JP2015225252A - 基板型導波路素子、及び、光変調器 - Google Patents

基板型導波路素子、及び、光変調器 Download PDF

Info

Publication number
JP2015225252A
JP2015225252A JP2014110539A JP2014110539A JP2015225252A JP 2015225252 A JP2015225252 A JP 2015225252A JP 2014110539 A JP2014110539 A JP 2014110539A JP 2014110539 A JP2014110539 A JP 2014110539A JP 2015225252 A JP2015225252 A JP 2015225252A
Authority
JP
Japan
Prior art keywords
waveguide
polarization
section
core
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014110539A
Other languages
English (en)
Inventor
岡 徹
Toru Oka
徹 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2014110539A priority Critical patent/JP2015225252A/ja
Publication of JP2015225252A publication Critical patent/JP2015225252A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

【課題】一方の導波路に入力された偏波を他方の導波路から出力する基板型導波路素子において、偏波消光比を低下させることなく素子サイズを抑制する。【解決手段】基板型導波路素子は、四角形の断面を有する第1の導波路13b1、四角形の断面を有する第2の導波路13b2、及び、第1の導波路13b1及び第2の導波路13b2を連通し、第1の導波路13b1及び第2の導波路13b2のより厚さが薄い第1のスラブ部13b3を含む第1の区間である方向性結合部1bと、第2の導波路13b2の延長である第3の導波路13a2、及び、第1のスラブ部13b3の延長である第1のテーパー部13a3を含む第2の区間である偏波変換部1aとを備えている。【選択図】図1

