JP2015224616A - 内燃機関の排気装置 - Google Patents

内燃機関の排気装置 Download PDF

Info

Publication number
JP2015224616A
JP2015224616A JP2014111537A JP2014111537A JP2015224616A JP 2015224616 A JP2015224616 A JP 2015224616A JP 2014111537 A JP2014111537 A JP 2014111537A JP 2014111537 A JP2014111537 A JP 2014111537A JP 2015224616 A JP2015224616 A JP 2015224616A
Authority
JP
Japan
Prior art keywords
exhaust gas
exhaust
cooling
flow rate
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014111537A
Other languages
English (en)
Other versions
JP6156651B2 (ja
Inventor
直之 山形
Naoyuki Yamagata
直之 山形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2014111537A priority Critical patent/JP6156651B2/ja
Publication of JP2015224616A publication Critical patent/JP2015224616A/ja
Application granted granted Critical
Publication of JP6156651B2 publication Critical patent/JP6156651B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

【課題】装置の複雑化やコスト上昇を招くことなく、触媒へ流入する排気ガスの温度を低下させ、触媒の劣化を抑制し耐久性を向上させることができる内燃機関の排気装置を提供する。
【解決手段】エンジン(2)の排気装置(1)は、排気ガスを浄化する排気ガス浄化触媒(24)と、排気ガス浄化触媒より上流に配置されたターボ過給機(12)と、ターボ過給機のタービン(8)の上流側から排気ガスの一部を取り出して吸気経路(4)に循環させるEGR通路(30)と、EGR通路に流入した排気ガスを冷却する排気冷却部(32)と、一端が排気冷却部の下流側においてEGR通路に連結されると共に他端が排気ガス浄化触媒の上流側に連結された冷却排気ガス導入通路(34)とを有し、排気冷却部により冷却された排気ガスの一部は、冷却排気ガス導入通路に分岐され排気ガス浄化触媒の上流側に導入される。
【選択図】図1

