JP2007131914A - Horizontal continuous heating furnace, and method for continuously annealing steel sheet using the same - Google Patents

Horizontal continuous heating furnace, and method for continuously annealing steel sheet using the same Download PDF

Info

Publication number
JP2007131914A
JP2007131914A JP2005326317A JP2005326317A JP2007131914A JP 2007131914 A JP2007131914 A JP 2007131914A JP 2005326317 A JP2005326317 A JP 2005326317A JP 2005326317 A JP2005326317 A JP 2005326317A JP 2007131914 A JP2007131914 A JP 2007131914A
Authority
JP
Japan
Prior art keywords
furnace
heating furnace
horizontal continuous
steel sheet
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005326317A
Other languages
Japanese (ja)
Inventor
Kohei Okamoto
好平 岡本
Yasuhiro Imamine
康裕 今峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005326317A priority Critical patent/JP2007131914A/en
Publication of JP2007131914A publication Critical patent/JP2007131914A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a horizontal continuous heating furnace that is used in a horizontal continuous annealing apparatus which has a preheating oven, a horizontal continuous heating furnace and a reducing furnace, prevents heat from dissipating from the hearth roll, does not coarsen a crystal in the ends in a width direction of a steel sheet made from extra-low carbon steel even when the steel sheet is heated in the horizontal continuous heating furnace and then final-annealed in a reducing furnace of a subsequent stage, and secures product quality, and to provide a continuous annealing method using the same. <P>SOLUTION: The horizontal continuous heating furnace 3 has an opening 9 arranged so as to longitudinally penetrate a heat insulation wall 7 which is installed on a hearth 8 of the horizontal continuous heating furnace 3 and covers the undersurface of a hearth roll 5. The opening 9 has an open area ratio of 30 to 90%, which is expressed by the equation: open area ratio (%)=cross section of the opening in furnace width direction/total cross section of heat insulation wall in furnace width direction including the opening×100. The continuous annealing method includes adjusting a passing speed of the sheet and/or a burner output of a direct flame burner 6 so that a temperature difference between a central part and an end in a width direction of a steel sheet (A) can be 70°C or lower in an outlet of the horizontal continuous heating furnace 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、鋼板を直火バーナで加熱して焼鈍する横型連続加熱炉およびそれを用いた連続焼鈍方法に関し、特に、IF鋼などの極低炭素鋼からなる鋼板の連続焼鈍に適した横型連続加熱炉およびそれを用いた連続焼鈍方法に関する。   The present invention relates to a horizontal continuous heating furnace that heats and anneals a steel plate with a direct burner and a continuous annealing method using the same, and particularly, a horizontal continuous suitable for continuous annealing of a steel plate made of ultra-low carbon steel such as IF steel. The present invention relates to a heating furnace and a continuous annealing method using the same.

図1の炉長手方向断面図に示すように、鋼板Aを連続焼鈍するのに用いられる横型連続焼鈍装置1は、鋼板Aを予熱する予熱炉2と、この予熱された鋼板Aを直火加熱で加熱する横型連続加熱炉(以下、単に「加熱炉」ともいう。)3と、直火加熱で表面が酸化した鋼板Aを間接加熱で還元しつつ最終的に焼鈍する還元炉4を有している。そして、予熱炉2には、加熱炉3の燃焼ガスを炉外に設けた図示しないファンで吸引して通板方向と対向させて流通させるようにしている。また、加熱炉3は、図2に示すように、鋼板Aを略水平方向に搬送する複数のハースロール5と、鋼板Aを上下から輻射加熱する複数の直火バーナ6(鋼板Aの上方に設置されたものを上部バーナ6aといい、下方に設置されたものを下部バーナ6bという。)を備え、ハースロール5は通常金属製であるため、高温の加熱炉3内で熱折損を起こさないように水冷されている。そして、この水冷されたハースロール5表面を介した熱損失をできるだけ少なくするため、図6の加熱炉幅方向断面図に示すように、ハースロール5の下面全体を覆う防熱壁7が炉床8上に立設されるのが一般的である(特許文献1参照)。   As shown in the sectional view in the longitudinal direction of the furnace in FIG. 1, a horizontal continuous annealing apparatus 1 used for continuous annealing of a steel plate A is a preheating furnace 2 for preheating the steel plate A, and the preheated steel plate A is directly heated. A horizontal continuous heating furnace (hereinafter also simply referred to as a “heating furnace”) 3 that is heated at a temperature, and a reduction furnace 4 that is finally annealed while reducing the steel sheet A whose surface has been oxidized by direct fire heating by indirect heating. ing. Then, the combustion gas of the heating furnace 3 is sucked into the preheating furnace 2 by a fan (not shown) provided outside the furnace so as to be opposed to the sheet passing direction. In addition, as shown in FIG. 2, the heating furnace 3 includes a plurality of hearth rolls 5 that convey the steel plate A in a substantially horizontal direction, and a plurality of direct fire burners 6 that radiately heat the steel plate A from above and below (above the steel plate A). The installed one is referred to as the upper burner 6a, and the lower one is referred to as the lower burner 6b.) Since the hearth roll 5 is usually made of metal, it does not cause thermal breakage in the high-temperature heating furnace 3. So that it is water-cooled. In order to reduce heat loss through the surface of the water-cooled hearth roll 5 as much as possible, as shown in the sectional view in the heating furnace width direction of FIG. It is common to stand up (see Patent Document 1).

ところが、このような防熱壁7を備えた加熱炉3を有する横型連続焼鈍装置1を用いてIF鋼など極低炭素鋼からなる鋼板Aを焼鈍すると、焼鈍後の鋼板Aの板幅端部において結晶粒が粗大化する現象が見られ、目標の製品品質が確保できない問題が発生することがわかった。   However, when the steel plate A made of ultra-low carbon steel such as IF steel is annealed using the horizontal continuous annealing apparatus 1 having the heating furnace 3 having such a heat shield wall 7, at the plate width end portion of the steel plate A after annealing. The phenomenon that the crystal grains become coarse was observed, and it was found that the target product quality could not be ensured.

