JP2015225024A - Current sensing structure - Google Patents

Current sensing structure Download PDF

Info

Publication number
JP2015225024A
JP2015225024A JP2014111295A JP2014111295A JP2015225024A JP 2015225024 A JP2015225024 A JP 2015225024A JP 2014111295 A JP2014111295 A JP 2014111295A JP 2014111295 A JP2014111295 A JP 2014111295A JP 2015225024 A JP2015225024 A JP 2015225024A
Authority
JP
Japan
Prior art keywords
bus bar
magnetic
current
detection element
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014111295A
Other languages
Japanese (ja)
Inventor
池田 幸雄
Yukio Ikeda
幸雄 池田
加藤 幸一
Koichi Kato
幸一 加藤
敬浩 二ツ森
Keiko Futatsumori
敬浩 二ツ森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2014111295A priority Critical patent/JP2015225024A/en
Publication of JP2015225024A publication Critical patent/JP2015225024A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a current sensing structure which enables accurate detection of a magnetic field and thus allows for accurately sensing current flowing through bus bars even when a GMR element is used as a magnetic sensing element.SOLUTION: A current sensing structure comprises a first bus bar 2 through which current flows, a second bus bar 3 through which current flows in the same direction as the current flowing through the first bus bar 2, and a magnetic sensing element 4 located between the first bus bar 2 and the second bus bar 3. The magnetic sensing element 4 is positioned to be able to measure intensity of a magnetic field in a direction that is perpendicular to the direction of the current flowing through the bus bars 2, 3 and is also perpendicular to a direction in which the first bus bar 2 and second bus bar 3 are arrayed.

Description

本発明は、電流検出構造に関するものである。   The present invention relates to a current detection structure.

バスバに流れる電流を検出する従来の電流検出構造として、特許文献1が知られている。   Patent Document 1 is known as a conventional current detection structure for detecting a current flowing through a bus bar.

特許文献1に記載の電流検出構造では、ギャップ部を有するリング状磁気コアがバスバを囲むように配置され、ギャップ部に磁気検出素子としてのホール素子が配置されている。特許文献1に記載の電流検出構造では、バスバに流れる電流によって生じる磁界をリング状磁気コアが集磁し、当該集磁した磁界をギャップ部に配置しているホール素子へ集中させるので、バスバからの磁界が弱い場合であっても、バスバからの磁界を精度よく検知することができ、バスバに流れる電流を精度よく検出することが可能である。   In the current detection structure described in Patent Document 1, a ring-shaped magnetic core having a gap portion is disposed so as to surround the bus bar, and a Hall element as a magnetic detection element is disposed in the gap portion. In the current detection structure described in Patent Document 1, the magnetic field generated by the current flowing in the bus bar is collected by the ring-shaped magnetic core, and the collected magnetic field is concentrated on the Hall element arranged in the gap portion. Even if the magnetic field is weak, the magnetic field from the bus bar can be detected with high accuracy, and the current flowing through the bus bar can be detected with high accuracy.

しかし、特許文献1の電流検出構造では、バスバの外周にリング状磁気コアを配置する必要があるため、電流検出構造が大型化してしまうという課題があった。   However, in the current detection structure of Patent Document 1, since it is necessary to arrange a ring-shaped magnetic core on the outer periphery of the bus bar, there is a problem that the current detection structure becomes large.

そこで、特許文献2では、リング状磁気コアを設けずに、バスバに流れる電流を検出する電流検出構造が提案されている。   Therefore, Patent Document 2 proposes a current detection structure that detects a current flowing through a bus bar without providing a ring-shaped magnetic core.

特開2010−175276号公報JP 2010-175276 A 特開2010−19747号公報JP 2010-19747 A

しかしながら、特許文献2の電流検出構造では、リング状磁気コアを省略でき小型化が可能になるものの、磁気検出素子にバスバで発生する磁界を集中させることができないため、磁界を精度よく検知できない場合があるという問題があった。   However, in the current detection structure of Patent Document 2, although the ring-shaped magnetic core can be omitted and the size can be reduced, the magnetic field generated by the bus bar cannot be concentrated on the magnetic detection element, and therefore the magnetic field cannot be accurately detected. There was a problem that there was.