Description

本発明は、内燃機関の排気装置に係わり、特に、内燃機関から排出された排気ガスを処理する内燃機関の排気装置に関する。
ディーゼルエンジンやガソリンエンジンなどの内燃機関から排出される排気ガスに含まれる未燃焼ガス(HC、CO、NOXなど)を除去して排気ガスを浄化する排気ガス浄化装置が用いられている。この排気ガス浄化装置は、例えば特許文献1に示されているように、エンジンの排気ガス中の未燃焼ガス(HC、CO、NOXなど)の酸化・還元を行う三元触媒や、リーン空燃比においてNOXを除去するリーンNOX触媒などを有している。
これらの触媒には、排気ガスの浄化に適した温度範囲が存在しており、この温度範囲を外れると、排気ガスの浄化効率が低下する。従って、排気ガスを効率的に浄化するには、触媒の温度を適切な温度範囲内に維持することが必要となる。
そこで、例えば特許文献1の排気浄化処理装置では、排気管の途中に冷却エア通路を設け、この冷却エア通路に冷却装置を設置している。冷却装置は、冷却エア通路を流れるエンジンからの排気を冷却し、冷却された排気を触媒の上流側の排気管に供給する。これにより、触媒には冷却された排気が供給され、触媒温度が適切な温度に維持される。
特開2005−36770号公報
上述したような従来技術は、排気ガスの浄化効率の観点から触媒を適切な温度範囲内に保持しようとするものである。さらに、触媒が過度に高温になると、触媒の担体に担持された貴金属粒子が融合することにより触媒の表面積が減少して反応効率が低下したり、担体自体にクラックが生じたりする可能性もある。従って、このような触媒の劣化抑制や耐久性向上の観点からも、触媒へ流入する排気ガスの温度を抑制することが望ましい。
しかしながら、上述したような従来技術では、排気管の途中に冷却エア通路を設けると共に、この冷却エア通路に冷却装置を新設しなければならず、装置の複雑化やコスト上昇を招く。
本発明は、上述した従来技術の問題点を解決するためになされたものであり、装置の複雑化やコスト上昇を招くことなく、触媒へ流入する排気ガスの温度を低下させ、触媒の劣化を抑制し耐久性を向上させることができる内燃機関の排気装置を提供することを目的とする。
上記の目的を達成するために、本発明の内燃機関の排気装置は、内燃機関から排出された排気ガスを処理する内燃機関の排気装置であって、内燃機関の排気ガスを浄化する排気ガス浄化触媒と、排気ガス浄化触媒より上流に配置された、タービン及びコンプレッサを備えたターボ過給機と、ターボ過給機のタービンの上流側から排気ガスの一部を取り出して内燃機関の吸気経路に循環させる排気再循環路と、排気再循環路に設けられ、この排気再循環路に流入した排気ガスを冷却する排気冷却部と、一端が排気冷却部の下流側において排気再循環路に連結されると共に他端が排気ガス浄化触媒の上流側に連結された冷却排気ガス導入通路と、を有し、排気冷却部により冷却された排気ガスの一部は、排気再循環路を経由して内燃機関の吸気経路に循環され、排気冷却部により冷却された排気ガスの他の一部は、冷却排気ガス導入通路に分岐され排気ガス浄化触媒の上流側に導入されることを特徴とする。
このように構成された本発明においては、冷却排気ガス導入通路の一端が排気冷却部の下流側において排気再循環路に連結されると共に他端が排気ガス浄化触媒の上流側に連結され、排気冷却部により冷却された排気ガスの一部は、冷却排気ガス導入通路に分岐され排気ガス浄化触媒の上流側に導入されるので、冷却された排気ガスがタービンから流出した排気ガスと共に触媒装置に流入することにより、触媒装置へ流入する排気ガスの温度を低下させることができる。
そして、この排気冷却部は、排気再循環路から吸気経路に循環する排気ガス及び冷却排気ガス導入通路に流入する排気ガスの両方の冷却に使用できるので、冷却排気ガス導入通路に流入する排気ガスを冷却するための排気冷却部を新設する必要がなく、これにより、装置の複雑化やコスト上昇を招くことなく、触媒へ流入する排気ガスの温度を低下させ、触媒の劣化を抑制し耐久性を向上させることができる。
また、本発明において、好ましくは、内燃機関の排気装置は、更に、ターボ過給機のタービンの上流側と下流側とをバイパスするバイパス通路を有し、冷却排気ガス導入通路の出口は、バイパス通路に連結され、バイパス通路の上流側端部には、ターボ過給機のタービンの上流側から流入する排気ガスの流量を調節するウェイストゲートバルブが設けられ、冷却排気ガス導入通路には、この冷却排気ガス導入通路を流れる排気ガスの流量を調整する冷却排気ガス流量調整バルブが設けられ、更に、ウェイストゲートバルブ及び冷却排気ガス流量調整バルブの開度を制御するバルブ制御部を有し、バルブ制御部は、冷却排気ガス流量調整バルブを開いた後にウェイストゲートバルブを開くことを特徴とする。
このように構成された本発明においては、バルブ制御部は、冷却排気ガス流量調整バルブを開いた後にウェイストゲートバルブを開くので、ウェイストゲートバルブを経由して高温を維持したままバイパス通路に流入した排気ガスを、排気再循環路の排気冷却部により冷却され冷却排気ガス導入通路を経由してバイパス通路に流入した排気ガスと混合させて温度を低下させることができ、触媒装置へ流入する排気ガスの温度を低下させることができる。
また、本発明において、好ましくは、冷却排気ガス流量調整バルブの開口面積の最小変化量は、ウェイストゲートバルブの開口面積の最小変化量よりも小さいことを特徴とする。
このように構成された本発明においては、冷却排気ガス流量調整バルブ及びウェイストゲートバルブの両方が開く運転領域では、最小変化量の大きいウェイストゲートバルブの開度を大きくして、タービンを迂回してバイパス通路に流入する排気ガスの流量を確保しつつ、最小変化量の小さい冷却排気ガス流量調整バルブの開度を微調整することにより、ターボ過給機による過給圧や触媒装置の入口における排気ガス温度を高精度に制御することができる。
本発明による内燃機関の排気装置によれば、装置の複雑化やコスト上昇を招くことなく、触媒へ流入する排気ガスの温度を低下させ、触媒の劣化を抑制し耐久性を向上させることができる。
