WO2011118201A1 - Heat treatment method for long material, manufacturing method for long material, and heat treatment furnace used in above methods - Google Patents

Heat treatment method for long material, manufacturing method for long material, and heat treatment furnace used in above methods Download PDF

Info

Publication number
WO2011118201A1
WO2011118201A1 PCT/JP2011/001684 JP2011001684W WO2011118201A1 WO 2011118201 A1 WO2011118201 A1 WO 2011118201A1 JP 2011001684 W JP2011001684 W JP 2011001684W WO 2011118201 A1 WO2011118201 A1 WO 2011118201A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heating
heat treatment
furnace
zone
Prior art date
Application number
PCT/JP2011/001684
Other languages
French (fr)
Japanese (ja)
Inventor
和人 久保田
岡田 誠司
幹雄 辰岡
Original Assignee
住友金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属工業株式会社 filed Critical 住友金属工業株式会社
Priority to CA2790579A priority Critical patent/CA2790579C/en
Priority to CN201180015842.9A priority patent/CN102822358B/en
Priority to KR1020127027374A priority patent/KR101380456B1/en
Priority to EP11759011.7A priority patent/EP2551361B1/en
Priority to JP2011513797A priority patent/JP4868091B2/en
Publication of WO2011118201A1 publication Critical patent/WO2011118201A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0043Muffle furnaces; Retort furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/28Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for plain shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • F27B17/0016Chamber type furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/02Ohmic resistance heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0006Electric heating elements or system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • F27B5/14Arrangements of heating devices
    • F27B2005/143Heating rods disposed in the chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0006Electric heating elements or system
    • F27D2099/0008Resistor heating

Definitions

  • the present invention is used when performing a heat treatment method for a long material capable of heat-treating a material longer than conventional materials, a method for producing a long material using this heat treatment method, and a heat treatment method and a production method thereof. It relates to a heat treatment furnace.
  • “Long material” A long diameter metal tube, steel bar, and other long materials.
  • Effective furnace length A furnace length corresponding to the maximum length of a heat-treated material that can be heat-treated at a uniform temperature in a heat treatment furnace.
  • “Inclined heating” When a material to be heat-treated is heated using a long cylindrical batch-type heat treatment furnace closed at both ends, the heat treatment furnace is divided into a plurality of heating zones in the longitudinal direction, and the end of them. The heating zone is further divided into a plurality of heating zones, and each heating zone is provided with a heat source, and heating is performed with a difference in the output of each heat source provided in the heating zone at the end. To do.
  • FIG. 1 is a diagram schematically showing a schematic configuration example of a conventional long material heat treatment furnace, in which FIG. 1 (a) is a transverse sectional view and FIG. 1 (b) is a longitudinal sectional view.
  • the heat treatment furnace is a cylindrical container closed at both ends, and the inside of the furnace is divided into a plurality of heating zones in the longitudinal direction.
  • the peripheral wall of the furnace has a double structure made up of the water-cooled wall 2 and the heat shield wall 3, and both end walls of the furnace also have a double structure made up of the water-cooled wall 7 and the heat shield wall 8.
  • an electric heater 1 is disposed as a heat source for each heating zone. However, the heater 1 is not provided in the both end walls of the furnace.
  • the material to be heat-treated 5 placed on the carriage 4 is inserted into the space surrounded by the electric heater 1 in the heat treatment furnace, that is, the heating zone, and heated by the heater 1. Done.
  • the heat treatment temperature is controlled by individually controlling the output of each heater 1 based on the temperature measurement result in the furnace by a thermometer provided in the furnace.
  • a plurality of heat sources are provided on the peripheral wall of the furnace, but since no heat sources are provided on both end walls of the furnace, The heat is removed from the part, and the temperature of the end part is greatly reduced as compared with the central part. Since this temperature drop occurs, the length of the long material that can be heat-treated is restricted in the conventional heat treatment furnace, and the effective furnace length is shortened.
  • the space length in the furnace that is, the total length of the portion where the heater is disposed is secured sufficiently longer than the length of the material to be heat treated, and the effective furnace length is designed to be equal to or longer than the length of the material to be heat treated. ing.
  • these temperature control methods are based on the detected furnace temperature in order to maintain the furnace temperature at an appropriate temperature or to prevent temperature fluctuations in the furnace by following the temperature change.
  • the heat source (burner and heater) is controlled independently, and it does not take into account the type of material to be heat-treated and the interference between heat sources, and is not sufficient as a method for controlling the temperature inside the furnace. It was. Therefore, the following methods that take them into consideration have been proposed.
  • Patent Document 3 in the heating furnace in which the heaters respectively arranged in the heating zones divided into a plurality are controlled in temperature independently, the deviation value between the measured temperature of each heater and the set temperature given to each heater is A heating furnace temperature control method in which a correction value that gives a heater output distribution peculiar to a furnace in a soaking zone is multiplied by time alone or as a function of time and temperature, and this is given as a heater output control value.
  • Patent Document 4 includes a plurality of heaters for heating a material to be processed, and a heating value adjuster is individually provided in the power supply path of each heater, and the temperature detection provided in the heating value adjuster and the furnace.
  • a control method using a vacuum furnace in which individual deviation setting devices are provided so as to allow deviations in the calorific values of a plurality of heaters is disclosed.
  • the set values of the deviation setting devices obtained in advance according to the type (size, shape, etc.) of the material to be processed, the pressure of the atmospheric gas, and the temperature during heating.
  • the heating values of a plurality of heaters are controlled with deviations from each other by the detection value from one temperature detector.
  • heating can be performed in a state where the temperature of the entire material to be processed is uniform.
  • the entire length of the material to be heat treated is a uniform temperature (for example, a target temperature).
  • a longer effective furnace length that can be heated to ⁇ 10 ° C. or less is ensured, and even if the space length in the furnace is the same, a long heat treatment material can be heat-treated compared to the conventional one. It is an object of the present invention to provide a heat treatment method for a scale material and a method for producing a long material using this heat treatment method. Moreover, an object of this invention is to provide the heat processing furnace used when implementing those heat processing methods and manufacturing methods.
  • the present inventors first used a conventional heat treatment furnace in which heat sources are not provided on both end walls, and in this case, the temperature of the material to be heat treated (long material), particularly at both ends. The distribution was investigated.
  • FIG. 2 is a diagram showing an example of a temperature distribution in the longitudinal direction of a material to be heat-treated in a conventional long material heat treatment furnace. This is a result of measurement using the conventional heat treatment furnace shown in FIG. 1, and shows measurement results in the heating zone at the extreme end of the furnace and the heating zone next to the heating zone at the extreme end. .
  • the material temperature on the vertical axis is displayed as a temperature difference with respect to the target temperature.
  • the material temperature located in the heating zone next to the extreme end from the vicinity of the center of the extreme heating zone was the target temperature or a temperature close thereto.
  • the temperature of the material in the portion near the end wall of the furnace from the center of the heating zone at the extreme end did not reach the target temperature and was lower by about 80 ° C. near the end wall of the furnace.
  • the same tendency was observed in the heating zone at the extreme end on the opposite side of the heat treatment furnace. That is, the conventional heat treatment furnace shown in FIG. 1 cannot perform uniform heating over the entire length of the material to be heat treated.
  • the position of the end of the material to be heat treated (long material) is near the center of the heating zone at the end of the furnace (in this example, the end of the heat treating furnace). It is 1.4m from the wall) and is considered to fall within the range of the effective furnace length.
  • the entire heating zone at the end of the heat treatment furnace is heated higher than the central heating zone (heating zone other than the heating zone at the end) The material temperature was measured.
  • FIG. 3 is a view showing the temperature distribution in the longitudinal direction of the material to be heat-treated in a conventional long material heat treatment furnace, and the heating zone at the end is the central heating zone (here, the heating zones at both ends). The temperature is higher than that of the heating zone between the two.
  • FIG. 3 shows the measurement results in the heating zone at the extreme end of the furnace and the heating zone next to the heating zone at the extreme end.
  • the temperature of the heat-treated material in the central heating zone is set to the target temperature
  • the temperature of the heat-treated material in the outermost heating zone is set to the temperature of the heat-treated material in the next heating zone at the outermost portion.
  • the heating zone at the extreme end was also set to the same target temperature as the central heating zone.
  • the temperature of the material to be heat-treated exceeds the target temperature in the vicinity of the center of the heating zone at the extreme end, while the temperature decreases at the end of the material to be heat-treated near the end wall of the furnace. It still remains, and uniform heating over the entire length of the material to be heat treated has not been made.
  • a heat shield plate is installed outside the end face of the material to be heat treated to suppress heat removal from the end of the material, and the heating zone at the extreme end of the furnace and the next heating at the extreme end adjacent thereto
  • a method of applying heat to the zone in an inclined manner was studied. This is because significant overheating of the heat-treated material can be prevented in the vicinity of the center of the heating zone at the extreme end, and the temperature decrease of the heat-treated material can be expected.
  • FIG. 5 shows the results of measuring the temperature distribution of the material to be heat treated (long material) in the heating zone at the extreme end and the heating zone next to the extreme end using a heat treatment furnace provided with this heat shield.
  • FIG. 5 For comparison, the case where the heating amount of the heating zone at the endmost portion and the heating zone next to the endmost portion are the same is also shown.
  • the present inventors divided the heating zone at the extreme end of the furnace shorter than the length of the central heating zone, arranged a heat source in each of the divided heating zones, and heated the heating at the extreme end.
  • a heat source in each of the divided heating zones, and heated the heating at the extreme end.
  • an attempt was made to make the temperature of the heat-treated material located in the heating zone at the endmost portion equal throughout the heating zone at the endmost portion. That is, the application of a method for controlling the temperature of the end portion of the material to be heat-treated (hereinafter referred to as “divided gradient heating control method”) by changing the heating output to be applied to the heat source between the individual heating zones divided.
  • the heating zone at one end is referred to as “m zone” and the heating zone at the opposite end as “n”. “Zone” is also displayed.
  • the heating zone (m zone and n zone) at the extreme end of the furnace is divided shorter than the length of the central heating zone, and this division is performed. It has been found that by controlling the heating output of each individual heating zone, the entire length of the heat-treated material including the ends can be heated to a uniform temperature. Thereby, even if the space length in the furnace is the same, the effective furnace length can be greatly expanded.
  • heating output pattern The ratio of the output of each heat source in each heating zone at the endmost part of the furnace (hereinafter referred to as “heating output pattern”) is determined in advance so that the temperature of the furnace becomes equal throughout the heating zone at the endmost part of the furnace. Can be done.
  • the present invention has been made on the basis of such knowledge, and the gist thereof is the following (1) the heat treatment method for the long material, (2) the method for producing the long material, and the heat treatment method and It exists in the heat processing furnace of (3) used for a manufacturing method.
  • heat treatment is performed by inserting a long heat-treated material into the heat treatment furnace.
  • a heat treatment method for a long material In the heat treatment furnace, the heating zone at the endmost portion of the heating zones is divided into a plurality of heating zones shorter than the length of the heating zone other than the endmost portion, and a heat source is provided in each heating zone.
  • the heat treatment method is as follows: (Step 1) Predetermining the heating output pattern of each heat source in each heating zone at the endmost part based on the actual temperature measurement result at the end of the material to be heat-treated at the time of heating, (Step 2) During the heat treatment operation of the material to be heat-treated, the heating output pattern of each heat source determined in Step 1 and further the temperature measurement result in the furnace of each heating zone at the extreme end and the heating zone other than the extreme end To control the heating output of individual heat sources, Including a series of steps, The heat processing method of the elongate material characterized by these.
  • step 2 the heating output of each heat source in each heating zone at the extreme end is adjusted based on the actual temperature measurement result at the end of the heat treatment material during the heat treatment operation. By doing so, it becomes possible to control the temperature of the heat-treated material with higher accuracy.
  • the heating output pattern can be easily adjusted, and if the heat treatment material is radiantly heated. Easy to perform accurate temperature control.
  • heat treatment is performed using a cylindrical batch heat treatment furnace in which both ends are closed and a heat source is provided on the peripheral wall, but no heat source is provided on both end walls.
  • the manufacturing method of the elongate material of this invention is a manufacturing method using this heat processing method, and can manufacture the elongate material without a quality characteristic variation. If the long material heat treatment furnace of the present invention is used, the heat treatment method and the long material manufacturing method of the present invention can be easily carried out.
  • FIG. 4A is a transverse sectional view
  • FIG. 4B is a longitudinal sectional view
  • FIG. 5 is a diagram showing the results of measuring the temperature distribution of the heat-treated material in the heating zone at the extreme end and the heating zone next to the extreme end using a heat treatment furnace provided with a heat shield.
  • FIG. 6 is a diagram illustrating measurement results of the temperature distribution of the heat-treated material in the m zone and the heating zone next to the m zone when the divided gradient heating control method is applied.
  • FIG. 7 is a result of examination by a heat transfer simulation, and is a diagram showing a relationship between an increase in heat input to the m ⁇ 1 zone and an uneven heat when the divided gradient heating control method is applied.
  • FIGS. 8A and 8B are diagrams illustrating a schematic configuration of a heat treatment furnace used in the heat treatment method for a long material according to the present invention.
  • FIG. 8A is a transverse sectional view
  • FIG. 8B is a longitudinal sectional view.
  • FIG. 9 is a diagram showing the attachment position of the thermocouple to the heat-treated material charged in the heat treatment furnace in the example.
  • FIG. 10 is a diagram illustrating an example of a temperature measurement result of the end portion of the heat-treated material during heating, which is the result obtained in the example.
  • the heat treatment method for a long material uses a cylindrical batch heat treatment furnace in which both ends are closed and the inside is divided into a plurality of heating zones in the longitudinal direction as described above.
  • the heating zone at the extreme end of the heat treatment furnace is divided into a plurality of heating zones that are shorter than the length of the heating zone other than the extreme end, and each heating zone is provided with a heat source. Steps 1 and 2 are included.
  • Step 1 Predetermining the heating output pattern of each heat source in each heating zone at the endmost part based on the actual temperature measurement result at the end of the material to be heat-treated at the time of heating, (Step 2) During the heat treatment operation of the material to be heat-treated, the heating output pattern of each heat source determined in Step 1 and further the temperature measurement result in the furnace of each heating zone at the extreme end and the heating zone other than the extreme end Based on the control of the heating output of individual heat sources.
  • FIG. 8 is a diagram illustrating a schematic configuration of a heat treatment furnace used in the heat treatment method for a long material of the present invention, where FIG. 8 (a) is a cross-sectional view and FIG. 8 (b) is a vertical cross-sectional view. is there.
  • This heat treatment furnace has three heating zones, namely, m-1 zone, m-2 zone and m-3 zone, among the plurality of heating zones shown in FIG.
  • the heat treatment furnace is divided into heating zones, and the heating zone at the extreme end on the opposite side, that is, the n zone, is divided into three heating zones, an n-1 zone, an n-2 zone, and an n-3 zone.
  • this heat treatment furnace is a cylindrical container with both ends closed, and the peripheral wall of the furnace has a double structure comprising a water-cooled wall 2 and a heat shield wall 3, and both end walls of the furnace. Also, a double structure comprising the water cooling wall 7 and the heat shield wall 8 is adopted. On the inner peripheral surface of the peripheral wall of the furnace, an electric heater 6 is disposed as a heat source for each heating zone. However, the heater 6 is not provided in the both end walls of the furnace.
  • the above-described actual temperature measurement of the material to be heat treated corresponds to the temperature measurement in each heating zone constituting the heating zone at the end of the furnace, and is measured by attaching a thermocouple to a predetermined part at the end of the material to be heat treated. Can be warmed.
  • the temperature measurement result at the end of the material to be heat-treated (the portion that mainly receives heat from each heat source in each heating zone) is obtained in advance corresponding to each heating zone at the end most shortly divided. Then, based on this, the heating output pattern (output ratio of the individual heat sources) of each heat source in the divided individual heating zones is determined.
  • heating is performed with the heating output pattern determined and set in advance as described above, and further, other than each heating zone at the outermost end of the furnace and the heating zone at the outermost end.
  • the heating output of each heat source is controlled in consideration of the temperature measurement result in the heating zone.
  • the temperature control is performed after changing the set value of each deviation setting device obtained in advance according to the type of the material to be processed at the time of heating. Therefore, it can be said that there is a similarity with the heat treatment method of the present invention.
  • the heating output of each heat source in each heating zone at the extreme end of the furnace is adjusted based on the actual temperature measurement result at the end of the heat treated material during the heat treatment operation.
  • the actual temperature measurement at the end of the material to be heat-treated is measured by attaching a thermocouple to the end of the material to be heat-treated at the time of actual heat treatment.
  • an electric heater is preferably used as a heat source for heating the heat treated material.
  • a heat source a burner, a radiant tube, or the like can be applied.
  • heating with an electric heater is preferable because the heating output pattern can be easily adjusted.
  • the heat treatment method of the present invention is preferably applied to control in a vacuum heat treatment furnace or control in a heat treatment furnace by radiant heating in a gas atmosphere having a small heat capacity such as hydrogen gas.
  • hydrogen gas is difficult to manage, so it can be said that it is more desirable to apply it to control in a vacuum heat treatment furnace.
  • the manufacturing method of the long material of this invention is a manufacturing method characterized by performing heat processing using the heat processing method of the long material of this invention mentioned above.
  • the long material heat treatment furnace of the present invention is exemplified by the schematic configuration shown in FIG. In the configuration illustrated in the figure, any of the heating zones (m zone and n zone) at both ends of the furnace is divided shortly, but heat treatment in which one of the heating zones at the extreme end is divided. It may be a furnace.
  • an output pattern setting device is attached to the heat treatment furnace, and the relationship between the actual temperature measurement result and the heating output pattern to be set is input in advance, and the output pattern setting device receives the signal of the temperature measurement result. It is also possible to select a proper heating output pattern based on the individual temperature measurement results and to give an output instruction to each heat source in each heating zone.
  • thermocouple attached to the heat-treated material and the actual temperature measurement result
  • a method of automatically determining by the output pattern setting device, etc. Can be mentioned.
  • a temperature detector conventionally used for measuring the furnace temperature may be used.
  • An example is a thermocouple.
  • an output controller that inputs a target value of the furnace temperature in advance and outputs a control signal to the heat source while performing PID control by comparing the signal from the temperature detector with the target temperature. Etc. can be used.
  • the temperature measuring means includes a thermocouple that can be attached to the end of the material to be heat-treated during actual heat treatment.
  • the heat treatment furnace used is divided into a plurality of heating zones from the m zone to the n zone, and the length of each heating zone is 3 m.
  • the m zone which is the one endmost part is divided into the m-1 zone, the m-2 zone and the m-3 zone in order from the end, and the n zone which is the opposite end part is the end zone.
  • Each of the heating zones constituting the m-zone and n-zone at the extreme end has a length after division of 1 m.
  • the divided gradient heating control method adopted in the heat treatment method of the present invention was applied.
  • the output ratio here was determined and set based on the actual temperature measurement result of the heat-treated material obtained in advance.
  • the power ratio was changed in the same way during the heating, and the heating was performed.
  • FIG. 10 shows an example of the temperature measurement result at the end of the heat-treated material.
  • FIG. 10 is a chart in which the temperature measurement results of the heat-treated material are automatically recorded.
  • the circled numbers 1 to 10 shown in FIG. 10 are measured by thermocouples at the respective attachment positions shown in FIG. Represents the material temperature.
  • the temperature of the material to be heat-treated is suppressed to within ⁇ 10 ° C. with respect to the target temperature at any temperature measurement location.
  • FIG. 6 is a diagram obtained by organizing an example of the temperature measurement result at the end of the heat-treated material thus performed.
  • the output ratio of each of the heating zones (m-1, m-2, and m-3) divided into 3 zones is 100% (remodeled with white squares ( ⁇ ) in the figure)
  • Previous is a position near the end of the heat-treated material (near the center of the m-1 zone), and there was a temperature difference of about 45 ° C. from the heating zone next to the m zone.
  • the heat treatment method of the present invention is applied (indicated by black circles ( ⁇ ) in the figure, “after remodeling”), the temperature difference between 7 ° C. and the next heating zone after the m zone. It can be seen that is greatly reduced.
  • the heat treatment method for a long material of the present invention it is possible to secure a longer effective furnace length and to heat a long heat-treated material to a uniform temperature with high accuracy over the entire length.
  • the method for producing a long material of the present invention using this heat treatment method it is possible to produce a material having no variation in quality characteristics such as mechanical characteristics and corrosion resistance.
  • the heat processing furnace of the long material of this invention is used, the heat processing method and manufacturing method of this invention can be implemented easily. Therefore, the heat treatment method of the present invention, the production method of the long material of the present invention to which this method is applied, and the heat treatment furnace of the present invention can be effectively used for heat treatment and production of the long material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Furnace Details (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Heat Treatment Of Articles (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)