Description

本発明は、偏波ビームコンバイナ又は偏波ビームスプリッタとして機能する基板型導波路素子に関する。また、そのような基板型導波路素子を備えた光変調器に関する。
光通信により伝送される情報量は増加の一途を辿っている。こうした情報量の増加に対応するために、信号速度を高速化したり、波長多重によりチャンネル数を増やしたりする対策が進められている。特に、高速情報通信を目的とした次世代の100Gbpsデジタルコヒーレント伝送技術では、偏波多重によって単位時間あたりの情報量を倍増させることが検討されている。ここで、偏波多重とは、電界が互いに直交する2つの偏波(例えば、TM偏波とTE偏波)の各々に異なる情報を重畳することを指す。
しかしながら、偏波多重を行う場合、光変調器の構成が複雑化し、その結果、装置サイズの大型化や製造コストの上昇などの問題を招来する。そこで、加工が容易であり、かつ、集積化による装置サイズの小型化、及び、大量生産による製造コストの低下が可能なシリコン製の導波路を備えた基板型導波路素子によって、偏波多重を行う光変調器が実現されている。
偏波多重を行う光変調器には、例えば、或る情報が重畳されたTM偏波と他の情報が重畳されたTE偏波とを合波する偏波ビームコンバイナが搭載される。基板型導波路素子をこのような偏波ビームコンバイナとして機能させる技術としては、例えば、非特許文献1に記載の技術が知られている。
図10に非特許文献1に記載の基板型導波路素子6を示す。図10(a)は、基板型導波路素子6の断面図であり、図10(b)〜図10(c)は、基板型導波路素子6の平面図(下部クラッド61及び上部クラッド62の図示省略)である。
基板型導波路素子6は、図10(a)に示すように、シリカ(SiO)製の下部クラッド61と、下部クラッド61上に形成されたシリコン(Si)製の2つのコア63〜64と、2つのコア63〜64を埋設するように下部クラッド61上に積層されたシリカ製の上部クラッド62とにより構成されている。2つのコア63〜64は、図10(a)に示すように、互いに合同な長方形の断面を有し、図10(b)〜図10(c)に示すように、一部の区間(同図において点線で囲まれた区間)において側面同士が互いに近接するように配置される。2つのコア63〜64の側面同士が互いに近接する区間のことを、以下、「並走区間」とも記載する。
基板型導波路素子6においては、2つのコア63〜64の並走区間の長さLがTM0偏波に対する結合長に一致するように設計されている。このため、図10(b)に示すように、第1のコア63にTM0偏波とTE0偏波とを入力すると、TM0偏波が第2のコア64から出力され、TE0偏波が第1のコア63から出力される。すなわち、基板型導波路素子6は、TM0偏波とTE0偏波とに分波する偏波ビームスプリッタとして機能する。また、図10(c)に示すように、第1のコア63にTM0偏波を入力し、第2のコア64にTE0偏波を入力すると、TM0偏波とTE0偏波とが第2のコア64から出力される。すなわち、基板型導波路素子6は、TM0偏波とTE0偏波とを合波する偏波ビームコンバイナとしても機能する。
なお、本明細書において、「TE偏波」とは、コアを伝播する光の進行方向に直交する方向のうち、上部クラッドと下部クラッドとの境界面に平行な方向の電界成分が主となる偏波モードのことを指す。特に、実効屈折率が最大となるTE偏波のことを、「TE0偏波」と呼ぶ。また、本明細書において、「TM偏波」とは、コアを伝播する光の進行方向に直交する方向のうち、上部クラッドと下部クラッドとの境界面に垂直な方向の電界成分が主となる偏波モードのことを指す。特に、実効屈折率が最大となるTM偏波のことを、「TM0偏波」と呼ぶ。
基板型導波路素子6においては、上述したように、第1のコア63に入力されたTM0偏波が第2のコア64から出力されるのに対して、第1のコア63に入力されたTE0偏波は主に第1のコア63から出力され、第2のコア64に入力されたTE0偏波は主に第2のコア64から出力される。以下、その理由を説明する。
まず、各偏波モード(以下、着目する偏波モードのことを「対象モード」と記載する)に対する基板型導波路素子5の結合効率Tは、2つのコア63〜64の並走区間の長さLの関数として、概ね(1)式によって与えられる。ここで、「結合効率」とは、第1のコア63に入力された対象モードのパワーに対する、第2のコア64から出力される対象モードのパワーの比(あるいは、第2のコア64に入力された対象モードのパワーに対する、第1のコア63から出力される対象モードのパワーの比)を意味する。(1)式におけるF及びqの定義は、(2)式及び(3)式に示すとおりである。
Figure 2015225252
Figure 2015225252
Figure 2015225252
ここで、δは、対象モードに対する第1のコア63の実効屈折率(第2のコア64が存在しない場合の実効屈折率)と対象モードに対する第2のコア64の実効屈折率(第1のコア63が存在しない場合の実効屈折率)との差をΔN、対象モードの波長をλとして、(4)式により定義される係数である。
Figure 2015225252
また、χ(「結合係数」と呼ばれる)は、第1のコア63のみが存在する場合(第2のコア64が存在しない場合)のコア断面の屈折率分布をN、第1のコア63及び第2のコア64の両方が存在する場合のコア断面の屈折率分布をN、第1のコア63を導波する対象モードの電界ベクトルをE、第2のコア64を導波する対象モードの電界ベクトルをEとして、(5)式により与えられる。
Figure 2015225252
なお、結合係数χは、第1のコア63を導波する対象モードの電界ベクトルEと、第2のコア64を導波する対象モードの電界ベクトルEとの内積を、コア断面において積分したものである。したがって、2つのコア63〜64の各々を導波する対象モードの浸み出しが大きいほど、結合係数χは大きくなる。2つのコア63〜64の各々を導波する対象モード間の光結合が強いとは、(5)式により定義された結合係数χが大きくなることに他ならない。
また、(1)式に現れるsin(qL)は、2つのコア63〜64の並走区間の長さLが(6)式により定義されるLに一致するときに1になる。(6)式により定義されるLを「結合長」と呼ぶ。なお、結合長Lは、偏波モード毎に与えられる。以下、TM0偏波に対する結合長をL(TM0)と記載し、TE0偏波に対する結合長をL(TE0)と記載する。
Figure 2015225252
基板型導波路素子6において、第1のコア63に入力されたTM0偏波が第2のコア64から出力される理由は、以下のとおりである。すなわち、基板型導波路素子6においては、2つのコア63〜64の断面形状が同一である。このため、各偏波モードに対する2つのコア63〜64の実効屈折率差ΔNは0になる。したがって、(1)式に現れるFは1になる。また、基板型導波路素子6においては、2つのコア63〜64の並走区間の長さLがTM0偏波に対する結合長L(TM0)に一致するように設計されている。したがって、(1)式に現れるsin(qL)は1になる。このため、TM0偏波に対する結合効率T(TM0)は1になる。これは、第1のコア63に入力されたTM0偏波が漏れなく第2のコア64から出力されることを意味する。
基板型導波路素子6において、第1のコア63に入力されたTE0偏波が主に第1のコア63から出力され、第2のコア64に入力されたTE0偏波が主に第2のコア64から出力される理由は、以下のとおりである。すなわち、TE0偏波に対する結合長L(TE0)は、TM0偏波に対する結合長L(TM0)とは一致せず、TM0偏波に対する結合長L(TM0)よりも長くなる。このため、TE0偏波に対する結合効率T(TE0)は、(7)式に示すように、TM0偏波に対する結合効率T(TM0)=1よりも小さくなる。このため、第1のコア63に入力されたTE0偏波は、その一部分のみが第2のコア64から出力され、残りの部分は第1のコア63から出力されることになる。同様に、第2のコア64に入力されたTE偏波は、その一部分のみが第1のコア63から出力され、残りこの部分は第2のコア64から出力されることになる。
Figure 2015225252
Hiroshi Fukuda, et al., "Ultrasmall polarization splitter based on silicon wire waveguides," OPTICS EXPRESS, Vol. 14, No. 25, 12401(2006).
従来の基板型導波路素子5を偏波ビームコンバイナとして機能させる際に重要となる性能指標としては、TM0偏波の損失及び偏波消光比が挙げられる。
TM0偏波の損失は、第2のコア64から出力されるTM0偏波のパワーが、第1のコア63に入力されるTM0偏波のパワーと比べてどれだけ減少するかを示す指標であり、その値は小さい方が好ましい。
一方、偏波消光比は、図10に示すように、同じパワーのTM0偏波とTE0偏波とを第1のコア63に入力したときに、第2のコア64から出力されるTM0偏波のパワーと比べて第2のコア64から出力されるTE0偏波のパワーがどれだけ小さくなるかを示す指標であり、(8)式により定義される。なお、(8)式における「出力ポート」とは、第2のコア64の出力端のことを指す。
Figure 2015225252
偏波消光比が低くなるほど、信号として第2のコア64に入力されたTE0偏波は、TM0偏波に混入したノイズとして第1のコア63に入力されたTE0偏波に汚染され易くなる。したがって、偏波消光比は、高い方が望ましい。
偏波ビームコンバイナ6の偏波消光比を向上させる第1の方法としては、非特許文献1に記載のように、複数の偏波ビームコンバイナ6を連結する方法が挙げられる。この方法を採用する場合、連結する偏波ビームコンバイナ6の段数に応じて偏波消光比が向上する。しかしながら、この方法を採用する場合、装置サイズの大型化が避けられない。
また、偏波ビームコンバイナ6の偏波消光比を向上させる第2の方法としては、2つのコア63〜64の各々の幅を大きくしたり、2つのコア63〜64の間隔を広くしたりする方法が挙げられる。2つのコア63〜64の各々の幅を大きくすると、2つのコア63〜64の各々へのTE0偏波の閉じ込め及びTM0の偏波の閉じ込めが強くなる。この際、TE0偏波の閉じ込めが強くなる程度が、TM0偏波の閉じ込めが強くなる程度を上回るので、偏波消光比が向上する。また、2つのコア63〜64の間隔を広げると、2つのコア63〜64の各々を導波するTE0偏波間の光結合及びTM0偏波間の光結合が弱くなる。この際、TE0偏波間の光結合が弱まる程度が、TE0偏波間の光結合が弱まる程度を上回るので、偏波消光比が向上する。しかしながら、2つのコア63〜64の各々の幅を大きくしたり、2つのコア63〜64の間隔を広くしたりすると、上述したように、2つのコア63〜64の各々へのTM0偏波の閉じ込めが強くなったり、2つのコア63〜64の各々を導波するTM0偏波同士の光結合が弱くなったりすることが避けられない。このため、TM0偏波の結合長が増大し、装置サイズが大型化するという問題を生じる。
なお、上記の問題は、TM0偏波とTE0偏波とを合波する場合に限らず、より高次の偏波を第1のコア63に入力し、第2のコア64から出力する場合にも生じ得る。
本発明は、上記の問題に鑑みてなされたものであり、その目的は、偏波ビームコンバイナ又は偏波ビームスプリッタとして機能する基板型導波路素子において、偏波消光比の低下を招来することなく、従来よりも素子長の短い基板型導波路素子を実現することにある。
上記課題を解決するために、本発明に係る基板型導波路素子は、下部クラッドと、上記下部クラッド上に形成されたコアと、上記コアを埋設するように上記下部クラッド上に積層された上記クラッドとを備えた基板型導波路素子において、当該基板型導波路素子は、第1の区間と、上記第1の区間の出力側に配置された第2の区間とを含み、上記第1の区間において、上記コアは、四角形の断面を有する第1の導波路、四角形の断面を有する第2の導波路、及び、厚みが上記第1の導波路及び上記第2の導波路の厚みより薄い第1のスラブ部であって、側面を介して上記第1の導波路及び上記第2の導波路の双方に連通する第1のスラブ部からなり、上記第2の区間において、上記コアは、上記第2の導波路の延長である第3の導波路、及び、上記第1のスラブ部の延長である第1のテーパー部であって、側面を介して上記第3の導波路に連通し、上記第1の区間から遠ざかるに従って幅が狭くなる第1のテーパー部からなる、ことを特徴とする。
また、本発明に係る基板型導波路素子は、上記第1の区間の入力側に配置された第3の区間を更に含み、上記第3の区間において、上記コアは、上記第1の導波路の延長である第4の導波路、及び、上記第1のスラブ部の延長である第2のテーパー部であって、側面を介して上記第4の導波路に連通し、上記第1の区間から遠ざかるに従って幅が狭くなる第2のテーパー部からなる、ことが好ましい。
上記第1の区間の入力側に配置された上記第3の区間を更に含む場合、本発明に係る基板型導波路素子は、以下の効果を奏する。
すなわち、上記第1の区間は、上記第1の導波路に入力されたTE1偏波を上記第2の導波路から出力する方向性結合器として機能する。また、上記第2の区間は、上記第3の導波路に入力されたTE1偏波をTM0偏波に変換する偏波変換器として機能し、上記第3の区間は、上記第4の導波路に入力されたTM0偏波をTE1偏波に変換する偏波変換器として機能する。したがって、上記基板型導波路素子は、上記第3の区間の上記第4の導波路に入力されたTM0偏波を上記第2の区間の上記第3の導波路から出力する偏波ビームコンバイナ又は偏波ビームスプリッタとして機能する。
そして、上記第1の区間においては、上記第1の導波路と上記第2の導波路とが、これらの2つの導波路よりも厚みの薄い第1のスラブ部によって連通されている。このため、これら2つの導波路を導波するTE0偏波間の光結合、及び、これら2つの導波路を導波するTE1偏波間の光結合は、何れも強められる。この際、TE1偏波間の光結合が強められる程度が、TE0偏波間の光結合が強められる程度を上回る。したがって、これら2つの導波路を導波するTE0偏波間の光結合に比べ、これら2つの導波路を導波するTE1偏波間の光結合を強くすることができ、その結果、偏波消光比を低下させることなく、これら2つの導波路を導波するTE1偏波間の結合長を短縮することができる。ここで、上記第1の区間における短縮されたTE1偏波に対する結合長は、従来の基板型導波路素子におけるTM0偏波に対する結合長よりも短く、後者の結合長から前者の結合長を引いた差は、上記第2の区間の長さと上記第3の区間の長さとの和よりも大きい。したがって、偏波消光比の低下を招来することなく、従来よりも素子長の短い基板型導波路素子を実現することができる。
また、上記第3の区間に代えて、TE0偏波をTE1偏波に変換する偏波変換素子を含む場合、本発明に係る基板型導波路素子は、TE0偏波をTM0偏波に変換する基板型導波路素子として機能する。この場合にも、偏波消光比の低下を招来することなく、従来よりも素子長の短い基板型導波路素子を実現するという効果を奏する。
本発明に係る基板型導波路素子は、上記第1の導波路の入力側の端面と上記第4の導波路の出力側の端面とが互いに合同でなく、当該基板型導波路素子は、上記第1の区間と上記第3の区間との間に介在する第4の区間を更に含み、上記第4の区間において、上記コアは、上記第1の導波路の延長であると共に上記第4の導波路の延長である第5の導波路、及び、上記第1のスラブ部の延長であると共に上記第2のテーパー部の延長である第2のスラブ部であって、側面を介して上記第5の導波路に連通する第2のスラブ部とからなり、上記第5の導波路の出力側の端面は、上記第1の導波路の入力側の端面と合同であり、上記第5の導波路の入力側の端面は、上記第4の導波路の出力側の端面と合同である、ように構成されていてもよい。
上記の構成によれば、上記第1の導波路の入力側の端面と上記第4の導波路の出力側の端面とが互いに合同でない場合に生じ得る反射を抑制することが可能になる。
本発明に係る基板型導波路素子は、上記第1の導波路の中心軸と上記第4の導波路の中心軸とが同一直線上になく、当該基板型導波路素子は、上記第1の区間と上記第3の区間との間に介在する第4の区間を更に含み、上記第4の区間において、上記コアは、上記第1の導波路の延長であると共に上記第4の導波路の延長である第5の導波路、及び、上記第1のスラブ部の延長であると共に上記第2のテーパー部の延長である第2のスラブ部であって、側面を介して上記第5の導波路に連通する第2のスラブ部とからなり、上記第5の導波路及び上記第2のスラブ部は、滑らかに曲がっている、ように構成されていてもよい。
上記の構成によれば、上記第1の導波路の中心軸と上記第4の導波路の中心軸とが同一直線上にない場合に生じ得る反射を抑制することが可能になる。また、第4の導波路の中心軸方向、及び、第3の導波路の中心軸方向に依存することなく本発明に係る基板型導波路素子を配置できるため、配置の自由度を上げることができる。
本発明に係る基板型導波路素子は、上記上部クラッド及び上記下部クラッドは、シリカ製であり、上記第1の導波路、上記第2の導波路及び上記スラブ部は、シリコン製である、ことが好ましい。
