JP2015227799A - Foreign matter removal method using scan type probe microscope - Google Patents

Foreign matter removal method using scan type probe microscope Download PDF

Info

Publication number
JP2015227799A
JP2015227799A JP2014113075A JP2014113075A JP2015227799A JP 2015227799 A JP2015227799 A JP 2015227799A JP 2014113075 A JP2014113075 A JP 2014113075A JP 2014113075 A JP2014113075 A JP 2014113075A JP 2015227799 A JP2015227799 A JP 2015227799A
Authority
JP
Japan
Prior art keywords
probe
foreign matter
adhesive
foreign
microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014113075A
Other languages
Japanese (ja)
Other versions
JP6245080B2 (en
Inventor
泰祐 阿部
Taisuke Abe
泰祐 阿部
靖人 安倍
Yasuto Abe
靖人 安倍
映美子 秦
Emiko Hata
映美子 秦
和幸 小澤
Kazuyuki Ozawa
和幸 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2014113075A priority Critical patent/JP6245080B2/en
Publication of JP2015227799A publication Critical patent/JP2015227799A/en
Application granted granted Critical
Publication of JP6245080B2 publication Critical patent/JP6245080B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for removing a fine foreign matter existing on an object surface, using a conventional scan type probe microscope as it is, the scan type probe microscope configured to obtain information on a shape of the surface through scanning the object surface using a probe disposed at a tip of a cantilever.SOLUTION: A surface of a probe 12 is coated with an adhesive agent 26A. The probe coated with the adhesive agent is attached to a scan type probe microscope. The probe is made to have contact with a foreign matter 23 existing on a surface of an object 20 so as to cause the foreign matter adhere to the probe.

Description

この発明は,走査型プローブ顕微鏡を用いて対象物表面に存在する微細な異物を除去する方法に関する。   The present invention relates to a method for removing fine foreign matter existing on the surface of an object using a scanning probe microscope.

走査型プローブ顕微鏡とは,原子間力顕微鏡(AFM),走査型トンネル顕微鏡(STM)等のカンチレバーの先端に設けられた探針(プローブ)を用いて対象物の表面を走査し,該表面の形状に関する情報を得るタイプの顕微鏡であり,探針を含むカンチレバーを交換することによりAFMモード,STMモード等として動作可能な多機能タイプの顕微鏡を含む。   A scanning probe microscope scans the surface of an object using a probe (probe) provided at the tip of a cantilever such as an atomic force microscope (AFM) or a scanning tunneling microscope (STM). This is a type of microscope that obtains information on the shape, and includes a multifunctional type microscope that can operate as an AFM mode, an STM mode, or the like by exchanging a cantilever including a probe.

微細な異物を除去する技術,とくに半導体集積回路等の製造工程におけるフォトマスクや半導体ウエハ上の異物を除去する方法に,特許文献1に記載の方法がある。この方法は,先端部に粘着材ヘッドを有するプローブを用いるものであり,プローブ先端部の粘着材ヘッドにより粘着材を吐出させ,余分に吐出した粘着材を除去しかつ残った粘着材を半乾燥状にする。この半乾燥状の粘着材を吐出した粘着材ヘッドを,異物の検出箇所の位置に移動させ,異物の付着箇所に圧接させ,次に粘着材ヘッドを引き上げるものである。特許文献2にも同じような異物除去方法が記載されている。   As a technique for removing fine foreign matters, particularly a method for removing foreign matters on a photomask or a semiconductor wafer in a manufacturing process of a semiconductor integrated circuit or the like, there is a method described in Patent Document 1. This method uses a probe having an adhesive material head at the tip. The adhesive material is discharged from the adhesive material head at the tip of the probe, the excess adhesive material is removed, and the remaining adhesive material is semi-dried. Shape. The adhesive material head from which the semi-dry adhesive material is discharged is moved to the position where the foreign material is detected, pressed against the location where the foreign material is attached, and then the adhesive material head is pulled up. Patent Document 2 also describes a similar foreign matter removal method.

特開平6−260464号公報JP-A-6-260464 特開平8−250475号公報JP-A-8-250475

しかしながら,これらの方法は,まず第1に,粘着材を吐出する粘着材ヘッドを先端部に有するという特殊なプローブを用いている。第2に,半導体基板等,近年のワークの高精細化に伴い,異物周辺に粘着材を圧接した際に周囲のレジストパターン等を破壊してしまうおそれが高い。また,基板自体に粘着材が付着することによって,粘着材に含まれる溶剤成分が基板に転写してヘイズ等の原因となり,ワークの寿命を縮めてしまう可能性がある。   However, these methods first use a special probe having an adhesive material head for discharging an adhesive material at the tip. Secondly, with the recent high definition of workpieces such as semiconductor substrates, there is a high risk of destroying the surrounding resist pattern and the like when an adhesive material is pressed around the foreign matter. Further, when the adhesive material adheres to the substrate itself, the solvent component contained in the adhesive material may be transferred to the substrate and cause haze or the like, which may shorten the work life.