Abstract

Disclosed is a method which is for carrying out heat treatment on long material to be heat treated, and which uses a batch-type heat treatment furnace which is cylindrical in shape, and the inside of which has been divided into a plurality of heating zones along the length-wise direction thereof, and both ends of which have been blocked. The end-most sections of the heat treatment furnace are divided into a plurality of heating zones which are shorter in length than the heating zones which are not in the end most sections, and a heat source is disposed in every heating zone. The heat treatment method comprises a series of steps: in advance, determine the heating output pattern of each heat source in each heating zone in the end-most sections, on the basis of the results of actual measured temperatures during the heating of the end sections of the material to be heat treated (step one); individually control the heating output of the heat sources during the heat treatment of the material to be heat treated, on the basis of the heating output pattern of each heat source, as determined in step one, and the results of measuring the inside-furnace temperature of each heating zone in the end-most sections and the other heating zones (step two). This heat treatment method enables material to be heat treated to be accurately and evenly heated along the entire length thereof, even in heat treatment furnaces which do not have heat sources in both end walls.

Description

長尺材の熱処理方法、長尺材の製造方法、およびそれらの方法に用いる熱処理炉Heat treatment method for long material, method for producing long material, and heat treatment furnace used in those methods
 本発明は、従来よりも長尺な材料の熱処理が可能な長尺材の熱処理方法、およびこの熱処理方法を用いる長尺材の製造方法、並びにそれらの熱処理方法および製造方法を実施する際に用いる熱処理炉に関する。 INDUSTRIAL APPLICABILITY The present invention is used when performing a heat treatment method for a long material capable of heat-treating a material longer than conventional materials, a method for producing a long material using this heat treatment method, and a heat treatment method and a production method thereof. It relates to a heat treatment furnace.
 別に記載がない限り、本明細書における用語の定義は次のとおりである。
 「長尺材」:小径で長尺の金属管をはじめ、棒鋼、その他の長尺の材料をいう。
 「有効炉長」:熱処理炉において、均一な温度で熱処理が可能な被熱処理材の最大長さに相当する炉長をいう。
 「傾斜加熱」:両端が閉塞された長い筒状のバッチ式熱処理炉を用いて被熱処理材を加熱する際、その熱処理炉が長手方向に複数の加熱ゾーンに分割され、それらのうちの最端部の加熱ゾーンがさらに複数の加熱ゾーンに分割され、各加熱ゾーンにそれぞれ熱源が配設されており、その最端部の加熱ゾーンに配設された各熱源の出力に高低差を付けて加熱することをいう。
Unless otherwise stated, the definitions of terms in this specification are as follows.
“Long material”: A long diameter metal tube, steel bar, and other long materials.
“Effective furnace length”: A furnace length corresponding to the maximum length of a heat-treated material that can be heat-treated at a uniform temperature in a heat treatment furnace.
“Inclined heating”: When a material to be heat-treated is heated using a long cylindrical batch-type heat treatment furnace closed at both ends, the heat treatment furnace is divided into a plurality of heating zones in the longitudinal direction, and the end of them. The heating zone is further divided into a plurality of heating zones, and each heating zone is provided with a heat source, and heating is performed with a difference in the output of each heat source provided in the heating zone at the end. To do.
 通常、金属管や棒鋼等の長尺材の熱処理には、バッチ式熱処理炉が用いられる。
 図1は、従来の長尺材用熱処理炉の概略構成例を模式的に示す図であり、同図(a)は横断面図、同図(b)は縦断面図である。同図に示すように、熱処理炉は、両端が閉塞された筒状の容器であり、炉内が長手方向に複数の加熱ゾーンに分割されている。炉の周壁は水冷壁2および遮熱壁3からなる二重構造とされ、炉の両端壁も水冷壁7および遮熱壁8からなる二重構造とされる。炉の周壁の内周面には、加熱ゾーン毎に熱源として電気ヒータ1が配設されている。ただし、炉の両端壁には、ヒータ1は設けられていない。
Usually, a batch heat treatment furnace is used for heat treatment of a long material such as a metal tube or a steel bar.
FIG. 1 is a diagram schematically showing a schematic configuration example of a conventional long material heat treatment furnace, in which FIG. 1 (a) is a transverse sectional view and FIG. 1 (b) is a longitudinal sectional view. As shown in the figure, the heat treatment furnace is a cylindrical container closed at both ends, and the inside of the furnace is divided into a plurality of heating zones in the longitudinal direction. The peripheral wall of the furnace has a double structure made up of the water-cooled wall 2 and the heat shield wall 3, and both end walls of the furnace also have a double structure made up of the water-cooled wall 7 and the heat shield wall 8. On the inner peripheral surface of the peripheral wall of the furnace, an electric heater 1 is disposed as a heat source for each heating zone. However, the heater 1 is not provided in the both end walls of the furnace.
 長尺材の熱処理は、この熱処理炉内の電気ヒータ1で囲まれた空間、すなわち加熱ゾーンに、台車4上に載置された被熱処理材5を装入し、ヒータ1で加熱することにより行われる。熱処理温度の制御は、炉内に設けられた温度計による炉内測温結果に基づき各ヒータ1の出力を個別に制御することにより行われる。 In the heat treatment of the long material, the material to be heat-treated 5 placed on the carriage 4 is inserted into the space surrounded by the electric heater 1 in the heat treatment furnace, that is, the heating zone, and heated by the heater 1. Done. The heat treatment temperature is controlled by individually controlling the output of each heater 1 based on the temperature measurement result in the furnace by a thermometer provided in the furnace.
 図1に示すように、従来の熱処理炉では、炉の周壁に複数の熱源(電気ヒータ)が設けられているが、炉の両端壁に熱源が設けられてないため、長尺材は、端部が抜熱され、中央部に比べて端部の温度が大きく低下する。この温度低下が発生することから、従来の熱処理炉は、熱処理可能な長尺材の長さが制約され、有効炉長が短くなる。 As shown in FIG. 1, in a conventional heat treatment furnace, a plurality of heat sources (electric heaters) are provided on the peripheral wall of the furnace, but since no heat sources are provided on both end walls of the furnace, The heat is removed from the part, and the temperature of the end part is greatly reduced as compared with the central part. Since this temperature drop occurs, the length of the long material that can be heat-treated is restricted in the conventional heat treatment furnace, and the effective furnace length is shortened.
 そのため、炉内の空間長さ、すなわちヒータが配設される部分の総長さを被熱処理材の長さよりも十分長く確保し、有効炉長が被熱処理材の長さ以上になるように設計されている。 Therefore, the space length in the furnace, that is, the total length of the portion where the heater is disposed is secured sufficiently longer than the length of the material to be heat treated, and the effective furnace length is designed to be equal to or longer than the length of the material to be heat treated. ing.
 しかし、従来よりも長尺の材料を熱処理するに際し、有効炉長を長くするために熱処理炉の長さを長くすると、それだけ設備改造費が嵩む。また、炉長を長くしない場合は、被熱処理材の長さを短くせざるを得ず、需要者の要望に柔軟に対応できない。従来の熱処理炉にはこういった問題がある。 However, when heat-treating longer materials than before, if the length of the heat treatment furnace is increased in order to increase the effective furnace length, the cost of equipment modification increases accordingly. In addition, when the furnace length is not lengthened, the length of the material to be heat-treated has to be shortened, and the demand of the customer cannot be flexibly handled. Conventional heat treatment furnaces have these problems.
 被熱処理材の温度制御方法としては、以下に述べる方法が提案されている。
 例えば、特許文献1には、複数のバーナーを燃焼させることにより、炉内に収容した被加熱物を熱処理するバッチ式熱処理炉において、各バーナーの燃焼域の温度が一定となるようにそれぞれフィードバック制御する一方、炉内温度が目標温度となる手前の予め設けられた一定の温度範囲内に達した時に、燃焼域の目標温度を予め定められた一定の値に制限することによって、炉内温度を一定の温度に制御する方法が開示されている。
As a temperature control method for the material to be heat-treated, the following method has been proposed.
For example, in Patent Document 1, in a batch-type heat treatment furnace in which a plurality of burners are burned to heat-treat an object to be heated contained in the furnace, feedback control is performed so that the temperature in the combustion zone of each burner becomes constant. On the other hand, by limiting the target temperature in the combustion zone to a predetermined constant value when the temperature in the furnace reaches a predetermined temperature range before the target temperature is reached, the temperature in the furnace is reduced. A method of controlling to a constant temperature is disclosed.
 特許文献2には、前面および後面に処理品を出入りさせる開口部を有する真空炉において、下部ヒータの発熱量および上部ヒータの前後部ゾーンと中間ゾーンの発熱量を夫々互いに独立して制御し得るようにした温度制御方法が開示されている。真空炉では、処理品が専らヒータからの輻射加熱により昇温され、対流加熱がほとんどないので処理品を均一に加熱することが難しく、この不均一加熱に起因して品質不良を起こすおそれがあることから、この問題に対処するためである。 In Patent Document 2, in a vacuum furnace having openings for allowing processed products to enter and exit from the front and rear surfaces, the heat generation amount of the lower heater and the heat generation amounts of the front and rear zones and the intermediate zone of the upper heater can be controlled independently of each other. A temperature control method is disclosed. In a vacuum furnace, the treated product is heated by radiation heating from the heater, and there is almost no convection heating, so it is difficult to heat the treated product uniformly, and this non-uniform heating may cause poor quality. This is to deal with this problem.
 しかし、これらの温度制御方法は、炉内の温度を適切な温度に維持するため、または温度変化に追従させて炉内の温度バラツキを防止するために、検出した炉内温度に基づいて、個々の熱源(バーナーやヒータ)を独立して制御するものであって、被熱処理材の種別や熱源相互の干渉を考慮しておらず、炉内全体の温度を制御する方法としては不十分であった。そこで、それらを考慮した次のような方法が提案されている。 However, these temperature control methods are based on the detected furnace temperature in order to maintain the furnace temperature at an appropriate temperature or to prevent temperature fluctuations in the furnace by following the temperature change. The heat source (burner and heater) is controlled independently, and it does not take into account the type of material to be heat-treated and the interference between heat sources, and is not sufficient as a method for controlling the temperature inside the furnace. It was. Therefore, the following methods that take them into consideration have been proposed.
 特許文献3には、複数に分割された加熱ゾーンにそれぞれ配置されたヒータを独立的に温度制御するようにした加熱炉において、各ヒータの測定温度と各ヒータに与える設定温度の偏差値に、均熱域における炉特有のヒータ出力分布を与える補正値を時間のみ、または時間と温度の関数として乗じ、これをヒータ出力制御値として与える加熱炉の温度制御方法が開示されている。 In Patent Document 3, in the heating furnace in which the heaters respectively arranged in the heating zones divided into a plurality are controlled in temperature independently, the deviation value between the measured temperature of each heater and the set temperature given to each heater is A heating furnace temperature control method is disclosed in which a correction value that gives a heater output distribution peculiar to a furnace in a soaking zone is multiplied by time alone or as a function of time and temperature, and this is given as a heater output control value.
 また、特許文献4には、被処理材を加熱する複数のヒータを備え、各ヒータの給電経路に発熱量調整器を個別に設け、それらの発熱量調整器と炉内に設けられた温度検出器との間に、複数のヒータの発熱量に偏差を持たせ得るよう夫々個別の偏差設定器を設けた真空炉を用いる制御方法が開示されている。そして、特許文献4に開示される制御方法では、加熱に際して、被処理材の種別(大きさ、形状等)や、雰囲気ガスの圧力、温度に応じて、予め求めた各偏差設定器の設定値を変更することにより、一つの温度検出器からの検出値で、複数のヒータの発熱量を相互に偏差を持たせた状態で制御することとしている。これによって、複数のヒータを個別に制御した場合と同様に被処理材全体の温度が均一化する状態で加熱することができるとしている。 Further, Patent Document 4 includes a plurality of heaters for heating a material to be processed, and a heating value adjuster is individually provided in the power supply path of each heater, and the temperature detection provided in the heating value adjuster and the furnace. A control method using a vacuum furnace in which individual deviation setting devices are provided so as to allow deviations in the calorific values of a plurality of heaters is disclosed. In the control method disclosed in Patent Document 4, the set values of the deviation setting devices obtained in advance according to the type (size, shape, etc.) of the material to be processed, the pressure of the atmospheric gas, and the temperature during heating. By changing the above, the heating values of a plurality of heaters are controlled with deviations from each other by the detection value from one temperature detector. As a result, as in the case where a plurality of heaters are individually controlled, heating can be performed in a state where the temperature of the entire material to be processed is uniform.
