JP2006007382A - Method for removing fine particles - Google Patents

Method for removing fine particles Download PDF

Info

Publication number
JP2006007382A
JP2006007382A JP2004189675A JP2004189675A JP2006007382A JP 2006007382 A JP2006007382 A JP 2006007382A JP 2004189675 A JP2004189675 A JP 2004189675A JP 2004189675 A JP2004189675 A JP 2004189675A JP 2006007382 A JP2006007382 A JP 2006007382A
Authority
JP
Japan
Prior art keywords
fine particles
probe
detecting
cantilever
photomask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004189675A
Other languages
Japanese (ja)
Inventor
Akira Kuroda
亮 黒田
Yasuhisa Inao
耕久 稲生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004189675A priority Critical patent/JP2006007382A/en
Publication of JP2006007382A publication Critical patent/JP2006007382A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for removing fine particles enabling to detect and remove the nano-sized particles adhering to a member used for a microprocessing process. <P>SOLUTION: The method for removing the fine particles 105 adhering to the member 101 used for the microprocessing process comprises a process for controlling a distance between the member and a probe 104 supported by an elastic body 103 based on change of cyclical elastic deformation while cyclically elastic-deforming the elastic body so as to make the probe 104 approach the member, a process for detecting positions of the fine particles adhering to the member based on a distance control amount of the probe, a process for making the probe approach the fine particles adhering to the member based on the result of detecting the positions and removing the fine particles adhering to the member by the probe. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、微細加工プロセスに用いる部材に付着したナノサイズの微粒子の除去方法に関する。   The present invention relates to a method for removing nano-sized fine particles adhering to a member used in a microfabrication process.

リソグラフィー技術の進化・多様化が進み、新たな可能性を探るエマージングリソグラフィー技術として、特許文献1に記載のNanoimprint lithography(以下、ナノインプリントリソグラフィーと記載)、特許文献2に記載のStep and flush imprint lithography(以下、光ナノインプリントリソグラフィーと記載)、あるいは特許文献3に記載の近接場光リソグラフィー等、新規なリソグラフィー方式が提案されている。
これらの新規なリソグラフィー方式は、主として100nm以下のサイズのパターンが形成可能な方式であり、いずれもモールドやフォトマスクを被加工基板や被露光基板に対して500nm以下(典型的には200nm以下)まで近接させて、モールドやマスクの情報を基板側に転写するものである。
Evolution and diversification of lithography technology has progressed, and as emerging lithography technology for exploring new possibilities, Nanoimprint lithography described in Patent Document 1 (hereinafter referred to as nanoimprint lithography), Step and flash imprint lithography described in Patent Document 2 (hereinafter referred to as nanoimprint lithography) Hereinafter, a novel lithography method such as optical nanoimprint lithography) or near-field optical lithography described in Patent Document 3 has been proposed.
These new lithography methods are mainly methods capable of forming a pattern having a size of 100 nm or less, and in any case, a mold or a photomask is 500 nm or less (typically 200 nm or less) with respect to a substrate to be processed or a substrate to be exposed. The information on the mold and mask is transferred to the substrate side.

