heating a long object in a radiant heating furnace disposed under an array, which has a downward gradient from the lateral side wall of the box furnace toward the center of the width of the hearth.
(2) The long objects are arranged in such a manner that an inclination angle K with respect to the hearth surface of a line segment connecting the center cores of adjacent long objects is 10 ° or more (1) The heating method of the elongate thing in the radiation type heating furnace as described in 2.
(3) The radiant heating furnace according to (1) or (2), wherein the long objects are arranged such that a distance t between adjacent long objects is 0.05 times or more the diameter of the long objects. Heating method for long objects.
(4) A plurality of long objects in which the space on the hearth is partitioned by a horizontally long box, a heater is installed on the inner surface of the side wall constituting the long side, and the furnace is charged with radiant heat from the side wall. A plurality of pedestals on which the elongate object is placed have a downward slope from the lateral side wall toward the center of the width of the hearth. Furnace.
Here, the heat source of the radiant heating furnace used in the present invention is an electric resistance heating element (electric heater), a muffle, or a radiant tube. The muffle or radiant tube is provided with a combustion or electric resistance heating element in a refractory or pipe, and heats the processed product by radiant heat through the refractory or pipe. Note that a fan may be provided in the furnace in order to make the atmospheric temperature difference in the furnace uniform (for example, the temperature difference between the upper and lower atmosphere temperatures).

本発明によれば、輻射型の箱型加熱炉に装入した複数本の長尺物に対して、均等な加熱履歴(thermal history)を与えて所期した熱処理を実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, it can implement | achieve the intended heat processing by giving a uniform heating history (thermal history) with respect to the multiple long thing inserted into the radiation type box-type heating furnace.

輻射型の箱型加熱炉の概要を示す斜視図である。It is a perspective view which shows the outline | summary of a radiation type box heating furnace. 箱型加熱炉における従来の鋼管配置を示す断面図である。It is sectional drawing which shows the conventional steel pipe arrangement | positioning in a box-type heating furnace. 箱型加熱炉における本発明に従う鋼管配置を示す断面図である。It is sectional drawing which shows the steel pipe arrangement | positioning according to this invention in a box-type heating furnace. 箱型加熱炉における本発明に従う鋼管配置を示す断面図である。It is sectional drawing which shows the steel pipe arrangement | positioning according to this invention in a box-type heating furnace. 箱型加熱炉における本発明に従う鋼管配置を示す断面図である。It is sectional drawing which shows the steel pipe arrangement | positioning according to this invention in a box-type heating furnace. 箱型加熱炉における本発明に従う鋼管配置を示す断面図である。It is sectional drawing which shows the steel pipe arrangement | positioning according to this invention in a box-type heating furnace. 箱型加熱炉における本発明に従う鋼管配置を示す断面図である。It is sectional drawing which shows the steel pipe arrangement | positioning according to this invention in a box-type heating furnace. 本発明の輻射型箱型加熱炉の概要を示す断面図である。It is sectional drawing which shows the outline | summary of the radiation type | mold box-type heating furnace of this invention. 本発明の輻射型箱型加熱炉の概要を示す断面図である。It is sectional drawing which shows the outline | summary of the radiation type | mold box-type heating furnace of this invention.

