JPH07138635A - Non-oxidizing heating method of steel - Google Patents

Non-oxidizing heating method of steel

Info

Publication number
JPH07138635A
JPH07138635A JP30463193A JP30463193A JPH07138635A JP H07138635 A JPH07138635 A JP H07138635A JP 30463193 A JP30463193 A JP 30463193A JP 30463193 A JP30463193 A JP 30463193A JP H07138635 A JPH07138635 A JP H07138635A
Authority
JP
Japan
Prior art keywords
furnace
burner
air ratio
heating
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30463193A
Other languages
Japanese (ja)
Inventor
Kunihiro Yabuki
邦弘 矢葺
Yutaka Suzuki
豊 鈴木
Seiji Okada
誠司 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP30463193A priority Critical patent/JPH07138635A/en
Publication of JPH07138635A publication Critical patent/JPH07138635A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To provide a non-oxidizing heating method of a steel by a direct firing heating system which does not impinge flame directly on the steel. CONSTITUTION:In a combusion system which does not impinge the flame of each burner 8, 9 directly on the steel 7 by burning plural burners 8, 9 arranged in a furnace at <=1.0 of air ratio to each, fuel gas flow rate of the each burner 8, 9 is uniformized and air flow rate is distributed so that the air ratio becomes alternately high and low in the width direction of the furnace and/or in the longitudinal direction of the furnace and the flames having <1.0 air ratio are filled in the furnace and heated. By this method, and productivity and the quantity of the treated steel plate are improved by enlarging the reduction area at the treating temp.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、火炎を直接鋼材に衝
突させない形式の直火加熱方式による鋼材の無酸化加熱
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-oxidizing heating method for steel products by a direct flame heating system in which a flame does not directly collide with steel products.

【0002】[0002]

【従来の技術】鋼材の無酸化加熱技術としては、間接加
熱方式と直火加熱方式がある。前者の間接加熱方式は、
例えば、図10の横型連続焼鈍炉19のラジアントチュ
ーブ加熱炉21に示すように炉内雰囲気を(N2+H2
ガスの無酸化雰囲気とするので、非酸化加熱性は極めて
良好であるが、間接加熱のため、図12の加熱速度の比
較および図13の炉温変更時の応答性の比較に示すよう
に、直火加熱に比べ加熱能力が小さい欠点がある。これ
に対し、後者の直火加熱方式は、加熱能力が大きい。こ
の直火加熱方式には、例えば、図10の横型連続焼鈍炉
19の直火無酸化加熱炉20に示すように、多数のバー
ナ22が炉側壁に内向きに水平に設けられ、火炎を直接
鋼材に衝突させない直火無酸化炉タイプと、図11の竪
型連続焼鈍炉23の直火加熱帯24に示すように、加熱
される薄鋼板26の両面に向けて加熱帯壁に多数のバー
ナ25が設けられ、火炎を直接鋼材に衝突させるタイプ
の2種類がある。
2. Description of the Related Art As a non-oxidizing heating technology for steel materials, there are an indirect heating method and an open flame heating method. The former indirect heating method is
For example, as shown in the radiant tube heating furnace 21 of the horizontal continuous annealing furnace 19 in FIG. 10, the atmosphere in the furnace is (N 2 + H 2 ).
Since the non-oxidizing atmosphere of the gas is used, the non-oxidizing heating property is extremely good, but due to indirect heating, as shown in the comparison of the heating rate of FIG. 12 and the comparison of the responsiveness when changing the furnace temperature of FIG. There is a drawback that the heating capacity is smaller than that of direct flame heating. On the other hand, the latter open flame heating method has a large heating capacity. In this direct-fired heating system, for example, as shown in the direct-fired non-oxidizing heating furnace 20 of the horizontal continuous annealing furnace 19 in FIG. 10, a large number of burners 22 are horizontally installed inwardly on the side wall of the furnace to directly burn the flame. As shown in the direct fire non-oxidizing furnace type that does not collide with the steel material and the direct fire heating zone 24 of the vertical continuous annealing furnace 23 of FIG. 11, a large number of burners are provided on the heating zone wall toward both sides of the thin steel sheet 26 to be heated. 25 are provided, and there are two types of type in which a flame is directly collided with a steel material.