また、ナノサイズの微粒子を観察するため、原子間力顕微鏡(以下、AFMと略す)が開発され、これを用いて、半導体産業からバイオ産業まで幅広く、さまざまな観察対象がナノスケールの分解能で観察されている。
AFMは尖鋭な探針を弾性体として機能するカンチレバーで支持し、観察対象と探針との間に作用する力によるカンチレバーの弾性変形を検出し、この変形量を基に、観察対象の形状を観察するものである。
ここで、弾性変形の検出方式としては、
(1)探針を観察対象に斥力が生じるまで接触させながら、観察対象上を2次元に走査する接触モード、
(2)カンチレバーを周期的に振動させ、探針と観察対象との間に作用する微弱な力による周期的振動状態の変化を検出しながら2次元に走査する周期的接触モード、等がある。
米国特許5772905号明細書 米国特許6334960号明細書 米国特許6171730号明細書
In addition, an atomic force microscope (hereinafter abbreviated as AFM) has been developed for observing nano-sized fine particles. Using this, a wide variety of observation targets can be observed at a nanoscale resolution from the semiconductor industry to the bio industry. Has been.
The AFM supports a sharp tip with a cantilever that functions as an elastic body, detects elastic deformation of the cantilever due to the force acting between the observation target and the probe, and based on the amount of deformation, determines the shape of the observation target. To observe.
Here, as an elastic deformation detection method,
(1) A contact mode in which the observation object is scanned in two dimensions while contacting the observation object until repulsion occurs.
(2) There is a periodic contact mode in which the cantilever is periodically vibrated and two-dimensional scanning is performed while detecting a change in the periodic vibration state due to a weak force acting between the probe and the observation target.
US Pat. No. 5,772,905 US Pat. No. 6,334,960 US Pat. No. 6,171,730

しかしながら、上記のような(光)ナノインプリントリソグラフィーや近接場光リソグラフィーに用いられるモールドやフォトマスクは、被加工基板に近接させて使用されるため、加工プロセスを繰り返すにつれて、モールドやフォトマスクにナノサイズの微粒子が付着してしまう場合が生じる。このような場合、付着部分の影響が被加工基板側に転写され、加工欠陥を生じさせる可能性がある。   However, since molds and photomasks used in (optical) nanoimprint lithography and near-field photolithography as described above are used in close proximity to the substrate to be processed, the nanosize is added to the mold and photomask as the processing process is repeated. Of fine particles may adhere. In such a case, the influence of the adhering portion is transferred to the substrate to be processed, which may cause a processing defect.

ナノサイズの加工を行うためのモールドやフォトマスクはその構造がナノサイズであるため、高価であり、表面に付着したナノサイズの微粒子を取り除く技術の開発が望まれる。しかしながら、ナノサイズの微粒子は付着位置を検出することが難しく、取り除くことはさらに難しい問題であり、これらを解決した装置等の早期の実現が求められる。   Molds and photomasks for performing nano-size processing are expensive because of their nano-sized structure, and it is desired to develop a technique for removing nano-sized fine particles adhering to the surface. However, it is difficult to detect the attachment position of nano-sized fine particles and it is a more difficult problem to remove, and early realization of an apparatus that solves these problems is required.

本発明は、上記課題に鑑みて、微細加工プロセスに用いる部材に付着したナノサイズの微粒子を検出し、除去することが可能となる微粒子の除去方法を提供することを目的とするものである。   In view of the above problems, an object of the present invention is to provide a fine particle removal method capable of detecting and removing nano-sized fine particles attached to a member used in a microfabrication process.

