JP2015215203A - Method of evaluating carburized component - Google Patents

Method of evaluating carburized component Download PDF

Info

Publication number
JP2015215203A
JP2015215203A JP2014097449A JP2014097449A JP2015215203A JP 2015215203 A JP2015215203 A JP 2015215203A JP 2014097449 A JP2014097449 A JP 2014097449A JP 2014097449 A JP2014097449 A JP 2014097449A JP 2015215203 A JP2015215203 A JP 2015215203A
Authority
JP
Japan
Prior art keywords
carburized
evaluating
component
carbon concentration
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014097449A
Other languages
Japanese (ja)
Other versions
JP6413327B2 (en
Inventor
敬和 丸茂
Takakazu Marumo
敬和 丸茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2014097449A priority Critical patent/JP6413327B2/en
Publication of JP2015215203A publication Critical patent/JP2015215203A/en
Application granted granted Critical
Publication of JP6413327B2 publication Critical patent/JP6413327B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of evaluating a carburized component, configured to analyze carbon concentration after gas carburization with a comparatively simple apparatus.SOLUTION: In evaluating a component with a carburized surface, the surface of the component is subjected to fluorescent X-ray analysis, to measure carbon concentration of the surface. The surface is ground, and the ground surface is subjected to fluorescent X-ray analysis again to measure carbon concentration of the surface. The above operation is repeated, to measure a carbon concentration distribution up to a carburization depth, for evaluating the component.

Description

本発明は、疲労強度向上を目的として他の金属と接触する表面に浸炭処理が施された自動車部品などの浸炭処理された部品の評価方法に関するものである。   The present invention relates to a method for evaluating a carburized part such as an automobile part that has been carburized on a surface in contact with another metal for the purpose of improving fatigue strength.

自動車部品としての差動クロスジョイントは、過酷な条件で使用されるため、疲労強度と硬度が要求される。このため、疲労強度に優れた金属で鍛造成形され、その上で、表面硬度及び疲労強度向上を目的として表面に浸炭処理が施される。   Since differential cross joints as automobile parts are used under severe conditions, fatigue strength and hardness are required. For this reason, it forge-molds with the metal excellent in fatigue strength, and the carburizing process is given to the surface for the purpose of surface hardness and fatigue strength improvement on it.

この差動クロスジョイントが用いられるディファレンシャル装置を図7により説明する。   A differential apparatus using this differential cross joint will be described with reference to FIG.

図7は、差動クロスジョイント10が用いられるディファレンシャル装置20の組み立て分解斜視図を示し、21はディファレンシャルケース、22、23はサイドギヤ、24はディファレンシャルピニオン、25はプロペラシャフトに連結されたドライブピニオン(図示せず)で回転されるリングギヤ、26はギヤケース、10は差動クロスジョイントである。   FIG. 7 is an exploded perspective view of the differential device 20 in which the differential cross joint 10 is used. 21 is a differential case, 22 and 23 are side gears, 24 is a differential pinion, and 25 is a drive pinion connected to a propeller shaft ( (Not shown), the ring gear 26 is rotated, 26 is a gear case, and 10 is a differential cross joint.

図6は、図7に丸dで囲んだ差動クロスジョイント10の詳細斜視図を示したものである。差動クロスジョイント10は、リング11の外周にピン12を一体に設けて構成され、これらピン12に、図7で示したディファレンシャルピニオン24が軸支されると共に、差動に伴って回転するディファレンシャルケース(図示せず)に支承されるようになっている。   FIG. 6 is a detailed perspective view of the differential cross joint 10 surrounded by a circle d in FIG. The differential cross joint 10 is configured by integrally providing pins 12 on the outer periphery of the ring 11, and the differential pinion 24 shown in FIG. 7 is pivotally supported on these pins 12, and the differential rotates with the differential. It is supported by a case (not shown).

このディファレンシャル装置20内の差動クロスジョイント(デフスパイダーとも称される)10は、過酷な条件で使用されるため、SCM420などのクロムモリブデン鋼を、熱間鍛造により製造されると共にピニオンギヤを支承するシャフト部分の表面には、表面硬度及び疲労強度を向上させるためにガス浸炭処理が施されている。   Since the differential cross joint (also referred to as a diff spider) 10 in the differential device 20 is used under severe conditions, chromium molybdenum steel such as SCM420 is manufactured by hot forging and supports a pinion gear. The surface of the shaft portion is subjected to gas carburizing treatment in order to improve the surface hardness and fatigue strength.

