JP2012037315A - Total carbon amount measuring instrument and carburized depth evaluation device for ferritic steel pipe containing chromium - Google Patents

Total carbon amount measuring instrument and carburized depth evaluation device for ferritic steel pipe containing chromium Download PDF

Info

Publication number
JP2012037315A
JP2012037315A JP2010176130A JP2010176130A JP2012037315A JP 2012037315 A JP2012037315 A JP 2012037315A JP 2010176130 A JP2010176130 A JP 2010176130A JP 2010176130 A JP2010176130 A JP 2010176130A JP 2012037315 A JP2012037315 A JP 2012037315A
Authority
JP
Japan
Prior art keywords
steel pipe
carbon
total amount
magnetic
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010176130A
Other languages
Japanese (ja)
Other versions
JP5643023B2 (en
Inventor
Nobuyoshi Fujiwara
誠敬 藤原
Takahide Sakamoto
隆秀 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2010176130A priority Critical patent/JP5643023B2/en
Publication of JP2012037315A publication Critical patent/JP2012037315A/en
Application granted granted Critical
Publication of JP5643023B2 publication Critical patent/JP5643023B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an instrument which accurately measures a total amount of carbon including a carburized layer of a ferritic steel pipe containing Cr.SOLUTION: The total carbon amount measuring instrument calculates the total amount of carbon including the carburized layer of the ferritic steel pipe containing Cr from DC magnetic characteristics and includes: an electromagnet provided with an excitation coil and yokes for magnetizing a pipe wall portion of the steel pipe in an axial direction; a detection coil which is disposed between the yokes and is wound in a circumferential direction of the steel pipe to detect a magnetic flux change of the pipe wall portion of the steel pipe; a magnetic measurement part which measures the DC magnetic characteristics of the pipe wall portion of the steel pipe in accordance with a magnetic field intensity of the electromagnet and a magnetic flux density based on an integral of an output value of the detection coil; and an arithmetic part provided with prescribed data of relation between the DC magnetic characteristics of the pipe wall portion of the steel pipe and the total amount of carbon. The total amount of carbon including the carburized layer is calculated from the measured DC magnetic characteristics of the pipe wall portion of the steel pipe.

Description

本発明は、非破壊的手法による、Crを含有するフェライト系鋼管の内部の炭素総量を磁気的特性により測定する測定機に関するものであり、またCrを含有するフェライト系鋼管において直接測定が困難な鋼管の内表面部の浸炭深さを評価する装置に関する。 The present invention relates to a measuring instrument for measuring the total amount of carbon inside a ferritic steel pipe containing Cr by a magnetic property by a non-destructive method, and is difficult to directly measure in a ferritic steel pipe containing Cr. The present invention relates to an apparatus for evaluating the carburization depth of an inner surface portion of a steel pipe.

石油化学プラントのエチレン製造工程で用いられる、オーステナイト系のステンレスを用いたクラッキングチューブは、長時間使用されることにより内表面部に浸炭層を生じることが知られている。この浸炭層の発生は、クラッキングチューブの寿命を大きく低減する要因となるため、定期的に浸炭層の深さ(浸炭深さ)を測定し、その進行状況を的確に把握することが必要である。この場合には、浸炭により非磁性体のクロムカーバイド(Cr-C)が生成し、生成近傍のCr濃度が低下して、一部が強磁性体であるフェライト系のステンレスに変化する。非磁性体である母材からこの強磁性体の生成による磁気特性の変化を把握することによって、浸炭量を精度よく推定することが可能で、浸炭の程度を評価することができる。 It is known that a cracking tube using austenitic stainless steel used in an ethylene production process of a petrochemical plant generates a carburized layer on an inner surface portion when used for a long time. Since the occurrence of this carburized layer is a factor that greatly reduces the life of the cracking tube, it is necessary to periodically measure the depth of the carburized layer (carburized depth) and accurately grasp its progress. . In this case, non-magnetic chromium carbide (Cr—C) is generated by carburization, the Cr concentration in the vicinity of the generation is lowered, and a part thereof is changed to ferritic stainless steel which is a ferromagnetic material. By grasping the change in the magnetic characteristics due to the formation of the ferromagnetic material from the base material which is a non-magnetic material, it is possible to accurately estimate the carburizing amount and evaluate the degree of carburizing.