【0003】図2は、コークス炉燃焼ガスと鋼材の酸化
還元の関係を示すものであり、この図から、温度条件で
若干変化がみられるものの、およそ空気比mを0.45
以下まで下げないと雰囲気ガスは、還元性とはならない
ことがわかる。したがって、空気比が1.0以下(空気
比をあまりに低下させると、燃料の使用量が大幅に増加
する上、すすの発生が問題となるので、空気比1.0よ
りわずかに燃料過多側で操業される場合が多い)であっ
ても火炎の燃焼域を直接衝突させない直火無酸化炉で
は、実際には、鋼材は弱酸化する。
FIG. 2 shows the relationship between the combustion gas of the coke oven and the redox of the steel material. From this figure, there is a slight change depending on the temperature condition, but the air ratio m is about 0.45.
It can be seen that the atmospheric gas does not become reducible unless it is lowered to below. Therefore, if the air ratio is 1.0 or less (if the air ratio is reduced too much, the amount of fuel used increases significantly and soot generation becomes a problem. In many cases, even if operated), in a direct fire non-oxidizing furnace that does not directly impinge on the combustion area of the flame, the steel material is actually slightly oxidized.

【0004】これに対し、火炎を直接被加熱物に衝突さ
せるタイプで空気比を1.0とした加熱法では、鋼材は
800℃を超える温度まで、無酸化ないし還元加熱する
ことが可能である。これは燃焼が進行している火炎中で
は、燃焼完結ガスと異なり、還元性の活性種が存在する
ためである。しかし、このタイプの加熱法ではバーナと
被加熱物を近接して配置する必要があるため、薄鋼板の
縦型炉などでは使用できるが、薄鋼板の横型炉やスラ
ブ、ビレットおよび鋼管等で無酸化加熱を適用すること
は難しい。
On the other hand, in the heating method in which the flame is directly collided with the object to be heated and the air ratio is 1.0, the steel material can be heated to a temperature of more than 800 ° C. without oxidation or reduction. . This is because, unlike the combustion completed gas, reducing active species are present in the flame in which combustion is progressing. However, since this type of heating method requires that the burner and the object to be heated be placed close to each other, it can be used in vertical furnaces for thin steel sheets, but it is not necessary in horizontal furnaces for thin steel sheets, slabs, billets, and steel pipes. Oxidative heating is difficult to apply.

【0005】この発明は、従来の直火還元加熱法が適用
されにくかった分野まで適用できる無酸化加熱方法を提
供するものであるが、従来の直火還元加熱法の一例とし
て次のものがある。
The present invention provides a non-oxidizing heating method which can be applied to a field where it is difficult to apply the conventional direct flame reduction heating method. The following is an example of the conventional direct flame reduction heating method. .

【0006】すなわち、連続焼鈍炉の直火帯において、
加熱の前段階では空気比1.0で燃焼させた燃焼ガスの
燃焼反応が終わった領域を鋼帯表面に当てて加熱し、加
熱の後段階では空気比1.0以下で燃焼させた燃焼ガス
の未反応酸素を含まず、かつ反応途中の中間イオンが存
在する領域を鋼帯表面に当てて加熱する方法(特開昭6
3−5456号公報)や、被加熱材を囲む領域を空気比
1.0未満で燃焼させ、この領域の燃焼により発生した
未燃分を該領域の外側で燃焼させる無酸化加熱法(特開
平3−170614号公報)がある。
That is, in the direct flame of the continuous annealing furnace,
In the previous stage of heating, the region where the combustion reaction of the combustion gas burned with an air ratio of 1.0 ended is applied to the surface of the steel strip to heat it, and in the latter stage of heating, the combustion gas burned with an air ratio of 1.0 or less. The method of heating by applying a region containing no unreacted oxygen and having intermediate ions in the middle of the reaction to the surface of the steel strip (Japanese Patent Application Laid-Open No. 6-58242).
3-5456) or a region surrounding the material to be heated is burned at an air ratio of less than 1.0, and the unburned components generated by the burning of this region are burned outside the region (Japanese Patent Laid-Open No. Hei 10 (1999)). 3-170614).