 これらの方法は、個々のバーナーやヒータを独立して制御する従来の温度制御に加えて、加熱ゾーン毎の偏差値を設定することにより、被熱処理材全体の炉内温度分布を均一化させようとするものである。しかし、前記図1に示したように、各加熱ゾーンに対応して周壁に熱源が配設される一方、両端壁に熱源が設けられていない熱処理炉では、長尺材の端部で中央部と比べて著しい温度低下が発生するので、長尺材のような長い被熱処理材の処理温度を均一化する方法としては不十分である。 In these methods, in addition to the conventional temperature control in which individual burners and heaters are controlled independently, by setting a deviation value for each heating zone, the temperature distribution in the furnace throughout the material to be heat treated should be made uniform. It is what. However, as shown in FIG. 1, in a heat treatment furnace in which a heat source is provided on the peripheral wall corresponding to each heating zone, but no heat source is provided on both end walls, the end of the long material is at the center. As a result, a significant temperature drop occurs, which is insufficient as a method for uniformizing the processing temperature of a long heat-treated material such as a long material.
特開昭62-4828号公報Japanese Patent Laid-Open No. 62-4828 特開平5-271751号公報Japanese Patent Application Laid-Open No. 5-271751 特開昭62-112726号公報JP-A-62-112726 特開平4-52215号公報JP-A-4-52215
 本発明は、両端が閉塞され周壁に熱源が配設される一方で両端壁には熱源が設けられていない筒状のバッチ式熱処理炉において、被熱処理材全長を均一な温度(例えば、目標温度に対し、±10℃以下)に加熱できる有効炉長をより長く確保し、炉内の空間長さが同じであっても、従来に比べて長尺な被熱処理材を熱処理することができる長尺材の熱処理方法、およびこの熱処理方法を用いる長尺材の製造方法を提供することを目的とする。また、本発明は、それらの熱処理方法および製造方法を実施する際に用いる熱処理炉を提供することを目的とする。 In the cylindrical batch type heat treatment furnace in which both ends are closed and a heat source is disposed on the peripheral wall, but no heat source is provided on both end walls, the entire length of the material to be heat treated is a uniform temperature (for example, a target temperature). On the other hand, a longer effective furnace length that can be heated to ± 10 ° C. or less is ensured, and even if the space length in the furnace is the same, a long heat treatment material can be heat-treated compared to the conventional one. It is an object of the present invention to provide a heat treatment method for a scale material and a method for producing a long material using this heat treatment method. Moreover, an object of this invention is to provide the heat processing furnace used when implementing those heat processing methods and manufacturing methods.
 上記の課題を解決するために、本発明者らは、先ず、両端壁に熱源が設けられていない従来の熱処理炉を用い、この場合の被熱処理材(長尺材)の特に両端部における温度分布を調査した。 In order to solve the above-mentioned problems, the present inventors first used a conventional heat treatment furnace in which heat sources are not provided on both end walls, and in this case, the temperature of the material to be heat treated (long material), particularly at both ends. The distribution was investigated.
 図2は、従来の長尺材の熱処理炉での被熱処理材の長手方向における温度分布の一例を示す図である。これは、前記図1に示した従来の熱処理炉を用いて測定した結果であり、炉の最端部の加熱ゾーンおよびこの最端部の加熱ゾーンの次の加熱ゾーンにおける測定結果を示している。図2において、縦軸の材料温度は目標温度を基準としてそれに対する温度差で表示している。 FIG. 2 is a diagram showing an example of a temperature distribution in the longitudinal direction of a material to be heat-treated in a conventional long material heat treatment furnace. This is a result of measurement using the conventional heat treatment furnace shown in FIG. 1, and shows measurement results in the heating zone at the extreme end of the furnace and the heating zone next to the heating zone at the extreme end. . In FIG. 2, the material temperature on the vertical axis is displayed as a temperature difference with respect to the target temperature.
 図2に示すように、最端部の加熱ゾーンの中央部近傍からこの最端部の次の加熱ゾーンに位置する材料温度は、目標温度もしくはそれに近い温度であった。しかし、最端部の加熱ゾーンの中央部から炉の端壁に近い部分にある材料温度は、目標温度に達しておらず、炉の端壁の近傍ではそれよりも80℃程度低くなった。図2には示していないが、熱処理炉の反対側の最端部の加熱ゾーンにおいても同様の傾向が認められた。すなわち、前記図1に示した従来の熱処理炉では、被熱処理材の全長にわたる均一な加熱は行えない。 As shown in FIG. 2, the material temperature located in the heating zone next to the extreme end from the vicinity of the center of the extreme heating zone was the target temperature or a temperature close thereto. However, the temperature of the material in the portion near the end wall of the furnace from the center of the heating zone at the extreme end did not reach the target temperature and was lower by about 80 ° C. near the end wall of the furnace. Although not shown in FIG. 2, the same tendency was observed in the heating zone at the extreme end on the opposite side of the heat treatment furnace. That is, the conventional heat treatment furnace shown in FIG. 1 cannot perform uniform heating over the entire length of the material to be heat treated.
 実際の操業においては、被熱処理材(長尺材)の端部の位置は、図2中に示すように、炉の最端部の加熱ゾーンの中央部近傍(この例では、熱処理炉の端壁から1.4mの位置)にあり、有効炉長の範囲内に入るように配慮されている。 In actual operation, as shown in FIG. 2, the position of the end of the material to be heat treated (long material) is near the center of the heating zone at the end of the furnace (in this example, the end of the heat treating furnace). It is 1.4m from the wall) and is considered to fall within the range of the effective furnace length.
 この被熱処理材の端部における温度低下を解消するために、熱処理炉の最端部の加熱ゾーン全体を中央の加熱ゾーン(最端部の加熱ゾーン以外の加熱ゾーン)よりも昇熱し、この場合の材料温度の測定を行った。 In order to eliminate the temperature drop at the end of the heat-treated material, the entire heating zone at the end of the heat treatment furnace is heated higher than the central heating zone (heating zone other than the heating zone at the end) The material temperature was measured.
 図3は、同じく従来の長尺材の熱処理炉における被熱処理材の長手方向での温度分布を示す図であり、最端部の加熱ゾーンを中央の加熱ゾーン(ここでは、両端部の加熱ゾーンの間にある加熱ゾーンを指す)よりも昇熱させた場合を示している。図3では、炉の最端部の加熱ゾーンおよびこの最端部の加熱ゾーンの次の加熱ゾーンにおける測定結果を示している。 FIG. 3 is a view showing the temperature distribution in the longitudinal direction of the material to be heat-treated in a conventional long material heat treatment furnace, and the heating zone at the end is the central heating zone (here, the heating zones at both ends). The temperature is higher than that of the heating zone between the two. FIG. 3 shows the measurement results in the heating zone at the extreme end of the furnace and the heating zone next to the heating zone at the extreme end.
 試験の際、中央の加熱ゾーンの被熱処理材の温度を目標温度に設定し、最端部の加熱ゾーンの被熱処理材の温度を、最端部の次の加熱ゾーンの被熱処理材の温度よりも20℃または40℃高く設定した。比較のために、最端部の加熱ゾーンを中央の加熱ゾーンと同じ目標温度に設定した場合についても行った。 During the test, the temperature of the heat-treated material in the central heating zone is set to the target temperature, and the temperature of the heat-treated material in the outermost heating zone is set to the temperature of the heat-treated material in the next heating zone at the outermost portion. Was also set 20 ° C. or 40 ° C. higher. For comparison, the heating zone at the extreme end was also set to the same target temperature as the central heating zone.
 図3に示すように、最端部の加熱ゾーンの中央部近傍で被熱処理材の温度が目標温度を超えてオーバーヒートし、一方、炉の端壁に近い被熱処理材の端部では温度低下が依然として残っており、被熱処理材の全長にわたる均一な加熱はなされていない。 As shown in FIG. 3, the temperature of the material to be heat-treated exceeds the target temperature in the vicinity of the center of the heating zone at the extreme end, while the temperature decreases at the end of the material to be heat-treated near the end wall of the furnace. It still remains, and uniform heating over the entire length of the material to be heat treated has not been made.
 続いて、被熱処理材の端面の外側に遮熱板を設置して材料端部からの抜熱を抑制するとともに、炉の最端部の加熱ゾーンおよびこれに隣接する最端部の次の加熱ゾーンに傾斜的に熱量を付与する方法について検討した。最端部の加熱ゾーンの中央部近傍で被熱処理材の著しいオーバーヒートを防止し、かつ被熱処理材の温度低下を抑制することが期待できるからである。 Subsequently, a heat shield plate is installed outside the end face of the material to be heat treated to suppress heat removal from the end of the material, and the heating zone at the extreme end of the furnace and the next heating at the extreme end adjacent thereto A method of applying heat to the zone in an inclined manner was studied. This is because significant overheating of the heat-treated material can be prevented in the vicinity of the center of the heating zone at the extreme end, and the temperature decrease of the heat-treated material can be expected.
 図4は、遮熱板を設置した熱処理炉の概略構成を示す図であり、同図(a)は横断面図、同図(b)は縦断面図である。同図に示す熱処理炉では、台車4上に載置された被熱処理材の端面の外側にSUS304製の遮熱板9が12枚重ねて設置されている。この熱処理炉を使用し、最端部の加熱ゾーンの加熱量を最端部の次の加熱ゾーンのそれに対して若干高めた場合の材料温度の測定を行った。 FIG. 4 is a diagram showing a schematic configuration of a heat treatment furnace provided with a heat shield, wherein FIG. 4 (a) is a transverse sectional view and FIG. 4 (b) is a longitudinal sectional view. In the heat treatment furnace shown in the figure, twelve heat shield plates 9 made of SUS304 are placed on the outside of the end face of the heat treated material placed on the carriage 4. Using this heat treatment furnace, the material temperature was measured when the heating amount in the heating zone at the extreme end was slightly increased relative to that in the heating zone next to the extreme end.
 図5は、この遮熱板を設置した熱処理炉を使用して最端部の加熱ゾーンおよび最端部の次の加熱ゾーンにおける被熱処理材(長尺材)の温度分布を測定した結果を示す図である。比較のために、最端部の加熱ゾーンと最端部の次の加熱ゾーンの加熱量を同じとした場合も併記している。 FIG. 5 shows the results of measuring the temperature distribution of the material to be heat treated (long material) in the heating zone at the extreme end and the heating zone next to the extreme end using a heat treatment furnace provided with this heat shield. FIG. For comparison, the case where the heating amount of the heating zone at the endmost portion and the heating zone next to the endmost portion are the same is also shown.
 図5に示す結果から、被熱処理材の全長にわたる温度分布の許容範囲を目標温度に対して±10℃以下とした場合、最端部の加熱ゾーンの入熱量を最端部の次の加熱ゾーンのそれに対して若干増加させることにより、最端部の加熱ゾーンの中央部近傍で被熱処理材のオーバーヒートを許容範囲の上限以下に抑え、かつ被熱処理材の端部における温度低下を回避して被熱処理材を均一に加熱できることがわかる。 From the results shown in FIG. 5, when the allowable range of the temperature distribution over the entire length of the material to be heat treated is set to ± 10 ° C. or less with respect to the target temperature, the heat input of the heating zone at the extreme end is set to the heating zone next to the extreme end By slightly increasing it, the overheat of the heat-treated material is suppressed below the upper limit of the allowable range in the vicinity of the center of the heating zone at the end, and the temperature drop at the end of the heat-treated material is avoided. It can be seen that the heat-treated material can be heated uniformly.
 しかしながら、この熱処理炉では、処理後に炉の端壁から冷却ガスを導入し被熱処理材を冷却するが、遮熱板9によってガスが遮られるため冷却速度が低下し、冷却に要する時間が従来の2~3倍程度長くなるという問題があった。また、台車への材料の積み込み本数や寸法によっても遮熱板の設置枚数、設置箇所を検討する必要があり、現実的な方法とはいえない。 However, in this heat treatment furnace, a cooling gas is introduced from the end wall of the furnace after the treatment to cool the material to be heat treated. However, the gas is blocked by the heat shield plate 9, the cooling rate is reduced, and the time required for the cooling is conventional. There was a problem that it was about 2 to 3 times longer. Moreover, it is necessary to consider the number of installed heat shield plates and the installation location depending on the number and size of materials loaded on the cart, and this is not a realistic method.
 そこで、本発明者らは、炉の最端部の加熱ゾーンを中央の加熱ゾーンの長さよりも短く分割し、この分割した個々の加熱ゾーンにそれぞれ熱源を配設し、その最端部の加熱ゾーンのみを傾斜的に加熱する(傾斜加熱する)ことにより、最端部の加熱ゾーン内に位置する被熱処理材の温度が最端部の加熱ゾーン全域で等しくなるように試みた。すなわち、分割した個々の加熱ゾーン間で熱源に与える加熱出力を変えることにより、被熱処理材の端部の温度を制御する方法(以下、「分割傾斜加熱制御法」という)の適用について検討した。 Therefore, the present inventors divided the heating zone at the extreme end of the furnace shorter than the length of the central heating zone, arranged a heat source in each of the divided heating zones, and heated the heating at the extreme end. By heating only the zone in an inclined manner (inclined heating), an attempt was made to make the temperature of the heat-treated material located in the heating zone at the endmost portion equal throughout the heating zone at the endmost portion. That is, the application of a method for controlling the temperature of the end portion of the material to be heat-treated (hereinafter referred to as “divided gradient heating control method”) by changing the heating output to be applied to the heat source between the individual heating zones divided.
 加熱ゾーンの数は、本発明による課題の解決には影響しないので、以下、説明の便宜上、一方の最端部の加熱ゾーンを「mゾーン」、反対側の最端部の加熱ゾーンを「nゾーン」とも表示する。 Since the number of heating zones does not affect the solution of the problem according to the present invention, hereinafter, for convenience of explanation, the heating zone at one end is referred to as “m zone” and the heating zone at the opposite end as “n”. “Zone” is also displayed.