この発明は,走査型プローブ顕微鏡を用いた異物除去方法において,必ずしも特殊なプローブを用意することなく,異物除去が可能な方法を提供するものである。   The present invention provides a foreign matter removing method using a scanning probe microscope that can remove foreign matter without necessarily preparing a special probe.

この発明はまた,対象物を損傷させることなく異物のみに触れることで異物の除去を実施することができる方法を提供する。たとえば,対象物が高精細化したパターンを有する半導体基板等であっても,パターンや基板にダメージを与えることなく異物を除去できる方法を提供するものである。   The present invention also provides a method capable of removing foreign matter by touching only the foreign matter without damaging the object. For example, the present invention provides a method capable of removing foreign matter without damaging the pattern or the substrate even if the object is a semiconductor substrate having a highly refined pattern.

この発明は,カンチレバーの先端に設けられた探針を用いて対象物表面を走査して,該表面の形状に関する情報を得る走査型プローブ顕微鏡を用いて対象物表面に存在する異物を除去する方法であり,前記探針の表面に粘着剤をコーティングし,粘着剤をコーティングした探針を走査型プローブ顕微鏡に取付け,該探針を対象物表面に存在する異物に接触させて該異物を該探針に付着させるものである。粘着剤の薄膜は走査型プローブ顕微鏡の正常な動作に影響を与えない程度がよい。   The present invention is a method for removing foreign matter existing on the surface of a target by using a scanning probe microscope that scans the surface of the target using a probe provided at the tip of a cantilever and obtains information on the shape of the surface. The surface of the probe is coated with an adhesive, the probe coated with the adhesive is attached to a scanning probe microscope, and the probe is brought into contact with a foreign object existing on the surface of the object to detect the foreign object. It is attached to the needle. The thin film of the adhesive should not affect the normal operation of the scanning probe microscope.

既存の走査型プローブ顕微鏡を用いることができ,その走査型プローブ顕微鏡の既存の探針を用いることができるので,必ずしも特殊なプローブを用意することなく,異物除去が可能となる。もちろん,異物除去用の探針を用意し,これを用いることを排除するものではない。   Since an existing scanning probe microscope can be used and an existing probe of the scanning probe microscope can be used, foreign matter can be removed without necessarily preparing a special probe. Of course, this does not exclude the use of a probe for removing foreign substances.

また,この発明によると,対象物を損傷させることなく異物のみに触れることで異物の除去を実施することができる。たとえば,対象物が高精細化したパターンを有する半導体基板等であっても,パターンや基板にダメージを与えることなく異物を除去できる。基板の破壊,汚染なく異物除去が可能である。   In addition, according to the present invention, the foreign matter can be removed by touching only the foreign matter without damaging the object. For example, even if the object is a semiconductor substrate having a highly refined pattern, foreign matter can be removed without damaging the pattern or the substrate. Foreign matter can be removed without destroying or contaminating the substrate.

異物の除去に先だって,対象物表面を探針により走査して対象物上における異物の位置を確認することが好ましい。これにより,確実な異物の除去が可能となる。   Prior to the removal of foreign matter, it is preferable to confirm the position of the foreign matter on the target by scanning the surface of the target with a probe. This makes it possible to reliably remove foreign matter.

異物の除去後に,対象物表面を探針により走査して異物が除去されたことを確認するとよい。   After removing the foreign matter, the surface of the object may be scanned with a probe to confirm that the foreign matter has been removed.

探針に付着した異物を探針から除去すると,その探針を異物除去に再使用でき,低コストの運用が可能となる。   When the foreign matter adhering to the probe is removed from the probe, the probe can be reused for foreign matter removal, and low-cost operation is possible.

原子間力顕微鏡の概略構成を示す。1 shows a schematic configuration of an atomic force microscope. 探針表面に表面処理を実施した様子を示す。A state in which surface treatment is performed on the probe surface is shown. 探針を粘着剤内にディップする様子を示す。A state where the probe is dipped in the adhesive is shown. 表面に粘着層が形成された探針を示す。The probe having an adhesive layer formed on the surface is shown. フィードバック制御により探針が基板表面を走査する様子を示す。A state in which the probe scans the substrate surface by feedback control is shown. フィードバック制御せずに探針を異物に接触させる様子を示す。A state in which the probe is brought into contact with a foreign object without feedback control is shown. 異物を付着させた探針を示す。A probe with foreign matter attached is shown. 異物除去のために探針を粘着シートに突き刺した状態を示す。The state which stabbed the probe in the adhesive sheet for the foreign material removal is shown. 異物が粘着シート側に移った状態を示す。The state which the foreign material moved to the adhesive sheet side is shown. 異物除去プロセスフローを示す。The foreign substance removal process flow is shown. 探針の変形例を示す。The modification of a probe is shown. 変形例の探針に異物を付着させた状態を示す。The state which adhered the foreign material to the probe of a modification is shown. 探針のさらに他の変形例を示す。Another modification of the probe will be described. 他の変形例の探針において異物が付着している状態を示す。The state in which the foreign material has adhered in the probe of another modification is shown.