クロムモリブデン鋼としてのSCM420は、Feを母材とし、C:0.17〜0.23%、Mn:0.55〜0.9%、Cr:0.85〜1.25%、Mo:0.15〜0.35%、その他Siと不可避金属を含む成分からなる。   SCM420 as chromium molybdenum steel has Fe as a base material, C: 0.17 to 0.23%, Mn: 0.55 to 0.9%, Cr: 0.85 to 1.25%, Mo: 0 .15 to 0.35%, and other components including Si and inevitable metals.

このクロムモリブデン鋼を用い、これを熱間鍛造で図7に示した差動クロスジョイント10の形状に成形すると共に表面を機械加工にて所定の寸法にし、その上でガス浸炭処理を施すことで、疲労強度と靱性を備え、表面がマルテンサイト化されて硬度が増し、ピン12の摺動面の耐摩耗性を格段に向上できる。   Using this chromium-molybdenum steel, this is formed into the shape of the differential cross joint 10 shown in FIG. 7 by hot forging, and the surface is machined to a predetermined size, and then subjected to gas carburizing treatment. It has fatigue strength and toughness, the surface is martensitic, the hardness is increased, and the wear resistance of the sliding surface of the pin 12 can be remarkably improved.

このガス浸炭処理は、差動クロスジョイントを鍛造で成形した後、表面硬度がビッカース硬度(Hv)で、設定値(例えば600〜700Hv)になるように行っている。   This gas carburizing process is performed so that the surface hardness is Vickers hardness (Hv) and a set value (for example, 600 to 700 Hv) after the differential cross joint is formed by forging.

特開2008−045975号公報JP 2008-045975 A 特開平08−094609号公報Japanese Patent Laid-Open No. 08-094609 特開2008−292170号公報JP 2008-292170 A 特開2006−095637号公報JP 2006-095637 A

しかしながら、ガス浸炭処理は、部品メーカによって、ガス浸炭の雰囲気コントロールが相違し、このため、表面硬度が同じものでも、ピンに割れが発生することが判明した。   However, the gas carburizing process has different atmosphere control of gas carburizing depending on the component manufacturer, and therefore, it has been found that even if the surface hardness is the same, the pin is cracked.

すなわち、表面硬度が同じでも、浸炭処理が相違すると、深さ方向のC濃度分布が変化し、このため、過剰浸炭が原因となって、割れが発生することが分かった。   That is, it was found that even if the surface hardness is the same, if the carburizing treatment is different, the C concentration distribution in the depth direction changes, and therefore, cracking occurs due to excessive carburization.

図8、図9は、異なる部品メーカで、それぞれガス浸炭処理した差動クロスジョイントのピンの表面深さに対する炭素濃度分布を、EPMA(電子プローブマイクロアナライザ)で分析した結果を示したもので、図8は割れが発生した差動クロスジョイント、図9は、割れが発生しなかった差動クロスジョイントの分析結果である。   FIG. 8 and FIG. 9 show the results of analyzing the carbon concentration distribution with respect to the surface depth of the pins of the differential cross joints that were gas carburized by different parts manufacturers using EPMA (Electron Probe Microanalyzer). FIG. 8 shows the analysis result of the differential cross joint in which cracking occurred, and FIG. 9 shows the analysis result of the differential cross joint in which cracking did not occur.

通常ガス浸炭では、表面の炭素濃度が0.8mass%がよいとされているが、図8の差動クロスジョイントでは、ピンの表面の炭素濃度は、1.25mass%と高く、図9の差動クロスジョイントでは、ピンの表面の炭素濃度は0.75mass%で、0.8mass%に達していないという分析結果が得られた。   In normal gas carburizing, the surface carbon concentration is said to be 0.8 mass%, but in the differential cross joint of FIG. 8, the carbon concentration of the pin surface is as high as 1.25 mass%, which is the difference in FIG. In the dynamic cross joint, the carbon concentration on the surface of the pin was 0.75 mass%, and the analysis result that it did not reach 0.8 mass% was obtained.