本発明の実施形態による排気装置のシステム構成図である。 本発明の実施形態による排気装置の冷却排気ガス流量調整バルブ及びウェイストゲートバルブの開口面積の最小変化量を示した線図である。 本発明の実施形態による排気装置が実行する処理の流れを示すフローチャートである。 本発明の実施形態による排気装置を搭載したエンジンのトルクカーブと共に、冷却排気ガス流量調整バルブ及びウェイストゲートバルブが開く領域を示した線図である。 本発明の実施形態の変形例による排気装置が実行する処理の流れを示すフローチャートである。 本発明の実施形態の変形例による排気装置を搭載したエンジンのトルクカーブと共に、冷却排気ガス流量調整バルブ及びウェイストゲートバルブが開く領域を示した線図である。
以下、添付図面を参照して、本発明の実施形態による内燃機関の排気装置を説明する。
まず、図1及び図2により、本発明の実施形態による内燃機関の排気装置の全体構成を説明する。図1は、本発明の実施形態による排気装置のシステム構成図であり、図2は、本発明の実施形態による排気装置の冷却排気ガス流量調整バルブ及びウェイストゲートバルブの開口面積の最小変化量を示した線図である。
まず、図1において符号1は、本発明の実施形態による内燃機関の排気装置を示す。本実施形態においては、内燃機関の排気装置1は、エンジン2の排気経路に設けられているものとする。
図1に示すように、エンジン2には、このエンジン2に空気を供給する吸気経路4と、エンジン2から排気ガスが排出される排気経路6とが接続されている。また、エンジン2は、タービン8及びコンプレッサ10を備えたターボ過給機12を有しており、ターボ過給機12のタービン8は排気経路6に設けられ、コンプレッサ10は吸気経路4に設けられている。
エンジン2の吸気経路4において、コンプレッサ10の上流側には、吸気経路4に吸入される外気をろ過するエアクリーナ14が設けられている。コンプレッサ10の下流側には、コンプレッサ10によって圧縮され高温となった空気を冷却するインタークーラ16が設けられている。さらに、インタークーラ16の下流側には、インテークマニフォールド18が接続され、このインテークマニフォールド18は、エンジン2の各燃焼室20の吸気ポートに接続されている。
外部から吸気経路4に流入した空気は、エアクリーナ14によってろ過された後にコンプレッサ10により圧縮される。コンプレッサ10によって圧縮された空気はインタークーラ16によって冷却され、インテークマニフォールド18を介してエンジン2の各燃焼室20に吸気される。
また、エンジン2の排気経路6において、エキゾーストマニフォールド22がエンジン2の各燃焼室20の排気ポートに接続されている。エキゾーストマニフォールド22の下流側には、ターボ過給機12のタービン8が設けられている。さらに、タービン8の下流側には、排気ガスに含まれる未燃焼ガス(HC、CO、NOXなど)を除去する排気ガス浄化触媒24が設けられている。この排気ガス浄化触媒24は、例えば排気ガスの流れに沿って延びる多数のセルを有したセラミックス製あるいは金属製の担体の表面に貴金属粒子を触媒として担持させたものであり、排気ガス中の未燃焼ガス(HC、CO、NOXなど)をN2、CO2、H2Oに分解する。
また、エンジン2の排気経路6には、ターボ過給機12のタービン8の上流側と下流側とをバイパスするバイパス通路26が設けられ、このバイパス通路26の上流側端部には、ターボ過給機12のタービン8の上流側から流入する排気ガスの流量を調節するウェイストゲートバルブ28が設けられている。ウェイストゲートバルブ28としては、フラップ式バルブが用いられる。バイパス通路26の出口は、排気ガス浄化触媒24の上流側に接続されている。
また、エンジン2は、ターボ過給機12のタービン8の上流側から排気ガスの一部を取り出して吸気経路4に循環させる排気再循環(EGR:Exhaust Gas Recirculation)通路30が設けられている。EGR通路30の入口は、エキゾーストマニフォールド22に接続され、このエキゾーストマニフォールド22を流れる排気ガスの一部がEGR通路30に流入するようになっている。EGR通路30の出口は、インタークーラ16とインテークマニフォールド18との間に接続され、EGR通路30に流入した排気ガスを吸気経路4に循環させるようになっている。さらに、EGR通路30に流入した排気ガスを冷却する排気冷却部32が、EGR通路30に設けられている。
さらに、エンジン2の排気経路6には、EGR通路30の排気冷却部32により冷却された排気ガスの一部を、排気ガス浄化触媒24の上流側に導入する冷却排気ガス導入通路34が設けられている。この冷却排気ガス導入通路34の入口は、排気冷却部32の下流側においてEGR通路30に連結され、冷却排気ガス導入通路34の出口は、排気ガス浄化触媒24の上流側においてバイパス通路26に連結されている。
排気ガスがタービン8を通過する際にコンプレッサ10を回転させるための仕事(エネルギ)が取り出されることにより、タービン8の上流側と下流側との間に圧力差が生じる。排気冷却部32により冷却された排気ガスの一部は、このタービン8の上流側と下流側との間の圧力差を利用して、冷却排気ガス導入通路34からバイパス通路26に流入し、タービン8から流出した排気ガスと合流して排気ガス浄化触媒24に流入する。
EGR通路30において、排気冷却部32の下流側に、このEGR通路30から吸気経路4に循環させる排気ガスの流量を調整するEGRバルブ36が設けられている。また、冷却排気ガス導入通路34には、この冷却排気ガス導入通路34を流れる排気ガスの流量を調整する冷却排気ガス流量調整バルブ38が設けられている。これらのEGRバルブ36及び冷却排気ガス流量調整バルブ38としては、リニア駆動方式のバルブが用いられている。図2において実線で示すように、上述したフラップ式のウェイストゲートバルブ28は、バルブ開度が大きくなるほど開口面積の増加率が大きくなる(即ち、バルブ開度が大きくなるほど、バルブの開口面積の最小変化量が増大する)のに対して、図2において1点鎖線で示すように、EGRバルブ36及び冷却排気ガス流量調整バルブ38は、バルブ開度と開口面積とが比例関係にある(即ち、バルブ開度の大小に関わらず開口面積の最小変化量が一定)ので、特にバルブ開度が大きい領域において、EGRバルブ36及び冷却排気ガス流量調整バルブ38の開口面積の最小変化量は、ウェイストゲートバルブ28の最小変化量よりも小さくなっている。