図1は原子間力顕微鏡または原子間力顕微鏡モードをもつ走査型プローブ顕微鏡の概略的構成を示すものである。対象物は一例として,基板(たとえば半導体基板)20であり,この半導体基板表面上にパターン(たとえばフォトレジストパターン,フォトマスクパターン)21が形成されている。   FIG. 1 shows a schematic configuration of a scanning probe microscope having an atomic force microscope or an atomic force microscope mode. As an example, the object is a substrate (for example, a semiconductor substrate) 20, and a pattern (for example, a photoresist pattern, a photomask pattern) 21 is formed on the surface of the semiconductor substrate.

基板20はXYステージ17上に載置され,XYステージ17によってX,Y方向に移動(変位)(相対的にX,Y方向に走査)される。先端部に探針12を有するカンチレバー11はその基部において駆動装置(アクチュエータ)15のホルダ(図示略)に固定され,上下方向(Z方向)に駆動される。駆動装置15は支持部材18に固定されている。駆動装置15は圧電素子を含む。カンチレバー11の先端部の上下方向(Z方向)の動き(振動)は光学検知装置16によって検知される。光学検知装置16はたとえば,カンチレバー11の表面に光を照射し,その反射光を受光することによりカンチレバー11の上下方向の位置を検出するものである。光学検知装置16の検知信号は制御装置13に与えられ,これに基づいて制御装置13が駆動装置15による駆動(上下方向移動または振動)を制御する。光学検知装置16,制御装置13,駆動装置15はフィードバック制御系を構成する。制御装置13はXYステージ17によるX,Y方向の走査も制御する。XYステージ17に上下方向(Z方向)駆動装置を設け,光学検知装置16または駆動装置15と制御装置13とXYステージ17(Z方向駆動)との間にフィードバック制御系を設けてもよい。制御装置13には記憶装置14が接続され,制御装置13による制御結果,すなわちX,Y方向の位置とZ方向の位置を記憶する。この記憶データに基づいて,基板20(対象物)表面の形状(凹凸を含む)の像(顕微鏡像)が作成される。   The substrate 20 is placed on the XY stage 17 and moved (displaced) in the X and Y directions (relatively scanned in the X and Y directions) by the XY stage 17. A cantilever 11 having a probe 12 at the tip is fixed to a holder (not shown) of a driving device (actuator) 15 at its base and is driven in the vertical direction (Z direction). The driving device 15 is fixed to the support member 18. The driving device 15 includes a piezoelectric element. The movement (vibration) in the vertical direction (Z direction) of the tip of the cantilever 11 is detected by the optical detection device 16. For example, the optical detection device 16 detects the vertical position of the cantilever 11 by irradiating the surface of the cantilever 11 and receiving the reflected light. The detection signal of the optical detection device 16 is given to the control device 13, and the control device 13 controls driving (vertical movement or vibration) by the driving device 15 based on this signal. The optical detection device 16, the control device 13, and the drive device 15 constitute a feedback control system. The control device 13 also controls scanning in the X and Y directions by the XY stage 17. The XY stage 17 may be provided with a vertical (Z direction) drive device, and a feedback control system may be provided between the optical detection device 16 or the drive device 15, the control device 13, and the XY stage 17 (Z direction drive). A storage device 14 is connected to the control device 13 and stores a control result by the control device 13, that is, a position in the X and Y directions and a position in the Z direction. Based on the stored data, an image (microscopic image) of the shape (including irregularities) of the surface of the substrate 20 (object) is created.

原子間力顕微鏡には種々の動作モードがあるが,それらはよく知られているので,簡単に説明しておく。コンタクトモードでは,探針と対象物との間に斥力が働くほどに探針を対象物に近づけ,XY二次元走査において,この斥力が一定値となるように上記フィードバック回路を働かせる。他方,タッピングモード(商標)(インターミッテントコンタクトモードまたはサイクリックコンタクトモード)をはじめとするノンコンタクトモードでは,カンチレバーを,そのホルダーに取付けた励振圧電素子を用いて共振周波数近傍で大振幅強制振動させながら対象物に近づけると,カンチレバーの振動振幅または振動数に変化が生じることを利用して,XY方向走査をしながらこれらの変化をほぼ零にするように上記フィードバック系を通して,カンチレバーまたはXY(Z)ステージ17を上下動させる。対象物およびカンチレバー11を大気中に置く原子間力顕微鏡と,真空中内に置く原子間力顕微鏡とがあるが,後述するように粘着剤を使用するので,大気中で動作させる方が好ましい。   Atomic force microscopes have various modes of operation, which are well known and will be briefly described. In the contact mode, the probe is moved closer to the object as the repulsive force acts between the probe and the object, and the feedback circuit is operated so that the repulsive force becomes a constant value in XY two-dimensional scanning. On the other hand, in non-contact modes such as tapping mode (trademark) (intermittent contact mode or cyclic contact mode), a large-amplitude forced vibration is generated near the resonance frequency using an excitation piezoelectric element attached to the holder. By utilizing the fact that changes in the vibration amplitude or frequency of the cantilever occur when approaching the object while moving, the cantilever or XY ( Z) Move stage 17 up and down. There are an atomic force microscope in which the object and the cantilever 11 are placed in the atmosphere, and an atomic force microscope in the vacuum, but since an adhesive is used as described later, it is preferable to operate in the atmosphere.