この図8の分析結果が示した差動クロスジョイントは、表面が過剰浸炭気味であり、残留オーステナイト(γ)が多くなり、このため置き割れが発生したものと考えられる。   The differential cross joint shown in the analysis result of FIG. 8 has a surface that is excessively carburized, and a large amount of retained austenite (γ). Therefore, it is considered that a set crack has occurred.

また、図9の分析結果が示した差動クロスジョイントは、炭素濃度が0.75mass%であり、割れは発生しないものの、理想とする炭素濃度0.8mass%よりも低く、炭素濃度を0.8mass%にさらに近づける余地がある。   Further, the differential cross joint shown by the analysis result of FIG. 9 has a carbon concentration of 0.75 mass% and does not crack, but is lower than the ideal carbon concentration of 0.8 mass%, and the carbon concentration is set to 0.00%. There is room to further approach 8 mass%.

このように深さ方向の炭素濃度の測定は、差動クロスジョイントの品質を保証する上で重要であるが、EPMAは、装置が大がかりで、操作に熟練を要し、現場の品質管理にこれを採用することは不可能である。   In this way, measurement of the carbon concentration in the depth direction is important to guarantee the quality of the differential cross joint. However, EPMA has a large equipment, requires skill in operation, and is used for quality control on site. It is impossible to adopt.

そこで、本発明の目的は、上記課題を解決し、比較的簡便な装置で、ガス浸炭等での浸炭処理後の炭素濃度を分析できる浸炭処理された部品の評価方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for evaluating a carburized component that can solve the above-described problems and analyze the carbon concentration after the carburizing process such as gas carburizing with a relatively simple device.

上記目的を達成するために本発明は、表面が浸炭処理された部品を評価するに際し、前記部品の表面を、蛍光X線分析にて表面の炭素濃度を測定し、その後表面を研削して再度蛍光X線分析にて、研削した表面の炭素濃度を測定し、以下これを繰り返して浸炭深さまでの炭素濃度分布を測定して部品を評価することを特徴とする浸炭処理された部品の評価方法である。   In order to achieve the above object, the present invention, when evaluating a part whose surface has been carburized, measures the carbon concentration of the surface of the part by fluorescent X-ray analysis, and then grinds the surface again. A method for evaluating a carburized component, characterized in that the carbon concentration of the ground surface is measured by fluorescent X-ray analysis, and this is repeated to measure the carbon concentration distribution up to the carburization depth to evaluate the component. It is.

部品の表面の研削は、炭素を含まない砥石で研削するのが好ましい。   The surface of the component is preferably ground with a grindstone that does not contain carbon.

砥石は、アルミナ系砥石からなるのが好ましい。   The grindstone is preferably made of an alumina grindstone.

研削後の砥石の表面をダイヤモンドドレッサーで削って、研削時に砥石表面に付着した炭素分を除去した後、次の研削を行うのが好ましい。   It is preferable to grind the surface of the grindstone after grinding with a diamond dresser to remove the carbon adhering to the grindstone surface during grinding, and then perform the next grinding.

前記部品は、クロムモリブデン鋼の鍛造にて成形され、鍛造後にガス浸炭処理された差動クロスジョイントからなり、差動クロスジョイントの評価は、表面の炭素濃度が0.8mass%を基準に、浸炭深さが1.3mmに達しているかどうかで評価するのが好ましい。   The parts consist of differential cross joints formed by forging chrome molybdenum steel and gas carburized after forging. Evaluation of differential cross joints is based on carburization based on a surface carbon concentration of 0.8 mass%. It is preferable to evaluate whether the depth has reached 1.3 mm.

鍛造にて差動クロスジョイントを成形する際に、クロムモリブデン鋼でテストピースを作製し、そのテストピースを、差動クロスジョイントと共にガス浸炭処理し、そのガス浸炭処理したテストピースを蛍光X線分析して評価するのが好ましい。   When forming a differential cross joint by forging, a test piece is made of chromium molybdenum steel, the test piece is gas carburized along with the differential cross joint, and the gas carburized test piece is subjected to fluorescent X-ray analysis. It is preferable to evaluate it.