上記の構成によれば、加工が容易であり、かつ、集積化による装置サイズの小型化、及び、大量生産による製造コストの低下が可能な基板型導波路素子を実現することができる。
また、上記の構成によれば、上部クラッド、下部クラッド、コアが何れもシリカ製である石英系平面光導波路(PLC:planar lightwave circuit)と比べて、より高い偏波消光比を得ることができる。
クラッドがシリカ(屈折率1.44程度)製である場合、コアをシリコン(屈折率3.44程度)製としたとき(上記の構成)の方がコアをシリカ製としたとき(石英系平面光導波路)よりも高い偏波消光比を得られる理由は、以下のとおりである。すなわち、シリコン製のコアとシリカ製のクラッドとの比屈折率差は、シリカ製のコアとシリカ製のクラッドとの比屈折率差よりも大きくなる。したがって、TE偏波及びTM偏波に対する閉じ込めの強さは、コアをシリコン製としたときの方がコアをシリカ製としたときよりも強くなる。したがって、シリコン製のコアとシリカ製のクラッドとを用いることによって、第1の導波路及び第2の導波路における結合係数χを大きくすることが可能であり、TE1偏波を遷移させるために必要となる結合長を短くすることが可能である。また、シリコン製のコアとシリカ製のクラッドとを用いることによって、上記第2の区間が備えている上記第3の導波路及び上記第1のテーパー部の長さ、並びに、上記第3の区間が備えている上記第4の導波路及び上記第2のテーパー部の長さを短くすることができる。
以上のように、本発明に係る基板型導波路素子は、シリコン製のコアとシリカ製のクラッドとを用いることによって、その素子サイズをさらに抑制することができる。
なお、TM0偏波とTE0偏波とを合波する偏波ビームコンバイナの一部として、上記の基板型導波路素子を備えている光変調器も本発明の範疇に含まれる。このような光変調器においても、上記の基板型導波路素子と同様の効果が得られる。
本発明によれば、偏波ビームコンバイナ又は偏波ビームスプリッタとして機能する基板型導波路素子において、偏波消光比の低下を招来することなく、従来よりも素子長の短い基板型導波路素子を実現できる。
(a)は、本発明の一実施形態に係る基板型導波路素子の構成を示す斜視図である。(b)は、(a)に示す基板型導波路素子が備えるコアの構成を示す斜視図である。 (a)は、図1に示す基板型導波路素子が備える第1の導波路を導波するTE0偏波(波長1580nm)の電界(Ex成分)分布を示すグラフである。(b)は、図1に示す基板型導波路素子が備える第1の導波路を導波するTE1偏波(波長1580nm)の電界(Ex成分)分布を示すグラフである。(c)は、(a)及び(b)に示す電界分布を得るために用いた第1の導波路の形状を示す断面図である。 (a)は、実施例に係る基板型導波路素子が備えている方向性結合部の平面図であり、(b)は、その方向性結合部の断面図である。(c)は、(a)及び(b)に示す方向性結合部の偏波消光比及び結合長を、2つの導波路間の間隔gapを変えながら算出することにより得たグラフである。 (a)は、比較例に係る基板型導波路素子が備えている方向性結合部の平面図であり、(b)は、その方向性結合部の断面図である。(c)は、(a)及び(b)に示す方向性結合部の偏波消光比及び結合長を、2つの導波路間の間隔gapを変えながら算出することにより得たグラフである。 図3に示す方向性結合部(実施例)及び図4に示す方向性結合部(比較例)の結合長を、偏波消光比に対してプロットすることにより得たグラフである。 (a)は、実施例に係る基板型導波路素子が備えている偏波変換部の平面図であり、(b)は、その偏波変換部の断面図である。(c)は、(a)及び(b)に示す偏波変換部がTM0偏波をTE1偏波に変換する場合の損失を、偏波変換部の長さL1を変えながら算出することにより得たグラフである。 (a)は、本発明の一実施形態に係る基板型導波路素子の構成を示す斜視図である。(b)は、(a)に示す基板型導波路素子が備えるコアの構成を示す斜視図である。 (a)及び(b)は、本発明の一実施形態に係る基板型導波路素子が備えるコアの構成を示す平面図である。 図1に示す基板型導波路素子を備えた光変調器の構成を示すブロック図である。 (a)は、従来の基板型導波路素子の断面図であり、(b)及び(c)は、その基板型導波路素子の平面図である。 図9に示す基板型導波路素子の平面図である。
〔第1の実施形態〕
本発明の一実施形態に係る基板型導波路素子について、図面に基づいて説明すれば以下のとおりである。なお、本実施形態においては、TM0偏波とTE0偏波とを合波する基板型導波路素子について説明する。
〔本実施形態に係る基板型導波路素子の構成〕
まず、本実施形態に係る基板型導波路素子1の構成について、図1を参照して説明する。図1(a)は、基板型導波路素子1の構成を示す斜視図であり、図1(b)は、図1(a)に示す基板型導波路素子が備えるコア13の構成を示す斜視図である。なお、図1(b)において、コア13は、後述する3つの領域に対応するコア13a、13b及び13cに分割して示されている。
基板型導波路素子1は、図1(a)に示すように、シリカ(SiO)製の下部クラッド11と、下部クラッド11上に形成されたシリコン(Si)製のコア13と、コア13を埋設するように下部クラッド11上に積層されたシリカ(SiO)製の上部クラッド12とを備えている。
本実施形態において、基板型導波路素子1は、第1の区間である方向性結合部1b、第2の区間である偏波変換部1a、及び、第3の区間である偏波変換部1cを含む。なお、偏波変換部1a、方向性結合部1b及び偏波変換部1cの各区間は、基板型導波路素子1の構成を説明するために仮想的に分割したものである。偏波変換部1a、方向性結合部1b及び偏波変換部1cの各区間は、一連の製造プロセスによって一括して製造されることが好ましい。また、偏波変換部1aが備えているコア13a、方向性結合部1bが備えているコア13b、及び、偏波変換部1cが備えているコア13cは、構造上の不連続が生じないように形成されていることが好ましい。
(方向性結合部)
図1(a)及び(b)に示すように、方向性結合部1bは、下部クラッド11b、上部クラッド12b及びコア13bを備えている。コア13bは、長方形の断面を有する第1の導波路13b1と、長方形の断面を有する第2の導波路13b2と、板状部材であるスラブ部13b3とを備えている。第1のスラブ部であるスラブ部13b3は、厚みが第1の導波路13b1及び第2の導波路13b2の厚みより薄く、その側面を介して第1の導波路13b1及び第2の導波路13b2の双方に連通するものである。より詳しくは、スラブ部13b3は、(i)スラブ部13b3の一方の側面と、第1の導波路13b1の一方の側面の一部とを介して、第1の導波路13b1に連通しており、(ii)スラブ部13b3の他方の側面と、第2の導波路13b2の一方の側面の一部とを介して、第2の導波路13b2に連通している。
以下において、第1の導波路13b1に光が入射する面を入射端面13b4と呼称し、第2の導波路13b2に光が入射する面を入射端面13b5と呼称し、スラブ部13b3に光が入射する面を入射端面13b6と呼称する。また、第1の導波路13b1から光が出射する面を出射端面13b7と呼称し、第2の導波路13b2から光が出射する面を出射端面13b8と呼称し、スラブ部13b3から光が出射する面を出射端面13b9と呼称する。
方向性結合部1bが備えている第1の導波路13b1、第2の導波路13b2、及びスラブ部13b3は、予め定められた設計波長において、以下の条件(1)〜(3)を満たすように設計されている。なお、以下において、TE0偏波に対する実効屈折率のことをneff(TE0)とも表記し、TE1偏波に対する実効屈折率のことをneff(TE1)とも表記し、TM0偏波に対する実効屈折率のことをneff(TM0)とも表記する。
(1)第1の導波路13b1におけるneff(TE1)と、第2の導波路13b2におけるneff(TE1)との差ΔNが小さい。
(2)方向性結合部1bの長さ(第1の導波路13b1及び第2の導波路13b2の長さ)がTE1偏波の結合長L(TE1)に近い。
(3)TE1偏波に対する第1の導波路13b1及び第2の導波路13b2の光結合は、TE0偏波に対する第1の導波路13b1及び第2の導波路13b2の光結合より強い。
条件(1)及び(2)を満たすことによって、第1の導波路13b1に入力されたTE1偏波の大部分を第2の導波路13b2に遷移させることが可能になる。その理由は、条件(1)を満たすことによって、(1)式に現れるFが1に近づき、条件(2)を満たすことによって、(1)式に現れるsin(qL)が1に近づくので、(1)式により定義される結合効率Tが1に近づくからである。なお、第1の導波路13b1におけるneff(TE1)と、第2の導波路13b2におけるneff(TE1)とが一致し、ΔN=0となることが好ましく、方向性結合部1bの長さは、設計波長(例えば1580nm)におけるL(TE1)と一致していることが好ましい。ΔN=0であり、かつ、方向性結合部1bの長さがL(TE1)と一致している場合、Fが1になり、その結果として結合効率Tが1になる。すなわち、第1の導波路13b1に入力されたTE1偏波の全てを第2の導波路13b2に遷移させることが可能になる。
ΔNをより小さくするためには、第1の導波路13b1、第2の導波路13b2及びスラブ部13b3からなるコア13bの断面形状が左右対称であればよい。言い換えれば、第1の導波路13b1の断面形状と、第2の導波路13b2の断面形状とが合同であり、かつ、スラブ部13b3の厚さが一定であればよい。
なお、条件(1)に関して、第1の導波路13b1におけるneff(TE1)、及び、第2の導波路13b2におけるneff(TE1)は、(4)式により定義されるδが(5)式により定義されるχよりも小さくなる程度に近ければ十分である。言い換えれば、δがχよりも小さくなる程度に(4)式に表されるΔNが小さければよい。また、条件(2)に関して、方向性結合部1bの長さがTE1偏波の結合長に近いとは、方向性結合部の長さがTE1偏波の結合長L(TE1)に対して、80%以上、120%以下の範囲内となることを意味する。この範囲は、(1)式に現れるsin(qL)が0.9以上となるように定められている。(1)式に現れるsin(qL)が0.9以上となる方向性結合部の結合効率Tは、十分に高いと言える。
また、条件(3)を満たすことによって、TE1偏波が第1の導波路13b1から第2の導波路13b2へ遷移する場合の結合長L(TE1)は、TE0偏波が第1の導波路13b1から第2の導波路13b2へ遷移する場合の結合長L(TE0)より短くなる。したがって、条件(3)を満たすことによって、方向性結合部1bのサイズ(長さ)を短く設計することが可能になる。方向性結合部1bのサイズを抑制するために、TE1偏波に対する第1の導波路13b1及び第2の導波路13b2の光結合は、より強いことが好ましい。
また、方向性結合部1bのサイズをL(TE1)と一致する長さとした場合、TE0偏波が第1の導波路13b1から第2の導波路13b2へ遷移する確率を抑制することができる。したがって、TE0偏波に対するTE1偏波の偏波消光比を向上させることができる。偏波消光比を向上させる点において、TE1偏波に対する第1の導波路13b1及び第2の導波路13b2の光結合と、TE0偏波に対する第1の導波路13b1及び第2の導波路13b2の光結合との差は、より大きいことが好ましい。
条件(3)を満たすために、方向性結合部1bは、スラブ部13b3を備えている。スラブ部13b3が第1の導波路13b1及び第2の導波路13b2の間に介在し、スラブ部13b3の厚さが第1の導波路13b1及び第2の導波路13b2の厚さより薄いことによって、第1の導波路13b1におけるTE1偏波の電界(E成分)分布は、第1の導波路13b1におけるTE0偏波の電界(E成分)分布と比較して、第2の導波路13b2の方向へ広がる。TE1偏波の電界(E成分)分布は、TE1偏波が導波する導波路の幅に強く依存する。第1の導波路13b1と連通するスラブ部13b3を設けられていることは、TE1偏波が導波する導波路の実効的な幅を広げることを意味し、第1の導波路13b1を導波するTE1偏波電界(E成分)分布を、第1の導波路13b1から第2の導波路13b2の方向へ大きく広げることを可能とする。
したがって、第1の導波路13b1におけるTE1偏波の電界と、第2の導波路13b2におけるTE1偏波の電界との重なりが大きくなり、TE1偏波の光結合は強くなる。言い換えれば、第1の導波路13b1を導波するTE1偏波の電界ベクトルEと、第2の導波路13b2を導波するTE1偏波の電界ベクトルEとの内積が大きくなる。その結果として(5)式に現れる結合係数χが大きくなる。すなわち、TE1偏波に対する第1の導波路13b1及び第2の導波路13b2の光結合が強くなる。結合係数χが大きくなることは、(3)式に現れるqが大きくなることを意味し、(1)式に現れるsin(qL)を1にするために要求されるLを抑制することが可能となる。また、設計波長から外れたTE1偏波に生じる損失を減少させることも可能になる。
なお、従来技術に係る偏波ビームコンバイナ6において2つのコア間を遷移するTM0偏波の電界(E成分)分布は、TE1偏波の電界(E成分)分布と比較して、よりコアの内側に閉じ込められている。したがって、TM0偏波に対する第1の導波路13b1及び第2の導波路13b2の光結合は、TE1偏波に対する光結合と比較しても弱い。
なお、条件(3)は、第1の導波路13b1におけるneff(TE0)が第1の導波路13b1におけるneff(TE1)より大きい、と言い換えることもできる。実効屈折率がより大きいことは、第1の導波路13b1を伝播する光の電界ベクトルが第1の導波路13b1内により閉じ込められていることを意味するためである。
また、条件(3)を満たすことによって、TE0偏波に対する第1の導波路13b1及び第2の導波路13b2の光結合を弱くすることが可能になる。したがって、(3)式に現れるqは小さくなり(1)式で表されるTE0偏波に対するTは、TE1偏波に対するTと比較して小さくなる。このことは、第1の導波路13b1を導波するTE1偏波が第2の導波路13b2に遷移しにくい、及び、第2の導波路13b2を導波するTE1偏波が第1の導波路13b1に遷移しにくいことを意味する。
基板型導波路素子1の方向性結合部1bのコア13bは、条件(1)及び条件(3)を同時に満たすべく、図1(b)に示すように、長方形の断面を有する第1の導波路13b1、長方形の断面を有する第2の導波路13b2、及び、第1の導波路13b1と第2の導波路13b2とをつなぐスラブ部13b3を備えている。本実施形態において、第1の導波路13b1の長方形の断面(例えば入射端面13b4、出射端面13b7など)と、第2の導波路13b2の長方形の断面(入射端面13b5、出射端面13b8など)とは合同であることが好ましい。言い換えれば、第1の導波路13b1の幅及び第2の導波路13b2の幅は等しいことが好ましく、第1の導波路13b1の厚さ及び第2の導波路13b2の厚さは等しいことが好ましい。スラブ部13b3の厚さは、第1の導波路13b1の厚さ、及び、第2の導波路13b2の厚さより薄い。したがって、コア13bの入射端面(13b4、13b5及び13b6)から出射端面(13b7、13b8及び13b9)へ向かう方向に直行する断面は、中央部が両端部よりへこんだU字型形状と表現できる。このように、コア13bの断面は、図1(b)に示すU字型形状であり、左右対称な形状であるため、条件(1)は満たされる。したがって、(4)式で定義されるδは、0又は0に近い小さい値となる。
次に、コア13bの断面をU字型形状とすることによって、条件(3)が満たされる理由について、図2を参照して説明する。本実施形態では、説明を明確にするためコア13bを左右方向に二等分した構成を用いる。以下において、スラブ部13b3を二等分したスラブ部のうち第1の導波路13b1の側面に接している方のスラブ部をスラブ部13b3’と表記する。図2(a)は、第1の導波路13b1及びスラブ部13b3’を導波するTE0偏波(波長1580nm)の電界(Ex成分)分布を示すグラフである。図2(b)は、第1の導波路コア13b1及びスラブ部13b3’を導波するTE1偏波(波長1580nm)の電界(Ex成分)分布を示すグラフである。図2(c)は、図2(a)及び(b)に示す電界分布を得るために用いたコア13bを左右方向に二等分したコア13b’の形状を示す断面図である。図2(a)〜(c)に示すコア13b’は、第1の導波路13b1と、スラブ部13b3’とからなる。
図2(a)に示すグラフを参照すると、第1の導波路13b1及びスラブ部13b3’を導波するTE0偏波に関して、スラブ部13b3’内に形成される電界が弱い(後述するTE1偏波と比較して弱い)こと、及び、第1の導波路13b1外への電界の浸み出しが少ないことが見てとれる。また、図2(b)に示すグラフを参照すると、第1の導波路13b1を伝播するTE1偏波に関して、スラブ部13b3’内に形成される電界が強い(上述のTE0偏波と比較して強い)こと、及び、第1の導波路13b1外への電界の浸み出し、特に第2の導波路13b2方向への浸み出しが多いことが見て取れる。ここで注目すべきは、TE1偏波の第1の導波路13b1外への浸み出しがスラブ部13b3’を介して第2の導波路13b2の方向へ有意に広がっている点である。これは、TE1偏波がTE0偏波に比べてより高次のTE偏波であり、高次な偏波モードほど電界の閉じ込めが弱くなるためである。