【0007】しかし、前者の特開昭63−5456号公
報に記載された加熱方法では、鋼帯の加熱速度、ライン
速度等による燃焼要領の変動、炉圧変動による空気比等
の燃焼条件の変動により、燃焼条件を一定にコントロー
ルすることは不可能であるため、鋼帯と火炎(バーナ)
との距離を頻繁に調整する必要がある。また、後者の特
開平3−170614号公報に記載された燃焼方法は、
鋼帯の両エッジを主体に直火で無酸化加熱する方法であ
り、空気比1.0未満(一次燃焼空気比0.45)の火
炎領域中で被加熱物を加熱し、その後火炎近傍の上下よ
りスリット状ポートから未燃分に必要な空気を吹き込む
ので、空気の吹き込み位置および吹き込み空気量の制御
が煩雑となる。
However, in the former heating method disclosed in Japanese Patent Laid-Open No. 63-5456, the combustion conditions such as the heating rate of the steel strip, the line speed and the like, and the combustion conditions such as the air ratio due to the furnace pressure change. Due to this, it is impossible to control the combustion conditions at a constant level, so the steel strip and flame (burner)
The distance to and needs to be adjusted frequently. Further, the latter combustion method described in JP-A-3-170614 is
This is a method in which both edges of the steel strip are mainly subjected to non-oxidative heating by direct flame. The object to be heated is heated in a flame region of an air ratio of less than 1.0 (primary combustion air ratio of 0.45), and then the vicinity of flame Since the air required for the unburned components is blown from the upper and lower sides through the slit-shaped port, the control of the blowing position and the amount of blown air becomes complicated.

【0008】[0008]

【発明が解決しようとする課題】上記のごとく、従来の
鋼材の直火加熱方式の無酸化加熱方法には、燃焼条件を
一定にコントロールすることができないため、鋼帯と火
炎(バーナ)との距離を頻繁に調整する必要があり、ま
た加熱中の前段と後段とで燃焼空気比を変えるため、吹
き込み空気量の制御を煩雑に行なうなど種々の問題点が
ある。
As described above, in the conventional non-oxidizing heating method of the direct flame heating method for steel materials, the combustion conditions cannot be controlled to be constant, so that the steel strip and the flame (burner) are combined. It is necessary to adjust the distance frequently, and since the combustion air ratio is changed between the front stage and the rear stage during heating, there are various problems such as complicated control of the blown air amount.

【0009】この発明は、上記の従来法に見られる問題
点を解決し、従来の直火加熱方式の無酸化加熱方法では
適用するのが困難であった分野までも適用し得る鋼材の
無酸化加熱方法を提供するものである。
The present invention solves the problems found in the above-mentioned conventional methods, and can be applied even to the fields which were difficult to apply by the conventional non-oxidizing heating method of the direct flame heating system. A heating method is provided.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、発明者らはコークス炉ガスを燃焼させるバーナを用
いて空気比を低下させる実験を小型実験炉で行なった。
その際、バーナは燃料ガスと空気との混合性のよいもの
を使用した。その結果、図7に示すように、空気比mが
0.9と大きいときは火炎境界が明確に識別できるが
(図A)、空気比mが0.7と低下すると火炎が大きく
なり(図B)、さらに空気比mが低下して0.55では
火炎が炉内全体に充満する(図C)。したがって、燃焼
時の空気比を低下させることにより炉内全体を火炎で充
満させることができる。なお、火炎が炉内に充満する空
気比は、バーナにより異なり、燃料ガスと空気との混合
が遅いバーナでは、空気比が0.85でも充満火炎が得
られる。上記のごとく、火炎が炉内に充満すれば、燃焼
反応に伴い還元性活性種が生成するので、鋼材の酸化を
効果的に防止できる。なお、空気比が低すぎると、加熱
効率が著しく悪化するので、これを防止するには、空気
比の高い火炎を形成させ、平均空気比を引き上げる必要
がある。この発明は、上記知見に基づいて完成されたも
のである。
In order to achieve the above object, the inventors have conducted an experiment in a small experimental furnace to reduce the air ratio by using a burner that burns coke oven gas.
At that time, the burner used had good compatibility with the fuel gas and air. As a result, as shown in Fig. 7, when the air ratio m is as large as 0.9, the flame boundary can be clearly identified (Fig. A), but when the air ratio m is reduced to 0.7, the flame becomes large (Fig. B) Further, when the air ratio m is further reduced to 0.55, the flame fills the entire furnace (Fig. C). Therefore, it is possible to fill the entire furnace with flames by reducing the air ratio during combustion. The air ratio with which the flame fills the furnace varies depending on the burner, and in a burner in which the fuel gas and air are mixed slowly, a filled flame can be obtained even with an air ratio of 0.85. As described above, when the flame is filled in the furnace, reducing active species are generated along with the combustion reaction, so that the oxidation of the steel material can be effectively prevented. If the air ratio is too low, the heating efficiency is significantly deteriorated. To prevent this, it is necessary to form a flame with a high air ratio and raise the average air ratio. The present invention has been completed based on the above findings.