エアクリーナ14の出口には、エアクリーナ14を通過した空気の流量を検出するエアフローセンサ40が設けられ、インテークマニフォールド18には、コンプレッサ10により圧縮されエンジン2の各燃焼室20に供給される吸気の過給圧力を検出する過給圧センサ42が設けられ、排気ガス浄化触媒24の入口には、排気ガス浄化触媒24に流入する排気ガスの温度を検出する排気温度センサ44と、排気ガスの酸素濃度を検出するO2センサ46が設けられている。これらの各センサの検出値は、パワートレインコントロールユニット(PCU)48に出力される。
PCU48は、エアフローセンサ40、過給圧センサ42、排気温度センサ44、O2センサ46から出力された検出値や、このPCU48のメモリに格納されている制御マップ等の各種データに基づき、EGRバルブ36、冷却排気ガス流量調整バルブ38、及びウェイストゲートバルブ28の開度を制御する。
次に、図3及び図4により、本発明の実施形態による排気装置1の動作を説明する。図3は、本発明の実施形態による排気装置1のPCU48が実行する処理を示すフローチャートであり、図4は、本発明の実施形態による排気装置1を搭載したエンジン2のトルクカーブと共に、冷却排気ガス流量調整バルブ38及びウェイストゲートバルブ28が開く領域を示した線図である。
まず、図3の処理は、車両のイグニッションがオンにされ、PCU48に電源が投入された場合に起動され、繰り返し実行される。図3に示すように、処理が開始されると、ステップS1において、PCU48は、吸気流量に占める再循環された排気ガスの流量の割合(EGR率)、過給圧、及び排気ガス温度の目標値をメモリから取得する。この目標値は、エンジン2の形式や使用環境に応じて適宜設定されるものであり、例えば、過給圧の目標値は100kPa、排気ガス温度の目標値は800℃である。
次に、ステップS2に進み、PCU48は、EGRバルブ36及び冷却排気ガス流量調整バルブ38の協調制御を行う。具体的には、EGR率が運転状態に応じて予め設定された目標値となるように、且つ、過給圧が目標値となるように、EGRバルブ36及び冷却排気ガス流量調整バルブ38のそれぞれの開度を制御する。
次に、ステップS3に進み、PCU48は、EGRバルブ36及び冷却排気ガス流量調整バルブ38の協調制御によって過給圧を目標値に保持できるか否かを判定する。例えば、EGRバルブ36の開度を調節してEGR率を目標値に保持しつつ、冷却排気ガス流量調整バルブ38を全開にしても過給圧が目標値を超えてしまう場合、EGRバルブ36及び冷却排気ガス流量調整バルブ38の協調制御によって過給圧を目標値に保持できないと判定する。
その結果、EGRバルブ36及び冷却排気ガス流量調整バルブ38の協調制御によって過給圧を目標値に保持できる場合、ステップS4に進み、PCU48は、排気ガス浄化触媒24に流入する排気ガスの温度がステップS1で取得した目標値以下か否かを判定する。その結果、排気ガス温度が目標値以下である場合、PCU48は処理を終了する。
また、ステップS3において、EGRバルブ36及び冷却排気ガス流量調整バルブ38の協調制御によって過給圧を目標値に保持できない場合、ステップS5に進み、PCU48はウェイストゲートバルブ28を開く。
また、ステップS4において、排気ガス温度が目標値以下ではない(目標値を超えている)場合、ステップS6に進み、PCU48は、冷却排気ガス流量調整バルブ38の開度を増大させる。
ステップS5又はS6の後、ステップS7に進み、PCU48は、EGRバルブ36、冷却排気ガス流量調整バルブ38、及び、ステップS5でウェイストゲートバルブ28を開いた場合にはウェイストゲートバルブ28も含めて協調制御を行う。具体的には、EGR率が運転状態に応じて予め設定された目標値となるように、且つ、過給圧が目標値となるように、EGRバルブ36、冷却排気ガス流量調整バルブ38、及びウェイストゲートバルブ28のそれぞれの開度を制御する。
次に、ステップS4に進み、PCU48は、排気ガス温度が目標値以下か否かを判定する。以降、排気ガス温度が目標値以下になるまで、PCU48はステップS4、S6、S7を繰り返し、排気ガス温度が目標値以下になった場合、PCU48は処理を終了する。
次に、図4の線図において、横軸はエンジン回転数を示し、縦軸はトルクを示している。この図4における実線はスロットル全開時のトルクカーブであり、エンジン2はこのトルクカーブの下方の領域で運転される。また、図4における1点鎖線は、冷却排気ガス流量調整バルブ38が開く最低エンジン回転数を示す線であり、破線は、ウェイストゲートバルブ28が開く最低エンジン回転数を示す線である。
具体的には、あるスロットル開度においてエンジン回転数が増加し、1点鎖線で示す状態に達したとき、過給圧は図3のステップS1で取得された目標値に達する。そこで、PCU48は、冷却排気ガス流量調整バルブ38を開く(ステップS2)。これにより、エキゾーストマニフォールド22を流れる排気ガスの一部はEGR通路30に流入し、排気冷却部32から冷却排気ガス導入通路34を経由してバイパス通路26に流入する。即ち、EGR通路30に流入した排気ガスはタービン8を通過しないので、エンジン回転数の増加に伴う過給圧の上昇が抑制される。
ここで、EGR通路30から冷却排気ガス導入通路34を経由してバイパス通路26に流入した排気ガスは、EGR通路30の排気冷却部32により冷却されているので、この冷却された排気ガスがタービン8から流出した排気ガスと合流して排気ガス浄化触媒24に流入することにより、排気ガス浄化触媒24の入口における排気ガス温度は目標値以下に保たれる。
さらにエンジン回転数が増加した場合、PCU48は、冷却排気ガス流量調整バルブ38の開度を増大させ、タービン8を迂回してEGR通路30から冷却排気ガス導入通路34を経由してバイパス通路26に流入する排気ガスの流量を増大させることにより、過給圧の上昇を抑制する。
