JP2005084582A - Method for removing particle from photomask - Google Patents

Method for removing particle from photomask Download PDF

Info

Publication number
JP2005084582A
JP2005084582A JP2003319360A JP2003319360A JP2005084582A JP 2005084582 A JP2005084582 A JP 2005084582A JP 2003319360 A JP2003319360 A JP 2003319360A JP 2003319360 A JP2003319360 A JP 2003319360A JP 2005084582 A JP2005084582 A JP 2005084582A
Authority
JP
Japan
Prior art keywords
particles
photomask
probe
particle
particle removal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003319360A
Other languages
Japanese (ja)
Inventor
Osamu Takaoka
修 高岡
Kojin Yasaka
行人 八坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2003319360A priority Critical patent/JP2005084582A/en
Publication of JP2005084582A publication Critical patent/JP2005084582A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To cleanly and absolutely remove particles present in several or less number on a photomask by a method except for cleaning. <P>SOLUTION: Particles influencing transfer are cleanly and absolutely removed from a photomask by using dynamic or electromagnetic interaction or chemical reaction between the probe 2 of a scanning probe microscope having high positioning accuracy and the particle 1 on the photomask. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はリソグラフィ工程で使用されるフォトマスクのパーティクル除去方法に関するものである。   The present invention relates to a method for removing particles from a photomask used in a lithography process.

Si半導体集積回路の微細化はめざましく、それに伴って転写に用いるフォトマスクまたはレチクル上のパターン寸法も微細になってきている。フォトマスクはリソグラフィ工程の原版であり、フォトマスクにパーティクル等のソフトディフェクトが存在するとそれがそのままウェーハに転写されてしまいデバイスの不良を生じることになりかねないので取り除かれなければならない。寸法の微細化に伴い、許容できないパーティクルサイズも小さくなってきている。   The miniaturization of Si semiconductor integrated circuits is remarkable, and accordingly, the pattern dimensions on a photomask or reticle used for transfer are also becoming finer. A photomask is an original of a lithography process, and if a soft defect such as particles is present on the photomask, it is transferred to the wafer as it is, which may cause a device failure and must be removed. As dimensions become smaller, unacceptable particle sizes are becoming smaller.

従来、パーティクル除去のために洗浄液を使った洗浄がなされていた。(例えば、非特許文献1参照)
田辺功、竹花洋一、法元盛久「フォトマスク技術のはなし」pp216-220(1996)、工業調査会。 Jpn. J. Appl. Phys. Vol. 41 (2002) pp.4242-4245
Conventionally, cleaning using a cleaning liquid has been performed for particle removal. (For example, see Non-Patent Document 1)
Isao Tanabe, Yoichi Takehana, Morihisa Horimoto "The story of photomask technology" pp216-220 (1996), Industrial Research Committee. Jpn. J. Appl. Phys. Vol. 41 (2002) pp.4242-4245

従来の技術において、パーティクル除去のための洗浄が工夫されているが、パーティクルの種類により洗浄も異なり、洗浄回数を増やすと遮光膜の膜減り(膜べり)が生じたり、位相が変化するなどの副次的な問題も抱えている。ここで、膜減りとは遮光膜(ハーフトーンのものも含む)が洗浄(酸やアルカリ)により薄くなっていくことをいう。洗浄回数を重ねるとどんどん膜が薄くなっていき、最後には遮光膜としても機能を果たさなくなってしまう。Crマスクはかなり余裕度もあり、膜を厚くするということができる。しかし、MoSiONのようなハーフトーンマスクにおいては解像力を上げるために位相が180°になるような膜厚に調整されているため、余裕度をもって膜を厚くするというようなことはできないので、この膜減りが大きくなると、期待される機能そのものを果たさなくなってしまい問題となる。   In the conventional technology, cleaning for particle removal has been devised, but cleaning differs depending on the type of particle. If the number of cleanings is increased, the shading film will decrease (film slippage), the phase will change, etc. There are also secondary problems. Here, the film reduction means that the light-shielding film (including a halftone film) is thinned by cleaning (acid or alkali). If the number of washings is repeated, the film will become thinner and will eventually fail to function as a light-shielding film. The Cr mask has a considerable margin, and it can be said that the film becomes thicker. However, in a halftone mask such as MoSiON, the film thickness is adjusted so that the phase is 180 ° in order to increase the resolving power, so it is not possible to thicken the film with a margin. If the reduction increases, the expected function itself will not be fulfilled, causing a problem.

マスクの検査工程や欠陥修正工程でパーティクルが見つかることがあると、たとえ1個であってもいままで洗浄以外の方法で積極的にパーティクルを除去しようということはなされなかった。マスクの検査工程や欠陥修正工程で見つかったパーティクルはそのマスク上の位置もわかっており、数個のパーティクルならば、洗浄回数を増やすと遮光膜の膜減りが生じたり、位相が変化するなどの副次的な問題も抱えている洗浄よりも、座標をリンケージさせて他の装置で他のアプローチでクリーンかつ確実に取り除けるのならば、多少工程が増えてもフォトスク製造工程全体でみると高品質を達成する上で魅力的かつ必要な方法である。   If particles are found in the mask inspection process or defect correction process, even if only one particle has been found, no attempt has been made to actively remove the particles by means other than cleaning. Particles found in the mask inspection process and defect correction process also know the position on the mask, and if there are several particles, increasing the number of cleanings may cause a reduction in the thickness of the light-shielding film, change the phase, etc. If the coordinates can be linked and other devices can be removed cleanly and reliably by other approaches than cleaning that also has secondary problems, the quality of the entire photosk manufacturing process can be improved even if the number of processes increases. Is an attractive and necessary way to achieve.