以下、図面を参照して、本発明の輻射型加熱炉における長尺物の加熱方法につき、長尺物が鋼管の場合を例に、詳しく説明する。
すなわち、図2と同様の炉断面を図3に示すように、炉内には複数本の鋼管6を装入して加熱するに当たり、複数本の鋼管6は、熱が輻射される横側壁2aおよび2bから炉床1の幅中心Oに向かって下り勾配(downslope)となる、配列(arrangement)の下に配置することが肝要である。
ここで、横側壁2aおよび2bから炉床1の幅中心Oに向かって下り勾配となる、配列とは、炉床1からの高さが、横側壁2aまたは2b側の鋼管6から幅中心O側の鋼管6へその鋼管の高さが、漸減する場合は勿論、少なくとも、最も横側壁2aまたは2b側に近い鋼管6と炉床1の幅中心Oに近い鋼管6との間に炉床1からの高さに高低差があればよい。
あるいは、別の表現で言うならば、横側壁2aまたは2b側から経路上にある各鋼管6に輻射熱が直接照射されるとともに炉床1への輻射熱が多くなるような配列が好ましい。より具体的には、最も横側壁2aまたは2b側に近い鋼管6の高さを可能な限り持ち上げて、その鋼管6の下を空けて、隣の鋼管の高さを徐々に下げてずらすことにより、輻射熱が、各鋼管に直接照射されるとともに、横側壁2aまたは2b側から炉床1への輻射熱が多くなるようにすることが好ましい。
Hereinafter, the heating method for a long object in the radiation-type heating furnace of the present invention will be described in detail with reference to the drawings, taking as an example the case where the long object is a steel pipe.
That is, as shown in FIG. 3, a cross section of the furnace similar to that in FIG. 2, when a plurality of steel pipes 6 are charged and heated in the furnace, the plurality of steel pipes 6 have a side wall 2 a from which heat is radiated. It is important to arrange them under an arrangement that is downslope from 2b to the center of width O of the hearth 1.
Here, the arrangement that is inclined downward from the lateral side walls 2a and 2b toward the width center O of the hearth 1 means that the height from the hearth 1 is the width center O from the steel pipe 6 on the side wall 2a or 2b side. Of course, when the height of the steel pipe gradually decreases toward the steel pipe 6 on the side, the hearth 1 is at least between the steel pipe 6 closest to the side wall 2a or 2b side and the steel pipe 6 close to the width center O of the hearth 1. It is sufficient if there is a height difference from the height.
Or if it says with another expression, the arrangement | sequence which radiant heat will be directly irradiated to each steel pipe 6 on a path | route from the side wall 2a or 2b side and the radiant heat to the hearth 1 will increase is preferable. More specifically, by lifting the height of the steel pipe 6 closest to the side wall 2a or 2b as much as possible, leaving the bottom of the steel pipe 6 and gradually lowering and shifting the height of the adjacent steel pipe It is preferable that the radiant heat is directly applied to each steel pipe and the radiant heat from the side wall 2a or 2b side to the hearth 1 is increased.

ちなみに、図3に示す例は、横側壁2aまたは2b側の鋼管6から幅中心O側の鋼管6へその鋼管の高さが、漸減する場合である。
一方、少なくとも、最も横側壁2aまたは2b側に近い鋼管6と最も炉床1の幅中心Oに近い鋼管6との間に炉床1からの高さに高低差を設けた例としては、図4に示す鋼管配列が挙げられる。なお、図4には鋼管6の配置のみを示し、台座の図示は省略する。すなわち、図4の例は、最も横側壁2aまたは2b側に近い鋼管6aと該鋼管6aに隣り合う鋼管6bとの間には高低差がほとんどなく、鋼管6aと幅中心Oに近い鋼管6cとの間には十分な高低差を有する、鋼管配置である。
Incidentally, the example shown in FIG. 3 is a case where the height of the steel pipe gradually decreases from the steel pipe 6 on the side wall 2a or 2b side to the steel pipe 6 on the width center O side.
On the other hand, as an example in which a height difference from the hearth 1 is provided at least between the steel pipe 6 closest to the side wall 2a or 2b side and the steel pipe 6 closest to the width center O of the hearth 1, The steel pipe arrangement | sequence shown in 4 is mentioned. In FIG. 4, only the arrangement of the steel pipes 6 is shown, and the illustration of the pedestal is omitted. That is, in the example of FIG. 4, there is almost no height difference between the steel pipe 6a closest to the side wall 2a or 2b side and the steel pipe 6b adjacent to the steel pipe 6a, and the steel pipe 6c and the steel pipe 6c close to the width center O The steel pipe arrangement has a sufficient height difference between the two.