なお、特許文献2には、その第4図に示すように、炉長手方向に貫通する開口部12を有する仕切壁8がハースロール3の上下に近接して設置された横型連続熱処理炉が開示され、そのハースロール3の下方に設置された仕切壁8は、本発明に係る防熱壁と近似したもののようにも見える。しかしながら、この仕切壁8は、燃焼ガスから鋼板2への伝熱効率を改善する目的で設置された通気性固体7に燃焼ガスを通過しやすくするようにハースロール1本おきに設置されたものであり、すべてのハースロールに設置されるものではないから、ハースロール表面を介した熱損失を防止する防熱壁としての機能を目的としたものではない。したがって、特許文献2に記載の発明は、本願発明とは発明の解決課題、作用効果ともまったく異なるものであり、本発明と技術的思想を異にするものである。
特開2002−155313号公報 特開昭59−47319号公報
Patent Document 2 discloses a horizontal continuous heat treatment furnace in which a partition wall 8 having an opening 12 penetrating in the longitudinal direction of the furnace is installed close to the top and bottom of the hearth roll 3 as shown in FIG. In addition, the partition wall 8 installed below the hearth roll 3 looks like an approximation of the thermal barrier according to the present invention. However, this partition wall 8 is installed at every other hearth roll so that the combustion gas can easily pass through the breathable solid 7 installed for the purpose of improving the heat transfer efficiency from the combustion gas to the steel plate 2. In addition, since it is not installed on all the hearth rolls, it is not intended to function as a thermal barrier that prevents heat loss through the hearth roll surface. Therefore, the invention described in Patent Document 2 is completely different from the invention of the present application in terms of the solution problem and effect of the invention, and is different from the technical idea of the present invention.
JP 2002-155313 A JP 59-47319 A

そこで本発明は、予熱炉と横型連続加熱炉と還元炉とを有する横型連続焼鈍装置に用いられる横型連続加熱炉に関し、そのハースロールからの熱損失を防止しつつ、極低炭素鋼からなる鋼板を加熱した後、後段の還元炉で最終的に焼鈍しても、鋼板の幅端部において結晶が粗大化することがなく、製品品質を確保しうる横型連続加熱炉およびそれを用いた連続焼鈍方法を提供することを目的とする。 Therefore, the present invention relates to a horizontal continuous heating furnace used in a horizontal continuous annealing apparatus having a preheating furnace, a horizontal continuous heating furnace, and a reduction furnace, and a steel plate made of ultra-low carbon steel while preventing heat loss from the hearth roll. After heating, the horizontal continuous heating furnace that can ensure product quality without crystal coarsening at the width end of the steel sheet even if it is finally annealed in a subsequent reduction furnace, and continuous annealing using the same It aims to provide a method.

本発明者らは、上記のような防熱壁6を備えた加熱炉3を有する横型連続焼鈍装置1を用いて極低炭素鋼からなる鋼板Aを焼鈍すると、焼鈍後の鋼板Aの板幅端部において結晶粒の粗大化が発生する原因を解明するため、以下の検証実験を実施した。   When the present inventors annealed the steel plate A made of ultra-low carbon steel using the horizontal continuous annealing apparatus 1 having the heating furnace 3 provided with the heat insulating wall 6 as described above, the plate width end of the steel plate A after annealing. In order to elucidate the cause of the coarsening of crystal grains, the following verification experiment was conducted.

まず、実機の横型連続焼鈍装置1の加熱炉3出口および還元炉4出口それぞれにおいて極低炭素鋼の一種であるIF鋼からなる鋼板Aの板幅方向の温度分布(以下、「板温分布」ともいう。)を放射温度計にて測定した。測定の結果、図7に示すように、鋼板Aの板幅中央部の温度(以下、「板温」ともいう。)は、加熱炉3出口で約700℃、還元炉4出口で約800℃であるのに対し、鋼板Aの板幅端部の板温は、加熱炉3出口で約850℃、還元炉4出口で約950℃に達し、板幅中央部の板温より最大150℃程度高くなることがわかった。つまり、極低炭素鋼であるIF鋼は、普通鋼より再結晶温度が高いため焼鈍温度も普通鋼より高くする必要があるが、板幅中央部を目標の加熱温度に設定すると、板幅端部はそれよりさらに最大150℃高い温度まで加熱されることになる。このように板幅端部が加熱炉4内で目標の加熱温度を大きく超えて加熱され、この加熱温度の超過分が還元炉4内に持ち越されて最終的に還元炉4出口で約950℃という高い温度まで加熱される結果、板幅端部において結晶粒が粗大化するものと推定した。   First, the temperature distribution in the sheet width direction of the steel sheet A made of IF steel, which is a kind of ultra-low carbon steel, at each of the heating furnace 3 outlet and the reduction furnace 4 outlet of the actual horizontal continuous annealing apparatus 1 (hereinafter referred to as “sheet temperature distribution”). Also measured with a radiation thermometer. As a result of the measurement, as shown in FIG. 7, the temperature at the center of the plate width of the steel sheet A (hereinafter also referred to as “plate temperature”) is about 700 ° C. at the outlet of the heating furnace 3 and about 800 ° C. at the outlet of the reducing furnace 4. On the other hand, the plate temperature at the end of the plate width of the steel plate A reaches about 850 ° C. at the outlet of the heating furnace 3 and reaches about 950 ° C. at the outlet of the reduction furnace 4, and is about 150 ° C. at maximum from the plate temperature at the center of the plate width. I found it to be higher. In other words, IF steel, which is an extremely low carbon steel, has a higher recrystallization temperature than ordinary steel, so the annealing temperature must also be higher than that of ordinary steel. The part will be heated to a temperature up to 150 ° C. higher than that. In this way, the end of the plate width is heated in the heating furnace 4 so as to greatly exceed the target heating temperature, and the excess of the heating temperature is carried over into the reduction furnace 4 and finally about 950 ° C. at the reduction furnace 4 outlet. As a result of heating to such a high temperature, it was estimated that the crystal grains became coarse at the end of the plate width.