一方、石油化学プラントの加熱炉用のチューブに使用されるCrを含有するフェライト系鋼管の場合には、鋼管の外表面部、内表面部とも浸炭の影響を受けて非磁性体のCr-Cが生成するが、母材が強磁性体であるため、浸炭で生成した非磁性体のCr-C量を推定することは、容易ではない。 On the other hand, in the case of a ferritic steel pipe containing Cr used for a tube for a heating furnace of a petrochemical plant, both the outer surface portion and the inner surface portion of the steel pipe are affected by carburizing and are made of non-magnetic Cr—C. However, since the base material is a ferromagnetic material, it is not easy to estimate the Cr—C amount of the non-magnetic material generated by carburization.

特開2009−139220号公報JP 2009-139220 A

特許文献1に開示された方法は、電磁気特性を利用して磁性体からなる鋼材内外面の浸炭深さを交流磁化法で測定する方法であって、センサープローブの形状、磁場方向、励磁電流強度、励磁周波数の適正化を行ったものである。センサープローブの形状としては、C型コイルプローブを用い、励磁周波数は、40〜50Hzで磁場方向については、水平磁場を用い、第3高調波強度により、内外表面の浸炭深さを求めるものである。 The method disclosed in Patent Document 1 is a method of measuring the carburization depth of the inner and outer surfaces of a steel material made of a magnetic material using an electromagnetic property by an alternating current magnetization method, and includes the shape of a sensor probe, the magnetic field direction, and the excitation current intensity. The excitation frequency is optimized. As the shape of the sensor probe, a C-shaped coil probe is used, the excitation frequency is 40 to 50 Hz, the horizontal magnetic field is used for the magnetic field direction, and the carburization depth of the inner and outer surfaces is obtained by the third harmonic intensity. .

本方法では、鋼管の局所領域(長手方向)の炭素濃度は測定できるが、円周方向の炭素濃度が測定できない点、また交流磁化法の第3高調波強度測定では鋼管外表面の酸化スケール等の影響を受けやすく、信号強度も大きくないため、測定精度に欠けると言う問題がある。 In this method, the carbon concentration in the local region (longitudinal direction) of the steel pipe can be measured, but the carbon concentration in the circumferential direction cannot be measured. In the third harmonic intensity measurement of the AC magnetization method, the oxide scale on the outer surface of the steel pipe, etc. There is a problem that the measurement accuracy is lacking because the signal strength is not large.

上記問題を解決すべく、鋭意研究を行った結果、直流磁化方法を用いて、鋼管の磁気特性を評価することにより鋼管の円周方向の炭素量の総量を精度良く測定できることを見出し本発明を完成させた。 As a result of diligent research to solve the above problems, it was found that the total amount of carbon in the circumferential direction of the steel pipe can be accurately measured by evaluating the magnetic properties of the steel pipe using a direct current magnetization method. Completed.

前記課題を解決するべく、本発明の請求項1に記載の炭素総量測定機は、Crを含有するフェライト系鋼管の浸炭層を含む炭素量の総量を直流磁気特性から算出する炭素総量測定機であって、鋼管の管肉部を軸方向に磁化するための励磁コイルとヨークとを備えた電磁石と、前記ヨーク間に配置され、前記鋼管の円周方向にコイルを巻回して鋼管の管肉部の磁束変化を検出する検出コイルと、前記電磁石の磁場強度と前記検出コイルの出力値の積分に基づく磁束密度から前記鋼管の管肉部の直流磁気特性を測定する磁気測定部と、Crを含有するフェライト系鋼管の直流磁気特性と炭素量の総量との関係の所定のデータに基づき、測定された鋼管の管肉部の直流磁気特性から、浸炭層を含む炭素量の総量を算出する演算部とを備えたことを特徴とする炭素総量測定機である。 In order to solve the above-mentioned problem, the carbon total amount measuring device according to claim 1 of the present invention is a carbon total amount measuring device that calculates the total amount of carbon including the carburized layer of the ferritic steel pipe containing Cr from the direct current magnetic characteristics. And an electromagnet having an exciting coil and a yoke for magnetizing a tubular portion of the steel pipe in the axial direction, and disposed between the yokes, and the coil is wound around the circumferential direction of the steel pipe. A detection coil for detecting a change in magnetic flux of the part, a magnetic measurement part for measuring a DC magnetic characteristic of the tubular part of the steel pipe from a magnetic flux density based on an integration of the magnetic field strength of the electromagnet and an output value of the detection coil, and Cr Calculation to calculate the total amount of carbon, including the carburized layer, from the measured DC magnetic properties of the pipe wall of the steel pipe based on the predetermined data on the relationship between the DC magnetic properties of the ferritic steel pipe and the total amount of carbon. Special features It is a total carbon measuring instrument to be.

請求項1に係る炭素総量測定機の発明によれば、Crを含有するフェライト系鋼管の管肉部を軸方向に磁化するための励磁コイルとヨークとを備えた電磁石と、ヨーク間に配置され、鋼管の円周方向にコイルを巻回して鋼管の管肉部の磁束変化を検出する検出コイルと、電磁石の磁場強度と検出コイルの出力値の積分に基づく磁束密度から鋼管の管肉部の直流磁気特性を測定する磁気測定部と、Crを含有するフェライト系鋼管の直流磁気特性と炭素量の総量との関係の所定のデータに基づき、測定された鋼管の管肉部の直流磁気特性から、浸炭層を含む炭素量の総量を算出する演算部とを備えているため、浸炭層を含む炭素量の総量を従来法の交流磁化法と比べて精度良く算出することができる。 According to the carbon total amount measuring apparatus of the first aspect of the present invention, an electromagnet including an exciting coil and a yoke for magnetizing a tube portion of a ferritic steel pipe containing Cr in the axial direction is disposed between the yokes. The coil is wound in the circumferential direction of the steel pipe to detect the magnetic flux change in the pipe wall, and from the magnetic flux density based on the integration of the magnetic field strength of the electromagnet and the output value of the detection coil, Based on the measured DC magnetic characteristics of the tube section of the steel pipe based on the predetermined data of the relationship between the DC magnetic characteristics of the ferritic steel pipe containing Cr and the total amount of carbon in the magnetism measuring section that measures the DC magnetic characteristics And a calculation unit that calculates the total amount of carbon including the carburized layer, so that the total amount of carbon including the carburized layer can be calculated with higher accuracy than the conventional AC magnetization method.

Crを含有するフェライト系鋼管が浸炭されると、非磁性体であるCr-Cが強磁性体である母材のフェライト組織から生成するが、本発明の直流磁気特性は、従来の交流磁気特性、例えば第3高調波強度を用いる方法より、炭素量の総量の検出に優れている。また鋼管の円周方向にコイルを巻回して鋼管の管肉部の磁束変化を検出する手法を採用しているので、鋼管の円周方向の浸炭量を反映した測定結果となり、測定精度の信頼が高まる。 When a ferritic steel pipe containing Cr is carburized, Cr—C, which is a non-magnetic material, is generated from the ferrite structure of the base material, which is a ferromagnetic material. The DC magnetic characteristics of the present invention are the conventional AC magnetic characteristics. For example, it is superior to the detection of the total amount of carbon than the method using the third harmonic intensity. In addition, since a method is adopted in which a coil is wound in the circumferential direction of the steel pipe to detect the magnetic flux change in the pipe wall, the measurement results reflect the amount of carburizing in the circumferential direction of the steel pipe, and the measurement accuracy is reliable. Will increase.

請求項2に記載の炭素総量測定機は、直流磁気特性が、飽和磁束密度又は保磁力であることを特徴とする請求項1に記載の炭素総量測定機である。 The total carbon measuring machine according to claim 2 is the total carbon measuring machine according to claim 1, wherein the DC magnetic characteristic is a saturation magnetic flux density or a coercive force.

請求項2に係る炭素総量測定機の発明によれば、直流磁気特性が、飽和磁束密度又は保磁力であれば、炭素量の総量との相関係数が高く、精度良く鋼管の管肉部の炭素量の総量を算出することができる。 According to the invention of the carbon total amount measuring machine according to claim 2, if the DC magnetic characteristic is the saturation magnetic flux density or the coercive force, the correlation coefficient with the total amount of carbon is high, and the tube wall portion of the steel pipe is accurately obtained. The total amount of carbon can be calculated.

請求項3に記載の炭素総量測定機は、鋼管と接するヨーク端面の断面形状が、前記鋼管に円周方向から接するように鋼管の外径の半径とほぼ同等の半径の半円形状になっていることを特徴とする請求項1又は2に記載の炭素総量測定機である。 In the carbon total amount measuring machine according to claim 3, the cross-sectional shape of the yoke end surface in contact with the steel pipe is a semicircular shape having a radius substantially equal to the radius of the outer diameter of the steel pipe so as to contact the steel pipe from the circumferential direction. It is a carbon total amount measuring machine of Claim 1 or 2 characterized by the above-mentioned.

請求項3に係る炭素総量測定機の発明によれば、鋼管と接するヨーク端面の断面形状が、鋼管に円周方向から接するように鋼管の外径の半径とほぼ同等の半径の半円形状になっているため、励磁コイルで生成した磁束がヨークを通じてヨークと接している鋼管に均一に侵入し、管肉部の直流磁気特性の測定精度が向上する。 According to the invention for measuring the total amount of carbon according to claim 3, the cross-sectional shape of the yoke end surface in contact with the steel pipe is a semicircular shape having a radius substantially equal to the radius of the outer diameter of the steel pipe so as to contact the steel pipe from the circumferential direction. Therefore, the magnetic flux generated by the exciting coil uniformly penetrates into the steel pipe in contact with the yoke through the yoke, and the measurement accuracy of the DC magnetic characteristics of the tube wall portion is improved.

請求項4に記載の炭素総量測定機において、前記ヨークは、端面の断面形状が前記鋼管の外径の半径とほぼ同等の半径の半円形状からなるそれぞれ第1と第2の部材とからなり、前記第1と第2の部材との組み合わせで前記鋼管を全円周方向から取り囲んで接するようなヨークであることを特徴とする請求項1又は2に記載の炭素総量測定機である。 5. The total carbon measuring machine according to claim 4, wherein the yoke includes first and second members each having a semicircular shape in which a cross-sectional shape of an end surface is substantially equal to a radius of an outer diameter of the steel pipe. The carbon total amount measuring machine according to claim 1 or 2, wherein the yoke is a yoke that surrounds and contacts the steel pipe from all circumferential directions by a combination of the first and second members.

請求項4に係る炭素総量測定機の発明によれば、ヨークの構成を、端面の断面形状が鋼管の外径の半径とほぼ同等の半径の半円形状からなるそれぞれ第1と第2の部材とからなり、第1と第2の部材との組み合わせで鋼管を全円周方向から取り囲んで接するようにしたため、励磁コイルで生成した磁束がヨークを通じヨークと接している鋼管の全円周方向から均一に侵入し、管肉部の直流磁気特性の測定精度が更に向上する。 According to the invention for measuring the total amount of carbon according to claim 4, the configuration of the yoke includes first and second members each having a semicircular shape in which the cross-sectional shape of the end surface is substantially the same as the radius of the outer diameter of the steel pipe. Since the steel pipe is surrounded and touched by the combination of the first and second members from the whole circumferential direction, the magnetic flux generated by the exciting coil is from the whole circumferential direction of the steel pipe that is in contact with the yoke through the yoke. It penetrates uniformly and the accuracy of measuring the DC magnetic characteristics of the tube wall is further improved.

請求項5に記載の炭素総量測定機は、Crを含有するフェライト系鋼管が、1.9wt%以上、10wt%以下のCrを含むことを特徴とする請求項1から4のいずれかに記載の炭素総量測定機である。 The total carbon measuring machine according to claim 5, wherein the ferritic steel pipe containing Cr contains 1.9 wt% or more and 10 wt% or less of Cr. This is a total carbon measuring machine.

請求項5に係る炭素総量測定機の発明によれば、対象とするCrを含有するフェライト系鋼管が、1.9wt%以上、10wt%以下のCrを含むことを特徴とするものであり、石油化学プラントの加熱炉用のチューブに良く使用されるCr−Mo系の鋼管、例えば2.25Cr−1Mo鋼管、9Cr−1Mo鋼管の浸炭評価に特に有効である。なお、2.25Cr−1Mo鋼管の規格ではCrの下限量は1.9wt%以上であり、9Cr−1Mo鋼管の規格ではCrの上限は10wt%以下である。 According to the invention of the carbon total amount measuring machine according to claim 5, the ferritic steel pipe containing the target Cr contains 1.9 wt% or more and 10 wt% or less of Cr, It is particularly effective for carburization evaluation of Cr—Mo steel pipes, such as 2.25Cr-1Mo steel pipes and 9Cr-1Mo steel pipes, which are often used in tubes for heating furnaces in chemical plants. In addition, in the standard of 2.25Cr-1Mo steel pipe, the lower limit of Cr is 1.9 wt% or more, and in the standard of 9Cr-1Mo steel pipe, the upper limit of Cr is 10 wt% or less.

請求項6に記載の濃度分布評価装置は、Crを含有するフェライト系鋼管の炭素量の総量を直流磁気特性から算出する炭素総量測定機と、前記鋼管の外表面部の炭素濃度を測定する外表面炭素濃度測定機と、前記外表面炭素濃度測定機に測定された炭素濃度に基づき所定の式に従って外表面部の浸炭量を算出し、前記炭素量の総量から外表面部の浸炭量と母材炭素量を差し引き、鋼管の内表面部の浸炭量を求め、所定の式に従って内表面部の浸炭量の濃度分布を評価する濃度分布評価機とを備えた鋼管内表面部の浸炭量の濃度分布評価装置であって、前記炭素総量測定機は、鋼管の管肉部を軸方向に磁化するための励磁コイルとヨークとを備えた電磁石と、前記ヨーク間に配置され、前記鋼管の円周方向にコイルを巻回して鋼管の管肉部の磁束変化を検出する検出コイルと、前記電磁石の磁場強度と前記検出コイルの出力値の積分に基づく磁束密度から前記鋼管の管肉部の直流磁気特性を測定する磁気測定部と、Crを含有するフェライト系鋼管の直流磁気特性と炭素量の総量との関係の所定のデータに基づき、測定された鋼管の管肉部の直流磁気特性から、浸炭層を含む炭素量の総量を算出する演算部とを備えたことを特徴とする、Crを含有するフェライト系鋼管の内表面部の浸炭量の濃度分布評価装置である。 The concentration distribution evaluation apparatus according to claim 6 is a carbon total amount measuring device that calculates a total amount of carbon in a ferritic steel pipe containing Cr from a direct current magnetic characteristic, and an external that measures the carbon concentration in the outer surface portion of the steel pipe. Based on the carbon concentration measured by the surface carbon concentration measuring device and the carbon concentration measured by the outer surface carbon concentration measuring device, the carburizing amount of the outer surface portion is calculated according to a predetermined formula, and the carburizing amount of the outer surface portion and the mother amount are calculated from the total amount of the carbon amount. Subtracting the amount of material carbon, obtaining the carburizing amount of the inner surface portion of the steel pipe, and the concentration of the carburizing amount of the inner surface portion of the steel pipe equipped with a concentration distribution evaluation machine for evaluating the concentration distribution of the carburizing amount of the inner surface portion according to a predetermined formula A distribution evaluation device, wherein the carbon total amount measuring machine is disposed between an electromagnet including an exciting coil and a yoke for magnetizing a tube wall portion of a steel pipe in an axial direction, and the circumference of the steel pipe. Coiled in the direction of the A detection coil for detecting a change, a magnetic measurement unit for measuring a DC magnetic characteristic of a tubular portion of the steel pipe from a magnetic flux density based on an integration of a magnetic field strength of the electromagnet and an output value of the detection coil, and a ferrite containing Cr An arithmetic unit that calculates the total amount of carbon including the carburized layer from the measured DC magnetic characteristics of the steel tube tube based on predetermined data on the relationship between the DC magnetic properties of the steel pipe and the total amount of carbon. It is the concentration distribution evaluation apparatus of the carburizing amount of the inner surface part of the ferritic steel pipe containing Cr characterized by having provided.

請求項6に係る濃度分布評価装置の発明によれば、Crを含有するフェライト系鋼管の炭素量の総量を直流磁気特性から算出する炭素総量測定機と、鋼管の外表面部の炭素濃度を測定する外表面炭素濃度測定機と、外表面炭素濃度測定機に測定された炭素濃度に基づき所定の式に従って外表面部の浸炭量を算出し、炭素量の総量から外表面部の浸炭量と母材炭素量を差し引き、鋼管の内表面部の浸炭量を求め、所定の式に従って内表面部の浸炭量の濃度分布を評価する濃度分布評価機とを備えた鋼管内表面部の浸炭量の濃度分布評価装置であって、炭素総量測定機は、鋼管の管肉部を軸方向に磁化するための励磁コイルとヨークとを備えた電磁石と、ヨーク間に配置され、鋼管の円周方向にコイルを巻回して鋼管の管肉部の磁束変化を検出する検出コイルと、前記電磁石の磁場強度と前記検出コイルの出力値の積分に基づく磁束密度から前記鋼管の管肉部の直流磁気特性を測定する磁気測定部と、Crを含有するフェライト系鋼管の直流磁気特性と炭素量の総量との関係の所定のデータに基づき、測定された鋼管の管肉部の直流磁気特性から、浸炭層を含む炭素量の総量を算出する演算部とを備えたことを特徴とする、Crを含有するフェライト系鋼管の内表面部の浸炭量の濃度分布評価装置を提案するものである。そのため鋼管の炭素量の総量から、外表面部の浸炭量と母材炭素量を差し引くことにより、内表面部の浸炭量が求められ、所定の式に従って、直接測定が困難な鋼管の内表面部の浸炭量の濃度分布を非破壊的に評価することができる。 According to the invention of the concentration distribution evaluation apparatus according to claim 6, a carbon total amount measuring machine for calculating the total amount of carbon of the ferritic steel pipe containing Cr from the DC magnetic characteristics, and measuring the carbon concentration of the outer surface portion of the steel pipe Calculate the carburizing amount of the outer surface part according to a predetermined formula based on the carbon concentration measured by the outer surface carbon concentration measuring machine and the outer surface carbon concentration measuring machine, and calculate the carburizing amount of the outer surface part from the total amount of carbon and the mother Subtracting the amount of material carbon, obtaining the carburizing amount of the inner surface portion of the steel pipe, and the concentration of the carburizing amount of the inner surface portion of the steel pipe equipped with a concentration distribution evaluation machine for evaluating the concentration distribution of the carburizing amount of the inner surface portion according to a predetermined formula It is a distribution evaluation device, and a carbon total amount measuring machine is disposed between an electromagnet having an exciting coil and a yoke for magnetizing a tube portion of a steel pipe in an axial direction, and a coil in a circumferential direction of the steel pipe. Is used to detect magnetic flux changes in the pipe wall of the steel pipe A detection coil, a magnetic measurement unit for measuring a DC magnetic characteristic of a tube portion of the steel pipe from a magnetic flux density based on an integration of a magnetic field strength of the electromagnet and an output value of the detection coil, and a direct current of a ferritic steel pipe containing Cr An arithmetic unit for calculating the total amount of carbon including the carburized layer from the measured DC magnetic characteristics of the steel pipe portion based on predetermined data on the relationship between the magnetic properties and the total amount of carbon. The present invention proposes a concentration distribution evaluation apparatus for carburizing amount of an inner surface portion of a ferritic steel pipe containing Cr. Therefore, by subtracting the carburizing amount of the outer surface part and the base material carbon amount from the total amount of carbon in the steel pipe, the carburizing amount of the inner surface part is obtained, and the inner surface part of the steel pipe that is difficult to measure directly according to a predetermined formula. The concentration distribution of the amount of carburizing can be evaluated nondestructively.

請求項7に記載の濃度分布評価装置は、直流磁気特性が、飽和磁束密度又は保磁力であることを特徴とする請求項6に記載のフェライト系鋼管の内表面部の浸炭量の濃度分布評価装置である。 The concentration distribution evaluation apparatus according to claim 7, wherein the DC magnetic characteristic is a saturation magnetic flux density or a coercive force, and the concentration distribution evaluation of the carburizing amount of the inner surface portion of the ferritic steel pipe according to claim 6. Device.

請求項7に係る濃度分布評価装置の発明によれば、鋼管の炭素量の総量を、炭素量の総量との相関係数が高い飽和磁束密度又は保磁力で算出するので、算出された炭素量の総量の信頼度が高く、鋼管内表面部の浸炭量の濃度分布評価の精度が高いものとなる。 According to the invention of the concentration distribution evaluation apparatus according to claim 7, since the total amount of carbon in the steel pipe is calculated with a saturation magnetic flux density or coercive force having a high correlation coefficient with the total amount of carbon, the calculated amount of carbon The reliability of the total amount is high, and the accuracy of concentration distribution evaluation of the carburizing amount on the inner surface of the steel pipe is high.

本発明によれば、Crを含有するフェライト系鋼管の浸炭層を含む炭素量の総量を非破壊的手法である直流磁気特性から精度良く算出することができ、また鋼管の内表面部の浸炭量の濃度分布を評価することができるので、浸炭によるフェライト系鋼管の保守管理に役立つものとなる。 According to the present invention, the total amount of carbon including the carburized layer of the ferritic steel pipe containing Cr can be accurately calculated from the DC magnetic characteristics which are a non-destructive technique, and the carburizing amount of the inner surface portion of the steel pipe Therefore, it is useful for maintenance management of ferritic steel pipes by carburizing.

図1は、石油化学プラントの加熱炉用のチューブとして使用された鋼管の炭素濃度の分布図である。FIG. 1 is a distribution diagram of carbon concentration of a steel pipe used as a tube for a heating furnace of a petrochemical plant. 図2は、浸炭材の肉厚方向の炭素濃度分布の概念図である。FIG. 2 is a conceptual diagram of the carbon concentration distribution in the thickness direction of the carburized material. 図3は、本発明の炭素量の総量を算出する炭素総量測定機の構成例である。(a)鋼管の軸方向と平行な方向から見た概略図 (b)鋼管の軸方向に垂直な方向から見たヨークとの関係を示す概略図FIG. 3 is a configuration example of a total carbon amount measuring machine for calculating the total amount of carbon according to the present invention. (A) Schematic diagram viewed from a direction parallel to the axial direction of the steel pipe (b) Schematic diagram illustrating the relationship with the yoke viewed from a direction perpendicular to the axial direction of the steel pipe 図4は、本発明の炭素量の総量を算出する炭素総量測定機の構成の変形例である。(a)鋼管の軸方向と平行な方向から見た概略図 (b)鋼管の軸方向に垂直な方向から見たヨークとの関係を示す概略図FIG. 4 is a modification of the configuration of the total carbon measuring device for calculating the total amount of carbon according to the present invention. (A) Schematic diagram viewed from a direction parallel to the axial direction of the steel pipe (b) Schematic diagram illustrating the relationship with the yoke viewed from a direction perpendicular to the axial direction of the steel pipe 図5は、炭素量の総量の異なる鋼管の磁気特性ループを示す図である。FIG. 5 is a diagram showing magnetic characteristic loops of steel pipes having different total carbon contents. 図6は、炭素量の総量と規格化した飽和磁束密度との関係を示す図である。FIG. 6 is a diagram showing the relationship between the total amount of carbon and the normalized saturation magnetic flux density. 図7は、炭素量の総量と規格化した保磁力との関係を示す図である。FIG. 7 is a diagram showing the relationship between the total amount of carbon and the normalized coercivity. 図8は、炭素量の総量と規格化した残留磁束密度との関係を示す図である。FIG. 8 is a diagram showing the relationship between the total amount of carbon and the normalized residual magnetic flux density. 図9は、本発明のCrを含有するフェライト系鋼管の内表面部の浸炭量の濃度分布評価装置の構成例である。FIG. 9 is a configuration example of a concentration distribution evaluation apparatus for carburizing amount of the inner surface portion of a ferritic steel pipe containing Cr according to the present invention.