本発明は、洗浄以外の方法で安全かつ確実にフォトマスク上に存在する数個以下のパーティクルの除去を行おうとするものである。   The present invention intends to remove several or less particles existing on a photomask safely and reliably by a method other than cleaning.

走査プローブ顕微鏡の探針とフォトマスク上のパーティクル間の力学的・電磁気学的な相互作用または化学反応を利用してパーティクルをフォトマスク上から除去する。   Particles are removed from the photomask using a mechanical / electromagnetic interaction or chemical reaction between the probe of the scanning probe microscope and the particles on the photomask.

以上説明したように、この発明では洗浄による遮光膜の膜減りが生じたり、位相が変化するなどの副次的な問題も起こすことなく、欠陥検査工程や欠陥修正工程で見つかったパーティクルをクリーンかつ確実にフォトマスク上から除去することができる。   As described above, in the present invention, particles found in the defect inspection process and the defect correction process are cleaned and cleaned without causing a secondary problem such as a reduction in the thickness of the light shielding film due to cleaning or a phase change. It can be reliably removed from the photomask.

走査プローブ顕微鏡は先鋭な探針に起因する強い局所性と高分解能顕微鏡特有の高い位置決め能力を持っており、欠陥検査装置や欠陥修正装置の位置情報を用いて正常なパターンに悪影響を与えずに狙ったパーティクルのみフォトマスク上から除去することができる。洗浄以外の方法でパーティクルを除去するので、洗浄による遮光膜の膜減りが生じたり、位相が変化するなどの副次的な問題も起こることはない。
以下に、本発明を用いた実施例について説明する。
Scanning probe microscopes have strong locality due to the sharp tip and high positioning ability unique to high-resolution microscopes, and do not adversely affect normal patterns using the position information of defect inspection equipment and defect correction equipment. Only targeted particles can be removed from the photomask. Since particles are removed by a method other than cleaning, there is no side problem such as reduction of the light-shielding film due to cleaning or phase change.
Examples using the present invention will be described below.

パーティクルを見つけた欠陥検査装置や欠陥修正装置の位置情報に従い、原子間力顕微鏡のステージをパーティクルのある位置に移動する。原子間力顕微鏡の観察モードでパーティクル1を含む領域を観察し、ガラス基板4上のパーティクルの位置を認識する。図1に示すように原子間力顕微鏡探針2をパーティクル1の側面に当てて、そのまま付着したパーティクルを押して移動させることで除去する。押し当てたときの力の勾配をモニターし、力の勾配が最大になる方向に常に探針2を制御してパーティクル1を移動除去する。   The stage of the atomic force microscope is moved to the position where the particle is located according to the position information of the defect inspection apparatus or defect correction apparatus that found the particle. The region including the particle 1 is observed in the observation mode of the atomic force microscope, and the position of the particle on the glass substrate 4 is recognized. As shown in FIG. 1, the atomic force microscope probe 2 is applied to the side surface of the particle 1, and the adhered particle is removed by being pushed and moved. The force gradient at the time of pressing is monitored, and the probe 2 is always controlled in the direction in which the force gradient is maximized to move and remove the particles 1.

パーティクルがプラスまたはマイナスに帯電している場合には、その静電的な特性を利用してパーティクルの除去を行う。パーティクルを見つけた欠陥検査装置や欠陥修正装置の位置情報に従い、導電性探針を備えた原子間力顕微鏡のステージをパーティクルのある位置に移動する。原子間力顕微鏡の観察モードでパーティクルを含む領域を観察し、パーティクル1の位置を認識する。図2に示すように導電性の探針5に正または負の電圧を印加し、電荷を帯びたパーティクル1との間の静電斥力(図2(a))または静電引力(図2(b))を利用してフォトマスク上のパーティクル1を移動させて除去する。   When the particles are positively or negatively charged, the particles are removed using their electrostatic characteristics. The stage of the atomic force microscope equipped with the conductive probe is moved to the position where the particle is located according to the position information of the defect inspection apparatus or defect correction apparatus that found the particle. The region including the particles is observed in the observation mode of the atomic force microscope, and the position of the particle 1 is recognized. As shown in FIG. 2, a positive or negative voltage is applied to the conductive probe 5, and electrostatic repulsion between the charged particles 1 (FIG. 2 (a)) or electrostatic attraction (FIG. 2 ( Use b)) to move and remove the particle 1 on the photomask.

フォトマスク上に強固に付着した(固着した)パーティクルに対しては原子間力顕微鏡探針でスクラッチングにより剥ぎ取りを行う。パーティクルを見つけた欠陥検査装置や欠陥修正装置の位置情報に従い、パーティクルよりも硬い材質でできた探針を有する原子間力顕微鏡のステージをパーティクルのある位置に移動する。原子間力顕微鏡の観察モードでパーティクル1を含む領域を観察し、パーティクルの位置を認識する。図3に示すようにフォトマスク上に強固に付着したパーティクル1をパーチティクルよりも固い探針2で削り取ることでフォトマスク上に付着したパーティクル1を除去する。   The particles firmly adhered (fixed) on the photomask are removed by scratching with an atomic force microscope probe. The atomic force microscope stage having a probe made of a material harder than the particle is moved to a position where the particle is present in accordance with the position information of the defect inspection apparatus or defect correction apparatus that has found the particle. The region including the particle 1 is observed in the observation mode of the atomic force microscope, and the position of the particle is recognized. As shown in FIG. 3, the particles 1 firmly adhered on the photomask are scraped off with the probe 2 that is harder than the particle, thereby removing the particles 1 adhered on the photomask.