【0011】すなわち、この発明の鋼材の無酸化加熱方
法は、炉内に配設した複数のバーナをそれぞれ空気比
1.0以下で燃焼させ、かつ各バーナの火炎を鋼材に直
接衝突させない燃焼方式において、各バーナの燃料ガス
流量を均等とし、かつ空気比が炉の幅方向および/また
は炉の長手方向で交互に高低となるように空気流量を配
分し、炉内に空気比1.0未満の火炎を充満させて加熱
する。
That is, the non-oxidizing heating method of the steel material of the present invention is a combustion method in which a plurality of burners arranged in the furnace are burned at an air ratio of 1.0 or less and the flame of each burner is not directly collided with the steel material. In, the fuel gas flow rate of each burner is made equal, and the air flow rate is distributed so that the air ratio becomes higher and lower alternately in the width direction of the furnace and / or the longitudinal direction of the furnace, and the air ratio is less than 1.0 in the furnace. Fill with the flame and heat.

【0012】[0012]

【作用】図1は、この発明を実施するための実験装置の
耐火壁構造の箱型加熱炉で、鋼材3(鋼種:SS40
0、サイズ:厚さ1.0mm×幅150mm×長さ55
0mm)は炉の中央を縦向きに通板しその下方に雰囲気
を(N2+H2)ガスの無酸化雰囲気とした冷却ボックス
2が設けら、炉内には燃焼火炎が上記鋼材3に直接当た
らないように4つのバーナ、、、が配設されて
いる。そして、各バーナ、、、は燃料流量を均
等とし、全空気量が空気比m0.7に相当する流量で燃
焼させる。このとき、空気配分をバーナとおよびバ
ーナとがそれぞれ同一量で、バーナ+とバーナ
+との空気比率を3対7〜4対6とする。
FIG. 1 shows a box-type heating furnace having a fireproof wall structure of an experimental apparatus for carrying out the present invention, and a steel material 3 (steel type: SS40).
0, size: thickness 1.0 mm x width 150 mm x length 55
(0 mm) is provided with a cooling box 2 through which the center of the furnace is passed vertically and the atmosphere is a non-oxidizing atmosphere of (N 2 + H 2 ) gas, and combustion flame is directly applied to the steel material 3 inside the furnace. Four burners are arranged so as not to hit. Then, the burners, ... Are made to have an equal fuel flow rate and are burned at a flow rate corresponding to an air ratio of m0.7. At this time, the air distribution is set to the same amount for the burner and the burner, and the air ratio between the burner + and the burner + is set to 3: 7 to 4: 6.

【0013】上記において、空気配分の多いバーナの燃
焼状態においても空気比1.0以下で燃焼する。一方、
空気配分の少ないバーナは、燃料過多で緩慢燃焼を狙っ
た極低空気比燃焼で、還元性の強いHラジカル等を生成
し鋼材の酸化を防止する。
In the above, even in the combustion state of the burner with a large air distribution, combustion is performed at an air ratio of 1.0 or less. on the other hand,
The burner with a small air distribution is an extremely low air ratio combustion aiming at slow combustion due to excessive fuel, and produces H radicals having a strong reducing property and prevents the oxidation of steel materials.

【0014】燃料としてコークス炉ガス(COG)を使
用した場合、理論空気量Aovは4.72Nm3/hr
である。〜の各バーナで、それぞれCOG=1Nm
3/hrを燃焼させるとき、空気比m=0.7の場合、
全空気量は下記式1より13.22Nm3/hrとな
る。
When coke oven gas (COG) is used as fuel, the theoretical air amount Aov is 4.72 Nm 3 / hr.
Is. COG = 1Nm for each burner
When burning 3 / hr, when air ratio m = 0.7,
The total air amount is 13.22 Nm 3 / hr according to the following formula 1.