そこで、この推定を検証するために、バッチ式小型加熱炉を用いた焼鈍シミュレータにて、実機の横型連続焼鈍装置1のヒートパターンを模擬した焼鈍実験を行い、結晶粒度に及ぼす焼鈍温度および焼鈍時間の影響を調査した。すなわち、焼鈍シミュレータにて雰囲気温度と保持時間の組み合わせを種々変更した条件でIF鋼からなる鋼板を加熱焼鈍し、焼鈍後の各鋼板についてJIS G0552に基づきフェライト結晶粒度を測定した。   Therefore, in order to verify this estimation, an annealing experiment simulating the heat pattern of the actual horizontal continuous annealing apparatus 1 was conducted in an annealing simulator using a batch type small heating furnace, and the annealing temperature and annealing time affecting the crystal grain size. The effect of was investigated. That is, a steel plate made of IF steel was heat-annealed under conditions in which the combination of the atmospheric temperature and the holding time was variously changed in an annealing simulator, and the ferrite crystal grain size was measured based on JIS G0552 for each steel plate after annealing.

図8にまとめた測定結果から明らかなように、板温(=雰囲気温度)が920℃未満では、保持時間を延長してもフェライト結晶粒度は7.0以上が確保され、結晶粒は微細なままに維持されているが、板温が920℃以上では、保持時間が一定時間を超えると、フェライト結晶粒度が7.0未満となり結晶粒が粗大化するのがわかった。   As is apparent from the measurement results summarized in FIG. 8, when the plate temperature (= atmosphere temperature) is less than 920 ° C., the ferrite grain size is 7.0 or more even if the holding time is extended, and the crystal grains are fine. However, when the plate temperature is 920 ° C. or higher, the ferrite crystal grain size becomes less than 7.0 and the crystal grains become coarse when the holding time exceeds a certain time.

これらの検証実験の結果から、実機の横型連続焼鈍装置1では、板幅中央部は最終的に還元炉4出口で920℃未満である約800℃までしか加熱されていないのに対し、板幅端部は最終的に還元炉4出口で920℃を超えて約950℃まで加熱された結果、板幅端部にて結晶粒の粗大化が発生したと結論付けられる。   From the results of these verification experiments, in the actual horizontal continuous annealing apparatus 1, the central portion of the plate width is finally heated only to about 800 ° C., which is less than 920 ° C. at the outlet of the reduction furnace 4, whereas the plate width It can be concluded that the end portion was finally heated at over 920 ° C. to about 950 ° C. at the outlet of the reducing furnace 4 and as a result, coarsening of crystal grains occurred at the end portion of the plate width.

そこで、次に、このように板幅端部の板温が板幅中央部の板温より著しく高くなる原因の検討を行った。種々考察の結果、想定される原因として、
(1)直火バーナ6からの輻射熱のバーナ長手方向における不均一
(2)防熱壁7による下部バーナ6bからの燃焼ガスの偏流
の2点に絞込み、これらの影響度を調査するため、以下の検証実験を行った。
Then, next, examination was made on the cause of the plate temperature at the plate width end portion becoming significantly higher than the plate temperature at the plate width central portion. As a result of various considerations, as possible causes,
(1) Nonuniformity of radiant heat from the direct fire burner 6 in the longitudinal direction of the burner (2) Narrowing down to two points of the drift of the combustion gas from the lower burner 6b due to the heat barrier 7, and in order to investigate the influence of these, A verification experiment was conducted.

まず、(1)については、実機の加熱炉3の鋼板Aと1本の直火バーナ6との位置関係のみを模擬したラボ実験装置により、板幅方向における板温分布を測定した結果、板幅端部と板幅中央部との板温差は15℃程度と小さく、直火バーナ6からの輻射熱の不均一による影響は小さいと判断した。   First, as for (1), as a result of measuring the plate temperature distribution in the plate width direction using a laboratory experimental apparatus that simulates only the positional relationship between the steel plate A of the actual heating furnace 3 and one direct fire burner 6, The plate temperature difference between the width end portion and the plate width center portion was as small as about 15 ° C., and it was judged that the influence of non-uniformity of radiant heat from the direct fire burner 6 was small.

つぎに、(2)については、実機加熱炉3において、通板速度は一定の条件下で、上部バーナ6aおよび下部バーナ6bをいずれも点火した場合(ケース1)と、上部バーナ6aは点火したままであるが、下部バーナ6bを消火した場合(ケース2)のそれぞれについて、板幅方向の板温分布を測定した。測定の結果、板幅中央部と板幅端部との板温差は、ケース1の場合には約150℃あったのが、ケース2では約50℃に縮小した。この結果より、下部バーナ6bからの燃焼ガスの偏流による強制対流伝熱の影響が大きいと判断した。   Next, with respect to (2), in the actual heating furnace 3, the upper burner 6a was ignited when both the upper burner 6a and the lower burner 6b were ignited under the condition that the plate passing speed was constant (case 1). However, the plate temperature distribution in the plate width direction was measured for each of the cases where the lower burner 6b was extinguished (case 2). As a result of the measurement, the plate temperature difference between the center portion of the plate width and the end portion of the plate width was about 150 ° C. in case 1 but reduced to about 50 ° C. in case 2. From this result, it was determined that the influence of forced convection heat transfer due to the drift of combustion gas from the lower burner 6b was great.