パーティクルが小さく基板への付着力がそんなに強くない場合には、ナノピンセット技術を利用することによりパーティクルを除去することができる。パーティクルを見つけた欠陥検査装置や欠陥修正装置の位置情報に従い、ピンセット機能を持つ探針と普通の探針を併せ持つ原子間力顕微鏡のステージをパーティクルのある位置に移動する。普通の探針の原子間力顕微鏡の観察モードでパーティクルを含む領域を観察し、パーティクルの位置を認識する。図4に示すようにナノピンセットとして例えば非特許文献2に示されているようなカーボンナノチューブでできた微細なピンセット6をパーティクルの位置に移動し、付着したパーティクル1を挟み込みピックアップして除去する。   When the particles are small and the adhesion force to the substrate is not so strong, the particles can be removed by using nanotweezer technology. In accordance with the position information of the defect inspection apparatus or defect correction apparatus that has found the particle, the stage of the atomic force microscope having both the probe having the tweezers function and the ordinary probe is moved to the position where the particle is present. A region including particles is observed in an observation mode of an atomic force microscope with a normal probe, and the position of the particle is recognized. As shown in FIG. 4, fine tweezers 6 made of carbon nanotubes as shown in Non-Patent Document 2, for example, are moved to the position of the particles as nanotweezers, and the adhered particles 1 are sandwiched and picked up and removed.

集束イオンビーム装置で行われている透過電子顕微鏡用サンプル作製技術を応用した手法もパーティクル除去に利用することができる。パーティクルを見つけた欠陥検査装置や欠陥修正装置の位置情報に従い、デポジション機能やエッチング機能を有する電子ビーム装置またはイオンビーム装置と真空内で複合した原子間力顕微鏡のステージをパーティクルのある位置に移動する。原子間力顕微鏡の観察モードでパーティクルを含む領域を観察し、パーティクルの位置を認識する。図5(a)に示すようにまず走査プローブ顕微鏡探針2をフォトマスク上に付着したパーティクルに接触させた状態でデポジション用ガス供給系8からデポジション原料ガスを流しながら電子ビームまたはイオンビーム7でデポジション膜9を形成し接着する。パーティクルが探針に接着した状態で強い力でパーティクル1をガラス基板から引き離し、パーティクル1を移動させる。図5(b)に示すようにパーティクル移動先でエッチング用ガス供給系10からエッチングガスを流しながら電子ビームまたはイオンビーム7のエッチングで接着部分のデポジション膜9をエッチングし、パーティクル1を引き離す。   A technique applying a transmission electron microscope sample preparation technique performed in a focused ion beam apparatus can also be used for particle removal. Move the atomic force microscope stage combined with an electron beam device or ion beam device with a deposition function and an etching function in vacuum according to the position information of the defect inspection device or defect correction device that found the particle to the position where the particle is located To do. In the observation mode of the atomic force microscope, the region including the particles is observed to recognize the position of the particles. As shown in FIG. 5 (a), an electron beam or an ion beam is first introduced while flowing the deposition source gas from the deposition gas supply system 8 with the scanning probe microscope probe 2 in contact with the particles adhering to the photomask. In step 7, a deposition film 9 is formed and bonded. With the particles adhering to the probe, the particles 1 are moved away from the glass substrate with a strong force, and the particles 1 are moved. As shown in FIG. 5B, the deposition film 9 is etched by the electron beam or ion beam 7 while flowing the etching gas from the etching gas supply system 10 at the particle movement destination, and the particles 1 are separated.

溶液とガラス基板の界面のゼータ電位を制御してパーティクルを遊離除去することもできる。パーティクルを見つけた欠陥検査装置や欠陥修正装置の位置情報に従い、適当なpHを持つ酸性またはアルカリ性溶液11で満たした電気化学走査トンネル顕微鏡のステージをパーティクルのある位置に移動する。電気化学走査トンネル顕微鏡の観察モードでパーティクル1を含む領域を観察し、パーティクル1の位置を認識する。図6に示すように参照電極12で電圧をモニターながらパーティクル1の近くに電気化学走査トンネル顕微鏡の探針5を配置し、導電性の探針5で溶液とガラス基板の界面のゼータ電位をコントロールしてフォトマスク上に付着したパーティクル1を遊離させ除去する。   It is also possible to liberate and remove particles by controlling the zeta potential at the interface between the solution and the glass substrate. The stage of the electrochemical scanning tunneling microscope filled with the acidic or alkaline solution 11 having an appropriate pH is moved to the position where the particles are located in accordance with the position information of the defect inspection apparatus or defect correction apparatus where the particles are found. The region including the particle 1 is observed in the observation mode of the electrochemical scanning tunneling microscope, and the position of the particle 1 is recognized. As shown in FIG. 6, the probe 5 of the electrochemical scanning tunneling microscope is placed near the particle 1 while monitoring the voltage with the reference electrode 12, and the zeta potential at the interface between the solution and the glass substrate is controlled by the conductive probe 5. Then, the particles 1 adhering to the photomask are released and removed.