かように、炉内における鋼管の配置を、横側壁2aおよび2bから炉床1の幅中心Oに向かって下り勾配となる、配列とすることによって、横側壁2aおよび2bから輻射される熱エネルギーは、その経路上にある各鋼管6に到達し、さらには炉床1にまで到達することになる。その結果、従来は輻射による熱エネルギーを受けていなかった、炉床1が新たに該熱エネルギーを受けて加熱されることになり、一旦加熱された炉床1からの輻射熱によって、従来は輻射熱を受けていない鋼管6の炉床1側の面も加熱されることになる。
さらに、上記の鋼管配置は、隣り合う鋼管6相互間で高低差を設けることから、この隣り合う鋼管6相互の間隔を従前の横並び配列の場合と比較して、より広い間隔に設定することができる。つまり、隣り合う鋼管6相互間で高低差を設けて配列した場合と、鋼管6を横並びに配列した場合とでは、横側壁2a、2b間の距離が等しい場合には、高低差を設けて配列したほうが鋼管6相互間の間隔を広くすることができる。そして、この間隔を介して輻射熱を鋼管6へ導けるから、より効率的に鋼管の均等な加熱を実現できる。
Thus, the thermal energy radiated from the side walls 2a and 2b is arranged by arranging the steel pipes in the furnace so as to descend from the side walls 2a and 2b toward the width center O of the hearth 1. Reaches each steel pipe 6 on the path, and further reaches the hearth 1. As a result, the hearth 1, which has not received heat energy due to radiation in the past, is newly heated by receiving the heat energy, and radiant heat from the hearth 1 once heated is conventionally used to generate radiant heat. The surface on the hearth 1 side of the steel pipe 6 that is not received is also heated.
Furthermore, since said steel pipe arrangement | positioning provides a height difference between the adjacent steel pipes 6, it can set the space | interval of this adjacent steel pipe 6 to a wider space | interval compared with the case of the conventional side-by-side arrangement. it can. That is, in the case where the adjacent steel pipes 6 are arranged with a height difference and the case where the steel pipes 6 are arranged side by side, when the distance between the lateral side walls 2a, 2b is equal, the arrangement is made with a height difference. This can widen the interval between the steel pipes 6. And since radiant heat can be guide | induced to the steel pipe 6 through this space | interval, the uniform heating of a steel pipe can be implement | achieved more efficiently.

ここで、鋼管を下り勾配となる配列の下に配置するに当たり、図3に示した、横側壁2aまたは2b側の鋼管6から幅中心O側の鋼管6へ漸減する配置がより好ましいが、その際の下り勾配の傾き、すなわち図3に示すように、隣り合う鋼管6の軸芯を結ぶ線分の、炉床1面に対する傾き角Kは10°以上とすることが好ましい。
なぜなら、10°未満では、隣り合う鋼管6相互の間隔を、鋼管を水平に横並び配列した場合に対してさほど大きくすることができず、また、横側壁2a、2bから輻射される熱エネルギーの炉床1までの到達度合いが小さくなり、鋼管6の炉床1側の面の加熱が不十分となり易いためである。
Here, in arranging the steel pipes under the downward gradient arrangement, the arrangement shown in FIG. 3 that gradually decreases from the steel pipe 6 on the side wall 2a or 2b side to the steel pipe 6 on the width center O side is more preferable. As shown in FIG. 3, the inclination angle K of the line connecting the axial centers of adjacent steel pipes 6 with respect to the hearth 1 surface is preferably 10 ° or more.
This is because if the angle is less than 10 °, the distance between the adjacent steel pipes 6 cannot be increased so much as compared to the case where the steel pipes are horizontally arranged side by side, and the furnace of thermal energy radiated from the side walls 2a and 2b. This is because the degree of arrival to the floor 1 becomes small and the heating of the surface of the steel pipe 6 on the hearth 1 side tends to be insufficient.