 図6は、分割傾斜加熱制御法を適用した場合のmゾーンおよびmゾーンの次の加熱ゾーンにおける被熱処理材の温度分布の測定結果を例示する図である。この例では、最端部のmゾーンを、端から順に、m-1ゾーン、m-2ゾーンおよびm-3ゾーンの3つの加熱ゾーンに等分割し、m-1ゾーンにおいてのみ加熱量(入熱量)を増大させる傾斜加熱を行った。 FIG. 6 is a diagram illustrating the measurement result of the temperature distribution of the heat-treated material in the m zone and the heating zone next to the m zone when the divided gradient heating control method is applied. In this example, the m zone at the extreme end is divided into three heating zones, m−1 zone, m−2 zone, and m−3 zone in order from the end, and the heating amount (input) only in the m−1 zone. Gradient heating that increases the amount of heat) was performed.
 図6において、「改造後」とは、mゾーンを3分割した熱処理炉を使用して傾斜加熱を行った場合であり、「改造前」とは、同じ3分割した熱処理炉を使用しているが、m-1ゾーン、m-2ゾーンおよびm-3ゾーンの加熱量を一律とし、傾斜加熱を行わない従来の加熱方式の場合である。なお、改造後の場合のm-1ゾーンに対する加熱量の増大比率は、後述する図7に示した伝熱シミュレーションによる検討結果を参照して、+35%とした。 In FIG. 6, “after remodeling” is a case where gradient heating is performed using a heat treatment furnace in which the m zone is divided into three parts, and “before remodeling” is using the same three-part heat treatment furnace. However, this is the case of the conventional heating method in which the heating amounts in the m-1 zone, the m-2 zone, and the m-3 zone are made uniform and no gradient heating is performed. It should be noted that the rate of increase in the heating amount with respect to the m-1 zone after remodeling was set to + 35% with reference to the result of examination by heat transfer simulation shown in FIG. 7 described later.
 図6に示した結果から明らかなように、炉の最端部の加熱ゾーンで分割傾斜加熱制御法を適用することにより、被熱処理材の端部のオーバーヒートを許容範囲内に抑え、かつ端部における温度低下を回避して被熱処理材全体を均一に加熱できることがわかる。 As apparent from the results shown in FIG. 6, by applying the divided gradient heating control method in the heating zone at the extreme end of the furnace, the overheating of the end of the heat-treated material is suppressed within an allowable range, and the end It can be seen that the whole material to be heat treated can be heated uniformly while avoiding the temperature drop at.
 図7は、伝熱シミュレーションによる検討結果であり、分割傾斜加熱制御法を適用した場合のm-1ゾーンへの入熱増加量と偏熱の関係を示す図である。ここで「偏熱」とは、mゾーンおよびmゾーンの次の加熱ゾーンでの被熱処理材の温度分布における最高値と最低値の差である。図7に示すように、m-1ゾーンへの入熱増加量が0(すなわち、傾斜加熱を行わない従来の加熱方式)の場合、偏熱は80℃程度であるのに対し、傾斜加熱を行うことにより偏熱が減少し、入熱増加量が+35%のとき10℃の最小値を示す。 FIG. 7 is a result of examination by a heat transfer simulation, and is a diagram showing a relationship between an increase in heat input to the m-1 zone and an uneven heat when the divided gradient heating control method is applied. Here, “biased heat” is the difference between the highest value and the lowest value in the temperature distribution of the heat-treated material in the m zone and the heating zone next to the m zone. As shown in FIG. 7, when the amount of heat input to the m-1 zone is 0 (that is, the conventional heating method in which gradient heating is not performed), the partial heat is about 80 ° C., whereas gradient heating is performed. When this is done, the partial heat is reduced, and when the heat input increase is + 35%, a minimum value of 10 ° C. is shown.
 以上、mゾーンを3分割して傾斜加熱する場合について説明したが、一般に、炉の最端部の加熱ゾーン(mゾーンおよびnゾーン)を中央の加熱ゾーンの長さよりも短く分割し、この分割した個々の加熱ゾーンの加熱出力を制御することにより、端部を含めて被熱処理材の全長を均一な温度に加熱できることが判明した。これにより、炉内の空間長さが同じであっても有効炉長を大幅に拡げることが可能になる。 In the above, the case where the m zone is divided into three and heated by the gradient has been described. In general, the heating zone (m zone and n zone) at the extreme end of the furnace is divided shorter than the length of the central heating zone, and this division is performed. It has been found that by controlling the heating output of each individual heating zone, the entire length of the heat-treated material including the ends can be heated to a uniform temperature. Thereby, even if the space length in the furnace is the same, the effective furnace length can be greatly expanded.
 上記のとおりに炉の最端部の加熱ゾーンで分割した個々の加熱ゾーンの加熱出力の制御は、加熱時における被熱処理材の端部での実体測温結果に基づき、被熱処理材の端部の温度が炉の最端部の加熱ゾーン全域で等しくなるように、分割された最端部の各加熱ゾーンにおける各熱源の出力の比(以下、「加熱出力パターン」という)を予め求めておくことにより行うことができる。 As described above, the control of the heating power of each heating zone divided by the heating zone at the extreme end of the furnace is based on the actual temperature measurement result at the end of the heat-treated material during heating. The ratio of the output of each heat source in each heating zone at the endmost part of the furnace (hereinafter referred to as “heating output pattern”) is determined in advance so that the temperature of the furnace becomes equal throughout the heating zone at the endmost part of the furnace. Can be done.
 本発明は、このような知見に基づきなされたものであり、その要旨は、下記(1)の長尺材の熱処理方法、および(2)の長尺材の製造方法、並びにそれらの熱処理方法および製造方法に用いる(3)の熱処理炉にある。 The present invention has been made on the basis of such knowledge, and the gist thereof is the following (1) the heat treatment method for the long material, (2) the method for producing the long material, and the heat treatment method and It exists in the heat processing furnace of (3) used for a manufacturing method.
 (1)両端が閉塞され内部が長手方向に複数の加熱ゾーンに分割された筒状のバッチ式熱処理炉を用い、この熱処理炉の内部に長尺の被熱処理材を装入して熱処理を行う長尺材の熱処理方法であって、
 前記熱処理炉は、前記加熱ゾーンのうちで最端部の加熱ゾーンがその最端部以外の加熱ゾーンの長さよりも短い複数の加熱ゾーンに分割され、各加熱ゾーンにそれぞれ熱源が配設されており、
 当該熱処理方法は、
 (ステップ1)予め、加熱時における被熱処理材の端部での実体測温結果に基づき、前記最端部の各加熱ゾーンにおける各熱源の加熱出力パターンを決定すること、
 (ステップ2)被熱処理材の熱処理作業時に、ステップ1で決定した各熱源の加熱出力パターンと、さらに前記最端部の各加熱ゾーンおよび前記最端部以外の加熱ゾーンの炉内測温結果に基づき、個々の熱源の加熱出力を制御すること、
の一連の各ステップを含むこと、
を特徴とする長尺材の熱処理方法。
(1) Using a cylindrical batch heat treatment furnace whose both ends are closed and the inside is divided into a plurality of heating zones in the longitudinal direction, heat treatment is performed by inserting a long heat-treated material into the heat treatment furnace. A heat treatment method for a long material,
In the heat treatment furnace, the heating zone at the endmost portion of the heating zones is divided into a plurality of heating zones shorter than the length of the heating zone other than the endmost portion, and a heat source is provided in each heating zone. And
The heat treatment method is as follows:
(Step 1) Predetermining the heating output pattern of each heat source in each heating zone at the endmost part based on the actual temperature measurement result at the end of the material to be heat-treated at the time of heating,
(Step 2) During the heat treatment operation of the material to be heat-treated, the heating output pattern of each heat source determined in Step 1 and further the temperature measurement result in the furnace of each heating zone at the extreme end and the heating zone other than the extreme end To control the heating output of individual heat sources,
Including a series of steps,
The heat processing method of the elongate material characterized by these.
 本発明の長尺材の熱処理方法において、ステップ2にて、熱処理作業時に被熱処理材の端部での実体測温結果に基づき、前記最端部の各加熱ゾーンにおける各熱源の加熱出力を調整することとすれば、より精度のよい被熱処理材の温度制御が可能になる。 In the heat treatment method for a long material according to the present invention, in step 2, the heating output of each heat source in each heating zone at the extreme end is adjusted based on the actual temperature measurement result at the end of the heat treatment material during the heat treatment operation. By doing so, it becomes possible to control the temperature of the heat-treated material with higher accuracy.
 本発明の長尺材の熱処理方法において、ステップ1および2にて、熱源として電気ヒータを用いることとすれば、加熱出力パターンを調整しやすく、また、被熱処理材の加熱が輻射加熱であれば、精度のよい温度制御を行いやすい。 In the long material heat treatment method of the present invention, if an electric heater is used as a heat source in steps 1 and 2, the heating output pattern can be easily adjusted, and if the heat treatment material is radiantly heated. Easy to perform accurate temperature control.
 (2)上記(1)の長尺材の熱処理方法を用いて熱処理を行うことを特徴とする長尺材の製造方法。 (2) A method for producing a long material, wherein the heat treatment is performed using the heat treatment method for a long material as described in (1) above.
 (3)両端が閉塞され内部が長手方向に複数の加熱ゾーンに分割された筒状であり、長尺の被熱処理材を装入されて熱処理を行う長尺材のバッチ式熱処理炉であって、
 当該熱処理炉は、
 前記加熱ゾーンのうちで最端部の加熱ゾーンがその最端部以外の加熱ゾーンの長さよりも短い複数の加熱ゾーンに分割され、加熱ゾーンにそれぞれ熱源が配設されており、
 少なくとも前記最端部の各加熱ゾーンにおける各熱源の加熱出力パターンを決定する手段と、
 前記最端部の各加熱ゾーンおよび前記最端部以外の加熱ゾーンの炉内温度を計測する手段と、
 前記加熱ゾーン毎に個々の熱源の加熱出力を制御する手段と、を有すること、
を特徴とする長尺材の熱処理炉。
(3) A batch-type heat treatment furnace for a long material in which both ends are closed and the inside is divided into a plurality of heating zones in the longitudinal direction, and a long heat-treated material is inserted and heat-treated. ,
The heat treatment furnace
Of the heating zones, the heating zone at the endmost part is divided into a plurality of heating zones that are shorter than the length of the heating zone other than the endmost part, and a heat source is provided in each heating zone,
Means for determining a heating output pattern of each heat source in each heating zone at least at the extreme end;
Means for measuring the temperature in the furnace of each heating zone at the extreme end and the heating zone other than the extreme end;
Means for controlling the heating output of each heat source for each heating zone,
A heat treatment furnace for long materials.
 本発明の長尺材の熱処理炉は、さらに、被熱処理材の端部の実体温度を計測する手段を有するものであれば、より精度のよい被熱処理材の温度制御が可能になる。 If the long material heat treatment furnace of the present invention further has means for measuring the actual temperature of the end of the material to be heat treated, temperature control of the material to be heat treated can be performed with higher accuracy.
 本発明の長尺材の熱処理炉において、熱源が電気ヒータであれば、加熱出力パターンの調整がしやすく、また、被熱処理材の加熱が輻射加熱によるものであれば、精度のよい温度制御を行いやすい。 In the heat treatment furnace for the long material of the present invention, if the heat source is an electric heater, the heating output pattern can be easily adjusted, and if the heat treatment of the heat-treated material is by radiant heating, accurate temperature control is performed. Easy to do.
 本発明の長尺材の熱処理方法によれば、両端が閉塞され周壁に熱源が配設される一方で両端壁には熱源が設けられていない筒状のバッチ式熱処理炉を使用して熱処理を行うに際し、炉内の空間長さが同じであっても有効炉長をより長く確保し、長尺の被熱処理材を全長にわたり精度よく均一な温度に加熱することができる。これにより、炉体の設備改造費を大幅に低減することができる。 According to the heat treatment method for a long material of the present invention, heat treatment is performed using a cylindrical batch heat treatment furnace in which both ends are closed and a heat source is provided on the peripheral wall, but no heat source is provided on both end walls. When performing, even if the space length in the furnace is the same, a longer effective furnace length can be ensured, and a long heat-treated material can be accurately heated to a uniform temperature over the entire length. Thereby, the equipment modification cost of a furnace body can be reduced significantly.
 また、本発明の長尺材の製造方法はこの熱処理方法を用いる製造方法であり、品質特性にバラツキのない長尺材の製造が可能である。
 本発明の長尺材の熱処理炉を使用すれば、本発明の熱処理方法および長尺材の製造方法を容易に実施することができる。
Moreover, the manufacturing method of the elongate material of this invention is a manufacturing method using this heat processing method, and can manufacture the elongate material without a quality characteristic variation.
If the long material heat treatment furnace of the present invention is used, the heat treatment method and the long material manufacturing method of the present invention can be easily carried out.