磁性金属でできたパーティクルに対しては、その磁気的な性質をパーティクル除去に利用する。パーティクルを見つけた欠陥検査装置や欠陥修正装置の位置情報に従い、非磁性の原子間力顕微鏡探針と走査磁気力顕微鏡探針を備えた装置のステージをパーティクルのある位置に移動する。非磁性の原子間力顕微鏡探針でパーティクルを含む領域を観察し、パーティクルの位置を認識する。次に図7(a)に示すように強磁性探針13を磁性体でできたパーティクル1に近づけ磁気的な引力を利用してフォトマスク上に付着したパーティクル1を移動除去する。図7(b)に示すように強磁性探針13と磁性体でできたパーティクル1の磁気的な斥力を利用しても同様にパーティクルを除去できる。   For particles made of magnetic metal, the magnetic properties are used for particle removal. In accordance with the position information of the defect inspection apparatus or defect correction apparatus that found the particle, the stage of the apparatus including the nonmagnetic atomic force microscope probe and the scanning magnetic force microscope probe is moved to the position where the particle is present. A region containing particles is observed with a non-magnetic atomic force microscope probe to recognize the position of the particles. Next, as shown in FIG. 7 (a), the ferromagnetic probe 13 is brought close to the particle 1 made of a magnetic material, and the particle 1 attached on the photomask is moved and removed using a magnetic attraction. As shown in FIG. 7 (b), the particles can be similarly removed by using the magnetic repulsive force of the particles 1 made of the ferromagnetic probe 13 and the magnetic material.

パーティクルが有機物の場合には、オゾンガス雰囲気下でのVUV光洗浄の原理を利用する。パーティクルを見つけた欠陥検査装置や欠陥修正装置の位置情報に従い、走査近接場顕微鏡のステージをパーティクルのある位置に移動する。走査近接場顕微鏡観察のシアフォースモードでパーティクルを含む領域を観察し、パーティクルの位置を認識する。図8に示すようにオゾンガス供給系16からオゾンガスを流しながら走査近接場顕微鏡探針先端14からVUV光源15のエバネッセント光を直下のパーティクル1に供給してフォトマスク上に付着した有機系のパーティクル1を昇華物に変え除去する。   If the particles are organic, use the principle of VUV light cleaning in an ozone gas atmosphere. The stage of the scanning near-field microscope is moved to a position where particles are present according to the position information of the defect inspection apparatus or defect correction apparatus that has found the particles. The region including the particles is observed in the shear force mode of the scanning near-field microscope observation, and the position of the particles is recognized. As shown in FIG. 8, organic particles 1 adhered to the photomask by supplying evanescent light from the scanning near-field microscope probe tip 14 to the particles 1 immediately below while flowing ozone gas from the ozone gas supply system 16 to the particles 1 immediately below. To sublimate and remove.

パーティクルに導電性があり、パーティクルのサイズが非常に小さい場合には導電性探針による電界蒸発現象を利用する。パーティクルを見つけた欠陥検査装置や欠陥修正装置の位置情報に従い、導電性の探針を備えた原子間力顕微鏡のステージをパーティクルのある位置に移動する。原子間力顕微鏡の観察モードでパーティクル1を含む領域を観察し、パーティクル1の位置を認識する。図9に示すように導電性の探針5にパルス電源17で強いパルス状の電界を印加し電界蒸発でフォトマスク上に付着したパーティクル1を除去する。   When the particle is conductive and the particle size is very small, the electric field evaporation phenomenon by the conductive probe is used. In accordance with the position information of the defect inspection apparatus or defect correction apparatus that found the particle, the stage of the atomic force microscope equipped with the conductive probe is moved to the position where the particle is present. The region including the particle 1 is observed in the observation mode of the atomic force microscope, and the position of the particle 1 is recognized. As shown in FIG. 9, a strong pulsed electric field is applied to the conductive probe 5 by a pulse power source 17, and the particles 1 adhering to the photomask are removed by field evaporation.

探針をパーティクルの側面に当てて押しつけて付着したパーティクルを移動させて除去する場合の説明図である。It is explanatory drawing in the case of moving and removing the particle which adhered by pressing a probe tip to the side of a particle, and moving. 探針に電圧を印加し、パーティクルとの間の静電的な相互作用を利用して除去する場合の説明図である。It is explanatory drawing in the case of applying a voltage to a probe and removing using the electrostatic interaction between particles. 探針のスクラッチングによりパーティクル除去する場合の説明図である。It is explanatory drawing in the case of removing particles by scratching the probe. ピンセット機能を有する探針でパーティクルを摘み上げて除去する場合の説明図である。It is explanatory drawing in the case of picking up and removing a particle with the probe which has a tweezers function. 探針をパーティクルに接触させた状態で電子ビームまたはイオンビームのデポジション機能で接着し、強い力で引き離し除去する場合の説明図である。It is explanatory drawing when adhere | attaching by the deposition function of an electron beam or an ion beam in the state which contacted the particle, and pulling apart and removing with a strong force. 電解質溶液中で導電性の探針でゼータ電位をコントロールして付着したパーティクルを遊離させて除去する場合の説明図である。It is explanatory drawing in the case of controlling the zeta potential with an electroconductive probe in an electrolyte solution, and removing the adhering particles. 強磁性を備えた走査プローブ顕微鏡探針の磁気的な相互作用を利用して付着したパーティクルを除去する場合の説明図である。It is explanatory drawing in the case of removing the adhering particle using the magnetic interaction of the scanning probe microscope probe provided with ferromagnetism. オゾンガス雰囲気中で走査近接場顕微鏡のVUVエバネッセント光で付着した有機系のパーティクルを昇華物に変換除去する場合の説明図である。It is explanatory drawing in the case of converting and removing the organic particle adhering with the VUV evanescent light of the scanning near-field microscope in the ozone gas atmosphere to the sublimation. 導電性の走査プローブ顕微鏡探針に強いパルス状の電界を印加し電界蒸発で付着したパーティクルを除去する場合の説明図である。It is explanatory drawing in the case of applying the strong pulse-like electric field to a conductive scanning probe microscope probe, and removing the particles adhering by electric field evaporation.