例えば、図5に示す鋼管配置は、このKを隣接する鋼管6において一律に10°程度とした例であり、同様に、図6に示す鋼管配置は、このKを隣接する鋼管6において一律に25°程度とした例である。
いずれの場合も、上記した炉床1に輻射熱を供給すること、隣り合う鋼管6相互の間隔を従前の横並び配列の場合と比較して広く設定可能になること、を実現できる。
なお、隣り合う鋼管6の軸芯を結ぶ線分の、炉床1面に対する傾き角Kは、大きければ大きいほど、各々の鋼管をより均一に加熱できるが、Kが、45°を超えても、各々の鋼管に届く輻射熱の量は、変わらないばかりか、輻射加熱炉の天井が高くなるため、加熱が終了し、大気放冷する際に、側壁2a、2b、3a、3bと天井4とを炉床1から持ち上げる際のハンドリング処理が、より困難となるため、Kの上限値は、45°以下が好ましい。より好ましくは、30°以下である。
For example, the steel pipe arrangement shown in FIG. 5 is an example in which the K is uniformly set to about 10 ° in the adjacent steel pipe 6. Similarly, the steel pipe arrangement shown in FIG. This is an example of about 25 °.
In any case, it is possible to realize that the radiant heat is supplied to the hearth 1 described above and that the interval between the adjacent steel pipes 6 can be set wider than in the case of the conventional horizontal arrangement.
In addition, although the inclination angle K with respect to the hearth 1 surface of the line segment which connects the axial center of the adjacent steel pipe 6 is so large that each steel pipe can be heated more uniformly, even if K exceeds 45 degrees. The amount of radiant heat reaching each steel pipe is not changed, and the ceiling of the radiant heating furnace becomes high, so when the heating is finished and the atmosphere is allowed to cool, the side walls 2a, 2b, 3a, 3b and the ceiling 4 The upper limit of K is preferably equal to or less than 45 ° because the handling process when lifting from the hearth 1 becomes more difficult. More preferably, it is 30 ° or less.

なお、図3や、図5および図6に示した例では、隣接する鋼管6間における傾き角Kが全ての鋼管6にて同じ場合であるが、例えば、図7に示すように、隣接する鋼管6間における傾き角Kが列によって異なっていてもよい。すなわち、最も横側壁2aまたは2b側の鋼管6aと該鋼管6aに隣り合う鋼管6bとの間における傾き角Kが20°であり、該鋼管6bと幅中心Oに近い鋼管6cにおける傾き角Kが10°となる、鋼管配置である。この場合も、上記した下り勾配の鋼管配列が実現するから、上記した炉床1に輻射熱を供給することができ、かつ隣り合う鋼管6相互の間隔を従前の横並び配列の場合と比較して広く設定可能になる。この場合において、いずれの隣接する列間の傾き角Kについても10°以上であることが好ましい。 In addition, in the example shown in FIG.3 and FIG.5 and FIG.6, although the inclination angle K between the adjacent steel pipes 6 is the same in all the steel pipes 6, as shown in FIG. The inclination angle K between the steel pipes 6 may be different depending on the row. That is, the slope angle K 1 is 20 ° between the steel pipe 6b adjacent to the most lateral side wall 2a or 2b of the steel pipe 6a and the steel pipe 6a, the tilt angle K in the near steel pipe 6c to the steel pipe 6b and the width center O 2 is 10 ° steel pipe arrangement. Also in this case, since the downgraded steel pipe arrangement described above is realized, radiant heat can be supplied to the hearth 1 described above, and the interval between the adjacent steel pipes 6 is wider than in the case of the conventional horizontal arrangement. It becomes possible to set. In this case, the inclination angle K between any adjacent columns is preferably 10 ° or more.

また、図5−図7に示すように鋼管を下り勾配となる配列の下に配置するに当たり、隣り合う鋼管6の相互間隔tを鋼管の直径の0.05倍以上とすることが好ましい。なぜなら、この間隔を介して輻射熱を各々の鋼管6へ確実に導くには、少なくとも鋼管の直径の0.05倍以上の間隔tを確保することが好ましい。隣り合う鋼管6の相互間隔tが、鋼管の直径の0.05倍未満では、輻射熱源から隣の鋼管による影になる部分が生じ、輻射熱が届かず、各々の鋼管を均一に加熱することが困難になる。より好ましくは、隣り合う鋼管6の相互間隔tは、鋼管の直径の0.1倍以上である。隣り合う鋼管6の相互間隔tは、大きければ大きいほど、各々の鋼管をより均一に加熱できるが、隣り合う鋼管6の相互間隔tが、鋼管の直径の1.0倍を超えても、各々の鋼管に届く輻射熱の量は、変わらないため、隣り合う鋼管6の相互間隔tは、鋼管の直径の1.0倍以下が好ましい。より好ましくは、0.5倍以下である。   Moreover, when arrange | positioning a steel pipe under the arrangement | sequence which becomes downward gradient as shown in FIGS. 5-7, it is preferable that the mutual space | interval t of the adjacent steel pipe 6 shall be 0.05 times or more of the diameter of a steel pipe. This is because, in order to reliably guide the radiant heat to each steel pipe 6 through this interval, it is preferable to secure an interval t that is at least 0.05 times the diameter of the steel pipe. If the distance t between the adjacent steel pipes 6 is less than 0.05 times the diameter of the steel pipe, a shadowed portion from the radiant heat source is generated by the adjacent steel pipe, the radiant heat does not reach, and it is difficult to heat each steel pipe uniformly. Become. More preferably, the interval t between the adjacent steel pipes 6 is not less than 0.1 times the diameter of the steel pipe. The larger the mutual distance t between adjacent steel pipes 6 is, the more uniformly each steel pipe can be heated. However, even if the mutual distance t between adjacent steel pipes 6 exceeds 1.0 times the diameter of the steel pipe, Since the amount of radiant heat reaching the steel pipe does not change, the interval t between adjacent steel pipes 6 is preferably 1.0 times or less the diameter of the steel pipe. More preferably, it is 0.5 times or less.