本発明によれば、部品表面の蛍光X線分析と測定表面の研削を繰り返すことで浸炭処理された部品の炭素濃度を測定し、その品質を評価できるという優れた効果を発揮するものである。   According to the present invention, it is possible to measure the carbon concentration of the carburized component by repeating the fluorescent X-ray analysis of the component surface and the grinding of the measurement surface, and exhibit an excellent effect that the quality can be evaluated.

本発明の一実施の形態を示すフロー図である。It is a flowchart which shows one embodiment of this invention. 本発明に用いる蛍光X線分析装置の概略を示す図である。It is a figure which shows the outline of the fluorescent X-ray-analysis apparatus used for this invention. 蛍光X線分析装置におけるエネルギーとX線強度の関係を示す図である。It is a figure which shows the relationship between the energy and X-ray intensity in a fluorescent X ray analyzer. 蛍光X線分析装置における炭素濃度を求めるための検量線を示す図である。It is a figure which shows the calibration curve for calculating | requiring the carbon concentration in a fluorescent X ray analyzer. 本発明において、蛍光X線分析装置で、部品としての差動クロスジョイントの表面深さに対する各種金属成分の濃度分布を分析した結果を示す図である。In this invention, it is a figure which shows the result of having analyzed the density | concentration distribution of the various metal component with respect to the surface depth of the differential cross joint as components in the fluorescent X ray analyzer. 本発明の部品としての差動クロスジョイントの詳細斜視図である。It is a detailed perspective view of the differential cross joint as a component of the present invention. 差動クロスジョイントが組み込まれるディファレンシャル装置の組み立て分解斜視図である。It is an assembly exploded perspective view of a differential device in which a differential cross joint is incorporated. 過剰浸炭処理がなされた差動クロスジョイントのピンの表面深さに対する炭素濃度分布を、EPMAで分析した結果を示す図である。It is a figure which shows the result of having analyzed the carbon concentration distribution with respect to the surface depth of the pin of the differential cross joint by which the excess carburizing process was made | formed by EPMA. 表面炭素濃度が0.8mass%以下で浸炭処理がなされた差動クロスジョイントのピンの表面深さに対する炭素濃度分布を、EPMAで分析した結果を示す図である。It is a figure which shows the result of having analyzed the carbon concentration distribution with respect to the surface depth of the pin of the differential cross joint by which the surface carbon concentration was 0.8 mass% or less and which was carburized, by EPMA.

以下、本発明の好適な一実施の形態を添付図面に基づいて詳述する。   A preferred embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

先ず、図2により蛍光X線分析装置の概略を説明する。   First, the outline of the fluorescent X-ray analyzer will be described with reference to FIG.

図2において、X線管31で発生したX線が試料32に照射すると、試料32中の検出元素の原子との相互作用で、内殻の軌道原子が励起され、蛍光X線が発生する。この蛍光X線は、ソーラスリット33を介して分光結晶34で、測定したい特定波長の蛍光X線(主にKα線とKβ線)が分光され、これが検出器35に入力され、検出器35にて、エネルギーに対するX線強度のスペクトルを検出する。   In FIG. 2, when X-rays generated in the X-ray tube 31 are irradiated to the sample 32, the orbital atoms of the inner shell are excited by the interaction with the atoms of the detection element in the sample 32, and fluorescent X-rays are generated. This fluorescent X-ray is split by the spectroscopic crystal 34 through the solar slit 33, and the fluorescent X-rays (mainly Kα rays and Kβ rays) to be measured are spectrally separated and input to the detector 35. Thus, a spectrum of X-ray intensity with respect to energy is detected.

図3は、エネルギーに対するX線強度のスペクトルを示したもので、このKα線のスペクトルを基に、図4で示した検量線から試料の成分(炭素)の濃度を検出する。すなわちX線強度のピーク値から検量線を基に試料の測定金属成分の濃度を検出できる。   FIG. 3 shows the spectrum of the X-ray intensity with respect to energy. Based on the spectrum of this Kα ray, the concentration of the component (carbon) of the sample is detected from the calibration curve shown in FIG. That is, the concentration of the measured metal component of the sample can be detected from the peak value of the X-ray intensity based on the calibration curve.

この検出の際には、炭素測定用の分光結晶、その他に、Mn、Cr、Mo測定用の分光結晶を自動的に入れ替えて分析を行う。   In this detection, the analysis is performed by automatically replacing the spectral crystal for measuring carbon and the spectral crystal for measuring Mn, Cr, and Mo.