符号の説明Explanation of symbols

1 パーティクル
2 原子間力顕微鏡探針
3 ガラス基板
4 正常パターン
5 導電性を有する原子間力顕微鏡探針
6 ピンセット機能を有する探針
7 電子ビームまたはイオンビーム
8 デポジション用ガス供給系
9 デポジション膜
10 エッチング用ガス供給系
11 電解質溶液
12 参照電極
13 強磁性を備えた走査プローブ顕微鏡探針
14 走査近接場顕微鏡探針
15 VUV光源
16 オゾンガス供給系
17 パルス電源
1 Particle 2 Atomic Force Microscope Probe 3 Glass Substrate 4 Normal Pattern 5 Conductive Atomic Force Microscope Probe 6 Probe with Tweezer Function 7 Electron Beam or Ion Beam 8 Deposition Gas Supply System 9 Deposition Film DESCRIPTION OF SYMBOLS 10 Etching gas supply system 11 Electrolyte solution 12 Reference electrode 13 Scanning probe microscope probe provided with ferromagnetism 14 Scanning near-field microscope probe 15 VUV light source 16 Ozone gas supply system 17 Pulse power supply

Claims (9)

走査プローブ顕微鏡探針をパーティクルの側面に当てて押しつけてフォトマスク上に付着したパーティクルを移動させることで除去することを特徴とするフォトマスクのパーティクル除去方法。   A method for removing particles from a photomask, wherein the particles removed from the photomask are moved by pressing a scanning probe microscope probe against a side surface of the particles to move the particles. 導電性の走査プローブ顕微鏡探針に正または負の電圧を印加し電荷を帯びたパーティクルとの間の静電引力または静電斥力を利用してフォトマスク上のパーティクルを移動させて除去することを特徴とするフォトマスクのパーティクル除去方法。   Applying positive or negative voltage to the conductive scanning probe microscope probe to remove particles by moving the particles on the photomask using electrostatic attraction or repulsion between charged particles A feature of a photomask particle removal method. フォトマスク上に固着したパーティクルをパーティクルよりも固い走査プローブ顕微鏡探針で削り取ることでフォトマスク上に固着したパーティクルを除去することを特徴とするフォトマスクのパーティクル除去方法。   A particle removal method for a photomask, characterized in that particles fixed on the photomask are removed by scraping the particles fixed on the photomask with a scanning probe microscope probe harder than the particles. ピンセット機能を持つ走査プローブ顕微鏡探針でフォトマスク上に付着したパーティクルをピックアップして除去することを特徴とするフォトマスクのパーティクル除去方法。   A photomask particle removal method comprising picking up and removing particles adhering to a photomask with a scanning probe microscope probe having a tweezers function. 走査プローブ顕微鏡探針をフォトマスク上に付着したパーティクルに接触させた状態で電子ビームまたはイオンビームのデポジション機能で接着し、パーティクルが探針に接着した状態で移動させてパーティクルを除去することを特徴とするフォトマスクのパーティクル除去方法。   The scanning probe microscope probe is bonded with the electron beam or ion beam deposition function in contact with the particles adhering to the photomask, and the particles are moved while they are adhered to the probe to remove the particles. A feature of a photomask particle removal method. パーティクル周辺を適当なpHの酸性またはアルカリ性溶液で満たし、導電性の走査プローブ顕微鏡探針でゼータ電位をコントロールしてフォトマスク上に付着したパーティクルを遊離させて除去することを特徴とするフォトマスクのパーティクル除去方法。   A photomask characterized by filling the periphery of the particles with an acidic or alkaline solution having an appropriate pH and controlling the zeta potential with a conductive scanning probe microscope probe to release and remove particles adhering to the photomask. Particle removal method. 強磁性を備えた走査プローブ顕微鏡探針の磁気的な相互作用を利用してフォトマスク上に付着したパーティクルを除去することを特徴とするフォトマスクのパーティクル除去方法。   A method of removing particles from a photomask, comprising removing particles adhering to the photomask using a magnetic interaction of a scanning probe microscope probe provided with ferromagnetism. オゾンガス雰囲気中で走査近接場顕微鏡探針先端からVUVエバネッセント光を直下のパーティクルに供給してフォトマスク上に付着した有機系のパーティクルを昇華物に変換除去することを特徴とするフォトマスクのパーティクル除去方法。   Particle removal from a photomask characterized by supplying VUV evanescent light from the tip of a scanning near-field microscope probe to the particles directly below it in an ozone gas atmosphere to convert organic particles adhering to the photomask to sublimates. Method. 導電性の走査プローブ顕微鏡探針に強いパルス状の電界を印加し電界蒸発でフォトマスク上に付着したパーティクルを除去することを特徴とするフォトマスクのパーティクル除去方法。   A photomask particle removal method comprising applying a strong pulsed electric field to a conductive scanning probe microscope probe and removing particles adhering to the photomask by field evaporation.
JP2003319360A 2003-09-11 2003-09-11 Method for removing particle from photomask Pending JP2005084582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003319360A JP2005084582A (en) 2003-09-11 2003-09-11 Method for removing particle from photomask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003319360A JP2005084582A (en) 2003-09-11 2003-09-11 Method for removing particle from photomask