すなわち、下部バーナ6bからの燃焼ガス流Bは、上述したように、ファンに吸引されて最終的に予熱炉2に向かう流れとなるが、図9の模式図に示すように、その途中で防熱壁7に妨げられて、図示しない炉側壁(図3の符号10参照)と鋼板Aの板幅端部との間の隙間を通過し、いったん鋼板Aの上方に出てから予熱炉2側に向かうこととなる。したがって、この隙間を通過する際に燃焼ガス流Bの流速が加速されるため、燃焼ガスから板幅端部への強制対流伝熱量が増大することとなる。この結果、板幅端部は板幅中央部に比べ強制対流伝熱量の増加分だけ過熱され板温が上昇することとなる。   That is, as described above, the combustion gas flow B from the lower burner 6b is sucked by the fan and finally flows toward the preheating furnace 2, but as shown in the schematic diagram of FIG. It is blocked by the wall 7, passes through a gap between a furnace side wall (not shown) (see reference numeral 10 in FIG. 3) and the plate width end of the steel plate A, and once exits above the steel plate A to the preheating furnace 2 side. Will head. Therefore, since the flow velocity of the combustion gas flow B is accelerated when passing through this gap, the amount of forced convection heat transfer from the combustion gas to the end of the plate width increases. As a result, the end portion of the plate width is overheated by an increase in the amount of forced convection heat transfer compared to the central portion of the plate width, and the plate temperature rises.

そして、本発明者らは上記知見に基づいてさらなる検討を行い、以下の発明を完成させるに至った。   Then, the present inventors have further studied based on the above findings and have completed the following invention.

請求項1に記載の発明は、鋼板を後記横型連続加熱炉の燃焼ガスで予熱する予熱炉と、前記予熱された鋼板をハースロールで搬送しつつ直火バーナにて加熱する横型連続加熱炉と、前記加熱された鋼板を還元しつつ焼鈍する還元炉とを有する横型連続焼鈍装置に用いられる横型連続加熱炉であって、その炉床上に立設され前記ハースロールの下面を覆う防熱壁に、下記式で定義される開口率が30〜90%である、炉長手方向に貫通する開口部を設けたことを特徴とする横型連続加熱炉である。
式 開口率(%)=開口部の炉幅方向断面積/パスラインより下方の炉幅方向全断面積×100
The invention according to claim 1 is a preheating furnace for preheating a steel plate with a combustion gas of a horizontal continuous heating furnace described later, and a horizontal continuous heating furnace for heating the preheated steel plate with a hearth roll while heating it with a direct fire burner. A horizontal continuous heating furnace used in a horizontal continuous annealing apparatus having a reduction furnace that anneals while reducing the heated steel sheet, on a thermal barrier that stands on the hearth and covers the lower surface of the hearth roll, It is a horizontal continuous heating furnace characterized in that an opening portion penetrating in the longitudinal direction of the furnace having an opening ratio defined by the following formula is 30 to 90%.
Formula Opening ratio (%) = furnace width direction cross-sectional area of the opening / furnace width direction total cross-sectional area below the pass line × 100

請求項2に記載の発明は、請求項1に記載の横型連続加熱炉を用いて鋼板を加熱した後、引き続いて前記還元炉で前記加熱後の鋼板を還元しつつ焼鈍する方法であって、前記横型連続加熱炉の出口における鋼板の板幅中央部と板幅端部の温度差が70℃以内となるように、通板速度および/または前記直火バーナのバーナ出力を調整することを特徴とする鋼板の連続焼鈍方法である。   The invention according to claim 2 is a method of annealing the steel sheet after reducing the heated steel sheet in the reduction furnace after heating the steel sheet using the horizontal continuous heating furnace according to claim 1, The sheet passing speed and / or the burner output of the direct-fired burner is adjusted so that the temperature difference between the plate width center portion and the plate width end portion of the steel plate at the outlet of the horizontal continuous heating furnace is within 70 ° C. It is a continuous annealing method of the steel sheet.

なお、本願において「鋼板の板幅端部」とは、鋼板の板幅端面から15mm板幅中央寄りの位置をいうものとする。   In the present application, the “plate width end portion of the steel plate” refers to a position closer to the center of the plate width by 15 mm from the plate width end surface of the steel plate.

請求項3に記載の発明は、請求項1に記載の横型連続加熱炉を用いて鋼板を加熱した後、引き続いて前記還元炉で前記加熱後の鋼板を還元しつつ連続焼鈍する方法であって、前記焼鈍後の鋼板の板幅中央部と板幅端部のフェライト結晶粒度の差が2.0以内となるように、通板速度および/または前記直火バーナのバーナ出力を調整することを特徴とする鋼板の連続焼鈍方法である。   The invention described in claim 3 is a method of heating the steel sheet using the horizontal continuous heating furnace according to claim 1 and then continuously annealing the steel sheet after heating in the reduction furnace. Adjusting the plate passing speed and / or the burner output of the direct-fired burner so that the difference in ferrite crystal grain size between the plate width central portion and the plate width end of the steel plate after annealing is within 2.0. It is the continuous annealing method of the steel plate characterized.

なお、「フェライト結晶粒度」は、JIS G0552に規定された試験方法で測定された値である。   The “ferrite grain size” is a value measured by a test method defined in JIS G0552.

請求項4に記載の発明は、前記鋼板が極低炭素鋼からなるものである、請求項2または3に記載の鋼板の連続焼鈍方法である。   Invention of Claim 4 is the continuous annealing method of the steel plate of Claim 2 or 3 with which the said steel plate consists of ultra-low carbon steel.

本発明によれば、予熱炉と横型連続加熱炉と還元炉とを有する横型連続焼鈍装置に用いられる横型連続加熱炉において、防熱壁に所定の開口率の開口を設けたことで、ハースロールからの熱損失を防止しつつ、下部バーナからの燃焼ガスの偏流を抑制して板幅端部の過熱を確実に防止できる。その結果、極低炭素鋼からなる鋼板を横型連続加熱炉で加熱した後、後段の還元炉で最終的に焼鈍しても、鋼板の幅端部において結晶が粗大化することがなく、製品品質を確保できるようになった。   According to the present invention, in a horizontal continuous heating furnace used in a horizontal continuous annealing apparatus having a preheating furnace, a horizontal continuous heating furnace, and a reduction furnace, an opening having a predetermined opening ratio is provided on the heat shield wall. While preventing the heat loss, it is possible to suppress the drift of the combustion gas from the lower burner and to reliably prevent overheating of the plate width end. As a result, after heating a steel plate made of ultra-low carbon steel in a horizontal continuous heating furnace, even if it is finally annealed in a subsequent reduction furnace, crystals are not coarsened at the width end of the steel plate, and the product quality Can be secured.