【0015】[0015]

【数1】式1 Total(〜)空気量=13.22Nm3/hrEquation 1 Total (~) air volume = 13.22Nm 3 / hr

【0016】この全空気量が13.22Nm3/hrの
とき、バーナ+とバーナ+との空気比率を3対
7とすると、空気配分の少ないバーナ+の空気量
は、13.22Nm3/hr×3/10で1本当たり
1.98Nm3/hrとなり、また空気配分の多いバー
ナ+の空気量は、13.22Nm3/hr×7/1
0で1本当たり4.63Nm3/hrとなる。すなわ
ち、空気配分の少ない空気比mは1.98Nm3/hr
/4.72Nm3/hr=0.42で、空気配分の多い
空気比mは4.63Nm3/hr/4.72Nm3/hr
=0.98となり、空気配分の多いバーナ、の空気
比においてもm<1.0で無酸化条件での燃焼・加熱を
している。
When the total air amount is 13.22 Nm 3 / hr and the air ratio of the burner + and the burner + is 3: 7, the air amount of the burner + with a small air distribution is 13.22 Nm 3 / hr. × 3/10 is 1.98 Nm 3 / hr per unit, and the air volume of the burner + with a large air distribution is 13.22 Nm 3 / hr × 7/1
At 0, it is 4.63 Nm 3 / hr per line. That is, the air ratio m with a small air distribution is 1.98 Nm 3 / hr.
/4.72 Nm 3 /hr=0.42, and the air ratio m with a large air distribution is 4.63 Nm 3 /hr/4.72 Nm 3 / hr.
= 0.98, and the burner with a large air distribution also has an air ratio of m <1.0, and combustion and heating are performed under non-oxidizing conditions.

【0017】なお、バーナ+とバーナ+との空
気比率を4対6とすると、空気量の少ないバーナ、
の空気比mは、2.65(Nm3/hr)/4.72
(Nm3/hr)=0.56で、空気量の多いバーナ
、の空気比mは、3.97(Nm3/hr)/4.
72(Nm3/hr)=0.84となり、m<1.0で
無酸化条件での燃焼・加熱をしている。
If the air ratio of the burner + and the burner + is set to 4: 6, the burner with a small air amount,
Has an air ratio m of 2.65 (Nm 3 /hr)/4.72.
(Nm 3 /hr)=0.56, the air ratio m of the burner with a large air amount is 3.97 (Nm 3 / hr) / 4.
72 (Nm 3 /hr)=0.84, and when m <1.0, combustion and heating are performed under non-oxidizing conditions.

【0018】[0018]

【実施例】【Example】

実施例1 図3・図4に示すように、予熱帯4、加熱・均熱帯5お
よび冷却帯6からなる連続焼鈍炉において、普通鋼板を
次の条件で加熱処理した。予熱帯4では、加熱・均熱帯
5で生成した未燃分排ガス10をダクトを通して吹き込
み、かつ助燃バーナ11を使って空気比m=1.0とな
るように助燃させる。加熱・均熱帯5では、燃料のコー
クス炉ガスの供給量を、少ない空気量のバーナ8と大き
い空気量のバーナ9と共に同じにし、全排ガスでの空気
比mは0.7とし、空気量の少ないバーナ8と空気量の
多いバーナ9との空気比率を3対7または4対6の千鳥
配置配分で燃焼させる。冷却帯では、窒素ガス等の無酸
化性ガスを鋼板7の上下面側より吹き付けて冷却させ
る。バーナは図8に示すように、小径の燃料噴射管14
と大径の空気噴射管15との二重管よりなる混合性の良
好なバーナを使用した。
Example 1 As shown in FIGS. 3 and 4, in a continuous annealing furnace composed of a pre-tropical zone 4, a heating / soaking zone 5 and a cooling zone 6, a plain steel sheet was heat-treated under the following conditions. In the preheat zone 4, the unburned exhaust gas 10 produced in the heating and soaking zone 5 is blown through the duct, and the auxiliary burner 11 is used to support the air ratio m = 1.0. In the heating and soaking zone 5, the supply amount of the fuel coke oven gas is made the same with the burner 8 having a small air amount and the burner 9 having a large air amount, and the air ratio m in the total exhaust gas is 0.7, The burner 8 having a small amount of air and the burner 9 having a large amount of air are burned in a staggered arrangement of 3: 7 or 4: 6. In the cooling zone, a non-oxidizing gas such as nitrogen gas is sprayed from the upper and lower surfaces of the steel plate 7 to cool it. As shown in FIG. 8, the burner has a small-diameter fuel injection pipe 14
A burner having a good mixing property, which is composed of a double pipe of a large-diameter air injection pipe 15 and

【0019】被処理鋼板は厚さ1.2mm×幅900m
mの鋼帯で、ライン速度60m/minで処理した。こ
の際のヒートパターンを図5に示す。また、この加熱処
理における無酸化加熱範囲(表面酸化膜厚100Å以下
の操業)を調べた結果を、比較のため行なった従来の全
バーナ同一条件(全数空気比一定)による無酸化加熱の
結果と共に図6に示す。図Aはこの発明の実施による結
果であり、低空気比バーナと高空気比バーナとの空気量
比率が3対7および4対6のいずれの場合も800℃ま
で無酸化加熱が可能であるに対し、従来法によるものは
図Bに示すように、700℃まで可能であった。この結
果より、この発明の実施により無酸化加熱範囲が約10
0℃拡大されていることがわかる。
The steel plate to be treated has a thickness of 1.2 mm and a width of 900 m.
m steel strip at a line speed of 60 m / min. The heat pattern at this time is shown in FIG. In addition, the results of examining the non-oxidizing heating range (operations with a surface oxide film thickness of 100 Å or less) in this heat treatment are shown together with the results of conventional non-oxidizing heating under the same conditions for all burners (total air ratio is constant). As shown in FIG. FIG. A shows the results obtained by carrying out the present invention. In both cases where the air ratio of the low air ratio burner and the high air ratio burner is 3: 7 and 4: 6, it is possible to perform non-oxidative heating up to 800 ° C. On the other hand, the conventional method was possible up to 700 ° C. as shown in FIG. From this result, the non-oxidizing heating range is about 10 by the practice of this invention.
It can be seen that the temperature has been expanded by 0 ° C.

【0020】実施例2 実施例1で使用した図3に示す連続焼鈍炉における加熱
・均熱帯5の混合性の良好なバーナの代わりに、図9に
示す小径の燃料噴射管16に中径の一次空気噴射管17
および大径の二次空気噴射管18を組み合わせた2段燃
焼型からなり、燃料と空気の混合を遅らせることができ
るバーナを使用して、実施例1と同じ普通鋼材を加熱処
理した。この場合は、実施例1と異なり、各バーナの空
気比は同一とすることができる。このバーナの空気比は
0.85であるが、炉内に火炎を充満させることがで
き、実施例1と同様の効果が得られた。
Example 2 Instead of the burner having a good mixing property of the heating and soaking zone 5 in the continuous annealing furnace shown in FIG. 3 used in Example 1, a small diameter fuel injection pipe 16 shown in FIG. Primary air injection pipe 17
The same ordinary steel material as in Example 1 was heat-treated by using a burner which is of a two-stage combustion type in which a secondary air injection pipe 18 having a large diameter is combined and which can delay the mixing of fuel and air. In this case, unlike the first embodiment, the air ratio of each burner can be the same. Although the air ratio of this burner was 0.85, the flame could be filled in the furnace, and the same effect as in Example 1 was obtained.

【0021】[0021]

【発明の効果】この発明の鋼材の無酸化加熱方法によれ
ば、スケールの発生を軽減できると共に、処理温度にお
ける還元領域の拡大により生産性および処理鋼板の品質
が向上する。この結果、従来の無酸化加熱炉で必要とし
ていた間接加熱帯の設置が不要となり、炉の設置スペー
スが縮小し、かつ建設費の低減が図れる。
EFFECTS OF THE INVENTION According to the non-oxidizing heating method for steel materials of the present invention, the production of scale can be reduced, and the productivity and the quality of the processed steel sheet are improved by expanding the reduction region at the processing temperature. As a result, the installation of the indirect heating zone, which is required in the conventional non-oxidizing heating furnace, becomes unnecessary, the installation space of the furnace can be reduced, and the construction cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の鋼材の無酸化加熱方法を実施するた
めの実験装置で、Aは平面図、Bは正面図である。
FIG. 1 is an experimental apparatus for carrying out a non-oxidizing heating method for a steel material according to the present invention, in which A is a plan view and B is a front view.

【図2】コークス炉ガス燃焼ガスにおける鉄の酸化、還
元領域を示すグラフである。
FIG. 2 is a graph showing the oxidation and reduction regions of iron in the coke oven gas combustion gas.

【図3】この発明の鋼材の無酸化加熱方法を実施するた
めの連続焼鈍炉の一例を示す縦断正面図である。
FIG. 3 is a vertical cross-sectional front view showing an example of a continuous annealing furnace for carrying out the non-oxidizing heating method for a steel material of the present invention.

【図4】図3の連続焼鈍炉の縦断側面図である。4 is a vertical sectional side view of the continuous annealing furnace of FIG.

【図5】実施例1により図3の連続焼鈍炉を使って鋼材
を加熱した際のヒートパターンを示すグラフである。
5 is a graph showing a heat pattern when a steel material is heated using the continuous annealing furnace of FIG. 3 according to Example 1. FIG.

【図6】還元範囲を比較して示すグラフで、Aはこの発
明の実施による場合を空気量比率(低空気比バーナ/高
空気比バーナ)と材料温度との関係で示すグラフ、Bは
従来法の実施による場合を空気比と材料温度との関係で
示すグラフである。
FIG. 6 is a graph showing a comparison of reduction ranges, where A is a graph showing the relationship between the air amount ratio (low air ratio burner / high air ratio burner) and the material temperature in the case of implementing the present invention, and B is the conventional graph. It is a graph which shows the case by implementation of a method by the relationship between an air ratio and material temperature.

【図7】空気比の違いによる燃焼炉内における火炎の変
化を示す説明図で、Aは空気比m=0.9の場合、Bは
空気比m=0.7の場合、Cは空気比m=0.55の場
合である。
FIG. 7 is an explanatory diagram showing a change in flame in a combustion furnace due to a difference in air ratio, where A is an air ratio m = 0.9, B is an air ratio m = 0.7, and C is an air ratio. This is the case when m = 0.55.

【図8】この発明の実施において使用した混合性が良好
なバーナの一例を示す縦断面図である。
FIG. 8 is a vertical cross-sectional view showing an example of a burner having good mixability used in the practice of the present invention.

【図9】この発明の実施において使用した燃料と空気と
の混合を遅らせることができるバーナの一例を示す縦断
面図である。
FIG. 9 is a vertical cross-sectional view showing an example of a burner that can delay mixing of fuel and air used in the practice of the present invention.

【図10】横型連続焼鈍炉の一例を示す説明図てある。FIG. 10 is an explanatory diagram showing an example of a horizontal continuous annealing furnace.

【図11】竪型連続焼鈍炉の一例を示す説明図てある。FIG. 11 is an explanatory diagram showing an example of a vertical continuous annealing furnace.

【図12】直火加熱と間接加熱(ラジアントチューブ加
熱)との加熱速度を比較して示すグラフである。
FIG. 12 is a graph showing a comparison of heating rates of direct flame heating and indirect heating (radiant tube heating).

【図13】直火加熱と間接加熱(ラジアントチューブ加
熱)との炉温変更時の応答性を比較して示すグラフであ
る。
FIG. 13 is a graph showing the responsiveness when changing the furnace temperature between direct fire heating and indirect heating (radiant tube heating).

【符号の説明】[Explanation of symbols]

1 箱型加熱炉 2 冷却箱 3 鋼材 4 予熱帯 5 加熱・均熱帯 6 冷却帯 7 鋼板 8 少ない空気量のバーナ 9 大きい空気量のバーナ 10 未燃焼排ガス 11 助燃バーナ 12 無酸化性ガス 13 ローラ 14 燃料噴射管 15 空気噴射管 16 燃料噴射管 17 一次空気噴射管 18 二次空気噴射管 19 直火無酸化加熱炉 20 ラジアントチューブ加熱炉 21 直火加熱帯 22 ラジアントチューブ加熱帯 23、24 バーナ 、、、 バーナ 1 Box Type Heating Furnace 2 Cooling Box 3 Steel Material 4 Pre-Tropical Zone 5 Heating / Soaking Zone 6 Cooling Zone 7 Steel Plate 8 Burner with Small Air Volume 9 Burner with Large Air Volume 10 Unburned Exhaust Gas 11 Combustion Burner 12 Non-oxidizing Gas 13 Roller 14 Fuel injection pipe 15 Air injection pipe 16 Fuel injection pipe 17 Primary air injection pipe 18 Secondary air injection pipe 19 Direct fire non-oxidizing heating furnace 20 Radiant tube heating furnace 21 Direct heating heating zone 22 Radiant tube heating zone 23, 24 Burner, , Burner

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炉内に配設した複数のバーナをそれぞれ
空気比1.0以下で燃焼させ、かつ各バーナの火炎を鋼
材に直接衝突させない燃焼方式において、各バーナの燃
料ガス流量を均等とし、かつ空気比が炉の幅方向および
/または炉の長手方向で交互に高低となるように空気流
量を配分し、炉内に空気比1.0未満の火炎を充満させ
ることを特徴とする鋼材の無酸化加熱方法。
1. A combustion system in which a plurality of burners arranged in a furnace are burned at an air ratio of 1.0 or less, and the flame of each burner is not directly collided with the steel material, the fuel gas flow rate of each burner is equalized. And a steel material characterized in that the air flow rate is distributed so that the air ratio becomes alternately high and low in the width direction of the furnace and / or in the longitudinal direction of the furnace, and a flame having an air ratio of less than 1.0 is filled in the furnace. Non-oxidizing heating method.
JP30463193A 1993-11-09 1993-11-09 Non-oxidizing heating method of steel Pending JPH07138635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30463193A JPH07138635A (en) 1993-11-09 1993-11-09 Non-oxidizing heating method of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30463193A JPH07138635A (en) 1993-11-09 1993-11-09 Non-oxidizing heating method of steel

Publications (1)

Publication Number Publication Date
JPH07138635A true JPH07138635A (en) 1995-05-30

Family

ID=17935364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30463193A Pending JPH07138635A (en) 1993-11-09 1993-11-09 Non-oxidizing heating method of steel

Country Status (1)

Country Link
JP (1) JPH07138635A (en)

Similar Documents

Publication Publication Date Title
CA2637847C (en) Process for the heat treatment of steel strips
JPS61157641A (en) Continuous annealing furnace for metallic strip
JPH07138635A (en) Non-oxidizing heating method of steel
JP3396922B2 (en) Continuous heating furnace and combustion method thereof
US5957684A (en) Heating method and apparatus
JP3845194B2 (en) Heating operation method of steel for continuous hot rolling
JPH09272919A (en) Continuous heating method and apparatus therefor
JP3890538B2 (en) Continuous heating method and apparatus
JP2901633B2 (en) Continuous annealing apparatus and continuous annealing method
JPH08291329A (en) Continuous heating method
JPH09263835A (en) Continuous heating method and apparatus therefor
JP2776110B2 (en) Combustion control method for vertical open flame heating furnace
JPH09263836A (en) Continuous heating method and apparatus therefor
US3331594A (en) Method and apparatus for scale free heating of metals
JPH0230720A (en) Method for heating steel sheet
JP2733885B2 (en) Continuous heat treatment of steel strip
JPH09256071A (en) Continuous annealing method and apparatus therefor
JP3081123B2 (en) Direct flame reduction heating method for metals
JPH02310323A (en) Direct-fired vertical continuous annealing furnace and operation thereof
JP2007131914A (en) Horizontal continuous heating furnace, and method for continuously annealing steel sheet using the same
JPH01212722A (en) Method for continuously heating steel strip
JP2894174B2 (en) Combustion control method for continuous heating furnace
JPH089157Y2 (en) Continuous decarburization annealing furnace
JPH0441621A (en) Continuous heat treatment for steel strip
JP2014037906A (en) Method for controlling combustion in annealing furnace