図1は、従来の長尺材用熱処理炉の概略構成例を模式的に示す図であり、図1(a)は横断面図、図1(b)は縦断面図である。FIG. 1 is a diagram schematically showing a schematic configuration example of a conventional long material heat treatment furnace, in which FIG. 1 (a) is a transverse sectional view and FIG. 1 (b) is a longitudinal sectional view. 図2は、従来の長尺材の熱処理炉での被熱処理材の長手方向における温度分布の一例を示す図である。FIG. 2 is a diagram illustrating an example of a temperature distribution in a longitudinal direction of a heat-treated material in a conventional long-length heat treatment furnace. 図3は、従来の長尺材の熱処理炉を使用して最端部の加熱ゾーンを中央の加熱ゾーンよりも昇熱し、この場合の被熱処理材の長手方向における温度分布の一例を示す図である。FIG. 3 is a diagram showing an example of the temperature distribution in the longitudinal direction of the heat-treated material in this case where the heat treatment furnace of the longest material is used to raise the heating zone at the endmost part from the central heating zone. is there. 図4は、遮熱板を設置した熱処理炉の概略構成を示す図であり、図4(a)は横断面図、図4(b)は縦断面図である。4A and 4B are diagrams showing a schematic configuration of a heat treatment furnace provided with a heat shield plate. FIG. 4A is a transverse sectional view, and FIG. 4B is a longitudinal sectional view. 図5は、遮熱板を設置した熱処理炉を使用して最端部の加熱ゾーンおよび最端部の次の加熱ゾーンにおける被熱処理材の温度分布を測定した結果を示す図である。FIG. 5 is a diagram showing the results of measuring the temperature distribution of the heat-treated material in the heating zone at the extreme end and the heating zone next to the extreme end using a heat treatment furnace provided with a heat shield. 図6は、分割傾斜加熱制御法を適用した場合のmゾーンおよびmゾーンの次の加熱ゾーンにおける被熱処理材の温度分布の測定結果を例示する図である。FIG. 6 is a diagram illustrating measurement results of the temperature distribution of the heat-treated material in the m zone and the heating zone next to the m zone when the divided gradient heating control method is applied. 図7は、伝熱シミュレーションによる検討結果であり、分割傾斜加熱制御法を適用した場合のm-1ゾーンへの入熱増加量と偏熱の関係を示す図である。FIG. 7 is a result of examination by a heat transfer simulation, and is a diagram showing a relationship between an increase in heat input to the m−1 zone and an uneven heat when the divided gradient heating control method is applied. 図8は、本発明の長尺材の熱処理方法に使用する熱処理炉の概略構成を例示する図であり、図8(a)は横断面図、図8(b)は縦断面図である。FIGS. 8A and 8B are diagrams illustrating a schematic configuration of a heat treatment furnace used in the heat treatment method for a long material according to the present invention. FIG. 8A is a transverse sectional view, and FIG. 8B is a longitudinal sectional view. 図9は、実施例において、熱処理炉内に装入した被熱処理材への熱電対の取り付け位置を示す図である。FIG. 9 is a diagram showing the attachment position of the thermocouple to the heat-treated material charged in the heat treatment furnace in the example. 図10は、実施例で得られた結果であり、加熱時における被熱処理材の端部の測温結果の一例を示す図である。FIG. 10 is a diagram illustrating an example of a temperature measurement result of the end portion of the heat-treated material during heating, which is the result obtained in the example.
1.長尺材の熱処理方法
 本発明の長尺材の熱処理方法は、前述のように、両端が閉塞され内部が長手方向に複数の加熱ゾーンに分割された筒状のバッチ式熱処理炉を用いる熱処理方法であって、熱処理炉の最端部の加熱ゾーンがその最端部以外の加熱ゾーンの長さよりも短い複数の加熱ゾーンに分割され、各加熱ゾーンにそれぞれ熱源が配設されており、次のステップ1および2を含むことを特徴とする。
 (ステップ1)予め、加熱時における被熱処理材の端部での実体測温結果に基づき、前記最端部の各加熱ゾーンにおける各熱源の加熱出力パターンを決定すること、
 (ステップ2)被熱処理材の熱処理作業時に、ステップ1で決定した各熱源の加熱出力パターンと、さらに前記最端部の各加熱ゾーンおよび前記最端部以外の加熱ゾーンの炉内測温結果に基づき、個々の熱源の加熱出力を制御すること。
1. Heat Treatment Method for Long Material The heat treatment method for a long material according to the present invention uses a cylindrical batch heat treatment furnace in which both ends are closed and the inside is divided into a plurality of heating zones in the longitudinal direction as described above. The heating zone at the extreme end of the heat treatment furnace is divided into a plurality of heating zones that are shorter than the length of the heating zone other than the extreme end, and each heating zone is provided with a heat source. Steps 1 and 2 are included.
(Step 1) Predetermining the heating output pattern of each heat source in each heating zone at the endmost part based on the actual temperature measurement result at the end of the material to be heat-treated at the time of heating,
(Step 2) During the heat treatment operation of the material to be heat-treated, the heating output pattern of each heat source determined in Step 1 and further the temperature measurement result in the furnace of each heating zone at the extreme end and the heating zone other than the extreme end Based on the control of the heating output of individual heat sources.
 図8は、本発明の長尺材の熱処理方法に使用する熱処理炉の概略構成を例示する図であり、同図(a)は横断面図であり、同図(b)は縦断面図である。この熱処理炉は、前記図1に示した複数の加熱ゾーンのうちで、一方の最端部の加熱ゾーン、すなわちmゾーンを、m-1ゾーン、m-2ゾーンおよびm-3ゾーンの3つの加熱ゾーンに分割し、反対側の最端部の加熱ゾーン、すなわちnゾーンを、n-1ゾーン、n-2ゾーンおよびn-3ゾーンの3つの加熱ゾーンに分割した熱処理炉である。 FIG. 8 is a diagram illustrating a schematic configuration of a heat treatment furnace used in the heat treatment method for a long material of the present invention, where FIG. 8 (a) is a cross-sectional view and FIG. 8 (b) is a vertical cross-sectional view. is there. This heat treatment furnace has three heating zones, namely, m-1 zone, m-2 zone and m-3 zone, among the plurality of heating zones shown in FIG. The heat treatment furnace is divided into heating zones, and the heating zone at the extreme end on the opposite side, that is, the n zone, is divided into three heating zones, an n-1 zone, an n-2 zone, and an n-3 zone.
 そして、図8に示すように、この熱処理炉は、両端が閉塞された筒状の容器であり、炉の周壁が水冷壁2および遮熱壁3からなる二重構造とされ、炉の両端壁も水冷壁7および遮熱壁8からなる二重構造とされる。炉の周壁の内周面には、加熱ゾーン毎に熱源として電気ヒータ6が配設されている。ただし、炉の両端壁にはヒータ6は設けられていない。 As shown in FIG. 8, this heat treatment furnace is a cylindrical container with both ends closed, and the peripheral wall of the furnace has a double structure comprising a water-cooled wall 2 and a heat shield wall 3, and both end walls of the furnace. Also, a double structure comprising the water cooling wall 7 and the heat shield wall 8 is adopted. On the inner peripheral surface of the peripheral wall of the furnace, an electric heater 6 is disposed as a heat source for each heating zone. However, the heater 6 is not provided in the both end walls of the furnace.
 本発明の熱処理方法で使用する熱処理炉において、最端部の加熱ゾーン(mゾーンおよびnゾーン)が中央の加熱ゾーンの長さよりも短い複数の加熱ゾーン(m-1ゾーン、m-2ゾーンおよびm-3ゾーン、並びにn-1ゾーン、n-2ゾーンおよびn-3ゾーン)に分割されているのは、例えば、前記図3に示したように、長尺材の熱処理の際、最端部の加熱ゾーン全体を昇熱するのでは、最端部の加熱ゾーンの中央部付近で被熱処理材の温度がオーバーヒートし、炉の端壁に近い被熱処理材の端部では温度が低下し、均一な加熱ができないからである。 In the heat treatment furnace used in the heat treatment method of the present invention, a plurality of heating zones (m−1 zone, m−2 zone) and heating zones (m zone and n zone) at the extreme end are shorter than the length of the central heating zone. m-3 zone, and n-1 zone, n-2 zone, and n-3 zone), for example, as shown in FIG. When the entire heating zone is heated, the temperature of the heat-treated material is overheated near the center of the heating zone at the outermost end, and the temperature is lowered at the end of the heat-treated material near the end wall of the furnace. This is because uniform heating is not possible.
 すなわち、本発明の熱処理炉で最端部の加熱ゾーンが複数の加熱ゾーンに分割されているのは、最端部の加熱ゾーンを細分化して、分割した個々の加熱ゾーンにおける各熱源の出力比を調整できるようにするためである。炉の最端部の加熱ゾーンの分割数は、図8に例示した熱処理炉では、mゾーンおよびnゾーンのいずれにおいても3であるが、最端部の加熱ゾーンにおける温度低下の状況を予め把握しておき、それに基づいて適宜定めればよい。 That is, in the heat treatment furnace of the present invention, the endmost heating zone is divided into a plurality of heating zones because the endmost heating zone is subdivided and the output ratio of each heat source in each divided heating zone This is so that the adjustment can be made. The number of divisions of the heating zone at the end of the furnace is 3 in both the m zone and the n zone in the heat treatment furnace illustrated in FIG. 8, but the state of temperature drop in the heating zone at the end is grasped in advance. In addition, it may be determined appropriately based on that.
 予め、加熱時における被熱処理材の端部での実体測温結果に基づき、最端部の各加熱ゾーンにおける各熱源の加熱出力パターンを決定するのは、長尺材の両端部を均一に加熱するためである。 The heating output pattern of each heat source in each heating zone at the extreme end is determined based on the actual temperature measurement results at the end of the heat-treated material during heating in advance. It is to do.
 上記した被熱処理材の実体測温は、炉の最端部の加熱ゾーンを構成する個々の加熱ゾーンでの測温に相当し、被熱処理材の端部の所定部位に熱電対を取り付けて測温することができる。この実体測温により、短く分割された最端部の各加熱ゾーンに対応して、被熱処理材の端部(各加熱ゾーンの各熱源から主として熱を受ける部分)における測温結果を予め求めておき、それに基づいて、分割された個々の加熱ゾーンにおける各熱源の加熱出力パターン(個々の熱源の出力比)を決定する。 The above-described actual temperature measurement of the material to be heat treated corresponds to the temperature measurement in each heating zone constituting the heating zone at the end of the furnace, and is measured by attaching a thermocouple to a predetermined part at the end of the material to be heat treated. Can be warmed. By this actual temperature measurement, the temperature measurement result at the end of the material to be heat-treated (the portion that mainly receives heat from each heat source in each heating zone) is obtained in advance corresponding to each heating zone at the end most shortly divided. Then, based on this, the heating output pattern (output ratio of the individual heat sources) of each heat source in the divided individual heating zones is determined.
 加熱出力パターンの望ましい例としては、前記の図6、図7に示したように、炉の最端部のmゾーンを3分割し、そのうちのm-1ゾーンでの入熱増加量を+35%とするパターンがあげられる。これにより、mゾーンおよびmゾーンの次の加熱ゾーンでの被熱処理材の偏熱を10℃程度以下に抑えることが期待できる。 As a desirable example of the heating output pattern, as shown in FIGS. 6 and 7, the m zone at the extreme end of the furnace is divided into three, and the increase in heat input in the m-1 zone is + 35%. Pattern. Thereby, it can be expected that the uneven heat of the heat-treated material in the m zone and the heating zone next to the m zone is suppressed to about 10 ° C. or less.
 長尺材の熱処理作業時に、上記のとおりに決定した各熱源の加熱出力パターンと、さらに炉の最端部の各加熱ゾーンおよび中央の加熱ゾーン(最端部の加熱ゾーン以外の加熱ゾーン)の炉内測温結果に基づき、個々の熱源の加熱出力を制御するのは、被熱処理材の全長を精度よく均一な温度に加熱するためである。 During the heat treatment operation of the long material, the heating output pattern of each heat source determined as described above, and each heating zone at the extreme end of the furnace and the central heating zone (heating zones other than the heating zone at the extreme end) The reason why the heating output of each heat source is controlled based on the temperature measurement result in the furnace is to accurately heat the entire length of the heat-treated material to a uniform temperature.
 すなわち、炉の最端部の各加熱ゾーンについて、前述のように予め決定し設定した加熱出力パターンで加熱するとともに、さらに、炉の最端部の各加熱ゾーンおよび最端部の加熱ゾーン以外の加熱ゾーンでの炉内測温結果を考慮して、個々の熱源の加熱出力を制御する。これにより、被熱処理材の本数や炉内での配置の変動等に起因する炉温の変動を抑え、端部を含めた被熱処理材全長の均一加熱の精度を向上させることができる。 That is, for each heating zone at the outermost end of the furnace, heating is performed with the heating output pattern determined and set in advance as described above, and further, other than each heating zone at the outermost end of the furnace and the heating zone at the outermost end. The heating output of each heat source is controlled in consideration of the temperature measurement result in the heating zone. Thereby, the fluctuation | variation of the furnace temperature resulting from the fluctuation | variation of the number of to-be-processed materials, the arrangement | positioning in a furnace, etc. can be suppressed, and the precision of the uniform heating of the to-be-processed material full length including an edge part can be improved.
 なお、炉の最端部の各加熱ゾーンにおいては、予め加熱出力パターンが設定されているが、実際の熱処理時における炉内測温結果に基づく加熱出力制御により加熱出力が変更されるので、加熱出力パターンは予め設定したパターンからずれてくる場合もある。 In each heating zone at the extreme end of the furnace, a heating output pattern is set in advance, but the heating output is changed by the heating output control based on the temperature measurement result in the furnace during the actual heat treatment. The output pattern may deviate from a preset pattern.
 ところで、前掲の特許文献4に記載された被処理材の温度均一化方法は、予め求めた各偏差設定器の設定値を、加熱に際し被処理材の種別等に応じて変更してから温度制御する点で、本発明の熱処理方法と類似点があるとも言える。 By the way, in the temperature equalization method of the material to be processed described in the above-mentioned Patent Document 4, the temperature control is performed after changing the set value of each deviation setting device obtained in advance according to the type of the material to be processed at the time of heating. Therefore, it can be said that there is a similarity with the heat treatment method of the present invention.