さて、図1に示したフローにより本発明の浸炭処理された部品の評価方法を説明する。   Now, a method for evaluating a carburized component according to the present invention will be described with reference to the flow shown in FIG.

先ず、測定対象とする部品は、図6で説明した差動クロスジョイント10である。   First, the part to be measured is the differential cross joint 10 described in FIG.

この差動クロスジョイント10は、浸炭処理後の表面は炭素からなる黒皮で覆われているため、この表面の黒皮が研削により除去された後にその表面を蛍光X線分析する。測定の際には、この差動クロスジョイント10を直接蛍光X線分析装置にセットして分析してもよいが、測定精度を上げるために、40mmφ×30mmLのテストピースを作製し、差動クロスジョイント10と同じ鍛造条件で作製し、差動クロスジョイント10と同じガス浸炭条件で浸炭処理したものを用いて蛍光X線分析を行う。このテストピースの作製は、クロムモリブデン鋼を差動クロスジョイントの鍛造と同じ条件で製作してもよいが、クロムモリブデン鋼の丸棒を切断したものを用いてもよい。   Since the surface of the differential cross joint 10 after being carburized is covered with black skin made of carbon, the surface is subjected to fluorescent X-ray analysis after the black skin on the surface is removed by grinding. During measurement, the differential cross joint 10 may be directly set on a fluorescent X-ray analyzer for analysis. However, in order to increase the measurement accuracy, a test piece of 40 mmφ × 30 mmL is prepared, and the differential cross A fluorescent X-ray analysis is performed using a material produced under the same forging conditions as the joint 10 and carburized under the same gas carburizing conditions as the differential cross joint 10. The test piece may be produced by producing chromium molybdenum steel under the same conditions as the forging of the differential cross joint, but may be obtained by cutting a round bar of chromium molybdenum steel.

図1において、分析を開始(ステップS1)の際に、部品(テストピース)を蛍光X線分析装置にセットする。この場合テストピースであれば、その表面を軽く、黒皮がなくなるまで研削しておく。その後、セットされた部品(テストピース)の浸炭処理された表面の蛍光X線分析を行う(ステップS2)。次に、部品を蛍光X線分析装置から取り出し、測定表面を炭素を含まない砥石(アルミナ系砥石)で0.2mm程度研削し(ステップS3)、その部品を再度蛍光X線分析装置にセットして、部品の研削表面の蛍光X線分析を行う(ステップS5)、またこれと前後して、研削後の砥石には、Cが含有した研削粉が付着しているため、砥石の表面をダイヤモンド砥石などで表面を切削クリーニングしておく(ステップS4)。   In FIG. 1, when analysis is started (step S1), a component (test piece) is set in a fluorescent X-ray analyzer. In this case, if it is a test piece, the surface is lightly ground until the black skin disappears. Thereafter, the X-ray fluorescence analysis of the carburized surface of the set part (test piece) is performed (step S2). Next, the part is taken out from the fluorescent X-ray analyzer, and the measurement surface is ground by about 0.2 mm with a grindstone not containing carbon (alumina-based grindstone) (step S3), and the part is set in the fluorescent X-ray analyzer again. Then, the fluorescent X-ray analysis of the grinding surface of the part is performed (step S5). Before and after this, the grinding powder containing C adheres to the grinding wheel after grinding. The surface is cut and cleaned with a grindstone or the like (step S4).

その後、ステップS6にて、研削深さが浸炭深さ(1.3mm)以上の所定深さ(1.5mm程度)に達しているかどうかを測定し、達していないとき(No)、ステップS3〜S5を繰り返し、測定面を約0.2mm程度ずつ繰り返し研削して各研削深さ毎(約7〜10回)、その研削面の蛍光X線分析を行う。   Thereafter, in step S6, it is measured whether or not the grinding depth has reached a predetermined depth (about 1.5 mm) that is equal to or greater than the carburized depth (1.3 mm). S5 is repeated, and the measurement surface is repeatedly ground by about 0.2 mm, and fluorescent X-ray analysis of the ground surface is performed at each grinding depth (about 7 to 10 times).