次に、上記した加熱方法に直接使用する加熱炉について、図8および図9を参照して説明する。
まず、図8に示す加熱炉は、図3に示した鋼管6の配置に対応させた、台座7を設置したものであり、これら台座7の相互位置を鋼管6の下り勾配配列に対応させて設置してなる。また、図9に示す加熱炉は、図4に示した鋼管6の配置に対応させた、台座7を設置したものであり、この例のように、1つの台座7に複数本の鋼管6を載置する構成としてもよい。なお、台座7は、各鋼管6宛に2〜3台程度を軸方向に等間隔に設置するとよい。
Next, a heating furnace used directly in the above heating method will be described with reference to FIGS.
First, the heating furnace shown in FIG. 8 is provided with pedestals 7 corresponding to the arrangement of the steel pipes 6 shown in FIG. 3, and the mutual positions of these pedestals 7 are made to correspond to the downward gradient arrangement of the steel pipes 6. Installed. Further, the heating furnace shown in FIG. 9 is provided with a pedestal 7 corresponding to the arrangement of the steel pipes 6 shown in FIG. 4, and a plurality of steel pipes 6 are provided on one pedestal 7 as in this example. It is good also as a structure to mount. In addition, the base 7 is good to install about 2-3 units | sets to each steel pipe 6 at equal intervals in an axial direction.

さらに、横側壁2aおよび2bから輻射される熱エネルギーを炉床1に効率良く蓄熱するために、炉床1上にファイバーウール(fiber wool)などの横側壁2aおよび2bから輻射される輻射熱で容易に加熱され、自身からも輻射熱を照射できるような熱容量の小さな蓄熱材(heat storage material)を敷き詰めることも有効である。
なお、上述した床材に用いた蓄熱材を天井4にも貼り付けると天井4からの輻射熱も利用できるので、より好ましい。
Furthermore, in order to efficiently store the heat energy radiated from the side walls 2a and 2b in the hearth 1, it is easy to radiate heat radiated from the side walls 2a and 2b such as fiber wool on the hearth 1. It is also effective to spread a heat storage material having a small heat capacity so that it can be irradiated with radiant heat from itself.
In addition, since the radiant heat from the ceiling 4 can also be utilized when the thermal storage material used for the flooring mentioned above is also stuck on the ceiling 4, it is more preferable.

図1に示した輻射型加熱炉において、図2、図5および図6の鋼管配置の下に、熱処理(焼き戻し処理:780℃×0.5h)を施した。ここで、鋼管には、Cr:9.0mass%、Mo:1.0 mass%、Nb:0.08 mass%およびV:0.2mass%を含み、残部がFeおよび不可避不純物の組成になる、鋼管A:外径101.6mm×肉厚7mm×長さ12.0mおよび鋼管B:外径762mm×肉厚15mm×長さ12.0mを供した。   In the radiation-type heating furnace shown in FIG. 1, heat treatment (tempering treatment: 780 ° C. × 0.5 h) was performed under the steel pipe arrangement of FIGS. Here, the steel pipe contains Cr: 9.0 mass%, Mo: 1.0 mass%, Nb: 0.08 mass% and V: 0.2 mass%, and the balance is composed of Fe and inevitable impurities. Steel pipe A: outer diameter 101.6 mm × thickness 7 mm × length 12.0 m and steel pipe B: outer diameter 762 mm × thickness 15 mm × length 12.0 m.