Publications (1)

Publication Number Publication Date
JP2005084582A true JP2005084582A (en) 2005-03-31

Family

ID=34418318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003319360A Pending JP2005084582A (en) 2003-09-11 2003-09-11 Method for removing particle from photomask

Country Status (1)

Country Link
JP (1) JP2005084582A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349419A (en) * 2005-06-14 2006-12-28 Research Institute Of Biomolecule Metrology Co Ltd Three-dimensional sample observation system and three-dimensional sample observation method
JP2007057747A (en) * 2005-08-24 2007-03-08 Toppan Printing Co Ltd Correcting method for photomask
JP2007057821A (en) * 2005-08-24 2007-03-08 Toshiba Corp Method for correcting mask defect and method for manufacturing semiconductor device
JP2007205849A (en) * 2006-02-01 2007-08-16 Seiko Instruments Inc Multifunctional cantilever, scanning probe microscope, and method for cutting object to be processed
JP2008026671A (en) * 2006-07-24 2008-02-07 Toppan Printing Co Ltd Method and device for removing minute foreign matter
JP2008102402A (en) * 2006-10-20 2008-05-01 Toppan Printing Co Ltd Method for manufacturing halftone phase shift mask
JP2008181948A (en) * 2007-01-23 2008-08-07 Sii Nanotechnology Inc Particle removing method
JP2008311521A (en) * 2007-06-15 2008-12-25 Aoi Electronics Co Ltd Particle removal method, minute tweezer apparatus, atomic force microscope, and charged particle beam apparatus
JP2009063627A (en) * 2007-09-04 2009-03-26 Dainippon Printing Co Ltd Defect correction method and manufacturing method for photomask
JP2009295840A (en) * 2008-06-06 2009-12-17 Toshiba Corp Substrate processing method and mask manufacturing method
JP2010054773A (en) * 2008-08-28 2010-03-11 Toshiba Corp Method for removing foreign material and method for manufacturing semiconductor device
JP2010078388A (en) * 2008-09-25 2010-04-08 Dainippon Printing Co Ltd Method of evaluating adhesion of pattern
JP2010170019A (en) * 2009-01-26 2010-08-05 Toshiba Corp Method for removing foreign substance of lithography original and method for manufacturing lithography original
WO2010095661A1 (en) 2009-02-17 2010-08-26 富士フイルム株式会社 Metal member
JP2011081282A (en) * 2009-10-09 2011-04-21 Hoya Corp Method, device, and head for correcting defect of photomask, device for detecting defect of photomask, and method for manufacturing photomask
JP2012203163A (en) * 2011-03-25 2012-10-22 Toppan Printing Co Ltd Foreign matter removing method and foreign matter removing device for photomask
JP2015227799A (en) * 2014-05-30 2015-12-17 大日本印刷株式会社 Foreign matter removal method using scan type probe microscope
JP2016072517A (en) * 2014-09-30 2016-05-09 芝浦メカトロニクス株式会社 Substrate processing apparatus and substrate processing method
JP2016095228A (en) * 2014-11-14 2016-05-26 大日本印刷株式会社 Work method using scanning type probe microscope, and scanning type probe microscope
DE102018206278A1 (en) 2018-04-24 2019-10-24 Carl Zeiss Smt Gmbh Method and apparatus for removing a particle from a photolithographic mask
US11040379B2 (en) 2007-09-17 2021-06-22 Bruker Nano, Inc. Debris removal in high aspect structures
EP3748431B1 (en) 2016-01-29 2021-09-08 Bruker Nano, Inc. Debris removal from high aspect structures
WO2021257996A1 (en) * 2020-06-18 2021-12-23 Bruker Nano, Inc. Device, and method of manufacture, for use in mechanically cleaning nanoscale debris from a sample surface
DE102020208568A1 (en) 2020-07-08 2022-01-13 Carl Zeiss Smt Gmbh Apparatus and method for removing a single particle from a substrate
CN114433570A (en) * 2022-04-06 2022-05-06 深圳市龙图光电有限公司 Method and equipment for cleaning foreign matters under mask for semiconductor chip
US11391664B2 (en) 2007-09-17 2022-07-19 Bruker Nano, Inc. Debris removal from high aspect structures
TWI787181B (en) * 2016-05-20 2022-12-21 美商瑞弗股份有限公司 Debris removal from high aspect structures
JP2023507257A (en) * 2019-12-23 2023-02-22 ウェイモ エルエルシー Systems and methods for contact immersion lithography