さらにエンジン回転数が増加し、破線で示す状態に達したとき、冷却排気ガス流量調整バルブ38の開度は最大に達する。即ち、タービン8を迂回してEGR通路30から冷却排気ガス導入通路34を経由してバイパス通路26に流入する排気ガスの流量をこれ以上増大させることができないので、エンジン回転数がさらに増大すると過給圧が目標値を超えてしまう。そこで、PCU48はウェイストゲートバルブ28を開く(ステップS5)。これにより、エキゾーストマニフォールド22を流れる排気ガスの一部はバイパス通路26に流入する。即ち、バイパス通路26に流入した排気ガスはタービン8を通過しないので、エンジン回転数の増加に伴う過給圧の上昇が抑制される。また、ウェイストゲートバルブ28を介してバイパス通路26に流入した排気ガスは、EGR通路30の排気冷却部32により冷却され冷却排気ガス導入通路34を経由してバイパス通路26に流入した排気ガスと混合することにより温度が低下するので、排気ガス浄化触媒24の入口における排気ガス温度は目標値以下に保たれる。
さらにエンジン回転数が増加した場合、PCU48は、ウェイストゲートバルブ28の開度を増大させ、タービン8を迂回してバイパス通路26に流入する排気ガスの流量を増大させることにより、過給圧の上昇を抑制する。
上述したように、特にバルブ開度が大きい領域において、冷却排気ガス流量調整バルブ38の開口面積の最小変化量は、ウェイストゲートバルブ28の最小変化量よりも小さい。そこで、冷却排気ガス流量調整バルブ38及びウェイストゲートバルブ28の両方が開く領域では、最小変化量の大きいウェイストゲートバルブ28の開度を大きくすることにより、タービン8を迂回してバイパス通路26に流入する排気ガスの流量を確保しつつ、最小変化量の小さい冷却排気ガス流量調整バルブ38の開度を微調整することにより、過給圧や排気ガス浄化触媒24の入口における排気ガス温度を高精度に制御することができる。
次に、図5及び図6により、本発明の実施形態のさらなる変形例を説明する。図5は、本発明の実施形態の変形例による内燃機関の排気装置1のPCU48が実行する処理を示すフローチャートであり、図6は、本発明の実施形態の変形例による内燃機関の排気装置1を搭載したエンジン2のトルクカーブと共に、冷却排気ガス流量調整バルブ38及びウェイストゲートバルブ28が開く領域を示した線図である。
まず、図5の処理は、図3に示した本発明の実施形態の処理と同様に、車両のイグニッションがオンにされ、PCU48に電源が投入された場合に起動され、繰り返し実行される。図5に示すように、処理が開始されると、ステップS11において、PCU48は、EGR率、過給圧(例えば100kPa)、及び排気ガス温度の目標値(例えば800℃)をメモリから取得する。
次に、ステップS12に進み、PCU48は、EGRバルブ36及びウェイストゲートバルブ28の協調制御を行う。具体的には、EGR率が運転状態に応じて予め設定された目標値となるように、且つ、過給圧が目標値となるように、EGRバルブ36及びウェイストゲートバルブ28のそれぞれの開度を制御する。
次に、ステップS13に進み、PCU48は、EGRバルブ36及びウェイストゲートバルブ28の協調制御によって過給圧を目標値に保持できるか否かを判定する。例えば、EGRバルブ36の開度を調節してEGR率を目標値に保持しつつ、ウェイストゲートバルブ28を全開にしても過給圧が目標値を超えてしまう場合、EGRバルブ36及びウェイストゲートバルブ28の協調制御によって過給圧を目標値に保持できないと判定する。
その結果、EGRバルブ36及びウェイストゲートバルブ28の協調制御によって過給圧を目標値に保持できる場合、ステップS14に進み、PCU48は、排気ガス浄化触媒24に流入する排気ガスの温度がステップS11で取得した目標値以下か否かを判定する。その結果、排気ガス温度が目標値以下である場合、PCU48は処理を終了する。
また、ステップS13において、EGRバルブ36及びウェイストゲートバルブ28の協調制御によって過給圧を目標値に保持できない場合、ステップS15に進み、PCU48は冷却排気ガス流量調整バルブ38を開く。
また、ステップS14において、排気ガス温度が目標値以下ではない(目標値を超えている)場合、ステップS16に進み、PCU48は、冷却排気ガス流量調整バルブ38が開いていない場合には冷却排気ガス流量調整バルブ38を開き、既に冷却排気ガス流量調整バルブ38が開いている場合には冷却排気ガス流量調整バルブ38の開度を増大させる。
ステップS15又はS16の後、ステップS17に進み、PCU48は、EGRバルブ36、ウェイストゲートバルブ28、及び、冷却排気ガス流量調整バルブ38の協調制御を行う。具体的には、EGR率が運転状態に応じて予め設定された目標値となるように、且つ、過給圧が目標値となるように、EGRバルブ36、ウェイストゲートバルブ28、及び、冷却排気ガス流量調整バルブ38のそれぞれの開度を制御する。
次に、ステップS14に進み、PCU48は、排気ガス温度が目標値以下か否かを判定する。以降、排気ガス温度が目標値以下になるまで、PCU48はステップS14、S16、S17を繰り返す。
次に、図6の線図において、横軸はエンジン回転数を示し、縦軸はトルクを示している。この図6における実線はスロットル全開時のトルクカーブであり、エンジン2はこのトルクカーブの下方の領域で運転される。また、図6における破線は、ウェイストゲートバルブ28が開く最低エンジン回転数を示す線であり、1点鎖線は、冷却排気ガス流量調整バルブ38が開く最低エンジン回転数を示す線である。
具体的には、あるスロットル開度においてエンジン回転数が増加し、破線で示す状態に達したとき、過給圧は図5のステップS11で取得された目標値に達する。そこで、PCU48は、ウェイストゲートバルブ28を開く(ステップS12)。これにより、エキゾーストマニフォールド22を流れる排気ガスの一部はウェイストゲートバルブ28を経由してバイパス通路26に流入する。即ち、バイパス通路26に流入した排気ガスはタービン8を通過しないので、エンジン回転数の増加に伴う過給圧の上昇が抑制される。