 しかし、特許文献4に記載の方法は、複数の加熱ゾーンの温度制御を、各ゾーンに設けた偏差設定器を用いることにより、一つの温度計での検出値で制御することを主眼とするものである。これに対し、本発明の熱処理方法は、長尺材の端部の温度低下を防止するため、最端部の加熱ゾーンのみを分割して予め加熱出力パターンを設定し、各加熱ゾーンの炉内測温定結果を考慮して、個々の加熱ゾーンにおける熱源の加熱出力を制御する方法であるから、特許文献4に記載の方法とは明白に相違している。 However, the method described in Patent Document 4 is mainly intended to control the temperature control of a plurality of heating zones with the detection value of one thermometer by using a deviation setting device provided in each zone. It is. On the other hand, in the heat treatment method of the present invention, in order to prevent the temperature drop at the end of the long material, only the heating zone at the extreme end is divided to set the heating output pattern in advance, This is a method of controlling the heating output of the heat source in each heating zone in consideration of the temperature measurement result, and is clearly different from the method described in Patent Document 4.
 また、特許文献4に記載の方法では、熱処理中、一定の設定値で制御するのに対し、本発明では、予め設定した加熱出力パターンから次第にずれてくる場合もあり、この点でも異なっている。 Further, in the method described in Patent Document 4, control is performed with a constant set value during the heat treatment, whereas in the present invention, there is a case where it gradually deviates from a preset heating output pattern. .
 本発明の長尺材の熱処理方法において、さらに、熱処理作業時に被熱処理材の端部での実体測温結果に基づき、炉の最端部の各加熱ゾーンにおける各熱源の加熱出力を調整する実施形態を採ることができる。被熱処理材の端部の実体測温は、実際の熱処理時に、被熱処理材の端部に熱電対を取り付けて測定する。 In the heat treatment method for a long material according to the present invention, the heating output of each heat source in each heating zone at the extreme end of the furnace is adjusted based on the actual temperature measurement result at the end of the heat treated material during the heat treatment operation. Can take form. The actual temperature measurement at the end of the material to be heat-treated is measured by attaching a thermocouple to the end of the material to be heat-treated at the time of actual heat treatment.
 実際の熱処理では、被熱処理材の本数や炉内での配置が異なるため、予め決定し設定した加熱出力パターンで熱処理を開始した後、炉の最端部の各加熱ゾーンおよび最端部の加熱ゾーン以外の加熱ゾーンの炉内測温結果に基づいて個々の熱源の加熱出力を制御する。 In actual heat treatment, the number of materials to be heat-treated and the arrangement in the furnace differ, so after starting heat treatment with a predetermined heating power pattern, each heating zone at the extreme end of the furnace and heating at the extreme end The heating output of each heat source is controlled based on the in-furnace temperature measurement result of the heating zone other than the zone.
 しかし、本発明の長尺材の熱処理方法では、さらに、被熱処理材の端部の実体測温結果に基づいて、各加熱ゾーンの熱源の加熱出力を調整する態様を採用することができる。この調整は、短く分割された最端部の各加熱ゾーンの全てを調整する場合、そのうちの一つだけを調整する場合など、測温結果に応じて種々の態様があり得る。 However, in the heat treatment method for a long material of the present invention, it is possible to further adopt a mode in which the heating output of the heat source of each heating zone is adjusted based on the actual temperature measurement result at the end of the heat treated material. This adjustment may have various modes depending on the temperature measurement result, for example, when adjusting all of the heating zones at the extreme end divided shortly, or adjusting only one of them.
 この実施態様を採用することによって、被熱処理材の端部における温度のバラツキを一層小さくし、より精度の高い被熱処理材の温度制御が可能となる。 By adopting this embodiment, temperature variation at the end of the material to be heat-treated can be further reduced, and temperature control of the material to be heat-treated can be performed with higher accuracy.
 本発明の長尺材の熱処理方法において、被熱処理材を加熱するための熱源としては電気ヒータを用いるのが好ましい。熱源としては、バーナーやラジアントチューブ等も適用可能であるが、電気ヒータによる加熱が、加熱出力パターンを調整しやすく、好適である。 In the long material heat treatment method of the present invention, an electric heater is preferably used as a heat source for heating the heat treated material. As the heat source, a burner, a radiant tube, or the like can be applied. However, heating with an electric heater is preferable because the heating output pattern can be easily adjusted.
 また、本発明の長尺材の熱処理方法において、被熱処理材の加熱が輻射加熱であれば、精度のよい温度制御を行いやすい。ただし、本発明の熱処理方法のように、被熱処理材の端部のみを予め定めた加熱出力パターンで制御する場合には、炉内に対流が生じると、加熱出力パターンを決めても、加熱がその通りに行われず、精度のよい制御が難しくなる。 Further, in the heat treatment method for a long material of the present invention, if the material to be heat treated is radiant heating, it is easy to perform accurate temperature control. However, as in the heat treatment method of the present invention, when only the end of the material to be heat treated is controlled with a predetermined heating output pattern, if convection occurs in the furnace, heating is performed even if the heating output pattern is determined. It is not performed as it is, and accurate control becomes difficult.
 そのため、本発明の熱処理方法は、真空熱処理炉での制御や、水素ガスのような熱容量の小さいガス雰囲気内における輻射加熱による熱処理炉での制御に適用するのが望ましい。そのうちで、水素ガスはガスの管理が難しい点もあるため、真空熱処理炉での制御に適用するのがより望ましいと言える。 Therefore, the heat treatment method of the present invention is preferably applied to control in a vacuum heat treatment furnace or control in a heat treatment furnace by radiant heating in a gas atmosphere having a small heat capacity such as hydrogen gas. Among them, hydrogen gas is difficult to manage, so it can be said that it is more desirable to apply it to control in a vacuum heat treatment furnace.
 前述した本発明の長尺材の熱処理方法によれば、両端が閉塞され周壁に熱源が配設される一方で両端壁には熱源が設けられていない筒状のバッチ式熱処理炉を使用した場合に、炉内の空間長さが同じであっても、有効炉長をより長く確保することが可能であり、従来よりも長尺の被熱処理材を全長にわたり精度よく均一な温度に加熱することができる。 According to the above-described heat treatment method for a long material of the present invention, when a cylindrical batch type heat treatment furnace in which both ends are closed and a heat source is provided on the peripheral wall but no heat source is provided on both end walls is used. In addition, even if the space length in the furnace is the same, it is possible to secure a longer effective furnace length, and heat the heat-treated material that is longer than the conventional one to a uniform temperature over the entire length. Can do.
 本発明の長尺材の熱処理方法において、炉の最端部の加熱ゾーンの分割は、いずれか一方の最端部でなされていてもよく、その分割された側で前述の効果が得られる。 In the long material heat treatment method of the present invention, the heating zone at the extreme end of the furnace may be divided at either extreme end, and the above-described effects can be obtained at the divided side.
2.長尺材の製造方法
 本発明の長尺材の製造方法は、前述した本発明の長尺材の熱処理方法を用いて熱処理を行うことを特徴とする製造方法である。
2. Manufacturing method of long material The manufacturing method of the long material of this invention is a manufacturing method characterized by performing heat processing using the heat processing method of the long material of this invention mentioned above.
 すなわち、通常行われている長尺材の製造において、熱処理工程のみを本発明の熱処理方法を用いて行い、それ以外の工程は慣用の方法に準じて行う。 That is, in the production of a long material that is usually performed, only the heat treatment step is performed using the heat treatment method of the present invention, and the other steps are performed according to conventional methods.
 この本発明の長尺材の製造方法によれば、熱処理工程で、従来よりも長尺の被熱処理材を対象として、その全長を均一な温度に加熱することができるので、機械的特性や耐食性等の品質特性にバラツキのない長尺材の製造が可能である。 According to the method for producing a long material of the present invention, the heat treatment step can heat the entire length of the material to be heat-treated to a uniform temperature for a longer heat treatment material than before, so that the mechanical properties and corrosion resistance can be increased. It is possible to produce long materials with no variation in quality characteristics such as.
3.長尺材の熱処理炉
 本発明の長尺材の熱処理炉は、両端が閉塞され内部が長手方向に複数の加熱ゾーンに分割された筒状であり、長尺の被熱処理材を装入されて熱処理を行う長尺材のバッチ式熱処理炉であって、次の構成からなることを特徴とする。すなわち、本発明の熱処理炉は、前記加熱ゾーンのうちで最端部の加熱ゾーンがその最端部以外の加熱ゾーンの長さよりも短い複数の加熱ゾーンに分割され、加熱ゾーンにそれぞれ熱源が配設されている。そして、本発明の熱処理炉は、少なくとも前記最端部の各加熱ゾーンにおける各熱源の加熱出力パターンを決定する手段と、前記最端部の各加熱ゾーンおよび前記最端部以外の加熱ゾーンの炉内温度を計測する手段と、前記加熱ゾーン毎に個々の熱源の加熱出力を制御する手段と、を有する。
3. Heat treatment furnace for long material The heat treatment furnace for long material of the present invention has a cylindrical shape in which both ends are closed and the inside is divided into a plurality of heating zones in the longitudinal direction, and a long heat treatment material is charged. A long-type batch-type heat treatment furnace for heat treatment, which is characterized by the following configuration. That is, in the heat treatment furnace of the present invention, the heating zone at the end of the heating zone is divided into a plurality of heating zones shorter than the length of the heating zone other than the end, and a heat source is arranged in each heating zone. It is installed. The heat treatment furnace of the present invention includes at least means for determining a heating output pattern of each heat source in each heating zone at the endmost part, each heating zone at the endmost part, and a furnace in a heating zone other than the endmost part. Means for measuring the internal temperature, and means for controlling the heating output of each heat source for each heating zone.
 本発明の長尺材の熱処理炉は、前記図8に示す概略構成で例示される。なお、同図で例示される構成では、炉の両端部のいずれの加熱ゾーン(mゾーンおよびnゾーン)も短く分割されているが、いずれか一方の最端部の加熱ゾーンが分割された熱処理炉であってもよい。 The long material heat treatment furnace of the present invention is exemplified by the schematic configuration shown in FIG. In the configuration illustrated in the figure, any of the heating zones (m zone and n zone) at both ends of the furnace is divided shortly, but heat treatment in which one of the heating zones at the extreme end is divided. It may be a furnace.
 本発明の熱処理炉において、最端部の加熱ゾーンが中央の加熱ゾーンの長さよりも短く分割されているのは、本発明の熱処理方法で述べたように、最端部の加熱ゾーンを短く分割し、分割した個々の加熱ゾーンにそれぞれ配設した各熱源の出力比を調整するためである。 In the heat treatment furnace of the present invention, the heating zone at the extreme end is divided shorter than the length of the central heating zone, as described in the heat treatment method of the invention, and the heating zone at the extreme end is divided short. In order to adjust the output ratio of each heat source disposed in each of the divided heating zones.
 本発明の熱処理炉において、少なくとも最端部の各加熱ゾーンにおける各熱源の加熱出力パターンを決定する手段を有するのは、長尺材の両端部を均一加熱するためである。なお、「少なくとも」としているのは、短く分割された加熱ゾーン以外の加熱ゾーンも含めた加熱出力パターンを決定する手段を有していてもよいことを意味する。 In the heat treatment furnace of the present invention, the reason for having a means for determining the heating output pattern of each heat source in at least each heating zone at the extreme end is to uniformly heat both ends of the long material. Note that “at least” means that there may be means for determining a heating output pattern including a heating zone other than the heating zones that are divided into short parts.
 前記の加熱出力パターンを決定するに際し、手順としては、先ず、炉の最端部の加熱ゾーンを構成する各加熱ゾーンに対応して、被熱処理材の端部における測温結果を予め求めておくことが必要であるが、この実体測温結果は、被熱処理材の端部に熱電対を取り付けて測温することにより予め得られる。次に、この実体測温結果に基づいて、炉の最端部の各加熱ゾーンにおける各熱源の加熱出力パターン(個々の熱源の出力比)を決定するのであるが、これは、操業者が前記実体測温結果に基づいて設定することが可能である。 In determining the heating output pattern, first, as a procedure, first, a temperature measurement result at the end of the material to be heat-treated is obtained in advance corresponding to each heating zone constituting the heating zone at the outermost end of the furnace. However, the actual temperature measurement result is obtained in advance by attaching a thermocouple to the end of the heat-treated material and measuring the temperature. Next, based on the actual temperature measurement result, the heating output pattern (output ratio of each heat source) of each heat source in each heating zone at the extreme end of the furnace is determined by the operator. It is possible to set based on the actual temperature measurement result.
 また、熱処理炉に、例えば出力パターン設定器を取り付け、これに前記実体測温結果と設定すべき加熱出力パターンとの関係を予め入力しておき、出力パターン設定器が測温結果の信号を受けて、その個々の測温結果に基づいて適正な加熱出力パターンを選定し、個々の加熱ゾーンの熱源にそれぞれ出力指示を与える方式を採ることも可能である。 Also, for example, an output pattern setting device is attached to the heat treatment furnace, and the relationship between the actual temperature measurement result and the heating output pattern to be set is input in advance, and the output pattern setting device receives the signal of the temperature measurement result. It is also possible to select a proper heating output pattern based on the individual temperature measurement results and to give an output instruction to each heat source in each heating zone.
 したがって、前記の加熱出力パターンを決定する手段としては、被熱処理材に取り付ける熱電対とその実体測温結果に基づき人為的に決定する手法、または出力パターン設定器によりいわば自動的に決定する手法等を挙げることができる。 Therefore, as the means for determining the heating output pattern, a method of artificially determining the thermocouple attached to the heat-treated material and the actual temperature measurement result, or a method of automatically determining by the output pattern setting device, etc. Can be mentioned.