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05306925A (en) * 1992-04-30 1993-11-19 Toshiba Corp Interatomic force microscope
JPH06260464A (en) * 1993-03-09 1994-09-16 Hitachi Ltd Method and device for removing foreign matter
JPH08254817A (en) * 1994-12-27 1996-10-01 Siemens Ag Method and apparatus for cleaning of photomask
JP2002025966A (en) * 2000-07-12 2002-01-25 Hitachi Ltd Brush cleaning method
JP2002214760A (en) * 2001-01-12 2002-07-31 Seiko Instruments Inc Method for correcting black defect of mask
JP2002214759A (en) * 2001-01-17 2002-07-31 Seiko Instruments Inc Method for repairing peeling of antireflection coating of mask
JP2002350218A (en) * 2001-05-28 2002-12-04 Yoshikazu Nakayama Mass measuring method and device for nano-material
JP2003158063A (en) * 2001-11-22 2003-05-30 Seiko Instruments Inc Black defect correcting method of mask for euv lithography
JP2003177513A (en) * 2001-12-10 2003-06-27 Seiko Instruments Inc Method of correcting defect of photomask
JP2004279539A (en) * 2003-03-13 2004-10-07 Seiko Instruments Inc Secondary processing method for corrected part of photomask defect by charge particle mask defect correcting device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05306925A (en) * 1992-04-30 1993-11-19 Toshiba Corp Interatomic force microscope
JPH06260464A (en) * 1993-03-09 1994-09-16 Hitachi Ltd Method and device for removing foreign matter
JPH08254817A (en) * 1994-12-27 1996-10-01 Siemens Ag Method and apparatus for cleaning of photomask
JP2002025966A (en) * 2000-07-12 2002-01-25 Hitachi Ltd Brush cleaning method
JP2002214760A (en) * 2001-01-12 2002-07-31 Seiko Instruments Inc Method for correcting black defect of mask
JP2002214759A (en) * 2001-01-17 2002-07-31 Seiko Instruments Inc Method for repairing peeling of antireflection coating of mask
JP2002350218A (en) * 2001-05-28 2002-12-04 Yoshikazu Nakayama Mass measuring method and device for nano-material
JP2003158063A (en) * 2001-11-22 2003-05-30 Seiko Instruments Inc Black defect correcting method of mask for euv lithography
JP2003177513A (en) * 2001-12-10 2003-06-27 Seiko Instruments Inc Method of correcting defect of photomask
JP2004279539A (en) * 2003-03-13 2004-10-07 Seiko Instruments Inc Secondary processing method for corrected part of photomask defect by charge particle mask defect correcting device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ウシオ電機株式会社: "VUV/O3洗浄用エキシマ光照射装置", ライトエッジ, JPN7009001663, October 2002 (2002-10-01), JP, ISSN: 0001287525 *
吉田彰 他5名: "VUV照射によるステンシルマスクのコンタミ洗浄", 応用物理学会学術講演会講演予稿集, vol. 63, no. 2, JPN6009014799, September 2002 (2002-09-01), JP, pages 626, ISSN: 0001287524 *