上記の原子間力顕微鏡を用いて対象物(基板)上に存在する異物を検出(確認)しかつ除去する方法について以下に詳述する。原子間力顕微鏡は高精度な位置決めが可能であり,高精細化した基板上のパターン(レジストパターンなど)においても,周囲のパターンや基板に損傷(ダメージ)を与えることなく,異物のみを除去することができる。   A method for detecting (confirming) and removing foreign matter existing on the object (substrate) using the atomic force microscope will be described in detail below. The atomic force microscope is capable of high-precision positioning, and removes only foreign objects without damaging surrounding patterns or the substrate, even on highly detailed patterns (resist patterns, etc.) on the substrate. be able to.

この異物除去方法は,探針の表面に粘着剤をコーティングし,粘着剤をコーティングした探針を走査型プローブ顕微鏡に取付け,該探針を対象物表面に存在する異物に接触させて該異物を該探針に付着させるものである。もちろん,走査型プローブ顕微鏡の機能を損なわない程度に薄い粘着剤コーティング層(薄膜)を探針に形成する。   In this foreign matter removal method, an adhesive is coated on the surface of the probe, the probe coated with the adhesive is attached to a scanning probe microscope, and the probe is brought into contact with the foreign matter existing on the surface of the object to remove the foreign matter. It is attached to the probe. Of course, an adhesive coating layer (thin film) that is thin enough not to impair the function of the scanning probe microscope is formed on the probe.

使用する探針を有するカンチレバーについては,シリコーン製,窒化シリコーン製,カーボンナノチューブ製,ダイヤモンド製等,公知のものを使用することができる。また,探針またはカンチレバーの表面にダイヤモンドやダイヤモンドライクカーボン(DLC),金や白金のコートがされていてもよい。   As the cantilever having the probe to be used, known ones such as silicone, silicone nitride, carbon nanotube, diamond and the like can be used. Further, the surface of the probe or cantilever may be coated with diamond, diamond-like carbon (DLC), gold or platinum.

対象物のパターンが形成された基板等の場合,探針先端の曲率半径は,ターゲットとなるパターンの線幅や除去すべき異物のサイズによって決定される。目的の異物が原子間力顕微鏡の走査によって確認できかつ探針が接触できれば特に制限はされないが,探針先端の曲率半径は2〜100nmの範囲であることが望ましい。   In the case of a substrate or the like on which an object pattern is formed, the radius of curvature of the tip of the probe is determined by the line width of the target pattern and the size of foreign matter to be removed. There is no particular limitation as long as the target foreign matter can be confirmed by scanning with an atomic force microscope and the probe can come into contact, but the radius of curvature at the tip of the probe is preferably in the range of 2 to 100 nm.

探針の表面粗さは,粘着剤が均一にコートされる範囲であれば特に制限はされない。   The surface roughness of the probe is not particularly limited as long as the pressure-sensitive adhesive is uniformly coated.

使用する粘着剤は,アクリル系粘着剤,ウレタン系粘着剤,シリコーン系粘着剤,ゴム粘着剤等,公知のものを使用することができる。   As the pressure-sensitive adhesive to be used, known ones such as an acrylic pressure-sensitive adhesive, a urethane pressure-sensitive adhesive, a silicone pressure-sensitive adhesive, and a rubber pressure-sensitive adhesive can be used.

プローブへの粘着剤コーティング方法は,スプレーコート,ディップコート,スピンコートなどの手法をとることができる。また,粘着剤をシート状に塗工し,そこへプローブを突き刺して探針に粘着剤を付着させる方法でもよい。粘着剤の膜厚には特に制限はないが,基板上に微細な凹凸パターンがあり,目的の異物が凹部内に存在しても,凸部等に当ることなく異物にのみアプローチできればよい。一例としては,粘着剤の膜厚は十〜数十nm程度であろう。   As the method of coating the probe with adhesive, spray coating, dip coating, spin coating, and the like can be used. Alternatively, a method may be used in which an adhesive is applied in a sheet shape, a probe is inserted into the sheet, and the adhesive is attached to the probe. There is no particular limitation on the film thickness of the adhesive, but there is a fine uneven pattern on the substrate, and even if the target foreign matter exists in the concave portion, it is only necessary to approach the foreign matter without hitting the convex portion. As an example, the film thickness of the pressure-sensitive adhesive will be about 10 to several tens of nm.