また、コア13bを左右方向に二等分されたコアは、互いに等価な構造である。したがって、第1の導波路13b1を伝播するTE1偏波の電界(Ex成分)分布と同様に第2の導波路13b2を伝播するTE1偏波の電界(Ex成分)分布は、第2の導波路13b2内にとどまらず、二等分されたスラブ部を介して第1の導波路13b1の方向へ広がっている。一方、第2の導波路13b2を導波するTE0偏波は、第2の導波路13b2外への電界の浸み出しは少なくなる。
以上のことから、第1の導波路13b1を導波するTE1偏波の電界分布と、第2の導波路13b2を導波するTE1偏波の電界分布との内積(E ・E)は、第1の導波路13b1を伝播するTE0偏波の電界分布と、第2の導波路13b2を導波するTE0偏波の電界分布との内積(E ・E)と比較して優位に大きくなる。したがって、方向性結合部1bにおいて、TE1偏波に対するχは、TE0偏波に対するχより有意に大きくなる。以上のことから、方向性結合部1bの長さをTE1偏波に対する結合長に設定した場合、TE1偏波よりχが小さなTE0偏波は、第1の導波路13b1から第2の導波路13b2へ遷移することができず、方向性結合部1bは、偏波消光比を向上させることが可能である。
(偏波変換部)
図1(a)及び(b)に示すように、第2の区間である偏波変換部1aは、第1の区間である方向性結合部1bの出力側に配置されており、下部クラッド11a、上部クラッド12a及びコア13aを備えている。コア13aは、第3の導波路13a2と第1のテーパー部13a3とを備えている。以下において、第3の導波路13a2に光が入射する面を入射端面13a6と呼称し、第1のテーパー部13a3に光が入射する面を入射端面13a7と呼称する。また、第3の導波路13a2から光が出射する面を出射端面13a9と呼称する。
第3の導波路13a2は、第2の導波路13b2を延長したものである。第2の導波路13b2との境界面における第3の導波路13a2の断面(入射端面13a6)は、第2の導波路13b2の断面(出射端面13b8)と合同である。第1のテーパー部13a3は、第1のスラブ部であるスラブ部13b3を延長したものであり、その側面を介して第3の導波路13a2に連通し、第1の区間である方向性結合部1bから遠ざかるに従って幅が狭くなるように構成されている。言い換えれば、第1のテーパー部13a3の幅は、スラブ部13b3との境界面から遠ざかるに従って狭くなるように構成されている。また、第1のテーパー部13a3の幅は、出射端面13a9において0になることが好ましい。スラブ部13b3との境界面における第1のテーパー部13a3の断面(入射端面13a7)は、スラブ部13b3の断面(出射端面13b9)に包含されている。
偏波変換部1aが備えている第3の導波路13a2及び第1のテーパー部13a3は、予め定められた設計波長において、以下の条件(4)〜(7)を満たすように設計されている。
(4)第3の導波路13a2の入射端面13a6及び第1のテーパー部13a3の入射端面13a7において、neff(TE1)>neff(TM0)であり、出射端面13a9において、neff(TE1)<neff(TM0)である。
(5)第3の導波路13a2及び第1のテーパー部13a3における光の伝播方向に対して垂直な断面の形状は、上下非対称である。
(6)第3の導波路13a2及び第1のテーパー部13a3の全区間において、neff(TE0)は、neff(TE1)及びneff(TM0)のいずれよりも大きい。
(7)第3の導波路13a2及び第1のテーパー部13a3の長さは、TE1偏波をTM0偏波に変換するために十分な長さである。
条件(4)及び(5)を満たすことによって、第3の導波路13a2及び第1のテーパー部13a3を入射端面側から出射端面側へ伝播するTE1偏波は、伝播するにしたがってTM0偏波に変換される。したがって、第3の導波路13a2及び第1のテーパー部13a3は、TE1偏波をTM0偏波へ変換する偏波変換部として機能する。
条件(6)を満たすことによって、第3の導波路13a2及び第1のテーパー部13a3を入射端面側から出射端面側へ伝播するTE0偏波は、TE1偏波及びTM0偏波のいずれにも変換されない。
条件(7)を満たすことによって、第3の導波路13a2の入射端面13a6及び第1のテーパー部13a3の入射端面13a7に入射されたTE1偏波は、TM0偏波に変換されて第3の導波路13a2の出射端面13a9から出力される。したがって、第3の導波路13a2から出射される光は、ほぼTE1偏波を含まない。
なお、条件(4)を満たすために、偏波変換部1aのコア13aは、第3の導波路13a2と第1のテーパー部13a3とを備えており、入射端面13a6及び13a7において第1のテーパー部13a3は、第3の導波路13a2に隣接し導波路13a1の方向へ延びていればよい。入射端面13a6及び13a7は、長方形の断面から突出部が導波路13a1の方向へ突出している階段形状と表現できる。
長方形の断面から突出部が突出していない場合と比較して、当該突出部が突出していることによって、TE1偏波の電界は、コア13a(第3の導波路13a2及び第1のテーパー部13a3)の内部に閉じこめられる。一方、TM0偏波の電界は、突出部の影響をあまり受けずコア13aの外部、すなわち下部クラッド11a及び上部クラッド12aにしみ出したままである。したがって、入射端面13a6及び13a7において、neff(TE1)>neff(TM0)が満たされる。
コア13aの出射端面13a9において、第1のテーパー部13a3の幅は0であり、長方形の断面から突出する突出部はない。出射端面13a9の形状は、neff(TE1)<neff(TM0)を満たすように設計されている。
突出部である第1のテーパー部13a3の幅は、方向性結合部1bとの境界面から遠ざかるにしたがって狭くなればよい。第1のテーパー部13a3の幅が狭くなることは、TE1偏波のコア13aの内部への閉じ込めを弱め、neff(TE1)を小さくする。一方、TM0偏波は、第1のテーパー部13a3の幅が狭くなることの影響をTE1偏波と比較して受けない。したがって、neff(TM0)は、第1のテーパー部13a3の幅が狭くなってもあまり変化しない。以上のように、neff(TE1)とneff(TM0)とは、第1のテーパー部13a3の幅に対して異なる依存性を有する。この依存性の違いを利用することによって、(a)コア13aは、その入射端面におけるneff(TE1)とneff(TM0)との大小関係と、(b)その出射端面におけるneff(TE1)とneff(TM0)との大小関係とを反転する。
以上のように構成された第3の導波路13a2及び第1のテーパー部13a3は、条件(4)を満たす。
また、条件(5)を満たすために、第1のテーパー部13a3は、下部クラッド11上に直接設けられており、その高さは、第1のテーパー部13a3の高さより低ければよい。当該構成によれば、コア13aの断面は、上下非対称な階段形状になる。
条件(6)を満たすために、第3の導波路13a2の長方形の断面において、幅は高さより長ければよい。長方形の断面の幅が高さより長いことによって、TE0偏波は、TM0偏波と比較して第3の導波路13a2の内部に閉じ込められる。したがって、コア13aの全域を通じてneff(TE0)>neff(TM0)が満たされる。また、TE0偏波は、TE偏波のうち実効屈折率が最も高い偏波である。したがって、コア13aの全域を通じてneff(TE0)>neff(TE1)が満たされる。以上のように、コア13aの全域を通じて、neff(TE0)は、neff(TE1)及びneff(TM0)のいずれよりも大きい。
条件(7)を満たすために、第3の導波路13a2及び第1のテーパー部13a3を伝播し、出射端面13a9から出射されるTE1偏波とTM0偏波との比率を表す損失は、0.1dB以下であれば十分である。損失を0.1dB以下に抑制可能な第1のテーパー部13a3の長さについては、実施例において後述する。
なお、条件(4)は、以下の条件(4’)のように言い換えることも可能である。
(4’)第3の導波路13a2の入射端面13a6及び第1のテーパー部13a3の入射端面13a7において、TE1偏波の電界は、TM0偏波の電界と比較して第3の導波路13a2及び第1のテーパー部13a3の内部に閉じ込められている。出射端面13a9に近づくにしたがってTE1偏波の電界は、第3の導波路13a2及び第1のテーパー部13a3から多くしみ出すようになり、出射端面13a9において、TE1偏波の電界は、TM0偏波の電界と比較して第3の導波路13a2から多くしみ出している。
図1(a)及び(b)に示すように、第3の区間である偏波変換部1cは、方向性結合部1bの入力側に配置されており、下部クラッド11c、上部クラッド12c及びコア13cを備えている。コア13cは、第4の導波路13c1と第2のテーパー部13c3とを備えている。以下において、第4の導波路に光が入射する面を入射端面13c5と呼称する。また、第4の導波路から光が出射する面を出射端面13c7と呼称し、第2のテーパー部13c3から光が出射する面を出射端面13c9と呼称する。
第4の導波路13c1は、第1の導波路13b1を延長したものである。第1の導波路13b1との境界面における第4の導波路13c1の断面(出射端面13c7)は、第1の導波路13b1の断面(入射端面13b4)と合同である。第2のテーパー部13c3は、第1のスラブ部であるスラブ部13b3を延長したものであり、その側面を介して第4の導波路13c1に連通し、第1の区間である方向性結合部1bから遠ざかるに従って幅が狭くなるように構成されている。言い換えれば、第2のテーパー部13c3の幅は、スラブ部13b3との境界面から遠ざかるに従って狭くなるように構成されている。また、第2のテーパー部13c3の幅は、入社端面13c5において0になることが好ましい。スラブ部13b3との境界面における第2のテーパー部13c3の断面(出射端面13c9)は、スラブ部13b3の断面(入社端面13b6)に包含されている。
図1(b)に示すように、偏波変換部1cは、偏波変換部1aの入射側と出射側とを反転させた構成である。したがって、偏波変換部1cは、予め定められた設計波長において、以下の条件(8)〜(11)を満たすように設計されている。
(8)第4の導波路13c1の入射端面13c5においてneff(TM0)>neff(TE1)であり、出射端面(13c7及び13c9)においてneff(TM0)<neff(TE1)である。
(9)第4の導波路13c1及び第2のテーパー部13c3における光の伝播方向に対して垂直な断面の形状は、第4の導波路13c1及び第2のテーパー部13c3の厚さ方向に対して非対称である。
(10)第4の導波路13c1及び第2のテーパー部13c3の全区間において、neff(TE0)は、neff(TE1)及びneff(TM0)のいずれよりも大きい。
(11)第4の導波路13c1及び第2のテーパー部13c3の長さは、TM0偏波をTE1偏波に変換するために十分な長さである。
条件(8)及び(9)を満たすことによって、第4の導波路13c1及び第2のテーパー部13c3を入射端面側から出射端面側へ伝播するTM0偏波は、伝播するにしたがってTE1偏波に変換される。したがって、第4の導波路13c1及び第2のテーパー部13c3は、TM0偏波をTE1偏波へ変換する偏波変換部として機能する。
条件(10)を満たすことによって、第4の導波路13c1の入射端面13c5に入射する光に、TE0偏波が含まれたとしても、第4の導波路13c1及び第2のテーパー部13c3を入射端面側から出射端面側へ伝播するTE0偏波は、TE1偏波及びTM0偏波のいずれにも変換されない。
条件(11)を満たすことによって、第4の導波路13c1の入射端面13c5に入射されたTM0偏波は、TE1偏波に変換されて第4の導波路13c1の出射端面13a9及び第2のテーパー部13c3の出射端面13c9から出力される。したがって、第4の導波路13c1及び第2のテーパー部13c3から出射される光は、ほぼTM0偏波を含まない。
偏波変換部1cは、偏波変換部1aの入射側と出射側とを反転させて配置した構成である。具体的には、偏波変換部1cの入射端面は、偏波変換部1aの出射端面に対応し、偏波変換部1cの出射端面は、偏波変換部1aの入射端面に対応する。したがって、偏波変換部1cが満たすべき条件(8)〜(11)は、偏波変換部1aが満たすべき条件(4)〜(7)に対応する。
条件(8)を満たすために、偏波変換部1cのコア13cは、第4の導波路13c1と第2のテーパー部13c3とを備えており、出射端面13c7及び13c9において第2のテーパー部13c3は、第4の導波路13c1に隣接し導波路13c2の方向へ延びていればよい。出射端面13c7及び13c9は、長方形の断面から突出部が導波路13c2の方向へ突出している階段形状と表現できる。
長方形の断面から突出部が突出していない場合と比較して、当該突出部が突出していることによって、TE1偏波の電界は、コア13c(第4の導波路13c1及び第2のテーパー部13c3)の内部に閉じこめられる。一方、TM0偏波の電界は、突出部の影響をあまり受けず第4の導波路13c1及び第2のテーパー部13c3の外部、すなわち下部クラッド11a及び上部クラッド12aにしみ出したままである。したがって、出射端面13c7及び13c9において、neff(TE1)>neff(TM0)が満たされる。
コア13cの入射端面13c5において、第2のテーパー部13c3の幅は0であり、長方形の断面から突出する突出部はない。入射端面13c5の形状は、neff(TE1)<neff(TM0)を満たすように設計されている。
突出部である第2のテーパー部13c3の幅は、方向性結合部1bとの境界面から遠ざかるにしたがって狭くなればよい。第2のテーパー部13c3の幅が狭くなることは、TE1偏波のコア13cの内部への閉じ込めを弱め、neff(TE1)を小さくする。一方、TM0偏波は、第1のテーパー部13a3の幅が狭くなることの影響をTE1偏波と比較して受けない。したがって、neff(TM0)は、第1のテーパー部13a3の幅が狭くなってもあまり変化しない。以上のように、neff(TE1)とneff(TM0)とは、第2のテーパー部13c3の幅に対して異なる依存性を有する。この依存性の違いを利用することによって、(a)コア13cは、その入射端面におけるneff(TE1)とneff(TM0)との大小関係と、(b)その出射端面におけるneff(TE1)とneff(TM0)との大小関係とを反転する。
以上のように構成された第4の導波路13c1及び第2のテーパー部13c3は、条件(8)を満たす。
また、条件(9)を満たすために、第2のテーパー部13c3は、下部クラッド11上に直接設けられており、その高さは、第2のテーパー部13c3の高さより低ければよい。当該構成によれば、コア13cの断面は、上下非対称な階段形状になる。
条件(10)を満たすために、第4の導波路13c1の長方形の断面において、幅は高さより長ければよい。長方形の断面の幅が高さより長いことによって、TE0偏波は、TM0偏波と比較して第4の導波路13c1の内部に閉じ込められる。したがって、コア13cの全域を通じてneff(TE0)>neff(TM0)が満たされる。また、TE0偏波は、TE偏波のうち実効屈折率が最も高い偏波である。したがって、コア13cの全域を通じてneff(TE0)>neff(TE1)が満たされる。以上のように、コア13cの全域を通じて、neff(TE0)は、neff(TE1)及びneff(TM0)のいずれよりも大きい。
条件(11)を満たすために、第4の導波路13c1及び第2のテーパー部13c3を伝播し、出射端面13c7及び13c9から出射されるTM0偏波とTE1偏波との比率を表す損失は、0.1dB以下であれば十分である。損失を0.1dB以下に抑制可能な第1のテーパー部13a3の長さについては、実施例において後述する。
なお、条件(8)は、以下の条件(8’)のように言い換えることも可能である。
(8’)第4の導波路13c1の出射端面13c7及び第2のテーパー部13c3の出射端面13c9において、TE1偏波の電界は、TM0偏波の電界と比較して第4の導波路13c1及び第2のテーパー部13c3の内部に閉じ込められている。入射端面13c5に近づくにしたがってTE1偏波の電界は、第4の導波路13c1及び第2のテーパー部13c3から多くしみ出すようになり、入射端面13c5において、TE1偏波の電界は、TM0偏波の電界と比較して第4の導波路13c1から多くしみ出している。