本発明の実施形態に係る横型連続焼鈍装置は、図1に示す従来の横型連続焼鈍装置1と同じく、予熱炉2+横型連続加熱炉3+還元炉4の構成を有し、横型連続加熱炉3は、防熱壁の構造を除いて、図2に示す従来の横型連続加熱炉3と共通であるので共通部分の説明は省略し、以下、防熱壁の構造について詳述する。   The horizontal continuous annealing apparatus according to the embodiment of the present invention has a configuration of a preheating furnace 2 + a horizontal continuous heating furnace 3 + a reducing furnace 4 as in the conventional horizontal continuous annealing apparatus 1 shown in FIG. Except for the structure of the heat insulation wall, since it is common with the conventional horizontal continuous heating furnace 3 shown in FIG. 2, the description of the common portion will be omitted, and the structure of the heat insulation wall will be described in detail below.

図3は、本発明に係る防熱壁の一実施形態を示す炉幅方向縦断面図であり、防熱壁7は、従来の防熱壁と同様、ハースロール5の下面を覆うように、炉床8上に立設する。そして、防熱壁7には、炉長手方向に貫通し、開口率が30〜90%の開口部9を設ける。ここに、開口率とは、開口率(%)=開口部9の炉幅方向断面積/パスラインより下方の炉幅方向全断面積×100で定義される値である。なお、パスラインは、ハースロール5上端のレベルである。   FIG. 3 is a vertical cross-sectional view in the furnace width direction showing an embodiment of the heat insulation wall according to the present invention. Like the conventional heat insulation wall, the heat insulation wall 7 covers the bottom surface of the hearth roll 5 so as to cover the lower surface. Stand up. The heat barrier 7 is provided with an opening 9 that penetrates in the longitudinal direction of the furnace and has an opening ratio of 30 to 90%. Here, the aperture ratio is a value defined by an aperture ratio (%) = a cross-sectional area in the furnace width direction of the opening 9 / a total cross-sectional area in the furnace width direction below the pass line × 100. The pass line is the level at the upper end of the hearth roll 5.

このように、防熱壁7に炉長手方向に貫通する所定開口率の開口部9を設けたことにより、下部バーナ6bからの燃焼ガスは、この開口部9を通過して予熱炉2側に流れることができるので、炉側壁10と鋼板Aの幅端部との間の隙間を通過する燃焼ガスの流量が減少してガス流速が低下し、燃焼ガスから板幅端部への強制対流伝熱量が減少し、板幅端部の過熱が防止されることとなる。   Thus, by providing the opening 9 with a predetermined opening ratio penetrating in the longitudinal direction of the furnace in the heat barrier 7, the combustion gas from the lower burner 6 b passes through the opening 9 and flows to the preheating furnace 2 side. Therefore, the flow rate of the combustion gas passing through the gap between the furnace side wall 10 and the width end of the steel plate A is decreased, the gas flow rate is decreased, and the forced convection heat transfer amount from the combustion gas to the width end of the plate Is reduced, and overheating of the end portion of the plate width is prevented.

ここで、開口部9の開口率を30〜90%としたのは、以下の理由による。すなわち、開口率が30%未満では、開口部9を通過する燃焼ガスの流量が少なすぎて、上記炉側壁10と鋼板Aの幅端部との間の隙間を通過する燃焼ガスの流速を十分に低下できず、板幅端部の過熱を十分に抑制できないためである。いっぽう、開口率は高ければ高いほど、上記隙間を通過する燃焼ガスの流速がより低下するので板幅端部の過熱を防止する観点からは好ましいが、最低限ハースロール5の下面を覆う部分は残す必要があるため90%以下とした。   Here, the reason why the opening ratio of the opening 9 is set to 30 to 90% is as follows. That is, if the opening ratio is less than 30%, the flow rate of the combustion gas passing through the opening 9 is too small, and the flow rate of the combustion gas passing through the gap between the furnace side wall 10 and the width end of the steel plate A is sufficiently high. This is because overheating at the end of the plate width cannot be sufficiently suppressed. On the other hand, the higher the opening ratio, the lower the flow rate of the combustion gas passing through the gap, which is preferable from the viewpoint of preventing overheating of the plate width end, but at least the portion covering the lower surface of the hearth roll 5 is Since it is necessary to leave, it was 90% or less.

開口率30〜90%の防熱壁6は、ハースロール5の下面を炉幅全体にわたって覆いつつ、高温の加熱炉3内で防熱壁7自身の重量を支持する必要があるので、例えば、従来の開口部のない防熱壁と同様、レンガ積みによる耐火物構造を採用し、図3に示すように、両側の炉側壁10間をアーチ橋に近似した構造にて支持する構造として、アーチ下方の空間を開口部9とするとともに、アーチ構造にて耐火物構造自身の重量を支持するようにすればよい。なお、同図には、炉幅中央部に炉床8から立ち上がる脚部11を1箇所設け、この脚部11と両側の炉側壁10との間にそれぞれアーチを設けた例を示したが、炉幅や用いるレンガ材質等に応じて、脚部11およびアーチの数、形状、取り付け位置等を適宜変更しうることはいうまでもない。また、開口率は、レンガ積みでは構造上の制約により60%程度を超えて高くすることは困難となるが、レンガに替えてグラスウール、ロックウール等の断熱材を用いれば、90%まで高くすることは容易である。   The heat barrier 6 with an opening ratio of 30 to 90% needs to support the weight of the heat barrier 7 itself in the high-temperature heating furnace 3 while covering the lower surface of the hearth roll 5 over the entire furnace width. As in the case of the thermal barrier without an opening, a refractory structure using bricks is adopted, and as shown in FIG. 3, the space below the arch is supported by a structure that approximates the arch bridge between the side walls 10 of the furnace. And the opening 9 and the arch structure may support the weight of the refractory structure itself. The figure shows an example in which one leg 11 rising from the hearth 8 is provided at the center of the furnace width, and arches are provided between the leg 11 and the furnace side walls 10 on both sides. It goes without saying that the number, shape, mounting position, etc. of the legs 11 and arches can be appropriately changed according to the furnace width and the brick material used. In addition, it is difficult to increase the aperture ratio beyond about 60% due to structural restrictions in brickwork, but if heat insulating materials such as glass wool and rock wool are used instead of bricks, the opening ratio is increased to 90%. It is easy.