 本発明の熱処理炉において、最端部の各加熱ゾーンおよび最端部以外の加熱ゾーンの炉内温度を計測する手段と、加熱ゾーン毎に個々の熱源の加熱出力を制御する手段を有することとするのは、個々の加熱ゾーンの熱源の加熱出力を制御することによって、熱処理中における炉温の変動を抑え、端部を含めた被熱処理材の全長にわたる均一加熱の精度を向上させるためである。 In the heat treatment furnace of the present invention, there are means for measuring the furnace temperature of each heating zone other than the endmost part and the heating zone other than the endmost part, and means for controlling the heating output of each heat source for each heating zone; The reason for this is to control the heating output of the heat source of each heating zone to suppress the fluctuation of the furnace temperature during the heat treatment and to improve the accuracy of uniform heating over the entire length of the heat-treated material including the end. .
 加熱ゾーン毎の炉温測定手段としては、従来、炉内温度の測定に使用されている温度検出器を用いればよい。例えば、熱電対が挙げられる。 As the furnace temperature measuring means for each heating zone, a temperature detector conventionally used for measuring the furnace temperature may be used. An example is a thermocouple.
 加熱出力制御手段としては、炉内温度の目標値を予め入力しておき、温度検出器からの信号をこの目標温度と対比して、PID制御を行いながら熱源に制御信号を出力する出力制御器などが使用できる。 As the heating output control means, an output controller that inputs a target value of the furnace temperature in advance and outputs a control signal to the heat source while performing PID control by comparing the signal from the temperature detector with the target temperature. Etc. can be used.
 本発明の長尺材の熱処理炉は、さらに、被熱処理材の端部の実体温度を計測する手段を有するものであれば、より精度のよい被熱処理材の温度制御が可能になる。 If the long material heat treatment furnace of the present invention further has means for measuring the actual temperature of the end of the material to be heat treated, temperature control of the material to be heat treated can be performed with higher accuracy.
 前記の温度測定手段としては、実際の熱処理時に、被熱処理材の端部に取り付けて測定することが可能な熱電対が挙げられる。 The temperature measuring means includes a thermocouple that can be attached to the end of the material to be heat-treated during actual heat treatment.
 以上述べた本発明の長尺材の熱処理炉を使用すれば、本発明の熱処理方法および長尺材の製造方法を容易に実施することができる。 If the heat treatment furnace for a long material of the present invention described above is used, the heat treatment method and the method for producing a long material of the present invention can be easily carried out.
 なお、本発明の熱処理方法による実用的な熱処理操業の態様は、次の通りである。熱処理炉としては、電気ヒータを熱源とした真空熱処理炉を採用する:
(1)熱処理の際、先ず、炉の最端部の加熱ゾーンを除く中央の加熱ゾーンの炉内温度を、初期目標温度(最終的に被熱処理材に求められる材料温度よりも低い温度)まで一括して制御する;
(2)初期目標温度に到達した後、全ての加熱ゾーンを個別制御に切換え、各加熱ゾーンの炉内温度を目標温度(最終的に被熱処理材に求められる材料温度)まで個別制御する;
(3)炉の最端部の加熱ゾーンに関しては、予め分割傾斜加熱制御法により、予め決定し設定した加熱出力パターンで傾斜加熱の制御をする;
(4)被熱処理材の温度が管理値となるように、各加熱ゾーンの炉内温度を微調整する。
In addition, the aspect of the practical heat processing operation by the heat processing method of this invention is as follows. As the heat treatment furnace, a vacuum heat treatment furnace using an electric heater as a heat source is adopted:
(1) During heat treatment, first, the furnace temperature in the central heating zone excluding the heating zone at the extreme end of the furnace is set to the initial target temperature (temperature lower than the material temperature finally required for the material to be heat treated). Control all at once;
(2) After reaching the initial target temperature, all heating zones are switched to individual control, and the furnace temperature of each heating zone is individually controlled to the target temperature (the material temperature finally required for the material to be heat treated);
(3) With respect to the heating zone at the extreme end of the furnace, gradient heating is controlled with a heating output pattern determined and set in advance by a divided gradient heating control method;
(4) Finely adjust the furnace temperature in each heating zone so that the temperature of the material to be heat-treated becomes a control value.
 前記図8に示した構成を有する本発明の熱処理炉を用い、炉内に長尺の被熱処理材(長尺材)として金属管を装入し、本発明の熱処理方法を適用して加熱したときの被熱処理材の端部における温度分布を調査した。比較のために、従来の熱処理方法を適用した場合についても同様の調査を行った。 Using the heat treatment furnace of the present invention having the configuration shown in FIG. 8, a metal tube was inserted into the furnace as a long heat-treated material (long material) and heated by applying the heat treatment method of the present invention. The temperature distribution at the end of the material to be heat treated was investigated. For comparison, the same investigation was performed when the conventional heat treatment method was applied.
 使用した熱処理炉は、内部がmゾーンからnゾーンまでの複数の加熱ゾーンに分割され、各加熱ゾーンの長さは3mである。ここで、一方の最端部であるmゾーンは、端から順に、m-1ゾーン、m-2ゾーンおよびm-3ゾーンに3分割され、反対側の最端部であるnゾーンは、端から順に、n-1ゾーン、n-2ゾーンおよびn-3ゾーンに3分割されている。最端部のmゾーンおよびnゾーンを構成する各加熱ゾーンの分割後の長さは、いずれも1mである。 The heat treatment furnace used is divided into a plurality of heating zones from the m zone to the n zone, and the length of each heating zone is 3 m. Here, the m zone which is the one endmost part is divided into the m-1 zone, the m-2 zone and the m-3 zone in order from the end, and the n zone which is the opposite end part is the end zone. Are divided into n-1, n-2 and n-3 zones in order. Each of the heating zones constituting the m-zone and n-zone at the extreme end has a length after division of 1 m.
 この熱処理炉内に、mゾーンの最端部となるm-1ゾーンに被熱処理材の管端が位置するように被熱処理材を配置し、炉の端壁から600mmの位置を始めとして200mmピッチで計4箇所、および同端壁から1500mmの位置の合計5箇所に熱電対を取り付けた。 In this heat treatment furnace, the heat treatment material is arranged so that the tube end of the heat treatment material is located in the m-1 zone, which is the end of the m zone, and a pitch of 200 mm starting from a position of 600 mm from the end wall of the furnace. Then, thermocouples were attached to a total of four places, ie, a total of five places, 1500 mm from the end wall.
 図9は、熱電対の取り付け位置を示す図である。nゾーンにおいても、mゾーンにおける状況と同様に被熱処理材の合計5箇所に熱電対を取り付けた。同図中の丸付き数字の1~5および6~10は熱電対の取り付け位置を示す。 FIG. 9 is a diagram showing the attachment position of the thermocouple. Also in the n zone, thermocouples were attached to a total of five locations of the heat-treated material in the same manner as in the m zone. Circled numbers 1 to 5 and 6 to 10 in FIG.
 mゾーンの3分割した各加熱ゾーン(m-1、m-2およびm-3の各ゾーン)の各熱源の出力を、中央の加熱ゾーンでの出力と同じ、すなわち、中央の加熱ゾーンの各熱源に対して出力比100%として加熱を開始し、その後途中で、m-1ゾーンの出力比を142%、m-2ゾーンの出力比を85%に変更して加熱した(m-3ゾーンの出力比は変更せず、100%のまま)。 The output of each heat source in each of the three heating zones (m-1, m-2, and m-3) divided into three zones is the same as the output in the central heating zone, that is, each of the central heating zones Heating was started at an output ratio of 100% with respect to the heat source, and in the middle, heating was performed by changing the output ratio of the m-1 zone to 142% and the output ratio of the m-2 zone to 85% (m-3 zone). The output ratio is not changed and remains 100%).
 すなわち、実施例の試験では、本発明の熱処理方法で採用する分割傾斜加熱制御法を適用した。ここでの出力比は、予め求めた被熱処理材の実体測温結果に基づいて決定し設定した。なお、nゾーンにおいても、加熱の途中で同様に出力比を変更して加熱した。 That is, in the test of the example, the divided gradient heating control method adopted in the heat treatment method of the present invention was applied. The output ratio here was determined and set based on the actual temperature measurement result of the heat-treated material obtained in advance. In addition, also in the n zone, the power ratio was changed in the same way during the heating, and the heating was performed.
 図10に、被熱処理材の端部における測温結果の一例を示す。図10は、被熱処理材の測温結果を自動で記録したチャートであり、図10中に示した丸付き数字の1~10は、前記図9に示した各取り付け位置での熱電対で測定した材料温度を表す。 FIG. 10 shows an example of the temperature measurement result at the end of the heat-treated material. FIG. 10 is a chart in which the temperature measurement results of the heat-treated material are automatically recorded. The circled numbers 1 to 10 shown in FIG. 10 are measured by thermocouples at the respective attachment positions shown in FIG. Represents the material temperature.
 図10に示したように、加熱開始(昇温)後、出力変更(傾斜加熱開始)の前までは、個々の熱電対で測定した温度のうち、特に端部に近い位置で測定された被熱処理材の温度(丸付き数字の1、2および6、7)は目標温度±10℃から大きく外れており、目標温度との差は最大で50℃程度であった。 As shown in FIG. 10, after the start of heating (temperature increase) and before the change of output (inclined heating start), among the temperatures measured by individual thermocouples, the measured temperature was measured particularly near the end. The temperature of the heat-treated material (circled numbers 1, 2 and 6, 7) deviated greatly from the target temperature ± 10 ° C., and the difference from the target temperature was about 50 ° C. at the maximum.
 加熱の途中で、m-1ゾーンおよびm-2ゾーンの熱源に与える出力を前記のように変更して傾斜加熱を開始した後は、図10中に楕円印(破線)を付したように、被熱処理材の温度は、いずれの測温箇所においても目標温度に対して±10℃以内に抑えられていることがわかる。 During the heating, after changing the output given to the heat source of the m-1 zone and the m-2 zone as described above and starting the gradient heating, as indicated by the ellipse mark (broken line) in FIG. It can be seen that the temperature of the material to be heat-treated is suppressed to within ± 10 ° C. with respect to the target temperature at any temperature measurement location.
 前記図6は、このようにして行った被熱処理材の端部における測温結果の一例を整理して得られた図である。mゾーンの3分割した各加熱ゾーン(m-1、m-2およびm-3の各ゾーン)の出力比をいずれも100%とした場合(図中に白抜き四角印(□)で「改造前」と表示)は、被熱処理材の端部に近い位置(m-1ゾーンの中央付近)で、mゾーンの次の加熱ゾーンと45℃程度の温度差があった。これに対し、本発明の熱処理方法を適用した場合(図中に黒塗り丸印(●)で「改造後」と表示)は、7℃以内と、mゾーンの次の加熱ゾーンとの温度差が大幅に縮小されていることがわかる。 FIG. 6 is a diagram obtained by organizing an example of the temperature measurement result at the end of the heat-treated material thus performed. When the output ratio of each of the heating zones (m-1, m-2, and m-3) divided into 3 zones is 100% (remodeled with white squares (□) in the figure) “Previous” is a position near the end of the heat-treated material (near the center of the m-1 zone), and there was a temperature difference of about 45 ° C. from the heating zone next to the m zone. In contrast, when the heat treatment method of the present invention is applied (indicated by black circles (●) in the figure, “after remodeling”), the temperature difference between 7 ° C. and the next heating zone after the m zone. It can be seen that is greatly reduced.
 図10、さらには前記図6の結果から、本発明の熱処理方法を適用することにより、両端壁に熱源が設けられていない筒状のバッチ式熱処理炉において有効炉長をより長く確保し、長尺の被熱処理材の端部を含む全長にわたり、目標温度に対して±10℃以内での温度管理を十分に行えることが確認できた。 From the results of FIG. 10 and FIG. 6, further, by applying the heat treatment method of the present invention, a longer effective furnace length is ensured in a cylindrical batch heat treatment furnace in which no heat source is provided on both end walls. It was confirmed that temperature control within ± 10 ° C. with respect to the target temperature can be sufficiently performed over the entire length including the end of the heat-treated material of the scale.
 本発明の長尺材の熱処理方法によれば、有効炉長をより長く確保し、長尺の被熱処理材を全長にわたり精度よく均一な温度に加熱することができる。
 この熱処理方法を用いる本発明の長尺材の製造方法によれば、機械的特性や耐食性等の品質特性にバラツキのない材料の製造が可能である。また、本発明の長尺材の熱処理炉を使用すれば、本発明の熱処理方法および製造方法を容易に実施することができる。
 したがって、本発明の熱処理方法、この方法を適用する本発明の長尺材の製造方法および本発明の熱処理炉は、長尺材の熱処理および製造に有効に利用することができる。
According to the heat treatment method for a long material of the present invention, it is possible to secure a longer effective furnace length and to heat a long heat-treated material to a uniform temperature with high accuracy over the entire length.
According to the method for producing a long material of the present invention using this heat treatment method, it is possible to produce a material having no variation in quality characteristics such as mechanical characteristics and corrosion resistance. Moreover, if the heat processing furnace of the long material of this invention is used, the heat processing method and manufacturing method of this invention can be implemented easily.
Therefore, the heat treatment method of the present invention, the production method of the long material of the present invention to which this method is applied, and the heat treatment furnace of the present invention can be effectively used for heat treatment and production of the long material.
  1:電気ヒータ、  2:水冷壁、  3:遮熱壁、
  4:台車、  5:被熱処理材、  6:電気ヒータ、
  7:水冷壁、  8:遮熱壁、  9:遮熱板
 