以上の熱処理を施してから各鋼管の周上12箇所の温度を測定し、その最低温度および最高温度との差を求めた。その測定結果について、表1に示す。   After performing the above heat treatment, the temperature at 12 locations on the circumference of each steel pipe was measured, and the difference between the minimum temperature and the maximum temperature was determined. The measurement results are shown in Table 1.

本発明において、長尺物は鋼管に限らず、棒鋼や型鋼など、長尺物の熱処理を確実に行うことが可能である。   In the present invention, a long object is not limited to a steel pipe, and it is possible to reliably perform heat treatment of a long object such as a bar steel or a die steel.

1 炉床
2a、2b 横側壁
3a、3b 側壁
4 天井
5 ヒータ
6 鋼管
7 台座
1 hearth 2a, 2b side wall 3a, 3b side wall 4 ceiling 5 heater 6 steel pipe 7 pedestal

Claims (5)

横長の箱型炉の長辺を構成する、横側壁に沿って装入した複数の長尺物を、少なくとも前記横側壁からの輻射熱にて加熱するに当たり、前記長尺物を、前記箱型炉の横側壁から炉床の幅中心に向かって下り勾配となる、配列の下に配置する輻射型加熱炉における長尺物の加熱方法。   In heating a plurality of long objects, which constitute the long side of a horizontally long box furnace, along the horizontal side wall by at least radiant heat from the horizontal side wall, the long object is converted into the box furnace. A heating method for a long object in a radiant heating furnace disposed below the array, which has a downward slope from the side wall of the furnace toward the center of the width of the hearth. 前記長尺物の配置は、隣り合う長尺物の軸芯を結ぶ線分の、炉床面に対する傾き角Kが10°以上になる請求項1に記載の輻射型加熱炉における長尺物の加熱方法。   The arrangement of the long objects is that of a long line in the radiation type heating furnace according to claim 1, wherein an inclination angle K with respect to a hearth surface of a line segment connecting axial axes of adjacent long objects becomes 10 ° or more. Heating method. 少なくとも最も横側壁側に近い長尺物と該長尺物に隣り合う長尺物の軸芯を結ぶ線分の、炉床面に対する傾き角Kが10°以上になる請求項1に記載の輻射型加熱炉における長尺物の加熱方法。   The radiation according to claim 1, wherein an inclination angle K with respect to the hearth surface of a line segment connecting at least a long object closest to the side wall side and an axis of a long object adjacent to the long object is 10 ° or more. A heating method for long objects in a mold heating furnace. 前記長尺物の配置は、隣り合う長尺物の相互間隔tが長尺物の直径の0.05倍以上である請求項1〜3のいずれかの請求項に記載の輻射型加熱炉における長尺物の加熱方法。   The arrangement of the long objects is such that the mutual distance t between adjacent long objects is 0.05 times or more of the diameter of the long objects. The long objects in the radiation type heating furnace according to any one of claims 1 to 3. Method of heating things. 炉床上の空間を横長の箱体で区画し、長辺を構成する横側壁の内面にヒータを設置し、該横側壁からの輻射熱にて炉内に装入する複数の長尺物を加熱する箱型炉であって、前記長尺物を載置する複数の台座を、前記横側壁から前記炉床の幅中心に向かって下り勾配となる、配列の下に設置する輻射型加熱炉。   The space on the hearth is partitioned by a horizontally long box, a heater is installed on the inner surface of the side wall that forms the long side, and a plurality of long objects charged in the furnace are heated by radiant heat from the side wall. A radiant heating furnace, which is a box-type furnace, in which a plurality of pedestals on which the long objects are placed are installed under an array having a downward gradient from the lateral side wall toward the width center of the hearth.
JP2014523524A 2011-11-30 2011-11-30 Method for heating a long object in a radiation-type heating furnace and radiation-type heating furnace Active JP5813229B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/006713 WO2013080259A1 (en) 2011-11-30 2011-11-30 Method of heating long object in radiant heating furnace as well as radiant heating furnace therefor

Publications (2)