探針には,必要であれば粘着剤コーティング前処理として,表面コンタミネーションの洗浄や,粘着剤を付着しやすくするための表面処理として,金属スパッタやUVオゾン処理,シランカップリング剤処理やコロナ処理,フッ素ガス処理などを実施してもよい。これらの前処理は,最終的に均一なコーティングが可能であるならば一種類に限らず,複数を組み合わせて実施してもよい。   For the probe, if necessary, pretreatment with adhesive coating, cleaning of surface contamination, and surface treatment to facilitate adhesion of adhesive, metal sputtering, UV ozone treatment, silane coupling agent treatment, corona Treatment, fluorine gas treatment, etc. may be performed. These pretreatments are not limited to one type as long as uniform coating is finally possible, and a plurality of them may be combined.

上記のように粘着剤をコーティングした探針を有するカンチレバーを原子間力顕微鏡にセットし,除去すべき異物が存在する対象物(基板)を走査し(たとえば,フィードバック制御下のノンコンタクトモード),除去すべき異物の位置(X,Y,Z座標)を特定する。次に,粘着剤がコーティングされた探針を,特定した異物の位置に近づけて(たとえば,フィードバック制御なしのコンタクトモード),探針を異物に接触させる。異物は粘着剤に密着(粘着)する。異物の接触または粘着(付着)が失敗したら,何回も異物を除去できるまで上記動作を繰返えせばよい。   Set a cantilever with a probe coated with an adhesive as described above on an atomic force microscope, scan the object (substrate) on which foreign matter to be removed exists (for example, non-contact mode under feedback control), The position (X, Y, Z coordinates) of the foreign matter to be removed is specified. Next, the probe coated with the adhesive is brought close to the position of the specified foreign object (for example, contact mode without feedback control), and the probe is brought into contact with the foreign object. Foreign matter adheres (adheres) to the adhesive. If the contact or adhesion (adhesion) of a foreign object fails, the above operation may be repeated until the foreign object can be removed many times.

目的とする異物が探針に粘着(付着)した後は,カンチレバーごと原子間力顕微鏡から取外し,探針に付着した異物を取除く。探針に付着した異物を取り除く方法としては,塗工した粘着剤シートに探針を押し当て,または突き刺し,異物を粘着剤シート側に移すことによる除去方法が挙げられる。探針からの異物の除去のために使用する粘着剤の材料は,特に制限はされず,一般的な上述した粘着を用いることができる。また,粘着性を持つものの他の例としてカンチレバーを固定するのに使用されているシリコーンゲル等でもよい。異物の除去後に探針付カンチレバーを再び使用するために,粘着剤を再コーティングすることを考えると,同じ材質の粘着剤であることが望ましい。   After the target foreign matter has adhered (attached) to the probe, remove the cantilever from the atomic force microscope and remove the foreign matter attached to the probe. As a method of removing the foreign matter adhering to the probe, there is a removal method by pressing or piercing the probe to the coated adhesive sheet and transferring the foreign matter to the adhesive sheet side. The material of the pressure-sensitive adhesive used for removing foreign substances from the probe is not particularly limited, and the above-described general pressure-sensitive adhesive can be used. Moreover, the silicone gel etc. which are used for fixing a cantilever as another example of what has adhesiveness may be used. In order to use the cantilever with the probe again after removing the foreign matter, it is desirable that the adhesive is made of the same material in consideration of recoating the adhesive.

図2から図9は上述した一連の動作(操作または方法)を具体的に示すものであり,図10はオペレータの操作および制御装置13による処理の流れを示すものである。   FIGS. 2 to 9 specifically show the above-described series of operations (operations or methods), and FIG. 10 shows the operation of the operator and the flow of processing by the control device 13.

図2は,探針12が一体的に形成されたカンチレバー11の探針12の部分に,前処理としてシランカップリング剤24を滴下し,探針12の表面の化学装飾を行った状態を示している。シランカップリング剤24は探針12に粘着剤を付きやすくする。   FIG. 2 shows a state in which the surface of the probe 12 is chemically decorated by dripping the silane coupling agent 24 as a pretreatment on the probe 12 portion of the cantilever 11 in which the probe 12 is integrally formed. ing. The silane coupling agent 24 makes it easy to attach an adhesive to the probe 12.

次に,図3に示すように,容器25内に粘着剤26を入れ,粘着剤26内に探針12をディップし,探針12の表面に粘着層26Aを形成した(粘着剤のコーティング法)。粘着層26Aが形成された探針12の先端部を図4に示す。   Next, as shown in FIG. 3, an adhesive 26 is placed in a container 25, the probe 12 is dipped in the adhesive 26, and an adhesive layer 26A is formed on the surface of the probe 12 (adhesive coating method). ). FIG. 4 shows the tip of the probe 12 on which the adhesive layer 26A is formed.

レーザ光を用いた画像処理装置,その他の外観検査装置を用いて,パターンが形成された基板(対象物)上に,除去すべき異物があるかどうかを調べておく(図10,S31)。そして,除去すべき異物が存在する基板のみを異物除去の対象とする。   An image processing apparatus using laser light or other appearance inspection apparatus is used to check whether there is a foreign substance to be removed on the substrate (object) on which the pattern is formed (FIG. 10, S31). Only the substrate on which the foreign matter to be removed is present is taken as a target for foreign matter removal.