さらにエンジン回転数が増加した場合、PCU48は、ウェイストゲートバルブ28の開度を増大させ、タービン8を迂回してウェイストゲートバルブ28を経由してバイパス通路26に流入する排気ガスの流量を増大させることにより、過給圧の上昇を抑制する。
さらにエンジン回転数が増加し、1点鎖線で示す状態に達したとき、ウェイストゲートバルブ28の開度は最大に達する。即ち、タービン8を迂回してウェイストゲートバルブ28を経由してバイパス通路26に流入する排気ガスの流量をこれ以上増大させることができないので、エンジン回転数がさらに増大すると過給圧が目標値を超えてしまう。そこで、PCU48は冷却排気ガス流量調整バルブ38を開く(ステップS15)。これにより、エキゾーストマニフォールド22を流れる排気ガスの一部は、EGR通路30から冷却排気ガス導入通路34を経由してバイパス通路26に流入する。即ち、EGR通路30に流入した排気ガスはタービン8を通過しないので、エンジン回転数の増加に伴う過給圧の上昇が抑制される。
また、ウェイストゲートバルブ28の開度が増大すると、タービン8を迂回して高温を維持したまま触媒入口まで流入する排気ガスの流量が増大し、触媒入口における排気ガス温度が上昇する。しかし、図5のステップS15又はS16で冷却排気ガス流量調整バルブ38を開くことにより、ウェイストゲートバルブ28を経由してバイパス通路26に流入した排気ガスは、EGR通路30の排気冷却部32により冷却され冷却排気ガス導入通路34を経由してバイパス通路26に流入した排気ガスと混合することにより温度が低下するので、排気ガス浄化触媒24の入口における排気ガス温度は目標値以下に保たれる。
さらにエンジン回転数が増加した場合、PCU48は、冷却排気ガス流量調整バルブ38の開度を増大させ、タービン8を迂回してEGR通路30から冷却排気ガス導入通路34を経由してバイパス通路26に流入する排気ガスの流量を増大させることにより、過給圧の上昇を抑制する。
また、上述した実施形態では、ウェイストゲートを備えた固定容量型のターボ過給機12を搭載したエンジン2に本発明の排気装置1を適用した場合を例示したが、ウェイストゲートを持たない可変容量型のターボ過給機12を搭載したエンジン2にも本発明の排気装置1を適用することができる。
この場合、冷却排気ガス導入通路34の出口は、タービン8の出口と合流して排気ガス浄化触媒24に入口に接続される。この冷却排気ガス導入通路34により、排気冷却部32により冷却された排気ガスの一部が、排気ガス浄化触媒24に流入する排気ガスに導入されるので、この冷却された排気ガスがタービン8から流出した排気ガスと合流して排気ガス浄化触媒24に流入することにより、排気ガス浄化触媒24へ流入する排気ガスの温度を低下させる。
また、上述した実施形態では、バイパス通路26の出口は、排気ガス浄化触媒24の上流側に接続され、冷却排気ガス導入通路34の出口は、排気ガス浄化触媒24の上流側においてバイパス通路26に連結されていると説明したが、これとは異なる構成であっても、排気冷却部32により冷却された排気ガスが排気ガス浄化触媒24に流入するように構成されていればよい。
例えば、タービン8の出口とバイパス通路26の出口とが、それぞれ独立して排気ガス浄化触媒24の上流側に接続され、冷却排気ガス導入通路34の出口が、バイパス通路26に連結されるように構成してもよい。あるいは、タービン8の出口、バイパス通路26の出口、及び冷却排気ガス導入通路34の出口が、それぞれ独立して排気ガス浄化触媒24の上流側に接続されるように構成してもよい。
次に、上述した本発明の実施形態及び本発明の実施形態の変形例による排気装置1の作用効果を説明する。
まず、冷却排気ガス導入通路34の入口が排気冷却部32の下流側においてEGR通路30に連結されると共に出口が排気ガス浄化触媒24の上流側に連結され、排気冷却部32により冷却された排気ガスの一部は、冷却排気ガス導入通路34に分岐され排気ガス浄化触媒24の上流側に導入されるので、冷却された排気ガスがタービン8から流出した排気ガスと共に排気ガス浄化触媒24に流入することにより、排気ガス浄化触媒24へ流入する排気ガスの温度を低下させることができる。
そして、この排気冷却部32は、EGR通路30から吸気経路4に循環する排気ガス及び冷却排気ガス導入通路34に流入する排気ガスの両方の冷却に使用できるので、冷却排気ガス導入通路34に流入する排気ガスを冷却するための排気冷却部32を新設する必要がなく、これにより、装置の複雑化やコスト上昇を招くことなく、触媒へ流入する排気ガスの温度を低下させ、触媒の劣化を抑制し耐久性を向上させることができる。
また、PCU48は、冷却排気ガス導入通路34を流れる冷却排気ガスの流量を調整する冷却排気ガス流量調整バルブ38を開いた後にウェイストゲートバルブ28を開くので、ウェイストゲートバルブ28を経由して高温を維持したままバイパス通路26に流入した排気ガスを、EGR通路30の排気冷却部32により冷却され冷却排気ガス導入通路34を経由してバイパス通路26に流入した排気ガスと混合させて温度を低下させることができ、排気ガス浄化触媒24へ流入する排気ガスの温度を低下させることができる。
特に、冷却排気ガス流量調整バルブ38の開口面積の最小変化量は、ウェイストゲートバルブ28の開口面積の最小変化量よりも小さいので、冷却排気ガス流量調整バルブ38及びウェイストゲートバルブ28の両方が開く運転領域では、最小変化量の大きいウェイストゲートバルブ28の開度を大きくして、タービン8を迂回してバイパス通路26に流入する排気ガスの流量を確保しつつ、最小変化量の小さい冷却排気ガス流量調整バルブ38の開度を微調整することにより、過給圧や排気ガス浄化触媒24の入口における排気ガス温度を高精度に制御することができる。
1 排気装置
2 エンジン
4 吸気経路
6 排気経路
8 タービン
10 コンプレッサ
12 ターボ過給機
24 排気ガス浄化触媒
26 バイパス通路
28 ウェイストゲートバルブ
30 EGR通路
32 排気冷却部
34 冷却排気ガス導入通路
36 EGRバルブ
38 冷却排気ガス流量調整バルブ
48 PCU