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349419A (en) * 2005-06-14 2006-12-28 Research Institute Of Biomolecule Metrology Co Ltd Three-dimensional sample observation system and three-dimensional sample observation method
JP4607705B2 (en) * 2005-08-24 2011-01-05 株式会社東芝 Mask defect correcting method and semiconductor device manufacturing method
JP2007057747A (en) * 2005-08-24 2007-03-08 Toppan Printing Co Ltd Correcting method for photomask
JP2007057821A (en) * 2005-08-24 2007-03-08 Toshiba Corp Method for correcting mask defect and method for manufacturing semiconductor device
US7629088B2 (en) 2005-08-24 2009-12-08 Kabushiki Kaisha Toshiba Mask defect repairing method and semiconductor device manufacturing method
JP2007205849A (en) * 2006-02-01 2007-08-16 Seiko Instruments Inc Multifunctional cantilever, scanning probe microscope, and method for cutting object to be processed
JP4697708B2 (en) * 2006-02-01 2011-06-08 セイコーインスツル株式会社 Multifunctional cantilever, scanning probe microscope, and method of cutting a workpiece
JP2008026671A (en) * 2006-07-24 2008-02-07 Toppan Printing Co Ltd Method and device for removing minute foreign matter
JP2008102402A (en) * 2006-10-20 2008-05-01 Toppan Printing Co Ltd Method for manufacturing halftone phase shift mask
JP2008181948A (en) * 2007-01-23 2008-08-07 Sii Nanotechnology Inc Particle removing method
JP2008311521A (en) * 2007-06-15 2008-12-25 Aoi Electronics Co Ltd Particle removal method, minute tweezer apparatus, atomic force microscope, and charged particle beam apparatus
US8657962B2 (en) 2007-06-15 2014-02-25 Aoi Electronics Co., Ltd. Particle removing method, particle removing device, atomic force microscope, and charged particle beam apparatus
JP2009063627A (en) * 2007-09-04 2009-03-26 Dainippon Printing Co Ltd Defect correction method and manufacturing method for photomask
US11391664B2 (en) 2007-09-17 2022-07-19 Bruker Nano, Inc. Debris removal from high aspect structures
US11577286B2 (en) 2007-09-17 2023-02-14 Bruker Nano, Inc. Debris removal in high aspect structures
US11040379B2 (en) 2007-09-17 2021-06-22 Bruker Nano, Inc. Debris removal in high aspect structures
US11964310B2 (en) 2007-09-17 2024-04-23 Bruker Nano, Inc. Debris removal from high aspect structures
JP2009295840A (en) * 2008-06-06 2009-12-17 Toshiba Corp Substrate processing method and mask manufacturing method
JP2010054773A (en) * 2008-08-28 2010-03-11 Toshiba Corp Method for removing foreign material and method for manufacturing semiconductor device
JP2010078388A (en) * 2008-09-25 2010-04-08 Dainippon Printing Co Ltd Method of evaluating adhesion of pattern
JP2010170019A (en) * 2009-01-26 2010-08-05 Toshiba Corp Method for removing foreign substance of lithography original and method for manufacturing lithography original
WO2010095661A1 (en) 2009-02-17 2010-08-26 富士フイルム株式会社 Metal member
JP2011081282A (en) * 2009-10-09 2011-04-21 Hoya Corp Method, device, and head for correcting defect of photomask, device for detecting defect of photomask, and method for manufacturing photomask
JP2012203163A (en) * 2011-03-25 2012-10-22 Toppan Printing Co Ltd Foreign matter removing method and foreign matter removing device for photomask
JP2015227799A (en) * 2014-05-30 2015-12-17 大日本印刷株式会社 Foreign matter removal method using scan type probe microscope
JP2016072517A (en) * 2014-09-30 2016-05-09 芝浦メカトロニクス株式会社 Substrate processing apparatus and substrate processing method
JP2016095228A (en) * 2014-11-14 2016-05-26 大日本印刷株式会社 Work method using scanning type probe microscope, and scanning type probe microscope
EP3748431B1 (en) 2016-01-29 2021-09-08 Bruker Nano, Inc. Debris removal from high aspect structures
TWI787181B (en) * 2016-05-20 2022-12-21 美商瑞弗股份有限公司 Debris removal from high aspect structures
DE102018206278A1 (en) 2018-04-24 2019-10-24 Carl Zeiss Smt Gmbh Method and apparatus for removing a particle from a photolithographic mask
KR20200142075A (en) * 2018-04-24 2020-12-21 칼 짜이스 에스엠티 게엠베하 Method and apparatus for removing particles from a photolithographic mask
TWI714049B (en) * 2018-04-24 2020-12-21 德商卡爾蔡司Smt有限公司 Methods, apparatuses and computer programs for removing a particle from a photolithographic mask
US11899359B2 (en) 2018-04-24 2024-02-13 Carl Zeiss Smt Gmbh Method and apparatus for removing a particle from a photolithographic mask
CN112020672A (en) * 2018-04-24 2020-12-01 卡尔蔡司Smt有限责任公司 Method and apparatus for removing particles from a photolithographic mask
US11429020B2 (en) 2018-04-24 2022-08-30 Carl Zeiss Smt Gmbh Method and apparatus for removing a particle from a photolithographic mask
WO2019206614A1 (en) 2018-04-24 2019-10-31 Carl Zeiss Smt Gmbh Method and apparatus for removing a particle from a photolithographic mask
KR102625613B1 (en) * 2018-04-24 2024-01-16 칼 짜이스 에스엠티 게엠베하 Method and apparatus for removing particles from photolithography masks
JP2023507257A (en) * 2019-12-23 2023-02-22 ウェイモ エルエルシー Systems and methods for contact immersion lithography
JP7490060B2 (en) 2019-12-23 2024-05-24 ウェイモ エルエルシー Systems and methods for contact immersion lithography - Patents.com
WO2021257996A1 (en) * 2020-06-18 2021-12-23 Bruker Nano, Inc. Device, and method of manufacture, for use in mechanically cleaning nanoscale debris from a sample surface
US11886126B2 (en) 2020-07-08 2024-01-30 Carl Zeiss Smt Gmbh Apparatus and method for removing a single particulate from a substrate
DE102020208568A1 (en) 2020-07-08 2022-01-13 Carl Zeiss Smt Gmbh Apparatus and method for removing a single particle from a substrate
CN114433570A (en) * 2022-04-06 2022-05-06 深圳市龙图光电有限公司 Method and equipment for cleaning foreign matters under mask for semiconductor chip

Similar Documents

Publication Publication Date Title
JP2005084582A (en) Method for removing particle from photomask
US7173253B2 (en) Object-moving method, object-moving apparatus, production process and produced apparatus
US20100186768A1 (en) Foreign matter removing method for lithographic plate and method for manufacturing lithographic plate
US20090241274A1 (en) Method of removing particles on photomask
JP2011159986A (en) Method of removing contamination from substrate and device
JP2008157673A (en) Method for forming grasping surface of sample grasping member
JP2017123354A (en) Sample withdrawal method and plasma processing device
JPH09330895A (en) Electrostatic particle remover
DE102014102651B4 (en) Lithography system with embedded cleaning module and lithography exposure process
Clericò et al. Electron beam lithography and its use on 2D materials
Bartenwerfer et al. Automated handling and assembly of customizable AFM-tips
US20220130706A1 (en) Etching apparatus and methods of cleaning thereof
Forsén et al. Dry release of suspended nanostructures
JP2004249457A (en) Object transporting method, object transporter, manufacturing method and device manufactured
US20220350249A1 (en) Micro and nano structuring of a diamond substrate
JP5048455B2 (en) Photomask defect correction apparatus and method
US10262853B2 (en) Removing particulate contaminants from the backside of a wafer or reticle
JP2006332505A (en) Sample holder, inspection device and inspection method using it
US20090183322A1 (en) Electrostatic surface cleaning
JP2005033072A (en) Foreign substance removal method and device on transfer mask for charged particle beam
Döring et al. Efficient transfer of carbon nanotubes using an LOR resist sacrificial layer
JP2010054773A (en) Method for removing foreign material and method for manufacturing semiconductor device
Kato et al. Nanofabrication using atomic force microscopy lithography for molecular devices
KR20120081647A (en) Method for removing a defect of photomask
JP2004335513A (en) Holding method and holder of reticle and aligner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090804

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091124