本発明は、以下のように構成した微粒子の除去方法を提供するものである。
すなわち、本発明の微粒子の除去方法は、微細加工プロセスに用いる部材に付着した微粒子の除去方法であって、弾性体に支持された探針を、該弾性体を周期的に弾性変形させながら、該周期的弾性変形の変化から該部材と該探針との間の距離を制御し、前記部材に近接させる工程と、前記探針の距離の制御量から、前記部材に付着した微粒子の位置を検出する工程と、前記位置を検出した結果に基づいて、前記探針を前記部材に付着した微粒子に近接させ、該探針により部材に付着した微粒子を除去する工程と、を少なくとも有することを特徴としている。
また、本発明においては、前記部材に付着した微粒子の位置を検出する工程を、前記部材に探針を近接させた後、該探針を部材の面内方向に2次元走査し、該2次元走査中の前記探針の制御量から、前記部材に付着した微粒子の位置を検出する工程とすることができる。
また、本発明においては、前記微粒子を除去する工程が、前記位置を検出した後、前記弾性体の周期的な弾性変形を停止させ、探針の該微粒子に作用させる斥力を増大させて、部材に対し探針を相対移動させ、部材に付着した微粒子を除去する工程とすることができる。
また、本発明においては、前記部材として、近接場光リソグラフィーで用いられるフォトマスク、またはナノインプリントリソグラフィー、または光ナノインプリントリソグラフィーで用いられるモールドに適用することができる。
The present invention provides a fine particle removal method configured as follows.
That is, the method for removing fine particles of the present invention is a method for removing fine particles adhering to a member used in a microfabrication process, wherein a probe supported by an elastic body is elastically deformed while periodically elastically deforming the elastic body. The step of controlling the distance between the member and the probe from the change in the cyclic elastic deformation and bringing it close to the member, and the position of the fine particles attached to the member from the control amount of the distance of the probe And a step of detecting, and based on a result of detecting the position, the probe is brought close to the fine particles attached to the member and the fine particles attached to the member are removed by the probe. It is said.
In the present invention, the step of detecting the position of the fine particles attached to the member is performed by two-dimensionally scanning the probe in the in-plane direction of the member after bringing the probe close to the member. It can be a step of detecting the position of the fine particles adhering to the member from the control amount of the probe during scanning.
Further, in the present invention, the step of removing the fine particles, after detecting the position, stops the periodic elastic deformation of the elastic body, and increases the repulsive force acting on the fine particles of the probe. On the other hand, the step of moving the probe relative to each other to remove the fine particles adhering to the member can be adopted.
In the present invention, the member can be applied to a photomask used in near-field photolithography, a mold used in nanoimprint lithography, or optical nanoimprint lithography.

本発明によれば、微細加工プロセスに用いる部材に付着したナノサイズの微粒子を検出し、除去することが可能となる微粒子の除去方法を実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, the removal method of the microparticles | fine-particles which can detect and remove the nanosize microparticles adhering to the member used for a microfabrication process is realizable.

本発明の実施の形態における微粒子の除去方法の原理を図1を用いて説明する。
図1において、101はフォトマスク、102はマスクパターン、103はカンチレバー、104は探針である。
図1に示されるように、フォトマスク101上に形成されているマスクパターン102上を、弾性体であるカンチレバー103に支持された探針104で、フォトマスク101の面内方向に2次元走査する。
このとき、カンチレバー103はフォトマスク101面の法線方向に振動させておく。この状態で、探針104先端をフォトマスク101表面に対して、ファンデルワールス力が作用する距離まで近づける。この距離の接近により、このファンデルワールス力の影響を受け、カンチレバー103の振動状態(振幅や位相)が変化する。この振動状態を検出し、これが一定になるように、フォトマスク101に対する探針104を支持するカンチレバー103の支持部107のフォトマスク面法線方向の位置を調整する。2次元走査中の支持部107の位置調整量からフォトマスク101表面の凹凸の形状を検出することができる。
ここで、カンチレバーの振動状態を検出するためにこの振動の振幅を検出する方法としては、光てこ法、光干渉計、静電センサ等を用いることができる。
The principle of the method for removing fine particles in the embodiment of the present invention will be described with reference to FIG.
In FIG. 1, 101 is a photomask, 102 is a mask pattern, 103 is a cantilever, and 104 is a probe.
As shown in FIG. 1, a mask pattern 102 formed on a photomask 101 is two-dimensionally scanned in the in-plane direction of the photomask 101 with a probe 104 supported by a cantilever 103 that is an elastic body. .
At this time, the cantilever 103 is vibrated in the normal direction of the photomask 101 surface. In this state, the tip of the probe 104 is brought close to the distance on which the van der Waals force acts on the surface of the photomask 101. Due to the approach of this distance, the vibration state (amplitude and phase) of the cantilever 103 changes under the influence of the van der Waals force. The vibration state is detected, and the position in the photomask surface normal direction of the support portion 107 of the cantilever 103 that supports the probe 104 with respect to the photomask 101 is adjusted so that the vibration state becomes constant. The shape of the irregularities on the surface of the photomask 101 can be detected from the position adjustment amount of the support portion 107 during two-dimensional scanning.
Here, as a method of detecting the amplitude of the vibration in order to detect the vibration state of the cantilever, an optical lever method, an optical interferometer, an electrostatic sensor, or the like can be used.

ここでは、一例として光てこ法を用いてカンチレバーの振動状態を検出し、微粒子を除去する方法について説明する。
光てこ法によりカンチレバーの振動状態を検出するには、まず、レーザによってカンチレバー103のマスクパターン102側と反対の面を照射し、このカンチレバー103により反射されたレーザ光を、不図示の2分割センサに導入する。この2分割センサは2つのフォトダイオードから構成され、2つのダイオードに上記レーザ光がほぼ均等になるように導入される。
つぎに、カンチレバー103に振動を付与させることで、カンチレバー103を周期的に弾性変形させながら、探針104先端がフォトマスク101表面に近ずくように、ステージ106を駆動する。カンチレバー103の表面がたわむとレーザ光の反射が変化し、2分割センサの2つのフォトダイオードに導入される光の割合が変化する。このたわみ量による光の反射の変化量によって振動状態を検出し、探針104とフォトマスク101表面との間の距離を制御し、カンチレバー103で支持された探針104をフォトマスク101上に形成されているマスクパターン102上まで近付けた後、カンチレバー103を2次元走査する。
上記振動状態の検出によって、この2次元走査中でのファンデルワールス力の影響によるカンチレバー103の振動状態が一定になるように位置の調整をし、この位置調整量からフォトマスク101のマスクパターン102とは異なる形状として、フォトマスク101表面に存在するゴミやコンタミ等の微粒子105を検出する。
Here, as an example, a method for detecting the vibration state of the cantilever using the optical lever method and removing the fine particles will be described.
In order to detect the vibration state of the cantilever by the optical lever method, first, a surface opposite to the mask pattern 102 side of the cantilever 103 is irradiated with a laser, and the laser beam reflected by the cantilever 103 is reflected into a two-part sensor (not shown) To introduce. This two-divided sensor is composed of two photodiodes, and the laser light is introduced into the two diodes so as to be substantially uniform.
Next, by applying vibration to the cantilever 103, the stage 106 is driven so that the tip of the probe 104 approaches the surface of the photomask 101 while the cantilever 103 is elastically deformed periodically. When the surface of the cantilever 103 bends, the reflection of the laser light changes, and the proportion of light introduced into the two photodiodes of the two-divided sensor changes. The vibration state is detected by the amount of change in reflection of light due to the amount of deflection, the distance between the probe 104 and the surface of the photomask 101 is controlled, and the probe 104 supported by the cantilever 103 is formed on the photomask 101. After approaching the mask pattern 102, the cantilever 103 is scanned two-dimensionally.
By detecting the vibration state, the position is adjusted so that the vibration state of the cantilever 103 due to the influence of van der Waals force during the two-dimensional scanning becomes constant. As a shape different from the above, fine particles 105 such as dust and contamination existing on the surface of the photomask 101 are detected.

つぎに、この微粒子105の検出後、ステージ106を駆動し、探針104の先端が微粒子105の位置にくるように制御した後、カンチレバー103の振動を停止させる。さらに、カンチレバー103の支持部107をフォトマスク101表面に近づける方向に駆動し、探針104と微粒子105の間に作用する斥力を増大させる。
その後、ステージ106をフォトマスク101の面内方向に駆動し、フォトマスク101に対し、探針104先端を相対移動させ、このマスク探針104によって微粒子105をフォトマスク101から剥離して移動させ、除去する。
Next, after detecting the fine particles 105, the stage 106 is driven to control the tip of the probe 104 to be at the position of the fine particles 105, and then the vibration of the cantilever 103 is stopped. Further, the support portion 107 of the cantilever 103 is driven in a direction approaching the surface of the photomask 101 to increase the repulsive force acting between the probe 104 and the fine particles 105.
Thereafter, the stage 106 is driven in the in-plane direction of the photomask 101, the tip of the probe 104 is moved relative to the photomask 101, the fine particles 105 are peeled off from the photomask 101 by the mask probe 104, and moved. Remove.