Claims (3)

  1. 内燃機関から排出された排気ガスを処理する内燃機関の排気装置であって、
    上記内燃機関の排気ガスを浄化する排気ガス浄化触媒と、
    上記排気ガス浄化触媒より上流に配置された、タービン及びコンプレッサを備えたターボ過給機と、
    上記ターボ過給機の上記タービンの上流側から排気ガスの一部を取り出して上記内燃機関の吸気経路に循環させる排気再循環路と、
    上記排気再循環路に設けられ、この排気再循環路に流入した排気ガスを冷却する排気冷却部と、
    一端が上記排気冷却部の下流側において上記排気再循環路に連結されると共に他端が上記排気ガス浄化触媒の上流側に連結された冷却排気ガス導入通路と、を有し、
    上記排気冷却部により冷却された排気ガスの一部は、上記排気再循環路を経由して上記内燃機関の吸気経路に循環され、上記排気冷却部により冷却された排気ガスの他の一部は、上記冷却排気ガス導入通路に分岐され上記排気ガス浄化触媒の上流側に導入されることを特徴とする内燃機関の排気装置。
  2. 更に、上記ターボ過給機の上記タービンの上流側と下流側とをバイパスするバイパス通路を有し、
    上記冷却排気ガス導入通路の出口は、上記バイパス通路に連結され、
    上記バイパス通路の上流側端部には、上記ターボ過給機の上記タービンの上流側から流入する排気ガスの流量を調節するウェイストゲートバルブが設けられ、
    上記冷却排気ガス導入通路には、この冷却排気ガス導入通路を流れる排気ガスの流量を調整する冷却排気ガス流量調整バルブが設けられ、
    更に、上記ウェイストゲートバルブ及び上記冷却排気ガス流量調整バルブの開度を制御するバルブ制御部を有し、
    上記バルブ制御部は、上記冷却排気ガス流量調整バルブを開いた後に上記ウェイストゲートバルブを開くことを特徴とする、請求項1に記載の内燃機関の排気装置。
  3. 上記冷却排気ガス流量調整バルブの開口面積の最小変化量は、上記ウェイストゲートバルブの開口面積の最小変化量よりも小さいことを特徴とする、請求項2に記載の内燃機関の排気装置。
JP2014111537A 2014-05-29 2014-05-29 内燃機関の排気装置 Expired - Fee Related JP6156651B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014111537A JP6156651B2 (ja) 2014-05-29 2014-05-29 内燃機関の排気装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014111537A JP6156651B2 (ja) 2014-05-29 2014-05-29 内燃機関の排気装置