このようにして、ステップS6で、浸炭深さを含む所定深さまでの分析を終えた後(Yes)、分析を終了する(ステップS7)。   In this manner, after the analysis up to a predetermined depth including the carburization depth is finished in Step S6 (Yes), the analysis is finished (Step S7).

このフローにおいて、測定面を研削する砥石は、炭化ケイ素系砥粒のように炭素を含む砥石を用いると、砥粒粉が研削表面に付着し、この砥粒中に含まれるCが分析結果に反映されて正確なC濃度の分析が行えない。そこで研削には、褐色アルミナ系、白色アルミナ系、単結晶アルミナ系、或いはジルコニアアルミナ系のアルミナ系砥石を用いる。またアルミナ系砥石で研削した際、部品の研削粉が砥石表面に付着し、その後の研削の際に、この研削粉に含まれる炭素が分析結果に反映されるため、研削後の砥石の表面は、ダイヤモンドグラインダで研削してクリーニングを行うことで、分析する表面への炭素のコンタミネーションを防止して、正確な炭素濃度の分析が行える。   In this flow, if the grindstone for grinding the measurement surface is a grindstone containing carbon like silicon carbide abrasive grains, the abrasive powder adheres to the grinding surface, and C contained in the abrasive grains is included in the analysis results. Reflected, the accurate C concentration analysis cannot be performed. Therefore, for the grinding, a brown alumina-based, white alumina-based, single crystal alumina-based, or zirconia alumina-based alumina-based grindstone is used. Also, when grinding with an alumina grinding wheel, the grinding powder of the parts adheres to the grinding wheel surface, and the carbon contained in this grinding powder is reflected in the analysis results during subsequent grinding. By grinding with a diamond grinder and cleaning, carbon contamination on the surface to be analyzed can be prevented and accurate carbon concentration analysis can be performed.

また、上記のフローは、炭素濃度測定のための分析で説明したが、図2で説明した分光結晶を、蛍光X線分析装置で自動的に変えることで、その他の金属成分(Mn、Cr、Mo)も深さとの関係で同時に分析してこれら濃度を測定することもできる。   In addition, although the above flow has been described in the analysis for measuring the carbon concentration, the spectral crystal described in FIG. 2 is automatically changed by a fluorescent X-ray analyzer, so that other metal components (Mn, Cr, Mo) can also be analyzed simultaneously in relation to depth to measure these concentrations.

図5は、浸炭処理したクロムモリブデン鋼の表面深さに対する各種成分(C、Mn、Cr、Mo)の濃度分布(表面から深さ1.5mmまで)を測定した結果を示したものである。   FIG. 5 shows the results of measuring the concentration distribution (from the surface to a depth of 1.5 mm) of various components (C, Mn, Cr, Mo) with respect to the surface depth of the carburized chromium molybdenum steel.

この、図5においては、炭素濃度分布は変化するものの、Mn、Cr、Moの濃度分布は、原材料であるクロムモリブデン鋼の成分と一致しており、また表面深さ1.3mm以上では、炭素濃度もクロムモリブデン鋼のC成分と一致し、浸炭深さが1.3mmまでなされたことが分かる。   In FIG. 5, although the carbon concentration distribution changes, the concentration distribution of Mn, Cr, and Mo coincides with the components of the chromium-molybdenum steel that is the raw material. It can be seen that the concentration is also consistent with the C component of chromium molybdenum steel, and the carburization depth is up to 1.3 mm.

また、表面の炭素濃度を見ると、適正な炭素濃度0.8mass%に対して0.9mass%以上であり、浸炭処理がやや過剰であることが分かる。   Moreover, when the carbon concentration on the surface is observed, it is found that the carbon concentration is 0.9 mass% or more with respect to an appropriate carbon concentration of 0.8 mass%, and the carburizing treatment is slightly excessive.

そこで、この結果を踏まえて、ガス浸炭処理では、雰囲気条件、焼き入れ温度や処理時間等を調整することで表面の炭素濃度を目標の0.8mass%により近い濃度に調整することができる。   Therefore, based on this result, in the gas carburizing process, the surface carbon concentration can be adjusted to a concentration closer to the target of 0.8 mass% by adjusting the atmospheric conditions, quenching temperature, processing time, and the like.