1: Electric heater, 2: Water cooling wall, 3: Heat shield wall,
4: Cart, 5: Heat-treated material, 6: Electric heater,
7: Water cooling wall, 8: Heat shield wall, 9: Heat shield plate

Claims (9)

  1.  両端が閉塞され内部が長手方向に複数の加熱ゾーンに分割された筒状のバッチ式熱処理炉を用い、この熱処理炉の内部に長尺の被熱処理材を装入して熱処理を行う長尺材の熱処理方法であって、
     前記熱処理炉は、前記加熱ゾーンのうちで最端部の加熱ゾーンがその最端部以外の加熱ゾーンの長さよりも短い複数の加熱ゾーンに分割され、各加熱ゾーンにそれぞれ熱源が配設されており、
     当該熱処理方法は、
     (ステップ1)予め、加熱時における被熱処理材の端部での実体測温結果に基づき、前記最端部の各加熱ゾーンにおける各熱源の加熱出力パターンを決定すること、
     (ステップ2)被熱処理材の熱処理作業時に、ステップ1で決定した各熱源の加熱出力パターンと、さらに前記最端部の各加熱ゾーンおよび前記最端部以外の加熱ゾーンの炉内測温結果に基づき、個々の熱源の加熱出力を制御すること、
    の一連の各ステップを含むこと、
    を特徴とする長尺材の熱処理方法。
    Using a cylindrical batch heat treatment furnace whose ends are closed and the inside is divided into a plurality of heating zones in the longitudinal direction, a long material to be heat-treated by inserting a long heat-treated material into the heat treatment furnace A heat treatment method of
    In the heat treatment furnace, the heating zone at the endmost portion of the heating zones is divided into a plurality of heating zones shorter than the length of the heating zone other than the endmost portion, and a heat source is provided in each heating zone. And
    The heat treatment method is as follows:
    (Step 1) Predetermining the heating output pattern of each heat source in each heating zone at the endmost part based on the actual temperature measurement result at the end of the material to be heat-treated at the time of heating,
    (Step 2) During the heat treatment operation of the material to be heat-treated, the heating output pattern of each heat source determined in Step 1 and further the temperature measurement result in the furnace of each heating zone at the extreme end and the heating zone other than the extreme end To control the heating output of individual heat sources,
    Including a series of steps,
    The heat processing method of the elongate material characterized by these.
  2.  ステップ2では、
     熱処理作業時に被熱処理材の端部での実体測温結果に基づき、前記最端部の各加熱ゾーンにおける各熱源の加熱出力を調整すること、
    を特徴とする請求項1に記載の長尺材の熱処理方法。
    In step 2,
    Adjusting the heating output of each heat source in each heating zone at the extreme end based on the actual temperature measurement result at the end of the material to be heat treated during the heat treatment operation,
    The heat processing method of the elongate material of Claim 1 characterized by these.
  3.  ステップ1および2では、熱源として電気ヒータを用いること、
    を特徴とする請求項1または2に記載の長尺材の熱処理方法。
    In steps 1 and 2, using an electric heater as the heat source,
    The heat treatment method for a long material according to claim 1 or 2.
  4.  被熱処理材の加熱が輻射加熱であること、
    を特徴とする請求項1~3のいずれかに記載の長尺材の熱処理方法。
    The heating of the heat-treated material is radiant heating,
    The method for heat-treating a long material according to any one of claims 1 to 3, wherein:
  5.  請求項1~4のいずれかに記載の熱処理方法を用いて熱処理を行うこと、
    を特徴とする長尺材の製造方法。
    Performing a heat treatment using the heat treatment method according to any one of claims 1 to 4,
    A method for producing a long material characterized by the above.
  6.  両端が閉塞され内部が長手方向に複数の加熱ゾーンに分割された筒状であり、長尺の被熱処理材を装入されて熱処理を行う長尺材のバッチ式熱処理炉であって、
     当該熱処理炉は、
     前記加熱ゾーンのうちで最端部の加熱ゾーンがその最端部以外の加熱ゾーンの長さよりも短い複数の加熱ゾーンに分割され、各加熱ゾーンにそれぞれ熱源が配設されており、
     少なくとも前記最端部の各加熱ゾーンにおける各熱源の加熱出力パターンを決定する手段と、
     前記最端部の各加熱ゾーンおよび前記最端部以外の加熱ゾーンの炉内温度を計測する手段と、
     前記加熱ゾーン毎に個々の熱源の加熱出力を制御する手段と、を有すること、
    を特徴とする長尺材の熱処理炉。
    A batch-type heat treatment furnace of a long material in which both ends are closed and the inside is divided into a plurality of heating zones in the longitudinal direction, and a long heat-treated material is inserted to perform heat treatment,
    The heat treatment furnace
    Of the heating zones, the heating zone at the endmost part is divided into a plurality of heating zones shorter than the length of the heating zone other than the endmost part, and a heat source is provided in each heating zone,
    Means for determining a heating output pattern of each heat source in each heating zone at least at the extreme end;
    Means for measuring the temperature in the furnace of each heating zone at the extreme end and the heating zone other than the extreme end;
    Means for controlling the heating output of each heat source for each heating zone,
    A heat treatment furnace for long materials.
  7.  さらに被熱処理材の端部の実体温度を計測する手段を有すること、
    を特徴とする請求項6に記載の長尺材の熱処理炉。
    Furthermore, having means for measuring the actual temperature of the end of the material to be heat treated,
    The long material heat treatment furnace according to claim 6.
  8.  熱源が電気ヒータであること、
    を特徴とする請求項6または7に記載の長尺材の熱処理炉。
    The heat source is an electric heater,
    The long material heat treatment furnace according to claim 6 or 7.
  9.  被熱処理材の加熱が輻射加熱であること、
    を特徴とする請求項6~8のいずれかに記載の長尺材の熱処理炉。
     
    The heating of the heat-treated material is radiant heating,
    The long material heat treatment furnace according to any one of claims 6 to 8.
PCT/JP2011/001684 2010-03-25 2011-03-23 Heat treatment method for long material, manufacturing method for long material, and heat treatment furnace used in above methods WO2011118201A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2790579A CA2790579C (en) 2010-03-25 2011-03-23 Method for heat treating longer-length product, method for manufacturing longer-length product, and heat treatment furnace used for said methods
CN201180015842.9A CN102822358B (en) 2010-03-25 2011-03-23 Heat treatment method for long material, manufacturing method for long material, and heat treatment furnace used in above methods
KR1020127027374A KR101380456B1 (en) 2010-03-25 2011-03-23 Heat treatment method for long material, manufacturing method for long material, and heat treatment furnace used in above methods
EP11759011.7A EP2551361B1 (en) 2010-03-25 2011-03-23 Method for heat treating longer-length product, method for manufacturing longer-length product, and heat treatment furnace used for said method
JP2011513797A JP4868091B2 (en) 2010-03-25 2011-03-23 Heat treatment method for long material, method for producing long material, and heat treatment furnace used in those methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010069981 2010-03-25
JP2010-069981 2010-03-25

Publications (1)

Publication Number Publication Date
WO2011118201A1 true WO2011118201A1 (en) 2011-09-29

Family

ID=44672779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001684 WO2011118201A1 (en) 2010-03-25 2011-03-23 Heat treatment method for long material, manufacturing method for long material, and heat treatment furnace used in above methods

Country Status (6)

Country Link
EP (1) EP2551361B1 (en)
JP (1) JP4868091B2 (en)
KR (1) KR101380456B1 (en)
CN (1) CN102822358B (en)
CA (1) CA2790579C (en)
WO (1) WO2011118201A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080259A1 (en) * 2011-11-30 2013-06-06 Jfe Steel Corporation Method of heating long object in radiant heating furnace as well as radiant heating furnace therefor
JP2014148726A (en) * 2013-02-01 2014-08-21 Aisin Takaoka Ltd Infrared furnace, infrared heating method, and steel sheet manufactured by using the same
JP2014149133A (en) * 2013-02-01 2014-08-21 Aisin Takaoka Ltd Infrared furnace and infrared ray heating method
CN105274307A (en) * 2015-11-13 2016-01-27 兰州飞行控制有限责任公司 Local annealing heat treatment method for small part

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108929945B (en) * 2017-05-26 2020-10-27 宝山钢铁股份有限公司 Energy-saving method for heat treatment furnace
KR101928288B1 (en) 2018-09-10 2019-02-26 채재우 Mixed fuel cyclone combustor
US11242588B2 (en) * 2019-12-12 2022-02-08 General Electric Company System and method to apply multiple thermal treatments to workpiece and related turbomachine components

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171630A (en) * 1981-04-17 1982-10-22 Nippon Kokan Kk <Nkk> Temperature controlling method for continuous heat treatment furnace
JPS624828A (en) 1985-06-28 1987-01-10 Daido Steel Co Ltd Method and apparatus for controlling temperature
JPS62112726A (en) 1985-11-12 1987-05-23 Ishikawajima Harima Heavy Ind Co Ltd Method for controlling temperature of heating furnace
JPH0452215A (en) 1990-06-19 1992-02-20 Daido Steel Co Ltd Vacuum furnace and method for uniformizing temperature in vacuum furnace
JPH05271751A (en) 1992-03-26 1993-10-19 Daido Steel Co Ltd Method for controlling temperature in vacuum furnace

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE712173A (en) * 1967-03-27 1968-09-16
US4842818A (en) * 1980-03-17 1989-06-27 Daido Tokushuko Kabushiki Kaisha Method for manufacturing tapered rods
JPS5920453A (en) * 1982-07-27 1984-02-02 Kawasaki Steel Corp Material for tool for manufacturing seamless steel pipe
JPS5931819A (en) * 1982-08-13 1984-02-21 Sumitomo Metal Ind Ltd Removing method of build-up on hearth roll
JPS59190329A (en) * 1983-04-12 1984-10-29 Sumitomo Metal Ind Ltd Control device for conveyance in installation for hardening long sized pipe material
JPS61156316A (en) * 1984-12-28 1986-07-16 Ohkura Electric Co Ltd Temperature controller of interference corresponding type pattern automatic switching type
JPH0437900Y2 (en) * 1986-08-09 1992-09-04
KR890008922A (en) * 1987-11-21 1989-07-13 후세 노보루 Heat treatment device
JPH0437900A (en) * 1990-06-04 1992-02-07 Canon Inc Communication equipment
JPH0437900U (en) * 1990-07-23 1992-03-31
IT1281420B1 (en) * 1995-09-13 1998-02-18 Danieli Off Mecc EQUALIZATION PROCEDURE IN A HEATING FURNACE WITH A CONTROLLED OXIDATION ENVIRONMENT AND HEATING FURNACE
US6612154B1 (en) * 1998-12-22 2003-09-02 Furnace Control Corp. Systems and methods for monitoring or controlling the ratio of hydrogen to water vapor in metal heat treating atmospheres
CN1696317A (en) * 2005-04-27 2005-11-16 上海天阳钢管有限公司 Oxygen free, technique for treatment of high accurate, shining seamless steel tube
EP1914325B1 (en) * 2005-07-25 2013-09-11 Nippon Steel & Sumitomo Metal Corporation Continuous heat treatment method for metal pipes
CN101376212B (en) * 2007-08-29 2010-10-13 烨联钢铁股份有限公司 Cold rolling serial production line of product steel coil produced from white coil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171630A (en) * 1981-04-17 1982-10-22 Nippon Kokan Kk <Nkk> Temperature controlling method for continuous heat treatment furnace
JPS624828A (en) 1985-06-28 1987-01-10 Daido Steel Co Ltd Method and apparatus for controlling temperature
JPS62112726A (en) 1985-11-12 1987-05-23 Ishikawajima Harima Heavy Ind Co Ltd Method for controlling temperature of heating furnace
JPH0452215A (en) 1990-06-19 1992-02-20 Daido Steel Co Ltd Vacuum furnace and method for uniformizing temperature in vacuum furnace
JPH05271751A (en) 1992-03-26 1993-10-19 Daido Steel Co Ltd Method for controlling temperature in vacuum furnace

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080259A1 (en) * 2011-11-30 2013-06-06 Jfe Steel Corporation Method of heating long object in radiant heating furnace as well as radiant heating furnace therefor
CN104094072A (en) * 2011-11-30 2014-10-08 杰富意钢铁株式会社 Method of heating long object in radiant heating furnace as well as radiant heating furnace therefor
JP2015504476A (en) * 2011-11-30 2015-02-12 Jfeスチール株式会社 Method for heating a long object in a radiation-type heating furnace and radiation-type heating furnace
CN104094072B (en) * 2011-11-30 2017-02-15 杰富意钢铁株式会社 Method of heating long object in radiant heating furnace as well as radiant heating furnace therefor
JP2014148726A (en) * 2013-02-01 2014-08-21 Aisin Takaoka Ltd Infrared furnace, infrared heating method, and steel sheet manufactured by using the same
JP2014149133A (en) * 2013-02-01 2014-08-21 Aisin Takaoka Ltd Infrared furnace and infrared ray heating method
US10184725B2 (en) 2013-02-01 2019-01-22 Aisin Takaoka Co., Ltd. Infrared furnace and method for infrared heating
CN105274307A (en) * 2015-11-13 2016-01-27 兰州飞行控制有限责任公司 Local annealing heat treatment method for small part

Also Published As

Publication number Publication date
CN102822358B (en) 2014-03-12
EP2551361B1 (en) 2019-02-27
KR20120130269A (en) 2012-11-29
EP2551361A4 (en) 2017-05-03
JPWO2011118201A1 (en) 2013-07-04
CN102822358A (en) 2012-12-12
JP4868091B2 (en) 2012-02-01
EP2551361A1 (en) 2013-01-30
CA2790579A1 (en) 2011-09-29
KR101380456B1 (en) 2014-04-01
CA2790579C (en) 2015-11-24

Similar Documents

Publication Publication Date Title
JP4868091B2 (en) Heat treatment method for long material, method for producing long material, and heat treatment furnace used in those methods
JP4458107B2 (en) Vacuum carburizing method and vacuum carburizing apparatus
EP2213754B1 (en) Strip material treatment apparatus
US5291514A (en) Heater autotone control apparatus and method
JP5585181B2 (en) Heat treatment method for thick steel plate in direct fire type roller hearth type continuous heat treatment furnace and radiant tube type roller hearth type continuous heat treatment furnace
JP5544168B2 (en) Heat treatment method for extended steel products
JP6631824B1 (en) Heating method of steel sheet and continuous annealing equipment in continuous annealing
JP4558031B2 (en) Heat treatment apparatus and heat treatment method
JP5117236B2 (en) Apparatus for controlling soaking of flat plate member and method for controlling the same
JP2007242850A (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
JP4650723B2 (en) Heat treatment method and quality control method for steel pipe as heat treated material
JP4247718B2 (en) Method and apparatus for controlling furnace temperature in continuous heating furnace
JP6686983B2 (en) Steel plate heat treatment method and heat treatment apparatus
JPH0799311B2 (en) Heating furnace temperature control method
JP2553364B2 (en) Heat treatment equipment
KR101667190B1 (en) Method of heating long object in radiant heating furnace as well as radiant heating furnace therefor
JPS6141725A (en) Method for controlling hearth roll temperature of continuous annealing furnace
JP5098201B2 (en) Method for tempering thick steel plates
KR100905741B1 (en) Furnace For Semiconductor Wafer
JP2005093685A (en) Heat treatment apparatus and manufacturing method for semiconductor device
Yur’ev et al. Updating the Mode of Annealing of Tubes from Steel ShKh15 in Chamber Furnaces
JPS624828A (en) Method and apparatus for controlling temperature
JPS6214009B2 (en)
JP2007131914A (en) Horizontal continuous heating furnace, and method for continuously annealing steel sheet using the same
JP2004269918A (en) Method for producing steel sheet in batch type annealing furnace

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180015842.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011513797

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759011

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2790579

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011759011

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127027374

Country of ref document: KR

Kind code of ref document: A