そして、このような開口部9を有する防熱壁7を設置した加熱炉3を有する横型連続焼鈍装置1にて、鋼板Aを連続焼鈍する場合、その鋼板Aの材質、板幅、板厚等に応じて、通板速度と加熱炉3内の直火バーナ6のバーナ出力の両方またはいずれか一方を調整し、加熱炉3出口における板幅端部と板幅中央部との板温差が70℃以内、好ましくは60℃以内、さらに好ましくは50℃以内になるように制御するとよい。このように、加熱炉3出口での板幅端部と板幅中央部との板温差をできるだけ小さく制限することで、後段の還元炉4出口での前記板温差も小さくなり、板幅端部が過度に加熱されることがなくなり、結晶粒の粗大化が効果的に防止される。   And in the continuous continuous annealing apparatus 1 which has the heating furnace 3 which installed the heat barrier 7 which has such an opening part 9, when the steel plate A is continuously annealed, on the material of the steel plate A, board width, board thickness, etc. Accordingly, the plate temperature difference between the plate width end portion and the plate width center portion at the outlet of the heating furnace 3 is adjusted to 70 ° C., either or both of the plate passing speed and the burner output of the direct fire burner 6 in the heating furnace 3 are adjusted. Within the range, preferably within 60 ° C., and more preferably within 50 ° C. Thus, by limiting the plate temperature difference between the plate width end portion at the outlet of the heating furnace 3 and the plate width center portion as small as possible, the plate temperature difference at the outlet of the subsequent reduction furnace 4 is also reduced, and the plate width end portion is reduced. Is not heated excessively, and coarsening of crystal grains is effectively prevented.

あるいは、焼鈍しようとしている鋼板Aの材質、板幅、板厚等に応じて、通板速度と加熱炉3内の直火バーナ6のバーナ出力の両方またはいずれか一方を調整し、加熱炉3通過後、還元炉4で還元焼鈍された焼鈍後の鋼板Aの板幅中央部と板幅端部のフェライト結晶粒度の差が2.0以内、好ましくは1.5以内、さらに好ましくは1.0以内になるように制御するとよい。このように、焼鈍後の鋼板Aの板幅方向におけるフェライト結晶粒度分布をできるだけ均一とすることで、製品品質をより確実に確保できる。   Alternatively, depending on the material, width, thickness, etc. of the steel plate A to be annealed, both the plate speed and the burner output of the direct fire burner 6 in the heating furnace 3 are adjusted, and the heating furnace 3 After passing, the difference in the ferrite crystal grain size between the plate width center portion and the plate width end portion of the steel plate A after annealing reduced in the reduction furnace 4 is within 2.0, preferably within 1.5, more preferably 1. It may be controlled to be within 0. Thus, product quality can be ensured more reliably by making the ferrite crystal grain size distribution in the plate width direction of the steel plate A after annealing as uniform as possible.

実機の横型連続焼鈍装置(図1に示すように、予熱炉2+加熱炉3+還元炉4の構成を有し、加熱炉3内には2本のハースロール5を備え、各ハースロール5の下方には防熱壁7が設置されているもの)において、従来の開口部のない防熱壁を用いた操業(比較例)と、各防熱壁に図3に示すアーチ構造にて開口率40%の開口部を設ける改造を行った後の操業(発明例)の比較を行った。なお、焼鈍処理する鋼板は、材質(IF鋼)、板幅(1.6mm)、板厚(1219mm)とも改造前後で同一のものを用いた。そして、比較例および発明例それぞれにおいて、バーナ出力を100、80、40%へと順次低下させるとともに、各バーナ出力にて、加熱炉出口での板幅中央部の板温が目標の加熱温度である780〜820℃になるように、通板速度を調整した。   Horizontal continuous annealing apparatus of an actual machine (as shown in FIG. 1, it has a configuration of a preheating furnace 2 + a heating furnace 3 + a reduction furnace 4, and the heating furnace 3 includes two hearth rolls 5 below each hearth roll 5. In which a heat insulating wall 7 is installed), using a conventional heat insulating wall without an opening (comparative example), and each heat insulating wall with an arch structure shown in FIG. Comparison of operation (invention example) after remodeling to provide a part was performed. In addition, the steel plate to be annealed was the same material (IF steel), plate width (1.6 mm), and plate thickness (1219 mm) before and after modification. In each of the comparative example and the inventive example, the burner output is sequentially reduced to 100, 80, and 40%, and the plate temperature at the center of the plate width at the heating furnace outlet is the target heating temperature at each burner output. The plate passing speed was adjusted to be 780 to 820 ° C.

操業結果を図4および図5に示す。図4に示すように、板幅端部(鋼板の板幅端面から15mm板幅中央寄りの位置)と板幅中央部との板温差は、比較例では、バーナ出力100%で約100℃と大きく、バーナ出力を40%に下げてようやく約70℃まで縮小されるのに対し、発明例では、バーナ出力100%ですでに約50℃に縮小しており、バーナ出力を40%に下げるとさらに縮小して約30℃になった。   The operation results are shown in FIG. 4 and FIG. As shown in FIG. 4, the plate temperature difference between the plate width end (position 15 mm closer to the plate width center from the plate width end surface of the steel plate) and the plate width center is about 100 ° C. at a burner output of 100%. The burner output is reduced to about 70 ° C only by reducing the burner output to 40%. In the example of the invention, the burner output is already reduced to about 50 ° C at 100%, and when the burner output is reduced to 40%. It further reduced to about 30 ° C.