偏波変換部1c、方向性結合部1b及び偏波変換部1aを備えている基板型導波路素子1は、第4の導波路13c1の入射端面13c5に入射されたTM0偏波と、導波路13c2の入射端面13c6に入射されたTE0偏波とを合波し、最終的に第3の導波路13a2の出射端面13a9からTM0偏波及びTE0偏波を出射する。具体的には、第4の導波路13c1の入射端面13c5に入射されたTM0偏波は、偏波変換部1cの第4の導波路13c1及び第2のテーパー部13c3を導波する過程においてTM0偏波からTE1偏波へ変換される。当該TE1偏波は、偏波変換部1cの出射端面13c7及13c9から方向性結合部1bの入射端面13b4及び13b6へ入射し、第1の導波路13b1及びスラブ部13b3を導波する過程において第2の導波路13b2及びスラブ部13b3へ遷移する。当該TE1偏波は、方向性結合部1bの出射端面13b8及び13b9から偏波変換部1aの入射端面13a6及び13a7へ入射する。偏波変換部1aに入射されたTE1偏波は、第3の導波路13a2及び第1のテーパー部13a3を導波する過程において、TE1偏波からTM0偏波へ変換される。当該TM0偏波は、第3の導波路13a2の出射端面13a9から出力される。一方、導波路13c2の入射端面13c6に入射されたTE0偏波は、導波路13c2、第2の導波路13b2及び第3の導波路13a2を導波され、第3の導波路13a2の出射端面13a9から出射される。
方向性結合部1bは、TE1偏波に対する第1の導波路13b1及び第2の導波路13b2の光結合を強くすることが可能なため、方向性結合部の長さを抑制することが可能であり、結果として、基板型導波路素子1の長さを抑制することが可能である。
〔補足事項〕
偏波変換部1aが備えている第1のテーパー部13a3の幅が狭くなるに従い、neff(TE1)は小さくなる。その一方、neff(TM0)は、第1のテーパー部13a3の幅が変化した場合にneff(TE1)ほど変化しない。neff(TE1)は、neff(TM0)と比較して第1のテーパー部13a3の幅に強く依存する理由を以下に説明する。
TE1偏波の電界は、幅方向(x方向)の電界成分(E)が主であり、TM0偏波の電界は、厚さ方向(y方向)の電界成分(E)が主である。第3の導波路13a2に隣接している第1のテーパー部13a3は、第3の導波路13a2の実効的な幅(実行幅)を広げる方向に作用する。一般的にコアを狭くすると、光(電界)の閉じ込めが小さくなるが、特に第3の導波路13a2の実行幅を狭くした場合には、TM0偏波よりも、TE1偏波の方がその傾向が大きい。これは、電界の導波路とクラッドとの間の境界条件から説明できる。マクスウェルの方程式より、導波路側面(左右両方)における電界の境界条件は、以下の式(9)、及び式(10)のように表される。
Figure 2015225252
Figure 2015225252
ここで、Ex cl(側面)は、側面境界上のクラッド側のE、Ex co(側面)は、側面境界上のコア側のE、Ey cl(側面)は、側面境界上のクラッド側のE、Ey co(側面)は、側面境界上のコア側のE、Ncoは、コアの屈折率、Nclは、クラッドの屈折率をそれぞれ表している。
TE1偏波は、式(9)が大きく関係し、TM0偏波は、式(10)が大きく関係する。式(9)を見ると、Nco>Nclである為、コア側面境界でExは不連続になり、Ex cl(側面)>Ex co(側面)より、クラッド側に大きく電界が分布する。その為、第3の導波路13a2の実行幅が広い場合、外側に大きく分布していたEが導波路に分布することになり、導波路に大きく電界が閉じ込められる。一方で、式(10)を見ると、Eはコア側面境界で連続的に変化する。その為、第3の導波路13a2の実行幅の変化に対して、E成分は、E成分ほど変化しない。従って、第3の導波路13a2の実行幅を大きくすると、Eが主電界であるTM0偏波に比べて、Eが主電界であるTE1偏波の方が、導波路への光閉じ込めが大きくなる。以上のことから、neff(TE1)は、第1のテーパー部13a3の幅、言い換えれば第3の導波路13a2の実行幅への依存度がneff(TM0)より強いといえる。
〔副次的な効果と変形例〕
なお、本実施形態に係る基板型導波路素子1は、上述した効果の他に、以下の副次的な効果も奏する。
偏波消光比に関係するTE0偏波の結合長は、方向性結合部1bの第2の導波路13b2に入力した、偏波多重の為のTE0偏波の損失を表している。従来技術と比較して短い方向性結合部の長さであっても偏波消光比を向上可能な本発明は、より短い方向性結合部の長さでTE0偏波を低損失に偏波多重することが可能である。
方向性結合部1bのコア13bにおいて、スラブ部13b3の厚さは、第1の導波路13b1及び第2の導波路13b2の厚さより薄ければよい。偏波変換部1aのコア13aにおいて、第1のテーパー部13a3の厚さは、第3の導波路13a2の厚さより薄ければよい。偏波変換部1cのコア13cにおいて、第2のテーパー部13c3の厚さは、第4の導波路13c1の厚さより薄ければよい。したがって、例えば、リブ型位相変調器を含むシリコン光変調器の一部として基板型導波路素子1を構成する場合に、コア13bのスラブ部13b3、コア13aの第1のテーパー部13a3及びコア13cの第2のテーパー部13c3の厚さをリブ型位相変調器の高さと一致させることができる。この場合、スラブ部13b3、第1のテーパー部13a3及び第2のテーパー部13c3をリブ型位相変調器のリブと一括して形成することができるので、シリコン光変調器の製造が容易になる。
なお、偏波変換部1aは、導波路13a1及びテーパー部13a4を更に備えていることが好ましい。当該構成によれば、方向性結合部1bの第1の導波路13b1を伝播してきた偏波であって、第2の導波路13b2へ遷移しなかった偏波は、第1の導波路13b1の延長である導波路13a1を伝播する。したがって、第1の導波路13b1を伝播してきた偏波であって、第2の導波路13b2へ遷移しなかった偏波は、第1の導波路13b1と導波路13a1との境界面において反射することなく方向性結合部1bから出力されるため、ノイズの発生を抑制可能である。
また、偏波変換部1cは、導波路13c2及びテーパー部13c4を更に備えていることが好ましい。当該構成によれば、導波路13c2の入射端面13c6に入射された偏波(例えばTM0偏波)は、導波路13c2及びテーパー部13c4を伝播し、導波路13c2及びテーパー部13c4の出射端面から、第2の導波路13b2の入射端面13b5及びスラブ部13b3の入射端面13b6に入射する。この場合に、導波路13c2及びテーパー部13c4と、第2の導波路13b2及びスラブ部13b3との境界面において構造上の不連続が生じないため、導波路13c2を伝播してきたTM0偏波は、上記境界面において損失を伴わずに方向性結合部1bの第2の導波路13b2及びスラブ部13b3に入射することが可能となる。
また、本実施形態においては、方向性結合部1bの断面、偏波変換部1aの入射端面及び偏波変換部1cの出射端面は、上側が開いたU字型形状としているが、本発明は、これに限定されない。たとえば、スラブ部13b3、第1のテーパー部13a3及び第2のテーパー部13c3における上面が第1の導波路13b1、第2の導波路13b2、第3の導波路13a2及び第4の導波路13c1の上面と一致するように形成されており、方向性結合部1bの断面、偏波変換部1aの入射端面及び偏波変換部1cの出射端面は、下側が開いたU字型形状であってもよい。ただし、スラブ部13b3、第1のテーパー部13a3及び第2のテーパー部13c3が下部クラッド11上に形成されており、方向性結合部1bの断面、偏波変換部1aの入射端面及び偏波変換部1cの出射端面が上側の開いたU字型形状である方が、基板型導波路素子1の製造をより容易にすることができる。なぜなら、方向性結合部1bの断面、偏波変換部1aの入射端面及び偏波変換部1cの出射端面が上側の開いたU字型形状とした場合、コア13を2回のエッチングによって形成することができるからである。
また、本実施形態においては、第1の導波路13b1、第2の導波路13b2、第3の導波路13a2、第4の導波路13c1、第1のテーパー部13a3及び第2のテーパー部13c3の断面形状を長方形としたが、本発明はこれに限定されない。すなわち、第1の導波路13b1、第2の導波路13b2、第3の導波路13a2、第4の導波路13c1、第1のテーパー部13a3及び第2のテーパー部13c3の断面形状は、台形その他の四角形であればよい。なお、ここでいう「四角形」は、巨視的に見たときに四角形と見做せる図形であればよく、微視的に見たときに辺が曲がったり角が丸まったりしていても構わない。
また、本実施形態において、コア13は、シリコン製であるものとして説明している。したがって、本実施形態における第1の導波路13b1、第2の導波路13b2、第3の導波路13a2、第4の導波路33c1、スラブ部13b3、第1のテーパー部13a3及び第2のテーパー部13c3の屈折率は、いずれも同じである。しかし、方向性結合部1bにおいて、第1の導波路13b1、第2の導波路13b2及びスラブ部13b3は、異なる屈折率を有する異なる材料によって構成されていてもよい。TE1偏波がスラブ部13b3を介して第1の導波路13b1から第2の導波路13b2へ遷移するためには、N1≦NS≦N2が満たされていればよい。ここで、N1は第1の導波路13b1の屈折率であり、NSはスラブ部13b3の屈折率であり、N2は第2の導波路13b2の屈折率である。ただし、製造時の工数を抑制するために、第1の導波路13b1、第2の導波路13b2及びスラブ部13b3は、同じ材料によって構成され、一括して製造されることが好ましい。
〔実施例〕
本実施形態に係る基板型導波路素子1の一実施例について、図3〜図6を参照して説明する。
図3(a)は、実施例に係る基板型導波路素子1が備えている方向性結合部1bの平面図であり、図3(b)は、その方向性結合部1bの断面図である。図3(c)は、(b)及び(c)に示す方向性結合部1bの偏波消光比及び結合長を、2つの導波路間の間隔gapを変えながら算出することにより得たグラフである。
本実施例においては、以下の手順に従って、基板型導波路素子1が備える方向性結合部1bの断面形状を設計した。まず、コア13bの断面形状を図3(b)に示すU字型形状に決定した。具体的には、第1の導波路13b1及び第2の導波路13b2の厚さは、220nmであり、スラブ部13b3の厚さは、95nmである。次に、図3(a)に示すように、第1の導波路13b1及び第2の導波路13b2の幅を、いずれも700nmに決定した。
なお、2つの方向性結合部1bの長さL2は、波長1580nmのTE1偏波に対する結合長Lに一致させた。
なお、本実施例に係る基板型導波路素子1は、例えば以下のように製造することができる。まず、シリカ(Si0)層を2枚のシリコン(Si)層で挟み込んだSOI(Silicon on insulator)基板を用意する(中間のシリカ層を下部クラッド11として用い、上部のシリコン層を2つのコア13として用いる)。次に、このSOI基板の上部のシリコン層に2回のエッチングを施すことによって、コア13を形成する。次に、コア13を埋設するように他のシリカ層を下部クラッド11上に積層し、これを上部クラッド12とする。
以上のように設計した方向性結合部1bにおいて、第1の導波路13b1及び第2の導波路13b2間の間隔であるgapを変えながら波長1580nmでの偏波消光比及び結合長を算出した結果を図3(c)に示す。gapを400nmから1200nmまで広げるに従って、偏波消光比は、約20dBから約48dBまで直線的に増大した、結合長は、約5μmから約30μmまで指数的に増加した。図3(c)に示す計算結果より、例えば偏波消光比が45.0dBとなる方向性結合部1bを実現するためには、gapを1085μmにし、長さL2を25μmにすればよいことが確かめられた。
図4(a)は、比較例に係る基板型導波路素子(偏波ビームコンバイナ)6が備えている方向性結合部の平面図であり、図4(b)は、その方向性結合部の断面図である。図4(c)は、(a)及び(b)に示す方向性結合部の偏波消光比及び結合長を、2つの導波路間の間隔gapを変えながら算出することにより得たグラフである。
本比較例に係る基板型導波路素子6が備えている方向性結合部は、シリカ製の下部クラッド61と、下部クラッド61上に形成された、シリコン製の2つのコア63〜64と、2つのコア63〜64を埋設するように下部クラッド21上に積層された、シリカ製の上部クラッド62とを備えている。2つのコア63〜64の断面形状は、互いに合同な長方形状である。
本比較例においては、以下の手順に従って、基板型導波路素子6が備える2つのコア63〜64の断面形状を設計した。まず、2つのコア63〜64の高さを、本実施例に係る基板型導波路素子1が備える第1の導波路13b1及び第2の導波路13b2の高さと同じ220nmとした。次に、2つのコア63〜64の幅gapを変化させながら、波長1580nmでの偏波消光比及び結合長を算出し、図4(c)に示すグラフを得た。なお、各gapに対する偏波消光比の算出に際し、2つのコア23〜24の並走区間の長さL2は、そのgapに応じて決まるTM0偏波の結合長Lに一致させた。
図4(c)に示すように、コア63〜64のgapを広げるに従って、偏波消光比は直線的に増大し、結合長は指数的に増加した。基板型導波路素子6が備えている方向性結合部において確認された偏波消光比及び結合長の傾向は、基板型導波路素子1が備えている方向性結合部1bが示した偏波消光比及び結合長の傾向と同様である。しかし、同程度の偏波消光比を実現するために必要となる結合長は、基板型導波路素子6が備えている方向性結合部と、方向性結合部1bとにおいて著しく異なることが確認された。偏波消光比を45.0dBに設計する場合を例にすると、実施例に係る方向性結合部1bの場合、その長さを25μmとすればよいのに対し、比較例に係る方向性結合部の場合、その長さを630μmにする必要があることが確認された。基板型導波路素子1の場合、方向性結合部1bに加えて偏波変換部1a及び1bを備える必要があるが、方向性結合部1bは、比較例に係る方向性結合部と比較して、そのサイズを大幅に抑制可能であることが確認された。偏波変換部の長さについては、図6を参照しながら後述する。
図5は、図3に示す方向性結合部1b(実施例)及び図4に示す方向性結合部(比較例)の結合長を、偏波消光比に対してプロットすることにより得たグラフである。図5に示すように、比較例に係る方向性結合部(従来技術)及び実施例に係る方向性結合部1b(本発明)に係る方向性結合部は、何れにおいても偏波消光比と結合長との間に正の相関関係、より詳しくは指数関数的な正の相関関係を示す。図5の偏波消光比が20〜50dBの範囲に示すように、比較例に係る方向性結合部の結合長(破線)は、偏波消光比が大きくなるにしたがって著しく長くなる。また、偏波消光比が大きくなるにしたがって、方向性結合部1bの結合長(実線)も長くなる。しかし、各偏波消光比におけるその傾きは、比較例に係る方向性結合部の場合と比較して、有意に小さい。この違いは、方向性結合部1bが備える第1の導波路13a1と第2の導波路13a2とのTE1偏波に対する光結合が、比較例に係る方向性結合部が備えるコア63とコア64とのTM0偏波に対する光結合より顕著に強いためことに起因すると考えられる。方向性結合部1bと比較例に係る方向性結合部との違いは、以下のようにも表現できる。図5に示す結合長の偏波消光比依存性を、指数関数を用いて表す場合に、(a)方向性結合部1bでは、TE1偏波に対する光結合が強いことに起因して、指数関数の底は小さく、(b)比較例に係る方向性結合部では、TM0偏波に対する光結合が弱いことに起因して、指数関数における底は大きい。
以上のように、第1の導波路13a1と第2の導波路13a2とのTE1偏波に対する光結合が強いことによって、実施例に係る方向性結合部1bは、比較例に係る方向性結合部と比較して、偏波消光比を低下させることなく方向性結合部の素子サイズを抑制することが可能である。
図6(a)は、実施例に係る基板型導波路素子1が備えている偏波変換部1cの平面図、より詳しくは、偏波変換部1cが備えている第4の導波路13c1及び第2のテーパー部13c3の平面図である。図6(b)は、偏波変換部1cが備えている第4の導波路13c1及び第2のテーパー部13c3の断面図である。図6(c)は、偏波変換部1cが備えている第4の導波路13c1及び第2のテーパー部13c3がTM0偏波をTE1偏波に変換する場合の損失を、偏波変換部1cの長さL1を変えながら算出することにより得たグラフである。図6(b)に示すように、下部クラッド11c及び上部クラッド12cは、シリカ製であり、第4の導波路13c1及び第2のテーパー部13c3は、シリコン製である。
図6(c)より、L1=50μmにおいて偏波変換時の損失は、0.1dBであり、TM0偏波をTE1偏波へ変換する偏波変換部として十分に低損失となることが確認された。なお、詳細な計算結果は省略するが、偏波変換部1cの入射側と出射側とを入れ替えた構成である偏波変換部1aにおける偏波の変換特性も同様に図6(c)に示す結果と同様になることが確認された。
なお、偏波変換部1aにおいてTE1偏波がTM0偏波に変換される場合に、TE1偏波のごく一部がTE0偏波に変換される可能性がある。これは、本来であればTM0偏波として合波されるべき光が、TE0偏波に誤変換されて合波されることを意味する。基板型導波路素子1全体の偏波消光比は、偏波変換部1aにおける上記誤変換の割合によって決定されることを発明者らは確認している。
上述のようにL1=50μmとした場合、TE1偏波からTE0偏波への誤変換の割合は45.6dBであった。したがって、方向性結合部1bにおいて、45.6dB以上の偏波消光比を得ることは無用に基板型導波路素子1の素子サイズを長くすることを意味する。そこで、L1=50μmとした場合、方向性結合部1bの偏波消光比が45.0dBとなるようにgap及びL2の値を決定すればよい。図3(c)に示す結果より、偏波消光比45.0dBを得るために必要なgapは、1085nmである。この時、TE1偏波の結合長は25μmとなる。したがって、方向性結合部1bの長さL2を25μmに設定した場合、TE1偏波の損失は、原理的に生じない。上述のように偏波変換部1a及び1cの長さL1は、50μmに設定すればよいので、基板型導波路素子1の素子全体のサイズ(長さ)は、L1×2+L2=125μmとなった。
一方、偏波消光比45.0dBが得られる基板型導波路素子を、比較例である基板型導波路素子6を用いて作製する場合、図4(c)に示す結果より、gapを995nmに設定すればよく、その場合のTM0偏波の結合長は630μmとなることが分かった。従って、比較例である基板型導波路素子6を用いる場合、基板型導波路素子の素子全体のサイズ(長さ)は、630μmとなった。
以上の結果から、実施例に係る基板型導波路素子1は、偏波消光比を低下させることなく素子サイズを抑制することができた。実施例に係る基板型導波路素子1と、比較例に係る基板型導波路素子6との比較では、基板型導波路素子1は、素子サイズを1/5以下に抑制可能であることが確認された。
〔第2の実施形態〕
本発明の一実施形態に係る基板型導波路素子について、図面に基づいて説明すれば以下のとおりである。なお、本実施形態においては、TE0偏波とTE1偏波とを合波し、当該TE1偏波をTM0偏波へ変換し、TE0偏波とTM0偏波として出力する基板型導波路素子について説明する。本実施形態に係る基板型導波路素子は、その前段にTE0偏波をTE1偏波へ変換する偏波変換素子と組み合わせ、当該偏波変換素子によって変換されたTE1偏波を入力することによって、2つの異なるTE0偏波を合波し、TE0偏波及びTM0偏波を出力する偏波ビームコンバイナとして機能する。
〔本実施形態に係る基板型導波路素子の構成〕
まず、本実施形態に係る基板型導波路素子2の構成について、図7を参照して説明する。図7(a)は、基板型導波路素子2の構成を示す斜視図であり、図7(b)は、図7(a)に示す基板型導波路素子が備えるコア23の構成を示す斜視図である。なお、図7(b)において、コア23は、後述する2つの領域に対応するコア23a及び23bに分割して示されている。
基板型導波路素子2は、図7(a)に示すように、シリカ(SiO)製の下部クラッド21と、下部クラッド21上に形成されたシリコン(Si)製のコア23と、コア23を埋設するように下部クラッド21上に積層されたシリカ(SiO)製の上部クラッド22とを備えている。
本実施形態において、基板型導波路素子2は、第1の区間である方向性結合部2b及び第2の区間である偏波変換部2aからなる。なお、偏波変換部2a及び方向性結合部2bの各区間は、基板型導波路素子2の構成を説明するために仮想的に分割したものである。偏波変換部2a及び方向性結合部2bの各区間は、一連の製造プロセスによって一括して製造されることが好ましい。また、偏波変換部2aが備えているコア23a及び方向性結合部2bが備えているコア23bは、構造上の不連続が生じないように形成されていることが好ましい。
(方向性結合部)
図7(a)及び(b)に示すように、方向性結合部2bは、下部クラッド21b、上部クラッド22b及びコア23bを備えている。コア23bは、長方形の断面を有する第1の導波路23b1と、長方形の断面を有する第2の導波路23b2と、板状部材であるスラブ部23b3とを備えている。第1のスラブ部であるスラブ部23b3は、厚みが第1の導波路23b1及び第2の導波路23b2の厚みより薄く、その側面を介して第1の導波路23b1及び第2の導波路23b2の双方に連通するものである。より詳しくは、スラブ部23b3は、(i)スラブ部23b3の一方の側面と、第1の導波路23b1の一方の側面の一部とを介して、第1の導波路23b1に連通しており、(ii)スラブ部23b3の他方の側面と、第2の導波路23b2の一方の側面の一部とを介して、第2の導波路23b2に連通している。
以下において、第1の導波路23b1に光が入射する面を入射端面23b4と呼称し、第2の導波路23b2に光が入射する面を入射端面23b5と呼称し、スラブ部23b3に光が入射する面を入射端面23b6と呼称する。また、第1の導波路23b1から光が出射する面を出射端面23b7と呼称し、第2の導波路23b2から光が出射する面を出射端面23b8と呼称し、スラブ部23b3から光が出射する面を出射端面23b9と呼称する。
方向性結合部2bが備えている第1の導波路23b1、第2の導波路23b2及びスラブ部23b3は、第1の実施形態に係る基板型導波路素子1が備える方向性結合部1bと同様に構成されている。したがって、方向性結合部2bは、予め定められた設計波長において、第1の実施形態に記載された条件(1)〜(3)を満たすように設計されていればよい。方向性結合部2bは、方向性結合部1bと同じ技術的思想のもとに設計されているため、ここでは、その詳細な説明を省略する。
(偏波変換部)
図7(a)及び(b)に示すように、第2の区間である偏波変換部2aは、第1の区間である方向性結合部2bの出力側に配置されており、下部クラッド21a、上部クラッド22a及びコア23aを備えている。コア23aは、第3の導波路23a2と第1のテーパー部23a3とを備えている。以下において、第3の導波路23a2に光が入射する面を入射端面23a6と呼称し、第1のテーパー部23a3に光が入射する面を入射端面23a7と呼称する。また、第3の導波路23a2から光が出射する面を出射端面23a9と呼称する。
第3の導波路23a2は、第2の導波路23b2を延長したものである。第2の導波路23b2との境界面における第3の導波路23a2の断面(入射端面13a6)は、第2の導波路23b2の断面(出射端面23b8)と合同である。第1のテーパー部23a3は、第1のスラブ部であるスラブ部23b3を延長したものであり、その側面を介して第3の導波路23a2に連通し、第1の区間である方向性結合部2bから遠ざかるに従って幅が狭くなるように構成されている。言い換えれば、第1のテーパー部23a3の幅は、スラブ部23b3との境界面から遠ざかるに従って狭くなるように構成されている。また、第1のテーパー部の幅は、出射端面23a9において0になることが好ましい。スラブ部23b3との境界面における第1のテーパー部23a3の断面(入射端面23a7)は、スラブ部23b3の断面(出射端面23b9)に包含されている。
偏波変換部2aが備えている第3の導波路23a2及び第1のテーパー部23a3は、第1の実施形態に係る基板型導波路素子1が備える偏波変換部1aと同様に構成されている。したがって、偏波変換部2aは、予め定められた設計波長において、第1の実施形態に記載された条件(4)〜(7)を満たすように設計されている。偏波変換部2aは、偏波変換部1aと同じ技術的思想のもとに設計されているため、本実施形態ではその詳細な説明を省略する。
方向性結合部2b及び偏波変換部2aを備えている基板型導波路素子2は、第1の導波路23b1の入射端面23b4に入射されたTE1偏波と、第2の導波路23b2の入射端面23b5に入射されたTE0偏波とを合波し、最終的に第3の導波路23a2の出射端面23a9からTM0偏波及びTE0偏波を出射する。具体的には、第1の導波路23b1の入射端面23b4に入射されたTE1偏波は、第1の導波路23b1及びスラブ部23b3を導波する過程において第2の導波路23b2及びスラブ部23b3へ遷移する。当該TE1偏波は、方向性結合部2bの出射端面23b8及び23b9から偏波変換部2aの入射端面23a6及び23a7へ入射する。偏波変換部2aに入射されたTE1偏波は、第3の導波路23a2及び第1のテーパー部23a3を導波する過程において、TE1偏波からTM0偏波へ変換される。当該TM0偏波は、第3の導波路23a2の出射端面23a9から出力される。一方、第2の導波路23b2の入射端面23b5に入射されたTE0偏波は、主に第2の導波路23b2及び第3の導波路23a2の内部を導波され、第3の導波路23a2の出射端面23a9から出射される。
方向性結合部2bは、TE1偏波に対する第1の導波路23b1及び第2の導波路23b2の光結合を強くすることが可能なため、偏波消光比を低下させることなく方向性結合部の長さを抑制することが可能である。結果として、方向性結合部2bを備えている基板型導波路素子2の長さを抑制することが可能である。
基板型導波路素子2は、例えば、TE0偏波をTE1偏波に変換するTE偏波変換素子と組み合わせることによってTE0偏波と、TM0偏波を合波する偏波ビームコンバイナを構成することができる。具体的には、上記TE偏波変換素子の後段に基板型導波路素子2を配置する。上記TE偏波変換素子は、入力部に入力されたTE0偏波をTE1偏波に変換して出力する。上記TE偏波変換素子が出力したTE1偏波を、基板型導波路素子2が備えている第1の導波路23b1の入射端面23b4に入射させる。一方、第2の導波路23b2の入射端面23b5には、上記TE偏波変換素子に入力したTE0偏波と合波するTM0偏波を入射させる。
上記の構成によれば、基板型導波路素子2は、第1の導波路23b1に入射されたTE1偏波を、スラブ部23b3を介して第2の導波路23b2に遷移させ、最終的には第3の導波路13a2の出射端面23a9からTM0偏波として出射する。また、基板型導波路素子2は、第2の導波路23b2に入射されたTE0偏波を、最終的には第3の導波路13a2の出射端面23a9からTE0偏波のまま出射する。したがって、上記TE偏波変換素子及び基板型導波路素子2を備えている偏波ビームコンバイナは、偏波消光比を低下させることなくその素子サイズを抑制することが可能である。
〔第3の実施形態〕
本発明の一実施形態に係る基板型導波路素子について、図面に基づいて説明すれば以下のとおりである。なお、本実施形態においては、TM0偏波とTE0偏波とを合波する基板型導波路素子について説明する。
〔本実施形態に係る基板型導波路素子の構成〕
まず、本実施形態に係る基板型導波路素子3及び4の構成について、図8(a)及び図8(b)を参照して説明する。図8(a)は、基板型導波路素子3の構成を示す平面図であり、図8(b)は、基板型導波路素子4の構成を示す平面図である。なお、図8(a)及び図8(b)において、基板型導波路素子3及び4が備えている下部クラッド及び上部クラッドは省略されており、基板型導波路素子3が備えているコア33及び基板型導波路素子4が備えているコア43のみが図示されている。
基板型導波路素子3は、シリカ(SiO)製の下部クラッドと、下部クラッド上に形成されたシリコン(Si)製のコア33と、コア33を埋設するように下部クラッド上に積層されたシリカ(SiO)製の上部クラッドとを備えている。
本実施形態において、基板型導波路素子3は、第1の区間である方向性結合部(コア33bを備える)、第2の区間である偏波変換部(コア33aを備える)、第3の区間である偏波変換部(コア33cを備える)に加えて、上記第1の区間と上記第3の区間との間に介在する第4の区間(コア33dを備える)を更に含む。
基板型導波路素子3の上記構成のうち、第1の区間である方向性結合部及び第2の区間である偏波変換部は、第1の実施形態に記載した基板型導波路素子1が備えている方向性結合部1b及び偏波変換部1aとそれぞれ同様に構成されている。一方、第3の区間である偏波変換部が備えている第4の導波路33c1及び第2のテーパー部33c3の幅は、基板型導波路素子1が備えている第4の導波路13c1及び第2のテーパー部13c3の幅より広い。したがって、本実施形態において、第1の導波路33b1の入力側の端面(入社端面)の形状と、第4の導波路33c1の出力側の端面(出射端面)の形状とは、合同ではない。
上記第4の区間において、コア33dは、第1の導波路33b1の延長であると共に第4の導波路33c1の延長である第5の導波路33d1、及び、第1のスラブ部33b3の延長であると共に第2のテーパー部33c3の延長である第2のスラブ部であって、側面を介して第5の導波路33d1に連通する第2のスラブ部33d3とからなり、第5の導波路33d1の出力側の端面は、第1の導波路33b1の入力側の端面と合同であり、第5の導波路33d1の入力側の端面は、第4の導波路33c1の出力側の端面と合同である。
上記の構成によれば、方向性結合部の入射端面の形状と、偏波変換部の出射端面の形状が異なる場合であっても、接続区間である第4の区間を備えていることによって、導波する光の反射を伴わずに第1の区間である方向性結合部、及び、第3の区間である偏波変換部を接続することが可能である。
次に、図8(b)に示す基板型導波路素子4について説明する。基板型導波路素子4は、シリカ(SiO)製の下部クラッドと、下部クラッド上に形成されたシリコン(Si)製のコア43と、コア43を埋設するように下部クラッド上に積層されたシリカ(SiO)製の上部クラッドとを備えている。
基板型導波路素子4は、第1の区間である方向性結合部(コア43bを備える)、第2の区間である偏波変換部(コア43aを備える)、第3の区間である偏波変換部(コア43cを備える)に加えて、上記第1の区間と上記第3の区間との間に介在する第4の区間(コア43dを備える)を更に含む。本実施形態において、第1の導波路43b1の中心軸と第4の導波路43c1の中心軸とは、同一直線上にない。
基板型導波路素子4の上記構成のうち、第1の区間である方向性結合部、第2の区間である偏波変換部及び第3の区間である偏波変換部は、第1の実施形態に記載した基板型導波路素子1が備えている方向性結合部1b、偏波変換部1a及び偏波変換部1cとそれぞれ同様に構成されている。
第4の区間において、コア43dは、第1の導波路43b1の延長であると共に第4の導波路43c1の延長である第5の導波路43d1、及び、第1のスラブ部43b3の延長であると共に第2のテーパー部43c3の延長である第2のスラブ部であって、側面を介して第5の導波路43c1に連通する第2のスラブ部43c3とからなり、第5の導波路43c1及び第2のスラブ部43c3は、滑らかに曲がっている。
コア43dを備えている第4の区間は、第1の区間である方向性結合部のコア43bと、第3の区間である偏波変換部のコア43cとを接続する接続区間であり、コア43における方向を変化させる屈曲部であると言える。上記の構成によれば、同じ基板上に設けられている他の構造物を避けて基板型導波路素子4を配置することが可能になる。言い換えれば、基板型導波路素子4が第4の区間を備えていることによって、方向性結合部及び偏波変換部を設計する場合に、その設計に柔軟性を与え、その設計の自由度を向上させることが可能となる。
なお、本実施形態において接続区間は、方向性結合部の入力側に設けられているが、方向性結合部の出力側に設けられていてもよいし、方向性結合部の入力側及び出力側の双方に設けられていてもよい。
〔光変調器〕
第1の実施形態に係る基板型導波路素子1を偏波ビームコンバイナとして含む光変調器5について、図9を参照して説明する。図9は、そのような光変調器5の構成を示すブロック図である。
光変調器5は、DP−QPSK(Dual Polarization-Quadrature Phase Shift Keying)変調器であり、図9に示すように、(1)TE0偏波をQPSK変調する2つのQPSK変調器51〜52と、(2)第2のQPSK変調器52により変調されたTE0偏波をTM0偏波に変換する偏波ローテータ53と、(3)第1のQPSK変調器51により変調されたTE0偏波と偏波ローテータ53により得られたTM0偏波とを合波する偏波ビームコンバイナ54とを備えている。QPSK変調器51〜52、偏波ローテータ53、及び、偏波ビームコンバイナ54は、何れも、シリコン製の導波路として共通の下部クラッド上に一体的に形成される。
光変調器5においては、偏波ビームコンバイナ54として、第1の実施形態に係る基板型導波路素子1を備えている。このため、光変調器5において、偏波消光比を低下させることなく、素子サイズを抑制することが可能である。
〔付記事項〕
本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
本発明は、偏波ビームコンバイナ又は偏波ビームスプリッタとして好適に利用することができる。例えば、シリコン製の導波路により構成された光変調器における偏波ビームコンバイナとして好適に利用することができる。
1 基板型導波路素子
1a 偏波変換部(第1の区間)
1b 方向性結合部(第2の区間)
1c 偏波変換部(第3の区間)
11 下部クラッド
12 上部クラッド
13 コア
13a2 第3の導波路
13a3 第1のテーパー部
13b1 第1の導波路
13b2 第2の導波路
13b3 スラブ部
13c1 第4の導波路
13c3 第2のテーパー部
5 光変調器
51 第1のQPSK変調器
52 第2のQPSK変調器
53 偏波ローテータ
54 偏波ビームコンバイナ(基板型導波路素子)

Claims (6)

  1. 下部クラッドと、上記下部クラッド上に形成されたコアと、上記コアを埋設するように上記下部クラッド上に積層された上部クラッドとを備えた基板型導波路素子において、
    当該基板型導波路素子は、第1の区間と、上記第1の区間の出力側に配置された第2の区間とを含み、
    上記第1の区間において、上記コアは、四角形の断面を有する第1の導波路、四角形の断面を有する第2の導波路、及び、厚みが上記第1の導波路及び上記第2の導波路の厚みより薄い第1のスラブ部であって、側面を介して上記第1の導波路及び上記第2の導波路の双方に連通する第1のスラブ部からなり、
    上記第2の区間において、上記コアは、上記第2の導波路の延長である第3の導波路、及び、上記第1のスラブ部の延長である第1のテーパー部であって、側面を介して上記第3の導波路に連通し、上記第1の区間から遠ざかるに従って幅が狭くなる第1のテーパー部からなる、
    ことを特徴とする基板型導波路素子。
  2. 当該基板型導波路素子は、上記第1の区間の入力側に配置された第3の区間を更に含み、
    上記第3の区間において、上記コアは、上記第1の導波路の延長である第4の導波路、及び、上記第1のスラブ部の延長である第2のテーパー部であって、側面を介して上記第4の導波路に連通し、上記第1の区間から遠ざかるに従って幅が狭くなる第2のテーパー部からなる、
    ことを特徴とする請求項1に記載の基板型導波路素子。
  3. 上記第1の導波路の入力側の端面と上記第4の導波路の出力側の端面とが互いに合同でなく、
    当該基板型導波路素子は、上記第1の区間と上記第3の区間との間に介在する第4の区間を更に含み、
    上記第4の区間において、上記コアは、上記第1の導波路の延長であると共に上記第4の導波路の延長である第5の導波路、及び、上記第1のスラブ部の延長であると共に上記第2のテーパー部の延長である第2のスラブ部であって、側面を介して上記第5の導波路に連通する第2のスラブ部とからなり、
    上記第5の導波路の出力側の端面は、上記第1の導波路の入力側の端面と合同であり、上記第5の導波路の入力側の端面は、上記第4の導波路の出力側の端面と合同である、
    ことを特徴とする請求項2に記載の基板型導波路素子。
  4. 上記第1の導波路の中心軸と上記第4の導波路の中心軸とが同一直線上になく、
    当該基板型導波路素子は、上記第1の区間と上記第3の区間との間に介在する第4の区間を更に含み、
    上記第4の区間において、上記コアは、上記第1の導波路の延長であると共に上記第4の導波路の延長である第5の導波路、及び、上記第1のスラブ部の延長であると共に上記第2のテーパー部の延長である第2のスラブ部であって、側面を介して上記第5の導波路に連通する第2のスラブ部とからなり、
    上記第5の導波路及び上記第2のスラブ部は、滑らかに曲がっている、
    ことを特徴とする請求項2に記載の基板型導波路素子。
  5. 上記上部クラッド及び上記下部クラッドは、シリカ製であり、上記第1の導波路、上記第2の導波路及び上記スラブ部は、シリコン製である、
    ことを特徴とする請求項1〜4の何れか1項に記載の基板型導波路素子。
  6. TM0偏波とTE0偏波とを合波する偏波ビームコンバイナの一部として請求項1〜5の何れか1項に記載の基板型導波路素子を備えている、
    ことを特徴とする光変調器。
JP2014110539A 2014-05-28 2014-05-28 基板型導波路素子、及び、光変調器 Pending JP2015225252A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014110539A JP2015225252A (ja) 2014-05-28 2014-05-28 基板型導波路素子、及び、光変調器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014110539A JP2015225252A (ja) 2014-05-28 2014-05-28 基板型導波路素子、及び、光変調器

Publications (1)

Publication Number Publication Date
JP2015225252A true JP2015225252A (ja) 2015-12-14

Family

ID=54842019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014110539A Pending JP2015225252A (ja) 2014-05-28 2014-05-28 基板型導波路素子、及び、光変調器

Country Status (1)

Country Link
JP (1) JP2015225252A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169922A1 (ja) * 2016-03-28 2017-10-05 日本電気株式会社 偏波分離素子
WO2018043109A1 (ja) * 2016-09-02 2018-03-08 信越化学工業株式会社 導光体、光モジュール、及び、光路光軸調整方法
CN113777708A (zh) * 2020-06-09 2021-12-10 富士通光器件株式会社 模变换器

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169922A1 (ja) * 2016-03-28 2017-10-05 日本電気株式会社 偏波分離素子
WO2018043109A1 (ja) * 2016-09-02 2018-03-08 信越化学工業株式会社 導光体、光モジュール、及び、光路光軸調整方法
JP2018036594A (ja) * 2016-09-02 2018-03-08 信越化学工業株式会社 導光体、光モジュール、及び、光路光軸調整方法
CN109642988A (zh) * 2016-09-02 2019-04-16 信越化学工业株式会社 导光体、光模块、以及光路光轴调整方法
US11143829B2 (en) 2016-09-02 2021-10-12 Shin-Etsu Chemical Co., Ltd. Light guide body, optical module, and optical path and optical axis adjustment method
CN109642988B (zh) * 2016-09-02 2023-08-29 信越化学工业株式会社 导光体、光模块、以及光路光轴调整方法
CN113777708A (zh) * 2020-06-09 2021-12-10 富士通光器件株式会社 模变换器
CN113777708B (zh) * 2020-06-09 2023-09-22 富士通光器件株式会社 模变换器

Similar Documents

Publication Publication Date Title
US9500807B2 (en) Planar optical waveguide element, dual polarization quadrature phase shift keying modulator, coherent receiver, and polarization diversity
JP5728140B1 (ja) 高次偏波変換素子、光導波路素子、及びdp−qpsk変調器
US9835798B2 (en) Planar optical waveguide device, polarization multiplexing 4-value phase modulator, coherent receiver, and polarization diversity
US9851505B2 (en) Substrate-type optical waveguide element
US9874692B2 (en) Substrate-type optical waveguide element and method for producing substrate-type optical waveguide element
JP6000904B2 (ja) 偏波変換素子
CN113777708B (zh) 模变换器
JP2007114253A (ja) 導波路型光分岐素子
JP6346454B2 (ja) 基板型導波路素子、及び、光変調器
JP6320573B2 (ja) 基板型光導波路素子
TWI717994B (zh) 波導管佈線組態及方法
JP2015225252A (ja) 基板型導波路素子、及び、光変調器
JP5751008B2 (ja) 光合分波器および光合分波方法
JP5440506B2 (ja) 光ジョイント
JP7205678B1 (ja) 方向性結合器及びその製造方法
JPWO2014034249A1 (ja) モード変換素子
US11662522B2 (en) Optical waveguide device operated as mode converter
US9971225B2 (en) Spot size converter, semiconductor optical device
JP2015169912A (ja) 基板型導波路素子、及び、光変調器
WO2014156959A1 (ja) 端面光結合型シリコン光集積回路
CN116520488A (zh) 光学器件、基板型光波导元件、光通信装置和波导间迁移方法
JP2023040871A (ja) 光導波路素子および光集積回路
JP2019219484A (ja) 偏波クリーナ及び光モジュール