上記のようにして探針12に粘着層26Aが形成されたカンチレバー11を原子間力顕微鏡に取付け,対象基板をセットした上で,異物23の存在する基板20の表面を,粘着層26Aを有する探針12で二次元的に走査する(図10,S32)。これにより基板20上のパターン21と異物23の顕微鏡画像が得られる。この様子が図5に示されている。これは,たとえばフィードバック制御を伴うノンコンタクトモードで行う。破線が探針12の先端の軌跡の概要を示している。外観検査装置による事前の検査によって異物23の存在する基板20上の位置は分っているので,基板20の全面ではなく,異物23の存在する位置を中心とする近傍の範囲でだけの走査でもよい。これにより,異物23の存在する正確な位置(X,Y,Z座標)を確認できる。異物検出(異物の存在確認)の走査は,粘着層が形成されていない探針を用いて行ってもよい。   The cantilever 11 in which the adhesive layer 26A is formed on the probe 12 as described above is attached to an atomic force microscope, the target substrate is set, and the surface of the substrate 20 on which the foreign matter 23 exists has the adhesive layer 26A. The probe 12 scans two-dimensionally (FIG. 10, S32). Thereby, a microscopic image of the pattern 21 and the foreign matter 23 on the substrate 20 is obtained. This is shown in FIG. This is performed, for example, in a non-contact mode with feedback control. The broken line shows the outline of the locus of the tip of the probe 12. Since the position on the substrate 20 where the foreign material 23 exists is known by the prior inspection by the appearance inspection apparatus, scanning is not performed on the entire surface of the substrate 20 but only in the vicinity of the position where the foreign material 23 exists. Good. Thereby, the exact position (X, Y, Z coordinate) where the foreign material 23 exists can be confirmed. Scanning of foreign matter detection (confirmation of the presence of foreign matter) may be performed using a probe on which no adhesive layer is formed.

続いて,異物除去動作に移る。異物23の存在位置が分っているので,これはたとえば,フィードバック制御を伴わない(オフした)コンタクトモードで行なえばよい。図6に示すように表面に粘着層26Aが形成された探針12を異物23に向って移動させ,近づいて接触させる(図10,S33)。異物23は探針12に付着する。異物が複数個ある場合には,異物ごとに上記の異物除去動作を繰返すことができる。このとき,表面に粘着層26Aが形成されたカンチレバー11を交換する方が好ましい。   Subsequently, the operation proceeds to the foreign substance removal operation. Since the position of the foreign material 23 is known, this may be performed, for example, in a contact mode that does not involve feedback control (turned off). As shown in FIG. 6, the probe 12 having the adhesive layer 26A formed on the surface is moved toward the foreign object 23 and brought into contact with it (FIG. 10, S33). The foreign matter 23 adheres to the probe 12. When there are a plurality of foreign matters, the above foreign matter removing operation can be repeated for each foreign matter. At this time, it is preferable to replace the cantilever 11 having the adhesive layer 26A formed on the surface.

最後に,異物が除去されたことを確認するために,再び探針(粘着層が形成されているものでも,形成されていないものでもよい)を用いて基板表面を走査し,その顕微鏡画像を作成し,先の画像(S32で得られた画像)と比較して異物が除去されたことを確認する(図10,S34,S35)。先の画像と必ずしも比較しなくてもこの確認はできるし,異物が存在する位置を中心とした限られた範囲の画像を得るだけでもよい。異物が除去されていなければ,S33の異物除去動作に戻る。1つの基板20上に複数の異物がある場合には,S33,S34を異物ごとに繰返してもよい。   Finally, in order to confirm that the foreign matter has been removed, the surface of the substrate is scanned again using a probe (which may or may not have an adhesive layer), and the microscopic image is displayed. It is created and compared with the previous image (image obtained in S32), it is confirmed that the foreign matter has been removed (FIG. 10, S34, S35). This confirmation can be made without necessarily comparing with the previous image, or only a limited range of images centering on the position where the foreign matter exists may be obtained. If foreign matter has not been removed, the process returns to S33 for removing foreign matter. When there are a plurality of foreign matters on one substrate 20, S33 and S34 may be repeated for each foreign matter.

図7は,探針12の先端部において,粘着層26Aに異物が付着している様子を示す。粘着層26Aに付着した異物23を有する探針12を,図8に示すように,別の粘着層を持つ粘着シート27に押付ける,または突き刺すことにより,異物23を粘着シート27に移して除去することができる。図9は探針12から異物23が除去された状態を示している。異物23が除去された探針は再び使用することができる。異物を除去しないまま探針を破棄してもよい。   FIG. 7 shows a state in which foreign matter adheres to the adhesive layer 26 </ b> A at the tip of the probe 12. As shown in FIG. 8, the probe 12 having the foreign matter 23 attached to the adhesive layer 26A is pressed against or pierced to the adhesive sheet 27 having another adhesive layer, thereby moving the foreign matter 23 to the adhesive sheet 27 and removing it. can do. FIG. 9 shows a state in which the foreign matter 23 has been removed from the probe 12. The probe from which the foreign matter 23 has been removed can be used again. The probe may be discarded without removing the foreign matter.