また、図5に示すように、加熱炉通過後、還元炉で還元焼鈍された焼鈍後の鋼板の板幅端部(鋼板の板幅端面から15mm板幅中央寄りの位置)のフェライト結晶粒度は、比較例では、バーナ出力100%および80%では6.0以下となり製品の合格基準(7.0以上)を満足せず、バーナ出力を40%に低下させたときにようやく7.0が得られ製品品質の合格基準を満たすのに対し、発明例では、バーナ出力100%では6.0と製品品質の合格基準に満たないものの、バーナ出力を80%に低下させることで製品品質の合格基準である7.0が得られることがわかった。(なお、焼鈍後の板幅中央部のフェライト結晶粒度は、比較例、発明例ともバーナ出力によらず、9.0程度に維持されていた。)   Moreover, as shown in FIG. 5, after passing through the heating furnace, the ferrite crystal grain size of the plate width end portion of the annealed steel plate subjected to reduction annealing in the reduction furnace (position closer to the center of the plate width of 15 mm from the plate width end surface of the steel plate) is In the comparative example, when the burner output is 100% and 80%, it is 6.0 or less, which does not satisfy the acceptance criteria (7.0 or more) of the product, and 7.0 is finally obtained when the burner output is reduced to 40%. In the example of the invention, while the burner output 100% is 6.0, which is less than the product quality acceptance standard, the burner output is reduced to 80% by reducing the burner output to 80%. It was found that 7.0 was obtained. (Note that the ferrite crystal grain size at the center of the plate width after annealing was maintained at about 9.0 regardless of the burner output in both the comparative example and the invention example.)

そして、バーナ出力が高いほど通板速度も高くできるので、比較例の開口部のない防熱壁に代えて、発明例の所定の開口率を有する開口部を設けた防熱壁を採用することで、焼鈍後の鋼板の製品品質を確保しつつ生産性を大幅に向上できることを確認した。   And, as the burner output is higher, the plate passing speed can be increased, so instead of the thermal barrier without the opening of the comparative example, by adopting the thermal barrier provided with the opening having the predetermined opening ratio of the invention example, It was confirmed that productivity could be greatly improved while ensuring the product quality of the steel sheet after annealing.

横型連続焼鈍装置の概略構成を示す炉長手方向断面図である。It is a furnace longitudinal direction sectional view showing a schematic structure of a horizontal type continuous annealing apparatus. 横型連続加熱炉の概略構成を示す炉長手方向縦断面図である。It is a furnace longitudinal direction longitudinal cross-sectional view which shows schematic structure of a horizontal type continuous heating furnace. 実施形態に係る横型連続加熱炉の概略構成を示す幅方向縦断面図である。It is a width direction longitudinal cross-sectional view which shows schematic structure of the horizontal type continuous heating furnace which concerns on embodiment. 横型連続加熱炉における、直火バーナのバーナ出力と、板幅端部と板幅中央部との板温差との関係を示すグラフ図である。It is a graph which shows the relationship between the burner output of a direct-fired burner, and the board temperature difference of a board width edge part and a board width center part in a horizontal continuous heating furnace. 横型連続加熱炉の直火バーナのバーナ出力と、還元炉で焼鈍された焼鈍後の板幅端部のフェライト結晶粒度の関係を示すグラフ図である。It is a graph which shows the relationship between the burner output of the direct-fired burner of a horizontal continuous heating furnace, and the ferrite crystal grain size of the board width end part after annealing annealed by the reduction furnace. 従来の横型連続加熱炉の概略構成を示す幅方向縦断面図である。It is a width direction longitudinal cross-sectional view which shows schematic structure of the conventional horizontal type | mold continuous heating furnace. 従来の横型連続加熱炉および還元炉の各出口における板幅端部および板幅中央部の板温を示すグラフ図である。It is a graph which shows the plate | board temperature of the plate width edge part and plate | board width center part in each exit of the conventional horizontal continuous heating furnace and a reduction furnace. フェライト結晶粒度に及ぼす板温および保持時間の影響を示すグラフ図である。It is a graph which shows the influence of plate temperature and holding time which has on a ferrite crystal grain size. 従来の横型連続加熱炉内における燃焼ガスの流れを概念的に説明する部分斜視図である。It is a fragmentary perspective view which illustrates notionally the flow of the combustion gas in the conventional horizontal type continuous heating furnace.

符号の説明Explanation of symbols

1:横型連続焼鈍装置
2:予熱炉
3:横型連続加熱炉(加熱炉)
4:還元炉
5:ハースロール
6:直火バーナ
6a:上部バーナ
6b:下部バーナ
7:防熱壁
8:炉床
9:開口部
10:炉側壁
11:脚部
A:鋼板
B:燃焼ガス流
1: Horizontal continuous annealing device 2: Preheating furnace 3: Horizontal continuous heating furnace (heating furnace)
4: Reduction furnace 5: Hearth roll 6: Direct fire burner 6a: Upper burner 6b: Lower burner 7: Heat barrier 8: Furnace 9: Opening 10: Furnace sidewall 11: Leg A: Steel plate B: Combustion gas flow

Claims (4)