このように、部品の表面の炭素濃度を0.8mass%に近い濃度とし、また浸炭深さを1.3mmに浸炭処理することで、作製された部品を評価できると共にその品質を確実に保証することが可能となる。   Thus, by making the carbon concentration on the surface of the part close to 0.8 mass% and carburizing the carburized depth to 1.3 mm, the produced part can be evaluated and its quality is reliably guaranteed. It becomes possible.

10 差動クロスジョイント(部品)
30 蛍光X線分析装置
32 試料
10 Differential cross joint (parts)
30 X-ray fluorescence analyzer 32 Sample

Claims (6)

表面が浸炭処理された部品を評価するに際し、前記部品の表面を、蛍光X線分析にて表面の炭素濃度を測定し、その後表面を研削して再度蛍光X線分析にて、研削した表面の炭素濃度を測定し、以下これを繰り返して浸炭深さまでの炭素濃度分布を測定して部品を評価することを特徴とする浸炭処理された部品の評価方法。   When evaluating a carburized component, the surface of the component is measured for surface carbon concentration by fluorescent X-ray analysis, and then the surface is ground and again subjected to fluorescent X-ray analysis. A method for evaluating a carburized component, characterized in that the carbon concentration is measured, and the following is repeated to measure the carbon concentration distribution up to the carburization depth to evaluate the component. 部品の表面の研削は、炭素を含まない砥石で研削する請求項1記載の浸炭処理された部品の評価方法。   The method for evaluating a carburized component according to claim 1, wherein the grinding of the surface of the component is performed with a grindstone not containing carbon. 砥石は、アルミナ系砥石からなる請求項2記載の浸炭処理された部品の評価方法。   The method for evaluating a carburized component according to claim 2, wherein the grindstone is an alumina grindstone. 研削後の砥石の表面をダイヤモンドドレッサーで削って、研削時に砥石表面に付着した炭素分を除去した後、次の研削を行う請求項1〜3のいずれかに記載の浸炭処理された部品の評価方法。   The evaluation of the carburized part according to any one of claims 1 to 3, wherein the surface of the grindstone after grinding is shaved with a diamond dresser to remove carbon adhering to the grindstone surface during grinding, and then the next grinding is performed. Method. 前記部品は、クロムモリブデン鋼の鍛造にて成形され、鍛造後にガス浸炭処理された差動クロスジョイントからなり、差動クロスジョイントの評価は、表面の炭素濃度が0.8mass%を基準に、浸炭深さが1.3mmに達しているかどうかで評価する請求項1〜4のいずれかに記載の浸炭処理された部品の評価方法。   The parts consist of differential cross joints formed by forging chrome molybdenum steel and gas carburized after forging. Evaluation of differential cross joints is based on carburization based on a surface carbon concentration of 0.8 mass%. The method for evaluating a carburized component according to claim 1, wherein the evaluation is performed based on whether the depth reaches 1.3 mm. 鍛造にて差動クロスジョイントを成形する際に、クロムモリブデン鋼でテストピースを作製し、そのテストピースを、差動クロスジョイントと共にガス浸炭処理し、そのガス浸炭処理したテストピースを蛍光X線分析して評価する請求項5記載の浸炭処理された部品の評価方法。   When forming a differential cross joint by forging, a test piece is made of chromium molybdenum steel, the test piece is gas carburized along with the differential cross joint, and the gas carburized test piece is subjected to fluorescent X-ray analysis. The method for evaluating a carburized component according to claim 5, wherein
JP2014097449A 2014-05-09 2014-05-09 Evaluation method for carburized parts Active JP6413327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014097449A JP6413327B2 (en) 2014-05-09 2014-05-09 Evaluation method for carburized parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014097449A JP6413327B2 (en) 2014-05-09 2014-05-09 Evaluation method for carburized parts

Publications (2)

Publication Number Publication Date
JP2015215203A true JP2015215203A (en) 2015-12-03
JP6413327B2 JP6413327B2 (en) 2018-10-31

Family

ID=54752224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014097449A Active JP6413327B2 (en) 2014-05-09 2014-05-09 Evaluation method for carburized parts

Country Status (1)

Country Link
JP (1) JP6413327B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018072104A (en) * 2016-10-27 2018-05-10 株式会社ジェイテクト Method for acquiring polishing amount of metal component