上記実施例の探針は,原子間力顕微鏡で従来から用いられている探針を利用して異物を除去するものであるが,異物除去用のための探針を用いてもよい。たとえば,図11に示す探針12Aは先端部にV字状の凹部12aが形成されている。この凹部12aにおいて探針12Aに粘着剤の薄膜26Aが形成されている。このような探針12Aをもつカンチレバーを原子間力顕微鏡に取付け,探針12Aを異物が存在する位置の真上に位置決めし,そのまま探針12Aを下降させれば,図12に示すように異物23は凹部12a内の粘着層26Aに付着する。   The probe of the above embodiment is for removing foreign matter using a probe conventionally used in an atomic force microscope, but a probe for removing foreign matter may be used. For example, a probe 12A shown in FIG. 11 has a V-shaped recess 12a formed at the tip. In this recess 12a, an adhesive thin film 26A is formed on the probe 12A. If such a cantilever having a probe 12A is attached to an atomic force microscope, the probe 12A is positioned immediately above the position where the foreign matter is present, and the probe 12A is lowered as it is, the foreign matter as shown in FIG. 23 adheres to the adhesive layer 26A in the recess 12a.

他の変形例では,図13に示すように,探針12Bの先端部に2つの突出量が異なる先細の突起が形成され,これら2つの突起の間がV字状の凹部12aとなっている。粘着層26Aは探針12Bの表面全体に形成されている。この場合には,異物23を,図14に実線と鎖線で示すように,探針12Bのどこにでも付着させることができるので,異物除去のための探針の移動操作が容易となる。   In another modification, as shown in FIG. 13, two tapered protrusions having different protrusion amounts are formed at the tip of the probe 12B, and a V-shaped recess 12a is formed between the two protrusions. . The adhesive layer 26A is formed on the entire surface of the probe 12B. In this case, the foreign object 23 can be attached anywhere on the probe 12B as shown by a solid line and a chain line in FIG. 14, so that the moving operation of the probe for removing the foreign object becomes easy.

10 原子間力顕微鏡
11 カンチレバー
12,12A,12B 探針
13 制御装置
15 駆動装置
20 基板(対象物)
21 パターン
23 異物
26 粘着剤
26A 粘着層
27 粘着シート
10 Atomic force microscope
11 Cantilever
12, 12A, 12B
13 Control device
15 Drive unit
20 Substrate (object)
21 patterns
23 Foreign object
26 Adhesive
26A adhesive layer
27 Adhesive sheet

Claims (4)

カンチレバーの先端に設けられた探針を用いて対象物表面を走査して,該表面の形状に関する情報を得る走査型プローブ顕微鏡を用いて対象物表面に存在する異物を除去する方法であり,
前記探針の表面に粘着剤をコーティングし,
粘着剤をコーティングした探針を走査型プローブ顕微鏡に取付け,該探針を対象物表面に存在する異物に接触させて該異物を該探針に付着させる,
走査型プローブ顕微鏡を用いた異物除去方法。
It is a method of removing foreign matter existing on the surface of the object using a scanning probe microscope that scans the surface of the object using a probe provided at the tip of the cantilever and obtains information on the shape of the surface,
Coating the surface of the probe with an adhesive,
A probe coated with an adhesive is attached to a scanning probe microscope, and the probe is brought into contact with a foreign substance existing on the surface of the object to attach the foreign substance to the probe.
A foreign matter removing method using a scanning probe microscope.
異物の除去に先だって,対象物表面を探針により走査して対象物上における異物の位置を確認する,請求項1に記載の走査型プローブ顕微鏡を用いた異物除去方法。   2. The foreign matter removing method using a scanning probe microscope according to claim 1, wherein prior to removing the foreign matter, the surface of the subject is scanned with a probe to confirm the position of the foreign matter on the subject. 異物の除去後に,対象物表面を探針により走査して異物が除去されたことを確認する,請求項1または2に記載の走査型プローブ顕微鏡を用いた異物除去方法。   The foreign matter removal method using the scanning probe microscope according to claim 1 or 2, wherein after removing the foreign matter, the surface of the object is scanned with a probe to confirm that the foreign matter has been removed. 探針に付着した異物を探針から除去する,請求項1から3のいずれか一項に記載の走査型プローブ顕微鏡を用いた異物除去方法。   The foreign matter removal method using the scanning probe microscope according to any one of claims 1 to 3, wherein the foreign matter attached to the probe is removed from the probe.
JP2014113075A 2014-05-30 2014-05-30 Foreign matter removal method using scanning probe microscope Active JP6245080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014113075A JP6245080B2 (en) 2014-05-30 2014-05-30 Foreign matter removal method using scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014113075A JP6245080B2 (en) 2014-05-30 2014-05-30 Foreign matter removal method using scanning probe microscope

Publications (2)