鋼板を後記横型連続加熱炉の燃焼ガスで予熱する予熱炉と、前記予熱された鋼板をハースロールで搬送しつつ直火バーナにて加熱する横型連続加熱炉と、前記加熱された鋼板を還元しつつ焼鈍する還元炉とを有する横型連続焼鈍装置に用いられる横型連続加熱炉であって、
その炉床上に立設され前記ハースロールの下面を覆う防熱壁に、下記式で定義される開口率が30〜90%である、炉長手方向に貫通する開口部を設けたことを特徴とする横型連続加熱炉。
式 開口率(%)=開口部の炉幅方向断面積/パスラインより下方の炉幅方向全断面積×100
A preheating furnace that preheats the steel sheet with the combustion gas of the horizontal continuous heating furnace described later, a horizontal continuous heating furnace that heats the preheated steel sheet with a hearth roll while heating it with a direct-fired burner, and the heated steel sheet is reduced. A horizontal continuous heating furnace used in a horizontal continuous annealing apparatus having a reduction furnace for annealing while
An opening portion penetrating in the longitudinal direction of the furnace having an opening ratio of 30 to 90% defined by the following formula is provided on a heat insulating wall standing on the hearth and covering the lower surface of the hearth roll. Horizontal continuous heating furnace.
Formula Opening ratio (%) = furnace width direction cross-sectional area of the opening / furnace width direction total cross-sectional area below the pass line × 100
請求項1に記載の横型連続加熱炉を用いて鋼板を加熱した後、引き続いて前記還元炉で前記加熱後の鋼板を還元しつつ焼鈍する方法であって、前記横型連続加熱炉の出口における鋼板の板幅中央部と板幅端部の温度差が70℃以内となるように、通板速度および/または前記直火バーナのバーナ出力を調整することを特徴とする鋼板の連続焼鈍方法。   A steel plate at the outlet of the horizontal continuous heating furnace, wherein the steel plate is heated using the horizontal continuous heating furnace according to claim 1 and subsequently annealed while reducing the heated steel plate in the reduction furnace. A continuous annealing method of a steel sheet, characterized by adjusting a plate passing speed and / or a burner output of the direct fire burner so that a temperature difference between a plate width center portion and a plate width end portion is within 70 ° C. 請求項1に記載の横型連続加熱炉を用いて鋼板を加熱した後、引き続いて前記還元炉で前記加熱後の鋼板を還元しつつ連続焼鈍する方法であって、前記焼鈍後の鋼板の板幅中央部と板幅端部のフェライト結晶粒度の差が2.0以内となるように、通板速度および/または前記直火バーナのバーナ出力を調整することを特徴とする鋼板の連続焼鈍方法。   A steel sheet is heated using the horizontal continuous heating furnace according to claim 1, and subsequently subjected to continuous annealing while reducing the heated steel sheet in the reduction furnace, and the sheet width of the steel sheet after annealing. A continuous annealing method for a steel sheet, characterized by adjusting a sheet passing speed and / or a burner output of the direct-fired burner so that a difference in ferrite crystal grain size between a center part and a sheet width end part is within 2.0. 前記鋼板が極低炭素鋼からなるものである、請求項2または3に記載の鋼板の連続焼鈍方法。   The method for continuous annealing of a steel sheet according to claim 2 or 3, wherein the steel sheet is made of ultra-low carbon steel.
JP2005326317A 2005-11-10 2005-11-10 Horizontal continuous heating furnace, and method for continuously annealing steel sheet using the same Pending JP2007131914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005326317A JP2007131914A (en) 2005-11-10 2005-11-10 Horizontal continuous heating furnace, and method for continuously annealing steel sheet using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005326317A JP2007131914A (en) 2005-11-10 2005-11-10 Horizontal continuous heating furnace, and method for continuously annealing steel sheet using the same

Publications (1)

Publication Number Publication Date
JP2007131914A true JP2007131914A (en) 2007-05-31

Family

ID=38153808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005326317A Pending JP2007131914A (en) 2005-11-10 2005-11-10 Horizontal continuous heating furnace, and method for continuously annealing steel sheet using the same

Country Status (1)

Country Link
JP (1) JP2007131914A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155691A (en) * 2007-12-26 2009-07-16 Nippon Steel Corp Direct-fire type roller hearth continuous heat-treatment furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155691A (en) * 2007-12-26 2009-07-16 Nippon Steel Corp Direct-fire type roller hearth continuous heat-treatment furnace

Similar Documents

Publication Publication Date Title
US9322598B2 (en) Process for the heat treatment of steel strips
KR20160033085A (en) Continuous firing furnace
KR20100138783A (en) Annealing of cold rolled metal strip
JP6548895B2 (en) Heater unit and carburizing furnace
JP5585181B2 (en) Heat treatment method for thick steel plate in direct fire type roller hearth type continuous heat treatment furnace and radiant tube type roller hearth type continuous heat treatment furnace
JP2007131914A (en) Horizontal continuous heating furnace, and method for continuously annealing steel sheet using the same
JP2009057621A (en) Continuous heating furnace
JP4987689B2 (en) Direct-fired type roller hearth continuous heat treatment furnace
KR20020012497A (en) Method of thermal treatment for substrates and the furnace for its continuous thermal treatment
US2218354A (en) Method and apparatus for annealing strip
EP2580360B1 (en) Annealing installation with m-shaped strip treatment tunnel
JP4583256B2 (en) Heat treatment furnace
JP3845194B2 (en) Heating operation method of steel for continuous hot rolling
JP2000212645A (en) Continuous heating of steel material
JP5365864B2 (en) Steel strip continuous heat treatment furnace and its operating method
JP2014037906A (en) Method for controlling combustion in annealing furnace
JP5181679B2 (en) Heating furnace and temperature control method for heated material
JPS61257430A (en) Method and installation for continuous heating of steel strip
JP2006242504A (en) Furnace temperature control method and device in continuous heating furnace
US1997680A (en) Heat treating furnace
KR20110115075A (en) Field optimization furnace with induction method of high-temperature heat convection
JP2024522254A (en) Apparatus and method for heat treating metal strip - Patents.com
JPH07138635A (en) Non-oxidizing heating method of steel
JPS58221228A (en) Method for heating thick slab
SU1573038A1 (en) Single-stack bell-type electric furnace