Publication Number Publication Date
JP2015504476A true JP2015504476A (en) 2015-02-12
JP5813229B2 JP5813229B2 (en) 2015-11-17

Family

ID=48534791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014523524A Active JP5813229B2 (en) 2011-11-30 2011-11-30 Method for heating a long object in a radiation-type heating furnace and radiation-type heating furnace

Country Status (4)

Country Link
JP (1) JP5813229B2 (en)
KR (1) KR101667190B1 (en)
CN (1) CN104094072B (en)
WO (1) WO2013080259A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106440805A (en) * 2016-11-28 2017-02-22 无锡市莱达热工工程有限公司 Oblique bottom furnace

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815644U (en) * 1981-07-24 1983-01-31 愛知製鋼株式会社 Shape of the furnace inner wall of a continuous heating furnace for long steel materials
JPH07258726A (en) * 1994-03-22 1995-10-09 Shiraoka Yakin Kk Method and device for removing strain
JP2006183886A (en) * 2004-12-27 2006-07-13 Kyocera Corp Kiln, method of baking treated object using the same, and method of manufacturing solar battery element
WO2011118201A1 (en) * 2010-03-25 2011-09-29 住友金属工業株式会社 Heat treatment method for long material, manufacturing method for long material, and heat treatment furnace used in above methods

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547895Y2 (en) * 1985-12-28 1993-12-17
JP3082211B2 (en) * 1990-06-19 2000-08-28 大同特殊鋼株式会社 Vacuum furnace and temperature uniforming method in vacuum furnace
JPH05271751A (en) * 1992-03-26 1993-10-19 Daido Steel Co Ltd Method for controlling temperature in vacuum furnace
JP5020863B2 (en) 2008-03-04 2012-09-05 新日鐵住金ステンレス株式会社 Steel bar manufacturing equipment
CN201830488U (en) * 2010-10-28 2011-05-11 万宇 Double helical coil plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815644U (en) * 1981-07-24 1983-01-31 愛知製鋼株式会社 Shape of the furnace inner wall of a continuous heating furnace for long steel materials
JPH07258726A (en) * 1994-03-22 1995-10-09 Shiraoka Yakin Kk Method and device for removing strain
JP2006183886A (en) * 2004-12-27 2006-07-13 Kyocera Corp Kiln, method of baking treated object using the same, and method of manufacturing solar battery element
WO2011118201A1 (en) * 2010-03-25 2011-09-29 住友金属工業株式会社 Heat treatment method for long material, manufacturing method for long material, and heat treatment furnace used in above methods

Also Published As

Publication number Publication date
KR101667190B1 (en) 2016-10-18
JP5813229B2 (en) 2015-11-17
WO2013080259A1 (en) 2013-06-06
CN104094072B (en) 2017-02-15
CN104094072A (en) 2014-10-08
KR20140092356A (en) 2014-07-23

Similar Documents

Publication Publication Date Title
JP5990338B2 (en) Far-infrared multi-stage heating furnace for hot-press steel sheets
US11708620B2 (en) Far-infrared radiation multi-stage type heating furnace for steel sheets for hot stamping
JP2014034689A (en) Heating device for hardening steel plate
JP5927355B2 (en) Far-infrared heating furnace for hot-press steel sheet
JP5813229B2 (en) Method for heating a long object in a radiation-type heating furnace and radiation-type heating furnace
JP5732655B2 (en) Batch type firing furnace
JP2015229798A (en) Far infrared type heating furnace for hot-press steel sheet
JP2015229797A (en) Far infrared ray type multi-stage type heating furnace for steel plate for hot pressing
JP6468420B2 (en) Vacuum heat treatment method
KR101622850B1 (en) Plate slow-cooling method
JP5841285B1 (en) Bell-type annealing furnace and its modification method
JP5841286B1 (en) Bell-type annealing furnace and its modification method
JP6024260B2 (en) Metal strip coil annealing method and heat insulating material used therefor
CN205856523U (en) A kind of chromium alloyed steel intercritical hardening annealing device
JP6817799B2 (en) Heat treatment furnace
US3421747A (en) Hearth for a heat treating furnace
JPH0122329B2 (en)
KR20140085829A (en) The multi divided batch furnace

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150915

R150 Certificate of patent or registration of utility model

Ref document number: 5813229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250