このとき、探針104と微粒子105との間に作用させる斥力の大きさは、フォトマスク101に対する微粒子105の付着力の大きさに依るが、概ね10-7N〜10-4Nの間である。例えば、カンチレバー103の弾性変形における弾性定数を10N/mとする場合、カンチレバー103の支持部107をフォトマスク101に対して接触させた後、さらに1μm近づけることにより、10-5Nの斥力を作用させることができる。
本実施の形態では、一つの探針を支持するカンチレバーを例に挙げて、説明を行ったが、本発明の概念はこれに限定されるものでなく、少なくとも1つ以上の探針を支持するカンチレバーが、少なくとも1つ以上あれば良い。複数の探針あるいは複数のカンチレバーによる場合には、複数の微粒子を同時に除去でき、微粒子除去のスループットを向上させることが可能となる。
At this time, the magnitude of the repulsive force acting between the probe 104 and the fine particles 105 depends on the magnitude of the adhesion force of the fine particles 105 to the photomask 101, but is generally between 10 −7 N and 10 −4 N. is there. For example, when the elastic constant in the elastic deformation of the cantilever 103 is 10 N / m, a repulsive force of 10 −5 N is applied by bringing the support 107 of the cantilever 103 into contact with the photomask 101 and then bringing it closer to 1 μm. Can be made.
In the present embodiment, the description has been given by taking a cantilever that supports one probe as an example, but the concept of the present invention is not limited to this, and supports at least one probe. There may be at least one cantilever. In the case of using a plurality of probes or a plurality of cantilevers, a plurality of fine particles can be removed at the same time, and the fine particle removal throughput can be improved.

本発明の実施の形態における微粒子の除去方法の原理を説明する図である。It is a figure explaining the principle of the removal method of the microparticles | fine-particles in embodiment of this invention.

符号の説明Explanation of symbols

101:フォトマスク
102:マスクパターン
103:カンチレバー
104:探針
105:微粒子
106:ステージ
107:支持部
101: Photomask 102: Mask pattern 103: Cantilever 104: Probe 105: Fine particle 106: Stage 107: Support part

Claims (4)

微細加工プロセスに用いる部材に付着した微粒子の除去方法であって、
弾性体に支持された探針を、該弾性体を周期的に弾性変形させながら、該周期的弾性変形の変化から該部材と該探針との間の距離を制御し、前記部材に近接させる工程と、
前記探針の距離の制御量から、前記部材に付着した微粒子の位置を検出する工程と、
前記位置を検出した結果に基づいて、前記探針を前記部材に付着した微粒子に近接させ、該探針により部材に付着した微粒子を除去する工程と、
を少なくとも有することを特徴とする微粒子の除去方法。
A method for removing fine particles adhering to a member used in a microfabrication process,
The probe supported by the elastic body is controlled to be close to the member by controlling the distance between the member and the probe from the change of the periodic elastic deformation while periodically elastically deforming the elastic body. Process,
Detecting a position of fine particles attached to the member from a control amount of the probe distance;
Based on the result of detecting the position, bringing the probe close to the fine particles attached to the member, and removing the fine particles attached to the member by the probe;
A method for removing fine particles, comprising:
前記部材に付着した微粒子の位置を検出する工程が、前記部材に探針を近接させた後、該探針を部材の面内方向に2次元走査し、該2次元走査中の前記探針の制御量から、前記部材に付着した微粒子の位置を検出する工程であることを特徴とする請求項1に記載の微粒子の除去方法。   In the step of detecting the position of the fine particles attached to the member, after the probe is brought close to the member, the probe is two-dimensionally scanned in the in-plane direction of the member, and the probe in the two-dimensional scanning is scanned. 2. The method for removing fine particles according to claim 1, wherein the method is a step of detecting the position of the fine particles attached to the member from a control amount. 前記微粒子を除去する工程が、前記位置を検出した後、前記弾性体の周期的な弾性変形を停止させ、探針の該微粒子に作用させる斥力を増大させて、部材に対し探針を相対移動させ、部材に付着した微粒子を除去する工程であることを特徴とする請求項1または請求項2に記載の微粒子の除去方法。   The step of removing the fine particles, after detecting the position, stops the periodic elastic deformation of the elastic body and increases the repulsive force acting on the fine particles of the probe to move the probe relative to the member. The method for removing fine particles according to claim 1, wherein the fine particle adhering to the member is removed. 前記部材が、近接場光リソグラフィーで用いられるフォトマスク、またはナノインプリントリソグラフィー、または光ナノインプリントリソグラフィーで用いられるモールドであることを特徴とする請求項1〜3のいずれか1項に記載の微粒子の除去方法。   The method for removing fine particles according to any one of claims 1 to 3, wherein the member is a photomask used in near-field photolithography, a mold used in nanoimprint lithography, or optical nanoimprint lithography. .
JP2004189675A 2004-06-28 2004-06-28 Method for removing fine particles Pending JP2006007382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004189675A JP2006007382A (en) 2004-06-28 2004-06-28 Method for removing fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004189675A JP2006007382A (en) 2004-06-28 2004-06-28 Method for removing fine particles