Publications (2)

Publication Number Publication Date
JP2015224616A true JP2015224616A (ja) 2015-12-14
JP6156651B2 JP6156651B2 (ja) 2017-07-05

Family

ID=54841569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014111537A Expired - Fee Related JP6156651B2 (ja) 2014-05-29 2014-05-29 内燃機関の排気装置

Country Status (1)

Country Link
JP (1) JP6156651B2 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315173A (ja) * 2006-05-23 2007-12-06 Nissan Motor Co Ltd 内燃機関の排気装置
JP2010185374A (ja) * 2009-02-12 2010-08-26 Toyota Motor Corp 過給機付内燃機関の制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315173A (ja) * 2006-05-23 2007-12-06 Nissan Motor Co Ltd 内燃機関の排気装置
JP2010185374A (ja) * 2009-02-12 2010-08-26 Toyota Motor Corp 過給機付内燃機関の制御装置

Also Published As

Publication number Publication date
JP6156651B2 (ja) 2017-07-05

Similar Documents

Publication Publication Date Title
EP1420159B1 (en) EGR system for internal combustion engine provided with a turbo-charger
KR101826571B1 (ko) 엔진 시스템
JP4843035B2 (ja) エンジン排気温度を維持するエンジンおよび方法
JP4792997B2 (ja) 内燃機関の排気浄化システム
CN108150315B (zh) Egr排气处理装置及汽车
CN107762591A (zh) 用于使颗粒过滤器再生的装置以及方法
CN107489563B (zh) 具有排气再循环装置的发动机系统以及控制该发动机系统的方法
JP2008169712A (ja) Egrシステム付きエンジン
JP2010048107A (ja) ディーゼルエンジンの排気ガス再循環装置
JP2008138638A (ja) 内燃機関の排気還流装置
JP2007263033A (ja) 過給機付エンジン
US10508578B2 (en) Engine system
JP2007016612A (ja) 内燃機関の排気圧制御装置
JP2005036770A (ja) 内燃機関の排気浄化処理装置
US20110093185A1 (en) Method for operating an internal combustion engine system
JP6156651B2 (ja) 内燃機関の排気装置
JP6112297B2 (ja) エンジンの排気浄化装置
JP2008151103A (ja) 内燃機関の排気浄化システム
JP2016121547A (ja) 内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法
JP6252067B2 (ja) Egr装置及び排気ガス還流方法
JP2005042672A (ja) 内燃機関の制御装置
WO2015163227A1 (ja) ハイブリッドシステム、ハイブリッドシステム車両、及び、ハイブリッドシステムのegr方法
JP2005002975A (ja) エンジンの排気浄化装置
JP4206934B2 (ja) 内燃機関用過給システム
JP2005069092A (ja) ターボコンパウンドエンジンの排気還流装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170523

R150 Certificate of patent or registration of utility model

Ref document number: 6156651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees