JP2009139220A - Method and apparatus for measuring carburization depth of steel material - Google Patents

Method and apparatus for measuring carburization depth of steel material Download PDF

Info

Publication number
JP2009139220A
JP2009139220A JP2007315824A JP2007315824A JP2009139220A JP 2009139220 A JP2009139220 A JP 2009139220A JP 2007315824 A JP2007315824 A JP 2007315824A JP 2007315824 A JP2007315824 A JP 2007315824A JP 2009139220 A JP2009139220 A JP 2009139220A
Authority
JP
Japan
Prior art keywords
steel material
steel
measuring
depth
carburization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007315824A
Other languages
Japanese (ja)
Other versions
JP5149604B2 (en
Inventor
Toshimi Kobayashi
十思美 小林
Osamu Keyakida
理 欅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2007315824A priority Critical patent/JP5149604B2/en
Publication of JP2009139220A publication Critical patent/JP2009139220A/en
Application granted granted Critical
Publication of JP5149604B2 publication Critical patent/JP5149604B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of non-destructively and accurately measuring the carburization depth on the inner surface of a steel pipe. <P>SOLUTION: This method of measuring the carburization depth of the steel material having front and back surfaces (hereinafter, respective surfaces are called "first surface" and "second surface") comprises a process 1 of measuring carbon concentration C<SB>o</SB>on the first surface of the steel material, a process 2 of measuring total carbon content A<SB>Ct</SB>from the second surface to the first surface of the steel material, and a process 3 of determining the carburization depth d<SB>i</SB>of the second surface of the steel material based on the expression: d<SB>i</SB><SP>2</SP>=2äA<SB>Ct</SB>-(C<SB>o</SB>-C<SB>b</SB>)<SP>2</SP>/(2×K<SB>o</SB>)+C<SB>b</SB>×t}/K<SB>i</SB>. In this expression, d<SB>i</SB>is carburization depth (mm) of the second surface of the steel material, A<SB>Ct</SB>is total carbon content (g) from the second surface to the first surface of the steel material obtained by measurement, C<SB>o</SB>is carbon concentration (mass%) on the first surface of the steel material obtained by measurement, C<SB>b</SB>is carbon concentration (mass%) of base material, K<SB>o</SB>is constant about the carburization of the first surface of the steel material, K<SB>i</SB>is constant about the carburization of the second surface of the steel material, and t is thickness (mm) of the steel material. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、鋼管、鋼板、鋼製密閉容器などの表裏面を有する鋼材の浸炭深さを非破壊で検査するための浸炭深さ測定方法および測定装置に係り、特に、上記の鋼材のうち、観察が可能な表面(以下、「外表面」ともいう。)および直接観察が困難な表面(以下、「内表面」ともいう。)を有する鋼材の内表面の浸炭深さを測定する方法およびその測定装置に関する。   The present invention relates to a carburizing depth measuring method and measuring apparatus for nondestructively inspecting the carburizing depth of a steel material having front and back surfaces such as a steel pipe, a steel plate, and a steel closed container, and in particular, among the above steel materials, A method for measuring the carburization depth of an inner surface of a steel material having a surface that can be observed (hereinafter also referred to as an “outer surface”) and a surface that is difficult to observe directly (hereinafter also referred to as an “inner surface”), and It relates to a measuring device.

連続再生式接触改質装置(CCR:Continuous Catalyst Regeneration)は、オクタン価の低いナフサを高温水蒸気流中で貴金属触媒を用いて反応させることによって、オクタン価の高いガソリンを製造する装置である。この装置においては、運転条件によって、9Cr−1Mo鋼管などで構成される配管などの鋼材において、その内外表面に浸炭が生じることがある。また、例えば、石油化学プラントのエチレン製造工程で用いられるクラッキングチューブなどの鋼材の内表面にも浸炭が生じることがある。このように鋼材内外表面に浸炭が発生すると、鋼材の寿命を大きく低下させるので、定期的に浸炭深さを測定することが設備の保守管理上極めて重要である。   A continuous regenerative catalytic reformer (CCR) is a device for producing gasoline having a high octane number by reacting a naphtha having a low octane number with a noble metal catalyst in a high-temperature steam flow. In this apparatus, carburization may occur on the inner and outer surfaces of a steel material such as a pipe composed of a 9Cr-1Mo steel pipe or the like depending on operating conditions. In addition, for example, carburization may occur on the inner surface of a steel material such as a cracking tube used in an ethylene production process of a petrochemical plant. When carburization occurs on the inner and outer surfaces of the steel material in this way, the life of the steel material is greatly reduced. Therefore, it is extremely important for the maintenance management of the facility to periodically measure the carburization depth.

従来の浸炭深さを測定する方法として、例えば、特許文献1には、鋼管内表面に生じる浸炭の深さを、当該浸炭に伴う磁性変化を利用して測定する方法であって、断面略コの字状のコアに励磁コイル及び検出コイルをそれぞれ券回して形成されたセンサを、前記コアの両端部が被測定鋼管の長手方向に沿うように配設する第1ステップと、前記励磁コイルに所定周波数の電圧を印加する第2ステップと、前記励磁コイルと前記検出コイルとの間に生じる電磁誘導によって、前記検出コイルに誘起された誘起電圧波形から、前記所定周波数の高調波を抽出する第3ステップと、前記抽出された高調波と浸炭深さとの相関関係に基づき、浸炭深さを演算する第4ステップとを含むことを特徴とする鋼管内表面の浸炭深さ測定方法に関する発明が開示されている。   As a conventional method for measuring the carburization depth, for example, Patent Document 1 discloses a method of measuring the carburization depth generated on the inner surface of a steel pipe by using a magnetic change accompanying the carburization, and has a substantially cross-sectional shape. A sensor formed by winding an excitation coil and a detection coil on a U-shaped core, the first step of arranging both ends of the core along the longitudinal direction of the steel pipe to be measured, and the excitation coil A second step of applying a voltage of a predetermined frequency, and a harmonic of the predetermined frequency is extracted from an induced voltage waveform induced in the detection coil by electromagnetic induction generated between the excitation coil and the detection coil. An invention relating to a method for measuring the carburization depth of the inner surface of a steel pipe, comprising three steps and a fourth step of calculating the carburization depth based on the correlation between the extracted harmonics and the carburization depth is disclosed. It is.

特開2004−279055号公報JP 2004-279055 A

特許文献1に開示された方法では、コの字状のプローブを用い、誘起電圧波形から高調波を抽出し、その高調波と浸炭深さとの相関関係に基づいて鋼管内表面の浸炭深さを測定する、電磁気特性を利用するものであるが、この発明は、鋼管の外表面には浸炭が生じていない材料の測定については有用であるといえる。しかしながら、実際にCCRその他の装置において使用された鋼管は、外表面が操業中に炎で覆われるため、その外表面側にも浸炭が生じている場合がある。このように内外表面双方に浸炭が生じている材料については、特許文献1に開示された方法によって得られる浸炭深さは、鋼管の内表面および外表面の浸炭深さの合計であり、鋼管内表面の浸炭深さのみを求めることができない。   In the method disclosed in Patent Document 1, harmonics are extracted from the induced voltage waveform using a U-shaped probe, and the carburization depth of the inner surface of the steel pipe is determined based on the correlation between the harmonics and the carburization depth. Although the measurement uses electromagnetic characteristics, it can be said that the present invention is useful for measurement of a material in which carburization has not occurred on the outer surface of the steel pipe. However, since the outer surface of a steel pipe actually used in a CCR or other apparatus is covered with a flame during operation, carburization may occur on the outer surface side. As for the material in which carburization occurs on both the inner and outer surfaces in this way, the carburization depth obtained by the method disclosed in Patent Document 1 is the sum of the carburization depths of the inner surface and the outer surface of the steel pipe, Only the carburization depth of the surface cannot be determined.

また、電磁気特性を利用する浸炭深さの測定方法は、浸炭により鋼材の表面の炭素濃度が上昇すると透磁率が低下することを、電磁気的に観測するものである。従って、透磁率の低い(空気とほぼ同等の)非磁性体を母材とする鋼材の場合であれば、炭素濃度の変化による透磁率の変化を把握しやすいが、母材が透磁率の高い磁性体の場合には測定箇所による透磁率の変動が大きいため、炭素濃度変化による電磁気特性の変化が母材自体の透磁率のバラツキによるノイズ影響の影響を受けやすい。このため、電磁気特性を利用して、磁性体からなる鋼材表面の浸炭深さを測定するためには、厳密な条件設定が必要である。   In addition, the carburization depth measurement method using electromagnetic characteristics is to electromagnetically observe that the permeability decreases as the carbon concentration on the surface of the steel material increases due to carburization. Therefore, in the case of a steel material whose base material is a non-magnetic material having a low magnetic permeability (substantially equivalent to air), it is easy to grasp the change in permeability due to the change in carbon concentration, but the base material has a high magnetic permeability. In the case of a magnetic material, the magnetic permeability varies greatly depending on the measurement location. Therefore, the change in the electromagnetic characteristics due to the change in the carbon concentration is easily affected by the influence of noise due to the variation in the magnetic permeability of the base material itself. For this reason, in order to measure the carburization depth of the steel material surface which consists of a magnetic body using an electromagnetic characteristic, the exact condition setting is required.

具体的には、電磁気特性を利用して磁性体からなる鋼材内外面の浸炭深さを測定する場合には、センサープローブの形状、磁場方向、励磁電流強度、励磁周波数の適正化が必要となる。センサープローブの形状としては、一般的に用いられるI型コイルプローブまたはC型コイルプローブを用い、材料の透磁率等電磁気特性ノイズ変化が少なく、鋼材の形状、鋼管の場合はそのR形状に沿う寸法とするのがよい。また、磁場方向については、水平磁場を用いるのがよい。これは、垂直磁場の場合(I型プローブを用いた場合)、磁気回路が開いた回路となり、水平磁場の場合(C型プローブを用いた場合)に比べ、第3高調波強度が小さくなるからである。   Specifically, when measuring the carburization depth of the steel inner and outer surfaces made of magnetic material using electromagnetic characteristics, it is necessary to optimize the sensor probe shape, magnetic field direction, excitation current intensity, and excitation frequency. . As the shape of the sensor probe, a commonly used I-type coil probe or C-type coil probe is used, and there is little change in electromagnetic characteristics noise such as the magnetic permeability of the material. It is good to do. As for the magnetic field direction, it is preferable to use a horizontal magnetic field. This is because, in the case of a vertical magnetic field (when using an I-type probe), the magnetic circuit is an open circuit, and the third harmonic intensity is smaller than in the case of a horizontal magnetic field (when using a C-type probe). It is.

励磁電流強度は、コイルプローブの発熱影響がない範囲で、大きいことが望ましい。励磁周波数は、40〜50Hzとするのが望ましい。これは、40Hz未満では、第3高調波強度が小さくノイズの影響を受けやすく、50Hzを超えると、浸透深さが所定肉厚をカバーできないおそれがあるからである。   It is desirable that the excitation current intensity is large as long as the coil probe does not generate heat. The excitation frequency is preferably 40 to 50 Hz. This is because if the frequency is less than 40 Hz, the third harmonic intensity is small and susceptible to noise, and if it exceeds 50 Hz, the penetration depth may not cover the predetermined thickness.

ここで、鋼表面の炭素濃度を測定する方法としては、発光分光分析法、蛍光X線分析など様々な方法が知られており、鋼管その他の鋼材の外表面の炭素濃度を測定するのは容易であるが、鋼材内表面の測定をすることは困難である。また、電磁気特性を用いた方法によれば、鋼材の浸炭深さを測定することができるが、上述のように、鋼材の内外表面の双方に浸炭が発生している場合には、内表面側の浸炭深さのみを抽出することはできない。   Here, various methods such as emission spectroscopic analysis and fluorescent X-ray analysis are known as methods for measuring the carbon concentration on the steel surface, and it is easy to measure the carbon concentration on the outer surface of steel pipes and other steel materials. However, it is difficult to measure the inner surface of the steel material. Further, according to the method using the electromagnetic characteristics, the carburization depth of the steel material can be measured. As described above, when carburization occurs on both the inner and outer surfaces of the steel material, the inner surface side It is not possible to extract only the carburization depth.

本発明は、上記の知見に基づいてなされたものであり、鋼材の直接観察が困難な表面(内表面)の浸炭深さを非破壊で、かつ精度良く測定する方法および測定装置を提供することを目的とする。   The present invention has been made on the basis of the above-described knowledge, and provides a method and a measuring apparatus for accurately measuring the carburizing depth of a surface (inner surface) that is difficult to directly observe a steel material in a nondestructive manner. With the goal.

本発明者らは、このような従来技術の問題点を解決するべく、鋭意研究を行った。そして、まず、異なるCCRにおいて使用された2種類の鋼管について、厚さ方向の炭素濃度の変化を調査し、浸炭の発生状況を調査した。   The inventors of the present invention have intensively studied to solve such problems of the prior art. First, for two types of steel pipes used in different CCRs, changes in the carbon concentration in the thickness direction were investigated, and the occurrence of carburization was investigated.

図1〜3は、いずれも実際にCCRの加熱炉用配管として用いられた9Cr−1Mo鋼管の外表面からの距離と炭素濃度との関係を示す図である。なお、図1および2には、厚さ5.2mmの鋼管を脱スケールしたものの結果を、図3には、厚さ6.4mmの鋼管を脱スケールしたものの結果をそれぞれ示している。脱スケール後の鋼管外表面の炭素濃度をEPMAにより測定し、鋼管外表面を微少厚さ(0.3mm)削っては炭素濃度測定をすることを繰り返して、厚さ方向の炭素濃度の変化を求めた。本発明者らは、図1〜3に示した鋼管以外にも数多くの実験を行ったが、いずれの鋼管においても、同様の結果が得られた。なお、実験は鋼管を用いて実施したが、上記の結果は鋼管のみならず、鋼材、密閉容器についても適用できる。   1-3 is a figure which shows the relationship between the distance from the outer surface of the 9Cr-1Mo steel pipe actually used as piping for heating furnaces of CCR, and carbon concentration. 1 and 2 show the result of descaling a steel pipe having a thickness of 5.2 mm, and FIG. 3 shows the result of descaling a steel pipe having a thickness of 6.4 mm. The carbon concentration on the outer surface of the steel pipe after descaling is measured by EPMA, the outer surface of the steel pipe is shaved to a small thickness (0.3 mm), and the carbon concentration measurement is repeated to change the carbon concentration in the thickness direction. Asked. The present inventors conducted many experiments other than the steel pipes shown in FIGS. 1 to 3, and similar results were obtained in any of the steel pipes. In addition, although experiment was implemented using the steel pipe, said result is applicable not only to a steel pipe but to steel materials and an airtight container.

図1〜3に示すように、CCRにおいて使用された鋼管は、ほとんどの場合、内表面および外表面の双方が浸炭している。本発明者らは、この試験結果から、浸炭深さと炭素濃度との関係にある傾向があることを発見した。即ち、それは、外表面側の浸炭深さと炭素濃度の変化割合(傾きKo)および内表面側の浸炭深さと炭素濃度の変化割合(傾きKi)は、いずれのサンプルでもほぼ同じであると言うことである。即ち、いずれの鋼管においても、傾きKoは−0.4程度であり、傾きKiは、0.3程度である。 As shown in FIGS. 1-3, the steel pipe used in CCR has carburized both the inner surface and the outer surface in most cases. The present inventors have found from this test result that there is a tendency to have a relationship between the carburization depth and the carbon concentration. That is, the change rate of the carburization depth and carbon concentration (slope K o ) on the outer surface side and the change rate of the carburization depth and carbon concentration (slope K i ) on the inner surface side are almost the same in all samples. That is to say. That is, in any steel pipe, the inclination K o is about −0.4, and the inclination K i is about 0.3.

図4は、図1〜3に示されるCCR実装鋼管についての炭素濃度と浸炭深さとの関係を整理した模式図である。図4に示すように、いずれの鋼管においても、外表面側の浸炭深さと炭素濃度の変化割合(傾きKo)および内表面側の浸炭深さと炭素濃度の変化割合(傾きKi)は同じであると考えることができる。 FIG. 4 is a schematic view in which the relationship between the carbon concentration and the carburization depth for the CCR-mounted steel pipe shown in FIGS. As shown in FIG. 4, in any steel pipe, the carburization depth and carbon concentration change rate (inclination K o ) on the outer surface side and the carburization depth and carbon concentration change rate (inclination K i ) on the inner surface side are the same. Can be considered.

従って、鋼管外表面の浸炭深さ(mm)をdoとし、鋼管外表面における炭素濃度(質量%)をC0とし、鋼管母材(浸炭が生じていない部位)の炭素濃度(質量%)をCnとし、定数をKoとするとき、下記(A)式の関係がある。
o=(C0−Cn)/Ko・・・(A)
Thus, carburized depth of the steel tube outer surface (mm) and d o, the carbon concentration (mass%) in the steel pipe outer surface and C 0, the carbon concentration (mass%) of the steel pipe matrix (site carburization has not occurred) When C n is C n and the constant is K o , the following equation (A) is established.
d o = (C 0 −C n ) / K o (A)

同様に、鋼管内表面の浸炭深さ(mm)をdiとし、鋼管外表面における炭素濃度(質量%)をCiとし、鋼管母材(浸炭が生じていない部位)の炭素濃度(質量%)をCnとし、定数をKiとするとき、下記(B)式の関係がある。
i=(Ci−Cn)/Ki・・・(B)
Similarly, the carburized depth (mm) of the inner surface of the steel pipe is denoted by d i , the carbon concentration (mass%) on the outer surface of the steel pipe is denoted by C i, and the carbon concentration (mass%) of the steel pipe base material (part where carburization has not occurred). ) Is C n and the constant is K i , there is a relationship of the following equation (B).
d i = (C i −C n ) / K i (B)

なお、定数KOおよびKiは、同じ鋼種であれば、使用環境に寄らず一定値を採用できる。 As long as the constants K O and Ki are the same steel type, constant values can be adopted regardless of the use environment.

本発明者らは、鋼材の直接観察が可能な面(外表面)側の浸炭深さから内表面側の浸炭深さを求める方法について鋭意研究を行った結果、本発明を完成させた。   The inventors of the present invention have completed the present invention as a result of intensive studies on a method for determining the carburization depth on the inner surface side from the carburization depth on the surface (outer surface) side where direct observation of the steel material is possible.

本発明は、下記の(1)〜(8)に示す浸炭深さ測定方法および下記(8)〜(10)に示す測定装置を要旨とする。   The gist of the present invention is a carburizing depth measuring method shown in the following (1) to (8) and a measuring device shown in the following (8) to (10).

(1) 表裏面(以下、各表面を「第1表面」および「第2表面」という。)を有する鋼材の浸炭深さを測定する方法であって、下記の工程を有することを特徴とする浸炭深さ測定方法。
工程1:鋼材の第1表面の炭素濃度Coを測定する工程
工程2:鋼材の第2表面から第1表面までの合計炭素量ACtを測定する工程
工程3:下記式に基づいて鋼材の第2表面の浸炭深さdiを求める工程。
i 2=2{ACt−(Co−Cb2/(2×Ko)+Cb×t}/Ki
但し、上記式中の各記号の意味は下記の通りである。
i:鋼材の第2表面の浸炭深さ(mm)
Ct:測定によって得られた鋼材の第2表面から第1表面までの合計炭素量(g)
o:測定によって得られた鋼材の第1表面の炭素濃度(質量%)
b:母材の炭素濃度(質量%)
o:鋼材の第1表面の浸炭に関する定数
i:鋼材の第2表面の浸炭に関する定数
t:鋼材の厚さ(mm)
(1) A method for measuring the carburization depth of a steel material having front and back surfaces (hereinafter, each surface is referred to as a “first surface” and a “second surface”), which includes the following steps: Carburization depth measurement method.
Step 1: Step Step 2 of measuring the carbon concentration C o of the first surface of the steel: step measuring the total carbon content A Ct from the second surface of the steel material to the first surface 3: a steel according to the following formula Determining the carburization depth d i of the second surface.
d i 2 = 2 {A Ct − (C o −C b ) 2 / (2 × K o ) + C b × t} / K i
However, the meaning of each symbol in the above formula is as follows.
d i : Carburization depth of the second surface of the steel material (mm)
A Ct : Total carbon content (g) from the second surface to the first surface of the steel material obtained by measurement
C o : Carbon concentration (mass%) of the first surface of the steel material obtained by measurement
C b : Carbon concentration (mass%) of the base material
K o : Constant for carburizing the first surface of the steel material K i : Constant for carburizing the second surface of the steel material t: Thickness (mm) of the steel material

(2)第1表面が、直接観察が可能な表面であり、第2表面が、直接観察が困難な表面であることを特徴とする上記(1)に記載の浸炭深さ測定方法。   (2) The carburization depth measurement method according to (1) above, wherein the first surface is a surface that can be directly observed, and the second surface is a surface that is difficult to directly observe.

(3)工程1において、鋼材の第1表面に水平な交流磁化を与えることにより鋼材の第1表面の炭素濃度Coを測定することを特徴とする上記(1)または(2)に記載の浸炭深さ測定方法。 (3) In step 1, according to the above (1) or (2) and measuring the carbon concentration C o of the first surface of the steel by providing a horizontal alternating magnetization on the first surface of the steel material Carburization depth measurement method.

(4)工程2において、鋼材の第1表面に水平な交流磁化を与え、FFT波形解析による第3高調波強度f3から鋼材の肉厚方向の合計炭素量ACtを測定することを特徴とする上記(1)〜(3)のいずれかに記載の浸炭深さ測定方法。 (4) In step 2, horizontal AC magnetization is applied to the first surface of the steel material, and the total carbon content A Ct in the thickness direction of the steel material is measured from the third harmonic intensity f 3 by FFT waveform analysis. The carburizing depth measurement method according to any one of (1) to (3) above.

(5)鋼材が、強磁性体材料からなることを特徴とする上記(1)〜(4)のいずれかに記載の浸炭深さ測定方法。   (5) The carburizing depth measurement method according to any one of (1) to (4), wherein the steel material is made of a ferromagnetic material.

(6)強磁性体材料が、9Cr−1Mo鋼であることを特徴とする上記(5)に記載の浸炭深さ測定方法。   (6) The carburized depth measuring method according to (5) above, wherein the ferromagnetic material is 9Cr-1Mo steel.

(7)鋼材が鋼管であることを特徴とする上記(1)〜(6)のいずれかに記載の浸炭深さ測定方法。   (7) The carburization depth measurement method according to any one of (1) to (6), wherein the steel material is a steel pipe.

(8)表裏面(以下、各表面を「第1表面」および「第2表面」という。)を有する鋼材の浸炭深さを測定する装置であって、鋼材の第1表面の炭素濃度Coを測定する第1表面炭素濃度測定手段と、鋼材の第2表面から第1表面までの合計炭素量ACtを測定する合計炭素濃度測定手段と、第2表面の浸炭深さdiを求める演算手段とを有する鋼材の浸炭深さ測定装置。 (8) An apparatus for measuring the carburization depth of a steel material having front and back surfaces (hereinafter, each surface is referred to as a “first surface” and a “second surface”), the carbon concentration C o of the first surface of the steel material First carbon concentration measuring means for measuring carbon, total carbon concentration measuring means for measuring total carbon amount A Ct from the second surface to the first surface of the steel material, and calculation for determining carburization depth d i of the second surface An apparatus for measuring the depth of carburization of steel material.

(9)第1表面が、直接観察が可能な表面であり、第2表面が、直接観察が困難な表面であることを特徴とする上記(8)に記載の浸炭深さ測定装置。   (9) The carburized depth measuring apparatus according to (8), wherein the first surface is a surface that can be directly observed, and the second surface is a surface that is difficult to directly observe.

(10)鋼材が鋼管であることを特徴とする上記(8)または(9)に記載の浸炭深さ測定装置。   (10) The carburized depth measuring device according to (8) or (9), wherein the steel material is a steel pipe.

本発明によれば、鋼材の両面に浸炭が発生している場合においても、鋼材の直接観察が困難な面(内表面)の浸炭深さを非破壊で、かつ正確に測定することができる。   According to the present invention, even when carburization occurs on both surfaces of a steel material, the carburization depth of a surface (inner surface) on which direct observation of the steel material is difficult can be measured accurately and nondestructively.

1.本発明の概要
表裏面(以下、各表面を「第1表面」および「第2表面」という。)を有する鋼材の浸炭深さを測定する方法であって、鋼材の第1表面の炭素濃度から第2表面の浸炭深さを測定する方法である。
1. The present invention is a method for measuring the carburization depth of a steel material having front and back surfaces (hereinafter, each surface is referred to as a “first surface” and a “second surface”), from the carbon concentration of the first surface of the steel material. This is a method of measuring the carburization depth of the second surface.

例えば、第1表面を「直接観察が可能な表面」、第2表面を「直接観察が困難な表面」とするとき、鋼材の直接観察が可能な表面(外表面)の炭素濃度Coおよび鋼材の直接観察が困難な表面(内表面)から外表面までの合計炭素量ACtを測定し(工程1および2)、これらの結果から鋼材の内表面の浸炭深さdiを求めるものである(工程3)。以下、主として鋼管の浸炭測定の場合を例に挙げて、それぞれの工程について説明する。 For example, when the first surface is “a surface that can be directly observed” and the second surface is “a surface that is difficult to observe directly”, the carbon concentration Co of the surface (outer surface) where the steel material can be directly observed and the steel material The total carbon content A Ct from the surface (inner surface) to the outer surface where direct observation is difficult is measured (steps 1 and 2), and the carburization depth d i of the inner surface of the steel is obtained from these results. (Step 3). Hereinafter, each process will be described mainly using a case of carburization measurement of a steel pipe as an example.

2.鋼材の第1表面(外表面)の炭素濃度を測定する工程
本発明においては、まず、鋼材の第1表面(外表面)の炭素濃度Coを測定する。この測定方法については特に制限はなく、公知の発光分光分析法、X線を用いた方法、電磁気特性を用いた方法などを用いることができる。例えば、高周波誘導結合プラズマ(Inductively Coupled Plasma)発光分光分析法、EPMA、ESCA等などである。また、硬度と炭素濃度とは比例関係があるため、鋼材の第1表面(外表面)の硬度(例えば、ビッカース硬さ)を測定し、鋼材の第1表面(外表面)の炭素濃度を測定してもよい。
2. In the process the present invention for measuring the carbon concentration of the first surface of the steel material (the outer surface), firstly, to measure the carbon concentration C o of the first surface of the steel material (the outer surface). This measuring method is not particularly limited, and a known emission spectroscopic analysis method, a method using X-rays, a method using electromagnetic characteristics, and the like can be used. For example, high frequency inductively coupled plasma emission spectroscopy, EPMA, ESCA, etc. In addition, since the hardness and the carbon concentration are proportional, the hardness (for example, Vickers hardness) of the first surface (outer surface) of the steel material is measured, and the carbon concentration of the first surface (outer surface) of the steel material is measured. May be.

3.鋼材の第2表面(内表面)から第1表面(外表面)までの合計炭素量を測定する工程
合計炭素量を求める方法については、特に制限はない。例えば、電磁気特性を利用した方法のほか、モード変換パルスによる超音波V透過法などを用いることができる。超音波V透過法とは、鋼材の表面と浸炭境界層とからの反射パルスを検出する方法であり、底面に比べ反射率の小さい浸炭境界の反射パルスを検出するため大きな感度増幅が必要となる。感度増幅によるノイズパルスは、厚肉では影響が少ないが、薄肉材(5mm程度)では、反射パルスとノイズパルスの識別に非常な熟練を要し、モード変換パルスにより改善はされているが、鋼材の第2表面(内表面)の浸炭深さ3.1mmを検出できなかった例もある。上記の測定法のうち、電磁気特性を利用した方法を採用するのがよい。以下、電磁気特性を利用した方法について説明する。
3. The process of measuring the total carbon content from the 2nd surface (inner surface) of steel materials to the 1st surface (outer surface) There is no restriction | limiting in particular about the method of calculating | requiring a total carbon content. For example, in addition to a method using electromagnetic characteristics, an ultrasonic V transmission method using a mode conversion pulse can be used. The ultrasonic V transmission method is a method for detecting a reflected pulse from the surface of the steel material and the carburized boundary layer, and a large sensitivity amplification is required to detect the reflected pulse at the carburized boundary having a lower reflectance than the bottom surface. . Noise pulses due to sensitivity amplification have little effect on thick walls, but thin materials (about 5 mm) require very skill in discriminating between reflected pulses and noise pulses, and are improved by mode conversion pulses. There is also an example in which the carburization depth of 3.1 mm on the second surface (inner surface) was not detected. Of the measurement methods described above, it is preferable to employ a method using electromagnetic characteristics. Hereinafter, a method using electromagnetic characteristics will be described.

図5は、鋼管内外表面に形成される浸炭深さを求めるための装置を例示した模式図であり、(a)はC型プローブを用いた例、(b)はI型プローブを用いた例をそれぞれ示している。図5に示すように、この装置においては、鋼管1の外表面にプローブ4を接触させた状態で、発信器により励磁コイル2に交流電圧を印可することにより、C型プローブ(図5(a)に示す例)では鋼管1を水平磁化させ、I型プローブ(図5(b)に示す例)では鋼管1を垂直磁化させる。このようにして鋼管1に発生させた励磁信号を検出コイル3で受信し、これをアンプによってノイズを除去した後、変換器で、AD変換し、これを解析して、スペクトルを得る。このスペクトルの第3高調波に基づき、鋼管内表面から外表面までの合計炭素量ACtを求めることができる。 FIG. 5 is a schematic view illustrating an apparatus for determining the carburization depth formed on the inner and outer surfaces of a steel pipe. (A) is an example using a C-type probe, and (b) is an example using an I-type probe. Respectively. As shown in FIG. 5, in this apparatus, with the probe 4 being in contact with the outer surface of the steel pipe 1, an AC voltage is applied to the exciting coil 2 by a transmitter to obtain a C-type probe (FIG. 5 (a In the example), the steel pipe 1 is horizontally magnetized, and in the I-type probe (example shown in FIG. 5B), the steel pipe 1 is vertically magnetized. The excitation signal generated in the steel pipe 1 in this way is received by the detection coil 3, and after removing the noise by an amplifier, it is AD-converted by a converter and analyzed to obtain a spectrum. Based on the third harmonic of this spectrum, the total carbon content A Ct from the inner surface of the steel pipe to the outer surface can be obtained.

ここで、磁場方向については、水平磁場を用いるのがよい。   Here, a horizontal magnetic field is preferably used for the magnetic field direction.

図6は、磁場方向と第3高調波強度との関係を説明する図である。なお、この図には、図1〜3に示す実験で用いた鋼管の一部について、I型プローブまたはC型プローブを使用して、第3高調波強度を測定した結果を示す。図6に示すように、垂直磁場の場合(I型プローブを用いた場合)および水平磁場の場合(C型プローブを用いた場合)のいずれの場合においても、鋼管内表面および外表面の合計浸炭深さ(di+do)は、第3高調波と良い比例関係を示す。ただし、水平磁場の方が垂直磁場よりも第3高調波強度が大きく、測定感度がよいといえる。 FIG. 6 is a diagram for explaining the relationship between the magnetic field direction and the third harmonic intensity. In addition, this figure shows the result of measuring the third harmonic intensity using a type I probe or a type C probe for a part of the steel pipe used in the experiments shown in FIGS. As shown in FIG. 6, the total carburization of the inner and outer surfaces of the steel pipe in both cases of vertical magnetic field (when using a type I probe) and horizontal magnetic field (when using a type C probe). The depth (d i + d o ) shows a good proportional relationship with the third harmonic. However, it can be said that the horizontal magnetic field has a higher third harmonic intensity than the vertical magnetic field, and the measurement sensitivity is better.

4.鋼材の第2表面(内表面)の浸炭深さを求める工程
鋼材の第1表面(外表面)の炭素濃度Coおよび鋼材の第2表面(内表面)から第1表面(外表面)までの合計炭素量ACtが得られれば、第1表面(外表面)の炭素濃度と浸炭深さとの関係および第2表面(内表面)の炭素濃度と浸炭深さとの関係から第2表面(内表面)の浸炭深さdiを求めることができる。具体的には、以下の方法により、第2表面(内表面)の浸炭深さdiが求められる。
4). The second surface of the steel material from the first surface of the step the steel obtaining a carburization depth (inner surface) carbon concentration C o and steel of the second surface (external surface) (inner surface) to the first surface (outer surface) If the total carbon content A Ct is obtained, the second surface (inner surface) is calculated from the relationship between the carbon concentration of the first surface (outer surface) and the carburization depth and the relationship between the carbon concentration of the second surface (inner surface) and the carburization depth. ) can be obtained in the carburized depth d i. Specifically, the carburization depth d i of the second surface (inner surface) is determined by the following method.

図7は、本発明における浸炭深さの算出原理の例を示す図である。なお、図7は、前掲の図4に示したとおり、いずれの鋼管においても、外表面側の浸炭深さと炭素濃度の変化割合(傾きKo)および内表面側の浸炭深さと炭素濃度の変化割合(傾きKi)は同じであると考えることができることを前提としている。 FIG. 7 is a diagram showing an example of the calculation principle of the carburization depth in the present invention. FIG. 7 shows the change rate of carburization depth and carbon concentration on the outer surface side (inclination K o ) and the change of carburization depth and carbon concentration on the inner surface side in any steel pipe as shown in FIG. It is assumed that the ratio (slope K i ) can be considered to be the same.

ここで、炭素濃度と鋼材肉厚方向の位置から、炭素量を図7に示す3つの領域A、BおよびCに分けることができる。それぞれの領域における炭素量ACA、ACBおよびACCならびに全炭素量ACtは、下記の計算式から得られる。
CA=(Co−Cb)×do/2 ・・・(C)
CB=Cb×t ・・・(D)
CC=(Ci−Cb)×di/2 ・・・(E)
Ct=ACA+ACB+ACC ・・・(F)
Here, the amount of carbon can be divided into three regions A, B and C shown in FIG. 7 from the position of the carbon concentration and the thickness direction of the steel material. The carbon amounts A CA , A CB and A CC and the total carbon amount A Ct in each region can be obtained from the following calculation formula.
A CA = (C o −C b ) × d o / 2 (C)
A CB = C b × t (D)
A CC = (C i −C b ) × d i / 2 (E)
A Ct = A CA + A CB + A CC (F)

そして、前述のように、鋼材の第1表面(外表面)および第2表面(内表面)の浸炭深さ(mm)をそれぞれdoおよびdi、鋼材の第1表面(外表面)および第2表面(内表面)における炭素濃度(質量%)をそれぞれC0およびCi、鋼材の母材(浸炭が生じていない部位)の炭素濃度(質量%)をCn、鋼材の第1表面(外表面)および第2表面(内表面)の浸炭に関する定数をそれぞれKoおよびKiとするとき、下記(A)式および(B)式の関係がある。
o=(C0−Cn)/Ko・・・(A)
i=(Ci−Cn)/Ki・・・(B)
Then, as described above, the first surface of the steel material (the outer surface) and a second surface (inner surface) of the carburized depth (mm), respectively d o and d i, the first surface (outer surface) of the steel material and the The carbon concentration (mass%) on the two surfaces (inner surface) is C 0 and C i , respectively, and the carbon concentration (mass%) of the steel base material (part where carburization has not occurred) is C n , and the first surface of the steel material ( when the outer surface) and each K o and K i constants for carburizing of the second surface (inner surface), a relationship of the following equation (a) and (B) expression.
d o = (C 0 −C n ) / K o (A)
d i = (C i −C n ) / K i (B)

従って、(C)式および(E)式は、下記のように表すことができる。
CA=(Co−Cb2/(2×Ko) ・・・(G)
CC=di 2×Ki/2 ・・・(H)
Therefore, the formulas (C) and (E) can be expressed as follows.
A CA = (C o −C b ) 2 / (2 × K o ) (G)
A CC = d i 2 × K i / 2 (H)

上記(D)式、(G)式および(H)式を(F)式に代入し、整理すると、下記の(J)式が得られる。
i 2=2{ACt−(Co−Cb2/(2×Ko)+Cb×t}/Ki ・・・(J)
Substituting the above formulas (D), (G), and (H) into the formula (F) and rearranging them gives the following formula (J).
d i 2 = 2 {A Ct − (C o −C b ) 2 / (2 × K o ) + C b × t} / K i (J)

上記(J)式において、ACtおよびCoは、前述の方法により測定することができ、Cbおよびtは、既知の母材条件であるから、予め鋼材の第1表面(外表面)および鋼材の第2表面(内表面)の浸炭に関する定数KoおよびKiを定めておけば、鋼材の第2表面(内表面)における浸炭深さdiを求めることができるのである。 In the above formula (J), A Ct and C o can be measured by the above-described method, and C b and t are known base material conditions, so that the first surface (outer surface) of the steel material and If the constants K o and K i relating to the carburizing of the second surface (inner surface) of the steel material are determined, the carburizing depth d i at the second surface (inner surface) of the steel material can be obtained.

5.その他
定数KoおよびKiを定めるに際しては、鋼材の厚さ方向の炭素濃度分布を測定する必要がある。鋼管の厚さ方向の炭素濃度分布については、鋼管の軸に垂直な方向の断面について、例えば、高周波誘導結合プラズマ(Inductively Coupled Plasma)発光分光分析法、EPMA、ESCA等の方法を用いて測定することもできるが、これでは、極限られた範囲での炭素濃度しか測定できない。より正確に厚さ方向の炭素濃度分布を測定するためには、EPMAその他の方法により脱スケール後の鋼材の第1表面(外表面)の炭素濃度を測定した後、第1表面(外表面)を単位厚さ(必要に応じて設定すれば良いが、典型的には、0.1〜1.0mm程度)削っては炭素濃度測定をすることを繰り返して、厚さ方向の炭素濃度の変化を求めるのが望ましい。
5). Others When determining the constants K o and K i , it is necessary to measure the carbon concentration distribution in the thickness direction of the steel material. Regarding the carbon concentration distribution in the thickness direction of the steel pipe, the cross section in the direction perpendicular to the axis of the steel pipe is measured by using, for example, a method such as high frequency inductively coupled plasma emission spectroscopy, EPMA, ESCA or the like. However, this can only measure the carbon concentration in a limited range. In order to measure the carbon concentration distribution in the thickness direction more accurately, after measuring the carbon concentration of the first surface (outer surface) of the steel material after descaling by EPMA and other methods, the first surface (outer surface) The unit thickness (which may be set as necessary, but typically about 0.1 to 1.0 mm) is cut and the carbon concentration measurement is repeated to change the carbon concentration in the thickness direction. Is desirable.

本発明によれば、鋼管の両面に浸炭が発生している場合においても、鋼材の直接観察な困難な面(内表面)の浸炭深さを非破壊で、かつ正確に測定することができる。よって、例えば、CCRに用いられる配管の内表面浸炭深さを測定するのに適している。   According to the present invention, even when carburization occurs on both surfaces of a steel pipe, the carburization depth of a difficult-to-observe surface (inner surface) of a steel material can be measured nondestructively and accurately. Therefore, for example, it is suitable for measuring the inner surface carburization depth of a pipe used for CCR.

任意のCCR配管(9Cr−1Mo鋼管)の外表面からの距離と炭素濃度との関係を示す図。The figure which shows the relationship between the distance from the outer surface of arbitrary CCR piping (9Cr-1Mo steel pipe), and carbon concentration. 任意のCCR配管(9Cr−1Mo鋼管)の外表面からの距離と炭素濃度との関係を示す図。The figure which shows the relationship between the distance from the outer surface of arbitrary CCR piping (9Cr-1Mo steel pipe), and carbon concentration. 任意のCCR配管(9Cr−1Mo鋼管)の外表面からの距離と炭素濃度との関係を示す図。The figure which shows the relationship between the distance from the outer surface of arbitrary CCR piping (9Cr-1Mo steel pipe), and carbon concentration. 図1〜3に示されるCCR配管についての炭素濃度と浸炭深さとの関係を整理した模式図。The schematic diagram which arranged the relationship between the carbon concentration about the CCR piping shown in FIGS. 鋼管内外表面に形成される浸炭深さを求めるための装置を例示した模式図。 (a)C型プローブを用いた例 (b)I型プローブを用いた例The schematic diagram which illustrated the apparatus for calculating | requiring the carburizing depth formed in the steel pipe inner and outer surface. (A) Example using C-type probe (b) Example using I-type probe 磁場方向と第3高調波強度との関係を説明する図。The figure explaining the relationship between a magnetic field direction and the 3rd harmonic intensity | strength. 本発明における浸炭深さの算出原理の例を示す図。The figure which shows the example of the calculation principle of the carburizing depth in this invention.

符号の説明Explanation of symbols

1:鋼管
2:励磁コイル
3:検出コイル
4:プローブ
1: Steel pipe 2: Excitation coil 3: Detection coil 4: Probe

Claims (10)

表裏面(以下、各表面を「第1表面」および「第2表面」という。)を有する鋼材の浸炭深さを測定する方法であって、下記の工程を有することを特徴とする浸炭深さ測定方法。
工程1:鋼材の第1表面の炭素濃度Coを測定する工程
工程2:鋼材の第2表面から第1表面までの合計炭素量ACtを測定する工程
工程3:下記式に基づいて鋼材の第2表面の浸炭深さdiを求める工程。
i 2=2{ACt−(Co−Cb2/(2×Ko)+Cb×t}/Ki
但し、上記式中の各記号の意味は下記の通りである。
i:鋼材の第2表面の浸炭深さ(mm)
Ct:測定によって得られた鋼材の第2表面から第1表面までの合計炭素量(g)
o:測定によって得られた鋼材の第1表面の炭素濃度(質量%)
b:母材の炭素濃度(質量%)
o:鋼材の第1表面の浸炭に関する定数
i:鋼材の第2表面の浸炭に関する定数
t:鋼材の厚さ(mm)
A method for measuring the carburization depth of a steel material having front and back surfaces (hereinafter, each surface is referred to as a “first surface” and a “second surface”), the carburization depth comprising the following steps: Measuring method.
Step 1: Step Step 2 of measuring the carbon concentration C o of the first surface of the steel: step measuring the total carbon content A Ct from the second surface of the steel material to the first surface 3: a steel according to the following formula Determining the carburization depth d i of the second surface.
d i 2 = 2 {A Ct − (C o −C b ) 2 / (2 × K o ) + C b × t} / K i
However, the meaning of each symbol in the above formula is as follows.
d i : Carburization depth of the second surface of the steel material (mm)
A Ct : Total carbon content (g) from the second surface to the first surface of the steel material obtained by measurement
C o : Carbon concentration (mass%) of the first surface of the steel material obtained by measurement
C b : Carbon concentration (mass%) of the base material
K o : Constant for carburizing the first surface of the steel material K i : Constant for carburizing the second surface of the steel material t: Thickness (mm) of the steel material
第1表面が、直接観察が可能な表面であり、第2表面が、直接観察が困難な表面であることを特徴とする請求項1に記載の浸炭深さ測定方法。   The carburization depth measurement method according to claim 1, wherein the first surface is a surface that can be directly observed, and the second surface is a surface that is difficult to directly observe. 工程1において、鋼材の第1表面に水平な交流磁化を与えることにより鋼材の第1表面の炭素濃度Coを測定することを特徴とする請求項1または2に記載の浸炭深さ測定方法。 In step 1, carburization depth measurement method according to claim 1 or 2, characterized by measuring the carbon concentration C o of the first surface of the steel by providing a horizontal alternating magnetization on the first surface of the steel material. 工程2において、鋼材の第1表面に水平な交流磁化を与え、FFT波形解析による第3高調波強度f3から鋼材の肉厚方向の合計炭素量ACtを測定することを特徴とする請求項1から3までのいずれかに記載の浸炭深さ測定方法。 In step 2, horizontal AC magnetization is applied to the first surface of the steel material, and the total carbon content A Ct in the thickness direction of the steel material is measured from the third harmonic intensity f 3 by FFT waveform analysis. The carburization depth measurement method according to any one of 1 to 3. 鋼材が、強磁性体材料からなることを特徴とする請求項1から4までのいずれかに記載の浸炭深さ測定方法。   The carburization depth measurement method according to any one of claims 1 to 4, wherein the steel material is made of a ferromagnetic material. 強磁性体材料が、9Cr−1Mo鋼であることを特徴とする請求項7に記載の浸炭深さ測定方法。   The carburizing depth measurement method according to claim 7, wherein the ferromagnetic material is 9Cr-1Mo steel. 鋼材が鋼管であることを特徴とする請求項1から6までのいずれかに記載の浸炭深さ測定方法。   The carburizing depth measuring method according to any one of claims 1 to 6, wherein the steel material is a steel pipe. 表裏面(以下、各表面を「第1表面」および「第2表面」という。)を有する鋼材の浸炭深さを測定する装置であって、鋼材の第1表面の炭素濃度Coを測定する第1表面炭素濃度測定手段と、鋼材の第2表面から第1表面までの合計炭素量ACtを測定する合計炭素濃度測定手段と、第2表面の浸炭深さdiを求める演算手段とを有する鋼材の浸炭深さ測定装置。 Front and back surfaces (hereinafter, each surface of. "First surface" and the "second surface") an apparatus for measuring the carburized depth of a steel having, for measuring the carbon concentration C o of the first surface of the steel material A first surface carbon concentration measuring means; a total carbon concentration measuring means for measuring a total carbon amount A Ct from the second surface of the steel material to the first surface ; and a calculating means for determining the carburizing depth d i of the second surface. Carburizing depth measuring device for steel materials. 第1表面が、直接観察が可能な表面であり、第2表面が、直接観察が困難な表面であることを特徴とする請求項8に記載の浸炭深さ測定装置。   The carburization depth measuring apparatus according to claim 8, wherein the first surface is a surface that can be directly observed, and the second surface is a surface that is difficult to observe directly. 鋼材が鋼管であることを特徴とする請求項8または9に記載の浸炭深さ測定装置。   The carburizing depth measuring device according to claim 8 or 9, wherein the steel material is a steel pipe.
JP2007315824A 2007-12-06 2007-12-06 Method and apparatus for measuring carburization depth of steel material Active JP5149604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007315824A JP5149604B2 (en) 2007-12-06 2007-12-06 Method and apparatus for measuring carburization depth of steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007315824A JP5149604B2 (en) 2007-12-06 2007-12-06 Method and apparatus for measuring carburization depth of steel material

Publications (2)

Publication Number Publication Date
JP2009139220A true JP2009139220A (en) 2009-06-25
JP5149604B2 JP5149604B2 (en) 2013-02-20

Family

ID=40869974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007315824A Active JP5149604B2 (en) 2007-12-06 2007-12-06 Method and apparatus for measuring carburization depth of steel material

Country Status (1)

Country Link
JP (1) JP5149604B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037315A (en) * 2010-08-05 2012-02-23 Sumitomo Kinzoku Technol Kk Total carbon amount measuring instrument and carburized depth evaluation device for ferritic steel pipe containing chromium
JP2015215203A (en) * 2014-05-09 2015-12-03 いすゞ自動車株式会社 Method of evaluating carburized component
CN113481465A (en) * 2021-06-30 2021-10-08 中国航发动力股份有限公司 Preparation and detection method of carburized layer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5296588A (en) * 1976-02-10 1977-08-13 Nippon Steel Corp Non-destructive steel material inspecting method and apparatus
JP2000266727A (en) * 1999-03-19 2000-09-29 Sumitomo Metal Ind Ltd Carburized depth measuring method
JP2000321041A (en) * 1999-05-07 2000-11-24 Nichizou Tec:Kk Method for detecting carburizing layer and method for its thickness
JP2002202263A (en) * 2000-12-28 2002-07-19 Nsk Ltd Method for measuring element concentration and element concentration gradient in film in emission spectrochemical analysis
JP2004279055A (en) * 2003-03-12 2004-10-07 Sumitomo Metal Ind Ltd Method and apparatus for measuring carburization depth on inner surface of steel pipe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5296588A (en) * 1976-02-10 1977-08-13 Nippon Steel Corp Non-destructive steel material inspecting method and apparatus
JP2000266727A (en) * 1999-03-19 2000-09-29 Sumitomo Metal Ind Ltd Carburized depth measuring method
JP2000321041A (en) * 1999-05-07 2000-11-24 Nichizou Tec:Kk Method for detecting carburizing layer and method for its thickness
JP2002202263A (en) * 2000-12-28 2002-07-19 Nsk Ltd Method for measuring element concentration and element concentration gradient in film in emission spectrochemical analysis
JP2004279055A (en) * 2003-03-12 2004-10-07 Sumitomo Metal Ind Ltd Method and apparatus for measuring carburization depth on inner surface of steel pipe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037315A (en) * 2010-08-05 2012-02-23 Sumitomo Kinzoku Technol Kk Total carbon amount measuring instrument and carburized depth evaluation device for ferritic steel pipe containing chromium
JP2015215203A (en) * 2014-05-09 2015-12-03 いすゞ自動車株式会社 Method of evaluating carburized component
CN113481465A (en) * 2021-06-30 2021-10-08 中国航发动力股份有限公司 Preparation and detection method of carburized layer

Also Published As

Publication number Publication date
JP5149604B2 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
Santa-Aho et al. Utilization of Barkhausen noise magnetizing sweeps for case-depth detection from hardened steel
US10883965B2 (en) Methods of using nondestructive material inspection systems
RU2299399C2 (en) Method for determining object surface profile
KR101732347B1 (en) Method and apparatus for determining the health and remaining service life of austenitic steel reformer tubes and the like
Wilson et al. Magneto-acoustic emission and magnetic Barkhausen emission for case depth measurement in En36 gear steel
JP4083382B2 (en) Method for measuring hydrogen concentration in members for nuclear fuel assemblies
KR102496959B1 (en) Surface property evaluation method, surface property evaluation device, and surface property evaluation system
Kasai et al. Detection of carburization in ethylene pyrolysis furnace tubes by a C core probe with magnetization
CN104407044A (en) Method for detecting defects of furnace tube based on low-frequency electromagnetic technology
JP5149604B2 (en) Method and apparatus for measuring carburization depth of steel material
CN111344564A (en) Method and system for non-destructive material inspection
Send et al. Non-destructive case depth determination by means of low-frequency Barkhausen noise measurements
Sava et al. Monitoring variation of surface residual stresses in shot peened steel components by the magnetic Barkhausen noise method
Ziouche et al. Pulsed eddy current signal analysis of ferrous and non-ferrous metals under thermal and corrosion solicitations
CN114295505B (en) Rapid inspection method for austenitic stainless steel heat treatment state
Tschuncky et al. Hybrid methods for materials characterization
JP5643023B2 (en) Total carbon measuring machine and carburizing depth evaluation device for ferritic steel pipes containing Cr
RU2586261C2 (en) Device for magnetic flaw detector and method of reducing error in determining size of defects of pipeline magnetic flaw detectors
Szielasko et al. Early detection of critical material degradation by means of electromagnetic multi-parametric NDE
JP5794927B2 (en) Carburizing depth evaluation method and piping life evaluation method
Liu et al. Effect of microstructure and residual stress on the magnetic Barkhausen noise signal
RU2717557C1 (en) Method for evaluation of residual life of coils of reaction furnaces
CN112378329B (en) Eddy current detection method for thickness of corrosion layer on inner wall of austenite pipe
CN107064219B (en) Ferromagnetic conductor surface hardness measurement method and system based on skin effect
Qian et al. Noncontact hardness assessment of carbon steel with nonlinear Rayleigh waves induced by grating laser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121130

R150 Certificate of patent or registration of utility model

Ref document number: 5149604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250