Publications (1)

Publication Number Publication Date
JP2006007382A true JP2006007382A (en) 2006-01-12

Family

ID=35775173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004189675A Pending JP2006007382A (en) 2004-06-28 2004-06-28 Method for removing fine particles

Country Status (1)

Country Link
JP (1) JP2006007382A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010058222A (en) * 2008-09-03 2010-03-18 Ricoh Co Ltd Cantilever for processing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010058222A (en) * 2008-09-03 2010-03-18 Ricoh Co Ltd Cantilever for processing

Similar Documents

Publication Publication Date Title
Engstrom et al. Additive nanomanufacturing–A review
US7107826B2 (en) Scanning probe device and processing method by scanning probe
Tseng Advancements and challenges in development of atomic force microscopy for nanofabrication
Zhang et al. Material-insensitive feature depth control and machining force reduction by ultrasonic vibration in AFM-based nanomachining
JP2009534200A (en) Article for parallel lithography having a two-dimensional pen array
TW200843867A (en) Nanolithography with use of viewports
JP2008194838A (en) Method for testing nano-imprint lithography mold and method for removing resin residue
JP5520317B2 (en) Method for patterning a nanoscale pattern of molecules on the surface of a material
US20110014378A1 (en) Leveling devices and methods
Kühnel et al. Towards alternative 3D nanofabrication in macroscopic working volumes
Deng et al. High rate 3D nanofabrication by AFM-based ultrasonic vibration assisted nanomachining
Yan et al. A control approach to high-speed probe-based nanofabrication
Zhou et al. Vibration assisted AFM-based nanomachining under elevated temperatures using soft and stiff probes
JP2006007382A (en) Method for removing fine particles
Liu et al. Direct deformation study of AFM probe tips modified by hydrophobic alkylsilane self-assembled monolayers
Schitter et al. Towards fast AFM-based nanometrology and nanomanufacturing
JP2011119447A (en) Method for measuring release force of transfer material for nano imprint
JP2009198202A (en) Foreign matter removing device and foreign matter removing method
JP2007322363A (en) Probe structure and scanning probe microscope
US20100051056A1 (en) Foreign object removal method and method for manufacturing semiconductor device
Giam et al. Direct-write scanning probe lithography: towards a desktop fab
JP2016080926A (en) Foreign matter removal method, foreign matter removal device, and probe
Hassani et al. Nanolithography study using scanning probe microscope
JP2007251108A (en) Method for correcting failure and defect of rough pattern transferred from original of nano imprint lithography
Zhu Nanofabrication and its application in developing high aspect ratio (HAR) and edge Atomic Force Microscopy (AFM) probes