Publication Number Publication Date
JP2015227799A true JP2015227799A (en) 2015-12-17
JP6245080B2 JP6245080B2 (en) 2017-12-13

Family

ID=54885349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014113075A Active JP6245080B2 (en) 2014-05-30 2014-05-30 Foreign matter removal method using scanning probe microscope

Country Status (1)

Country Link
JP (1) JP6245080B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023022833A (en) * 2016-01-29 2023-02-15 レイヴ リミテッド ライアビリティ カンパニー Debris removal from high aspect structures
US11964310B2 (en) 2007-09-17 2024-04-23 Bruker Nano, Inc. Debris removal from high aspect structures

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260464A (en) * 1993-03-09 1994-09-16 Hitachi Ltd Method and device for removing foreign matter
JP2003172683A (en) * 2001-12-10 2003-06-20 Seiko Instruments Inc Scanning probe microscope
JP2005084582A (en) * 2003-09-11 2005-03-31 Sii Nanotechnology Inc Method for removing particle from photomask
US20070256480A1 (en) * 2002-01-02 2007-11-08 Black Charles T Scanning probe microscopy tips composed of nanoparticles and methods to form same
JP2009115533A (en) * 2007-11-05 2009-05-28 Koji Okajima Method for manufacturing colloid probe cantilever for atomic force microscope and its manufacturing device
JP2009160689A (en) * 2008-01-07 2009-07-23 Sii Nanotechnology Inc Foreign substance removal method using scanning probe microscope
JP2009198202A (en) * 2008-02-19 2009-09-03 Epson Imaging Devices Corp Foreign matter removing device and foreign matter removing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260464A (en) * 1993-03-09 1994-09-16 Hitachi Ltd Method and device for removing foreign matter
JP2003172683A (en) * 2001-12-10 2003-06-20 Seiko Instruments Inc Scanning probe microscope
US20070256480A1 (en) * 2002-01-02 2007-11-08 Black Charles T Scanning probe microscopy tips composed of nanoparticles and methods to form same
JP2005084582A (en) * 2003-09-11 2005-03-31 Sii Nanotechnology Inc Method for removing particle from photomask
JP2009115533A (en) * 2007-11-05 2009-05-28 Koji Okajima Method for manufacturing colloid probe cantilever for atomic force microscope and its manufacturing device
JP2009160689A (en) * 2008-01-07 2009-07-23 Sii Nanotechnology Inc Foreign substance removal method using scanning probe microscope
JP2009198202A (en) * 2008-02-19 2009-09-03 Epson Imaging Devices Corp Foreign matter removing device and foreign matter removing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11964310B2 (en) 2007-09-17 2024-04-23 Bruker Nano, Inc. Debris removal from high aspect structures
JP2023022833A (en) * 2016-01-29 2023-02-15 レイヴ リミテッド ライアビリティ カンパニー Debris removal from high aspect structures
JP7495087B2 (en) 2016-01-29 2024-06-04 ブルーカー ナノ インコーポレイテッド Debris removal from high aspect ratio structures

Also Published As

Publication number Publication date
JP6245080B2 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
US7107826B2 (en) Scanning probe device and processing method by scanning probe
CN109444476B (en) Preparation method of submicron probe for atomic force microscope
KR102011192B1 (en) Device and method for analysing a defect of a photolithographic mask or of a wafer
EP3726566B1 (en) Debris removal from a trench formed on a photolithographic mask
JPH0776696B2 (en) Atomic force microscope
US10131135B2 (en) Imprint apparatus and imprint method
JP6245080B2 (en) Foreign matter removal method using scanning probe microscope
US8062494B2 (en) Micro-machining dust removing device, micro-machining apparatus, and micro-machining dust removing method
JP2015112576A (en) Coating membrane, coating device and coating method
KR101390610B1 (en) Imprint apparatus and method of manufacturing commodity
JP2009160689A (en) Foreign substance removal method using scanning probe microscope
JP2016080926A (en) Foreign matter removal method, foreign matter removal device, and probe
JP2009265176A (en) Foreign matter removing method, foreign matter removing device, and method of manufacturing semiconductor device
JP2009198202A (en) Foreign matter removing device and foreign matter removing method
JP2016071092A (en) Foreign matter removing method and foreign matter removing apparatus
JP2015227800A (en) Foreign matter removal method using scan type probe microscope and probe for fine foreign matter removal used in the method
JP3108657U (en) Sample preparation device for scanning electron microscope using ultrasonic vibration device
JP6938738B2 (en) Chip parts transfer device
JP2013116452A (en) Foreign matter removing apparatus and foreign matter removing method
WO2012176566A1 (en) Defect correction device and defect correction method
JP6752250B2 (en) Tool height adjustment device and chip component transfer device equipped with this
JP2006292768A (en) Scanning probe microscope
JP2006007382A (en) Method for removing fine particles
JP2008205120A (en) Coating applicator
TW202409590A (en) Approaches and probes for excitation, detection, and sensing of devices under test

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171030

R150 Certificate of patent or registration of utility model

Ref document number: 6245080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150