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01316173A (en) * 1988-06-16 1989-12-21 Shimadzu Corp Grindstone for specimen for analytical purpose
JP2002202263A (en) * 2000-12-28 2002-07-19 Nsk Ltd Method for measuring element concentration and element concentration gradient in film in emission spectrochemical analysis
US20060151069A1 (en) * 2005-01-10 2006-07-13 Williams Peter C Carburization of ferrous-based shape memory alloys
JP2008045975A (en) * 2006-08-14 2008-02-28 Daido Steel Co Ltd Carbon concentration distribution measuring method, and manufacturing method of carburized member using it
JP2009139220A (en) * 2007-12-06 2009-06-25 Sumitomo Kinzoku Technol Kk Method and apparatus for measuring carburization depth of steel material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01316173A (en) * 1988-06-16 1989-12-21 Shimadzu Corp Grindstone for specimen for analytical purpose
JP2002202263A (en) * 2000-12-28 2002-07-19 Nsk Ltd Method for measuring element concentration and element concentration gradient in film in emission spectrochemical analysis
US20060151069A1 (en) * 2005-01-10 2006-07-13 Williams Peter C Carburization of ferrous-based shape memory alloys
JP2008045975A (en) * 2006-08-14 2008-02-28 Daido Steel Co Ltd Carbon concentration distribution measuring method, and manufacturing method of carburized member using it
JP2009139220A (en) * 2007-12-06 2009-06-25 Sumitomo Kinzoku Technol Kk Method and apparatus for measuring carburization depth of steel material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018072104A (en) * 2016-10-27 2018-05-10 株式会社ジェイテクト Method for acquiring polishing amount of metal component

Also Published As

Publication number Publication date
JP6413327B2 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
Bensely et al. Enhancing the wear resistance of case carburized steel (En 353) by cryogenic treatment
Menig et al. Depth profiles of macro residual stresses in thin shot peened steel plates determined by X-ray and neutron diffraction
CN103900999B (en) The analysis method of induced with laser spectral measurement steel part carburized layer
JP6413327B2 (en) Evaluation method for carburized parts
CN106546574A (en) The spectrum analyses and bearing calibration of trace nitrogen in a kind of steel
Shukla Rapid in-line residual stress analysis from a portable two-dimensional X-ray diffractometer
CN103063653A (en) Method for detecting content of elements in grey cast iron
Suslov et al. The interrelation of the surface subroughness of martensitic steels with their granularity the quality of mechanical processing
JP2008045975A (en) Carbon concentration distribution measuring method, and manufacturing method of carburized member using it
Pinakhin et al. Investigation into physicomechanical properties of VK6, VK8, and T5K10 hard alloys after volumetric pulsed laser hardening
Walaszek et al. Metallurgical and chemical characterization of copper alloy reference materials within laser ablation inductively coupled plasma mass spectrometry: Method development for minimally-invasive analysis of ancient bronze objects
Dobler et al. Influence of low temperatures on material properties and tooth root bending strength of case-hardened gears
RU2488099C1 (en) Method for x-ray diffraction control of part
Leani et al. Quantitative speciation of manganese oxide mixtures by RIXS/RRS spectroscopy
CN107004556A (en) Trace carbon quantitative analysis device and trace carbon quantitative analysis method
CN115032162A (en) Method for analyzing oxygen content of 300-series stainless steel sample
Vontorová et al. Determination of carburized layer thickness by GDOES method
Pinakhin et al. Improving wear resistance of fast-cutting steel R6M5 after a volume pulse laser strength
Hu et al. Research on a LIBS-based detection method of medium-and-low alloy steel hardness
JPH0921767A (en) Fluorescent x-ray analyzing method
Habedank et al. Endurance limit of pulsed laser hardened component-like specimens—experiment and simulation
KR20190076255A (en) Method of analyzing silicon reducer using fourier transform infrared spectroscopy
KR100482523B1 (en) Analysis method of residual stress in retained austenite mixed with martensite microstruture of carburized steel alloy surface
CN107254658A (en) Parts of bearings and rolling bearing
WO2023199591A1 (en) Emission spectroscopic analysis method for sb in metal material, method for measuring sb concentration in molten steel during refining, and method for manufacturing steel material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180917

R150 Certificate of patent or registration of utility model

Ref document number: 6413327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150