そこで、本発明者らは、小型でありながらも、バスバで発生する磁界を精度よく検出することが可能な電流検出構造を実現するために、磁気検出素子として検知感度の高い巨大磁気抵抗効果素子(以下、GMR(Giant Magneto Resistive effect)素子という)を用いることを考えた。   Therefore, in order to realize a current detection structure capable of accurately detecting a magnetic field generated in a bus bar while being small, the present inventors have developed a giant magnetoresistive effect element having high detection sensitivity as a magnetic detection element. (Hereinafter referred to as GMR (Giant Magneto Resistive effect) element) was considered.

しかし、磁気検出素子としてGMR素子を用いた場合、検知する磁界が大きすぎ、精度のよい磁界検出ができないという問題に直面した。   However, when a GMR element is used as the magnetic detection element, the problem is that the magnetic field to be detected is too large and the magnetic field cannot be detected with high accuracy.

そこで、本発明の目的は、上記課題を解決し、磁気検出素子としてGMR素子を用いた場合であっても、精度のよい磁界検知が可能であり、バスバに流れる電流を精度よく検出することが可能な電流検出構造を提供することにある。   Accordingly, an object of the present invention is to solve the above-described problems and to detect a magnetic field with high accuracy even when a GMR element is used as a magnetic detection element, and to accurately detect a current flowing through a bus bar. It is to provide a possible current detection structure.

本発明は上記目的を達成するために創案されたものであり、電流が流れる第1バスバと、前記第1バスバと同じ方向に電流が流れる第2バスバと、前記第1バスバと前記第2バスバとの間に配置される磁気検出素子と、を備え、前記磁気検出素子は、前記両バスバの電流が流れる方向に対して垂直方向であり、かつ、前記第1バスバと前記第2バスバの配列方向に対して垂直方向の磁界の強度を測定するように配置される電流検出構造である。   The present invention has been devised to achieve the above object, and includes a first bus bar through which current flows, a second bus bar through which current flows in the same direction as the first bus bar, the first bus bar, and the second bus bar. Between the first bus bar and the second bus bar, and the magnetic detection element is in a direction perpendicular to a direction in which the currents of the two bus bars flow. A current detection structure arranged to measure the strength of a magnetic field perpendicular to the direction.

前記磁気検出素子は、巨大磁気抵抗効果素子であってもよい。   The magnetic detection element may be a giant magnetoresistance effect element.

前記第1バスバと前記磁気検出素子との距離は、前記第2バスバと前記磁気検出素子との距離よりも大きくてもよい。   The distance between the first bus bar and the magnetic detection element may be greater than the distance between the second bus bar and the magnetic detection element.

前記第1バスバと前記第2バスバは、長手方向に沿って電流を流す長方形の板状の導体からなり、その表面同士が対向するように平行に配置されていてもよい。   The first bus bar and the second bus bar may be made of a rectangular plate-like conductor that allows current to flow along the longitudinal direction, and may be arranged in parallel so that the surfaces thereof face each other.

前記磁気検出素子は、前記両バスバの幅方向の中心を通る面上に配置されてもよい。   The magnetic detection element may be disposed on a surface passing through the center in the width direction of the both bus bars.

本発明によれば、磁気検出素子としてGMR素子を用いた場合であっても、精度のよい磁界検知が可能であり、バスバに流れる電流を精度よく検出することが可能な電流検出構造を提供できる。   According to the present invention, even when a GMR element is used as a magnetic detection element, it is possible to provide a current detection structure that can accurately detect a magnetic field and can accurately detect a current flowing through a bus bar. .

本発明の一実施形態に係る電流検出構造を示す図であり、(a)は側面図、(b)はその1B−1B線断面図である。It is a figure which shows the electric current detection structure which concerns on one Embodiment of this invention, (a) is a side view, (b) is the 1B-1B sectional view taken on the line.

以下、本発明の実施形態を添付図面にしたがって説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は、本実施形態に係る電流検出構造を示す図であり、(a)は側面図、(b)はその1B−1B線断面図である。   1A and 1B are diagrams showing a current detection structure according to the present embodiment, in which FIG. 1A is a side view and FIG. 1B is a sectional view taken along line 1B-1B.

図1(a),(b)に示すように、電流検出構造1は、電流が流れる第1バスバ2と、第1バスバ2と同じ方向に電流が流れる第2バスバ3と、第1バスバ2と第2バスバ3との間に配置される磁気検出素子4と、を備えている。   As shown in FIGS. 1A and 1B, the current detection structure 1 includes a first bus bar 2 through which current flows, a second bus bar 3 through which current flows in the same direction as the first bus bar 2, and a first bus bar 2. And a magnetic detection element 4 disposed between the first bus bar 3 and the second bus bar 3.

バスバ2,3は、長方形の板状の導体であり、その長手方向に沿って電流を流す電流路となるものである。第1バスバ2と第2バスバ3は、同じ形状に形成されている。   The bus bars 2 and 3 are rectangular plate-like conductors, and serve as current paths through which current flows along the longitudinal direction thereof. The first bus bar 2 and the second bus bar 3 are formed in the same shape.

第1バスバ2と第2バスバ3は、その長手方向が一致するように、かつ、その表面同士が対向するように(表面の法線方向が一致するように)平行に配置されている。   The first bus bar 2 and the second bus bar 3 are arranged in parallel so that the longitudinal directions thereof coincide with each other and the surfaces thereof face each other (so that the normal directions of the surfaces coincide).

本実施形態では、第1バスバ2と第2バスバ3には、同じ値の電流が流れているとする。第1バスバ2と第2バスバ3を流れる電流の値が異なっていてもよいが、電流検出構造1では、磁気検出素子4において両バスバ2,3で発生した磁界を合成した磁界の強度を検出するため、両バスバ2を流れる電流の関係が一定であるか、あるいは、両バスバ2,3の一方を流れる電流が既知であること(つまりバスバ2,3の一方を流れる電流をリファレンスとして用いて他方の電流値を求めること)が必要になる。なお、バスバ2,3を流れる電流は、例えば、定常時で最大200A程度、異常時等の突入電流で最大800A程度であり、周波数は、例えば最大100kHz程度である。   In the present embodiment, it is assumed that the same current flows through the first bus bar 2 and the second bus bar 3. Although the current values flowing through the first bus bar 2 and the second bus bar 3 may be different, the current detection structure 1 detects the intensity of the magnetic field obtained by synthesizing the magnetic fields generated by the two bus bars 2 and 3 in the magnetic detection element 4. Therefore, the relationship between the currents flowing through both bus bars 2 is constant, or the current flowing through one of both bus bars 2 and 3 is known (that is, the current flowing through one of the bus bars 2 and 3 is used as a reference). It is necessary to obtain the other current value). The current flowing through the bus bars 2 and 3 is, for example, about 200 A at the maximum in a steady state, about 800 A at the maximum in an inrush current at the time of abnormality, and the frequency is, for example, about 100 kHz at the maximum.

磁気検出素子4は、検出軸Dに沿った方向の磁界の強度(磁束密度)に応じた電圧の出力信号を出力するように構成されている。本実施形態では、磁気検出素子4として、高い感度を有するGMR素子を用いる。   The magnetic detection element 4 is configured to output an output signal having a voltage corresponding to the intensity (magnetic flux density) of the magnetic field in the direction along the detection axis D. In the present embodiment, a GMR element having high sensitivity is used as the magnetic detection element 4.

磁気検出素子4は、両バスバ2,3の電流が流れる方向に対して垂直方向(図1(b)の紙面方向)であり、かつ、両バスバ2,3の配列方向(図1(b)の上下方向)に対して垂直方向、すなわち、バスバ2,3の幅方向(図1(b)の左右方向)に検出軸Dを沿わせるように配置し、その検出軸Dに沿った方向の磁界の強度を測定するように配置される。なお、磁気検出素子4の検出軸Dは、バスバ2,3の幅方向に対して−10°〜10°程度傾いてもよい。   The magnetic detection element 4 is in a direction perpendicular to the direction in which the currents of both bus bars 2 and 3 flow (the paper surface direction in FIG. 1B), and the arrangement direction of both bus bars 2 and 3 (FIG. 1B). In the direction perpendicular to the vertical direction), that is, along the width direction of the bus bars 2 and 3 (the horizontal direction in FIG. 1B), and along the detection axis D. Arranged to measure the strength of the magnetic field. The detection axis D of the magnetic detection element 4 may be tilted by about −10 ° to 10 ° with respect to the width direction of the bus bars 2 and 3.

図1(b)に示すように、磁気検出素子4は、図示上側の第1バスバ2で発生する磁界と、図示下側の第2バスバ3で発生する磁界を合成した合成磁界を検出することになる。ここで、両バスバ2,3を流れる電流は同じ方向であるため、磁気検出素子4を配置する両バスバ2,3の間の位置においては、両バスバ2,3で発生した磁界は互いに逆方向となり、合成磁界は両バスバ2,3で発生した磁界よりも小さくなる。   As shown in FIG. 1B, the magnetic detection element 4 detects a combined magnetic field obtained by synthesizing a magnetic field generated by the first bus bar 2 on the upper side of the drawing and a magnetic field generated by the second bus bar 3 on the lower side of the drawing. become. Here, since the currents flowing through both bus bars 2 and 3 are in the same direction, the magnetic fields generated in both bus bars 2 and 3 are opposite to each other at a position between both bus bars 2 and 3 where the magnetic detection element 4 is disposed. Thus, the combined magnetic field is smaller than the magnetic field generated by both bus bars 2 and 3.

ここで、両バスバ2,3で発生した磁界が完全に逆方向となるのは、両バスバ2,3の幅方向の中心を通る面上となるため、より精度の高い検出を行うためには、両バスバ2,3の幅方向の中心を通る面上に磁気検出素子4を配置する(つまり、磁気検出素子4の少なくとも一部が両バスバ2,3の幅方向の中心を通る面と重なる位置に磁気検出素子4を配置する)ことが望ましい。   Here, since the magnetic fields generated in both bus bars 2 and 3 are completely opposite to each other are on the plane passing through the center in the width direction of both bus bars 2 and 3, in order to perform detection with higher accuracy. The magnetic detection element 4 is arranged on a surface passing through the center in the width direction of both bus bars 2 and 3 (that is, at least a part of the magnetic detection element 4 overlaps a surface passing through the center in the width direction of both bus bars 2 and 3. It is desirable to arrange the magnetic detection element 4 at a position).

なお、磁気検出素子4として用いるGMR素子では、内部にバイアスコイルを有し検出軸Dと垂直方向に常時磁界をかけた状態として出力を安定させるものが知られている。本実施形態においては、バイアスコイルがかける磁界の方向は図1(b)における上下方向となるが、この方向に大きな磁界がかかると、バイアスコイルがかける磁界が相殺されるなどして、出力が安定しなくなる場合がある。本実施形態では、両バスバ2,3の幅方向の中心を通る面上に磁気検出素子4を配置しているため、バスバ2,3で発生した磁界がバイアスコイルの磁界に影響を与えることがなく、GMR素子の出力を安定させ高精度な検出が可能になる。また、磁気検出素子4は、両バスバ2,3の配列方向に対して垂直方向に検出軸Dを沿わせるように配置されている。これによっても、上述と同様の効果が得られる。   It is known that the GMR element used as the magnetic detection element 4 has a bias coil inside and stabilizes the output in a state where a magnetic field is always applied in a direction perpendicular to the detection axis D. In this embodiment, the direction of the magnetic field applied by the bias coil is the vertical direction in FIG. 1B, but if a large magnetic field is applied in this direction, the magnetic field applied by the bias coil is canceled and the output is reduced. It may become unstable. In the present embodiment, since the magnetic detection element 4 is disposed on the surface passing through the center in the width direction of both bus bars 2 and 3, the magnetic field generated by the bus bars 2 and 3 may affect the magnetic field of the bias coil. In addition, the output of the GMR element can be stabilized and highly accurate detection can be performed. Further, the magnetic detection element 4 is arranged so that the detection axis D is along the direction perpendicular to the arrangement direction of the both bus bars 2 and 3. This also provides the same effect as described above.

また、本実施形態では、両バスバ2,3を流れる電流の値が同じであるため、両バスバ2,3で発生した磁界を合成した合成磁界の強度は、両バスバ2,3の中間位置で0になる。よって、磁気検出素子4は、両バスバ2,3の中間位置からずれた位置に配置される必要がある。本実施形態では、第1バスバ2と磁気検出素子4との距離が、第2バスバ3と磁気検出素子4との距離よりも大きくなる位置に、磁気検出素子4を配置している。   In this embodiment, since the values of the currents flowing through both bus bars 2 and 3 are the same, the intensity of the combined magnetic field obtained by synthesizing the magnetic fields generated by both bus bars 2 and 3 is at an intermediate position between both bus bars 2 and 3. 0. Therefore, the magnetic detection element 4 needs to be arranged at a position shifted from the intermediate position between the two bus bars 2 and 3. In the present embodiment, the magnetic detection element 4 is arranged at a position where the distance between the first bus bar 2 and the magnetic detection element 4 is larger than the distance between the second bus bar 3 and the magnetic detection element 4.

合成磁界の強度は、両バスバ2,3の配列方向における磁気検出素子4の位置により調整することができるため、磁気検出素子4に適した強度の磁界が検出されるように、磁気検出素子4の位置を適宜調整するとよい。   Since the strength of the combined magnetic field can be adjusted by the position of the magnetic detection element 4 in the arrangement direction of the both bus bars 2 and 3, the magnetic detection element 4 is detected so that a magnetic field having a strength suitable for the magnetic detection element 4 is detected. It is advisable to adjust the position as appropriate.

より具体的には、磁気検出素子4は、検出する磁界(バスバ2,3で発生する磁界を合成した合成磁界)の磁束密度が0より大きく5mT以下となる位置に配置されることが望ましい。これは、一般的なGMR素子では、5mTを超える磁束密度のもとでは出力が飽和してしまい、測定が困難となってしまうためである。なお、ここでいう磁束密度の大きさとは定常状態におけるものであり、異常時や過渡状態において一時的に5mTを超えてしまうような場合は除外するものとする。   More specifically, the magnetic detection element 4 is desirably arranged at a position where the magnetic flux density of the magnetic field to be detected (the combined magnetic field generated by combining the magnetic fields generated by the bus bars 2 and 3) is greater than 0 and 5 mT or less. This is because in a general GMR element, the output is saturated under a magnetic flux density exceeding 5 mT, and measurement becomes difficult. In addition, the magnitude | size of a magnetic flux density here is in a steady state, and excludes the case where it exceeds 5 mT temporarily at the time of abnormality or a transient state.

また、GMR素子では、精度良く磁束密度を検出可能な領域(磁束密度と出力電圧が容易に線形補正できる領域)が通常2mT以下であるため、より好ましくは、検出する磁界の磁束密度(定常状態における磁束密度)が0より大きく2mT以下となる位置に磁気検出素子4を配置するとよい。   Further, in the GMR element, the region where the magnetic flux density can be detected with high precision (the region where the magnetic flux density and the output voltage can be easily linearly corrected) is usually 2 mT or less, and more preferably, the magnetic flux density (steady state) of the magnetic field to be detected The magnetic detection element 4 may be arranged at a position where the magnetic flux density at (1) is greater than 0 and equal to or less than 2 mT.

以上説明したように、本実施形態に係る電流検出構造1では、電流が流れる第1バスバ2と、第1バスバ2と同じ方向に電流が流れる第2バスバ3と、第1バスバ2と第2バスバ3との間に配置される磁気検出素子4と、を備え、磁気検出素子4は、両バスバ2,3の電流が流れる方向に対して垂直方向であり、かつ、第1バスバ2と第2バスバ3の配列方向に対して垂直方向の磁界の強度を測定するように配置されている。   As described above, in the current detection structure 1 according to the present embodiment, the first bus bar 2 through which current flows, the second bus bar 3 through which current flows in the same direction as the first bus bar 2, the first bus bar 2, and the second bus bar 2 And a magnetic detection element 4 disposed between the bus bar 3 and the magnetic detection element 4. The magnetic detection element 4 is perpendicular to the direction in which the currents of the bus bars 2 and 3 flow, and the first bus bar 2 It arrange | positions so that the intensity | strength of the magnetic field of a perpendicular | vertical direction may be measured with respect to the arrangement direction of 2 bus bars 3. FIG.

このように構成することで、両バスバ2,3で発生した磁界が互いに打ち消し合うこととなり、バスバ2,3に流れる電流が大きい場合であっても、磁気検出素子4で検出する磁界の強度を小さくすることが可能になる。つまり、本実施形態によれば、磁気検出素子4としてGMR素子を用いた場合であっても、精度のよい磁界検知が可能になり、バスバ2,3に流れる電流を精度よく検出することが可能になる。   With this configuration, the magnetic fields generated by both bus bars 2 and 3 cancel each other, and even when the current flowing through the bus bars 2 and 3 is large, the strength of the magnetic field detected by the magnetic detection element 4 is reduced. It becomes possible to make it smaller. That is, according to the present embodiment, even when a GMR element is used as the magnetic detection element 4, it is possible to detect the magnetic field with high accuracy and to detect the current flowing through the bus bars 2 and 3 with high accuracy. become.

本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更を加え得ることは勿論である。   The present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the spirit of the present invention.

1 電流検出構造
2 第1バスバ
3 第2バスバ
4 磁気検出素子
DESCRIPTION OF SYMBOLS 1 Current detection structure 2 1st bus bar 3 2nd bus bar 4 Magnetic detection element

Claims (5)

電流が流れる第1バスバと、
前記第1バスバと同じ方向に電流が流れる第2バスバと、
前記第1バスバと前記第2バスバとの間に配置される磁気検出素子と、を備え、
前記磁気検出素子は、前記両バスバの電流が流れる方向に対して垂直方向であり、かつ、前記第1バスバと前記第2バスバの配列方向に対して垂直方向の磁界の強度を測定するように配置される
ことを特徴とする電流検出構造。
A first bus bar through which current flows;
A second bus bar in which current flows in the same direction as the first bus bar;
A magnetic detection element disposed between the first bus bar and the second bus bar,
The magnetic detection element is configured to measure a magnetic field strength in a direction perpendicular to a direction in which current flows in both bus bars and in a direction perpendicular to an arrangement direction of the first bus bar and the second bus bar. A current detection structure characterized by being arranged.
前記磁気検出素子は、巨大磁気抵抗効果素子である
請求項1記載の電流検出構造。
The current detection structure according to claim 1, wherein the magnetic detection element is a giant magnetoresistance effect element.
前記第1バスバと前記磁気検出素子との距離は、前記第2バスバと前記磁気検出素子との距離よりも大きい
請求項1または2記載の電流検出構造。
The current detection structure according to claim 1, wherein a distance between the first bus bar and the magnetic detection element is larger than a distance between the second bus bar and the magnetic detection element.
前記第1バスバと前記第2バスバは、長手方向に沿って電流を流す長方形の板状の導体からなり、その表面同士が対向するように平行に配置されている
請求項1〜3いずれかに記載の電流検出構造。
The said 1st bus bar and the said 2nd bus bar consist of a rectangular plate-shaped conductor which sends an electric current along a longitudinal direction, and are arrange | positioned in parallel so that the surfaces may oppose. The current detection structure described.
前記磁気検出素子は、前記両バスバの幅方向の中心を通る面上に配置される
請求項4記載の電流検出構造。
The current detection structure according to claim 4, wherein the magnetic detection element is disposed on a surface passing through a center in a width direction of the both bus bars.
JP2014111295A 2014-05-29 2014-05-29 Current sensing structure Pending JP2015225024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014111295A JP2015225024A (en) 2014-05-29 2014-05-29 Current sensing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014111295A JP2015225024A (en) 2014-05-29 2014-05-29 Current sensing structure

Publications (1)

Publication Number Publication Date
JP2015225024A true JP2015225024A (en) 2015-12-14

Family

ID=54841861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014111295A Pending JP2015225024A (en) 2014-05-29 2014-05-29 Current sensing structure

Country Status (1)

Country Link
JP (1) JP2015225024A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136587A (en) * 1994-11-15 1996-05-31 Fuji Electric Co Ltd Current transformer applying magnetic sensor
US6040690A (en) * 1995-01-18 2000-03-21 Horstmann Timers & Controls Limited Electricity measurement using two conductors
JP2002277491A (en) * 2001-03-21 2002-09-25 Stanley Electric Co Ltd Current sensor
JP2003028899A (en) * 2001-07-13 2003-01-29 Stanley Electric Co Ltd Current sensor
JP2005283451A (en) * 2004-03-30 2005-10-13 Asahi Kasei Electronics Co Ltd Current measuring device and current measuring method
US20090021249A1 (en) * 2007-07-19 2009-01-22 Sachin Kumar Core-less current sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136587A (en) * 1994-11-15 1996-05-31 Fuji Electric Co Ltd Current transformer applying magnetic sensor
US6040690A (en) * 1995-01-18 2000-03-21 Horstmann Timers & Controls Limited Electricity measurement using two conductors
JP2002277491A (en) * 2001-03-21 2002-09-25 Stanley Electric Co Ltd Current sensor
JP2003028899A (en) * 2001-07-13 2003-01-29 Stanley Electric Co Ltd Current sensor
JP2005283451A (en) * 2004-03-30 2005-10-13 Asahi Kasei Electronics Co Ltd Current measuring device and current measuring method
US20090021249A1 (en) * 2007-07-19 2009-01-22 Sachin Kumar Core-less current sensor

Similar Documents

Publication Publication Date Title
JP5531215B2 (en) Current sensor
JP6651956B2 (en) Current sensor
JP5648246B2 (en) Current sensor
JP5732679B2 (en) Current sensor
JP6690433B2 (en) Current sensor
JP6403086B2 (en) Current detection structure
JP2015137892A (en) Current detection structure
US9201101B2 (en) Current sensor
WO2016056135A1 (en) Current detection device and current detection method
JP2008216230A (en) Current sensor
JP2015148470A (en) current detection structure
WO2013038867A1 (en) Electric-current sensor
JP2018151406A (en) Current detection structure
JP5487403B2 (en) Current sensor
JP2019100922A (en) Current sensor
JP3191252U (en) Current sensor
JP2015132516A (en) Electric current detection structure
US10823764B2 (en) Hall effect current sensor
JP6671985B2 (en) Current sensor
JP2014066623A (en) Current sensor
JP2015225024A (en) Current sensing structure
JP2015132514A (en) Electric current detection structure
JP6671986B2 (en) Current sensor and method of manufacturing the same
JP6144597B2 (en) Current sensor
JP2015148469A (en) current detection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171128