図1には、石油化学プラントの加熱炉用のチューブとして使用された肉厚5.2mmの9Cr−1Mo鋼管を内外表面を脱スケールして、内外表面から0.3mmずつ削り出してはEPMAを用いて炭素濃度(C濃度)分布を求めたものである。これらのデータから、浸炭量の差異はあっても内外面からのC濃度分布はそれぞれの表面から、ほぼ一次関数的に減少することが判明した。このC濃度の外表面からの傾きKOを、内表面からの傾きをKiとすると9Cr−1Mo鋼でのKOは−0.4(wt%/mm)程度であり、Kiは0.3(wt%/mm)程度であることが判明した。 In Fig. 1, the inner and outer surfaces of a 5.2mm thick 9Cr-1Mo steel pipe used as a tube for a heating furnace in a petrochemical plant are descaled and cut out 0.3mm each from the inner and outer surfaces to obtain EPMA. Using this, the carbon concentration (C concentration) distribution is obtained. From these data, it was found that the C concentration distribution from the inner and outer surfaces decreased almost linearly from each surface even though the carburizing amount was different. When the inclination K O from the outer surface of this C concentration is K i and the inclination from the inner surface is K i , the K O in 9Cr-1Mo steel is about −0.4 (wt% / mm), and K i is 0 It was found to be about 3 (wt% / mm).

また、別のCrを含む鋼種の浸炭処理の結果においても、浸炭量の差異はあっても内外面からのC濃度分布はそれぞれの表面から、ほぼ一次関数的に減少することが判明し、鋼種に対応して、C濃度の外表面からの傾きKO、内表面からの傾きKiが異なることが判明した。 Also, in the results of carburizing treatment of steel types containing other Cr, it was found that the C concentration distribution from the inner and outer surfaces decreased almost linearly from the respective surfaces even though there was a difference in the amount of carburizing. It was found that the inclination K O from the outer surface of the C concentration and the inclination K i from the inner surface are different.

上記の結果から、内外表面から浸炭されるCrを含む鋼管の肉厚方向において、浸炭後の鋼管の炭素量の総量SCAから、浸炭前の母材炭素量SCBを差し引いたものが、浸炭処理により増加した炭素量となる。この炭素量は、外表面部からの浸炭量SCOと内表面部からの浸炭量SCIの和であるから、鋼種のKO、Kiが与えられ、鋼管外表面のC濃度COが測定されれば、外表面部からの浸炭量が計算され、内表面部の浸炭量SCIが決まることになる。また内表面部の浸炭量とKiから内表面浸炭深さdiが評価できることになる。 From the above results, in the thickness direction of the steel pipe containing Cr to be carburized from the inner and outer surfaces, the total amount S CA of carbon content of the steel pipe after carburization, is minus the base material carbon content S CB before carburization, carburization The amount of carbon increased by the treatment. The carbon content is the sum of carburizing quantity S CI from carburizing quantity S CO and the inner surface portion of the outer surface, steels K O, K i is given, the C concentration C O of the steel pipe outer surface If measured, the carburizing amount from the outer surface portion is calculated, and the carburizing amount SCI of the inner surface portion is determined. Further, the inner surface carburization depth d i can be evaluated from the carburizing amount of the inner surface portion and K i .

以上のように、浸炭後の鋼管肉厚方向の炭素量の総量SCAを非破壊的に測定できれば、鋼管外表面のC濃度COを測定することで、鋼管内表面の浸炭の状態を評価できることになる。図2には、このような浸炭材のC濃度分布の概念図を示す。図2では、外表面浸炭深さdOは外表面のC濃度COから傾きKOで減少し、母材C濃度Cになる厚さ、内表面浸炭深さdiは内表面のC濃度Ciから傾きKiで減少し、母材C濃度Cになる厚さであり、また鋼管肉厚tよりも外表面浸炭深さdOと内表面浸炭深さdiの和が小さいことを前提としている。なお、炭素量の総量SCAは、鋼管肉厚方向のC濃度C(t)を厚みtで積分した∫C(t)dtで表されるものである。 As described above, if non-destructively measuring the amount S CA of the steel pipe wall thickness direction of the carbon content of carburized, by measuring the C concentration C O of the steel pipe outer surface, evaluating the state of carburization in the steel pipe inner surface It will be possible. In FIG. 2, the conceptual diagram of C concentration distribution of such a carburized material is shown. In Figure 2, the outer surface carburized depth d O decreases at inclination K O from C concentration C O of the outer surface, the base material C concentration C b a thickness, the inner surface carburization depth d i is the inner surface C The thickness decreases from the concentration C i with a slope K i to the base material C concentration C b , and the sum of the outer surface carburization depth d O and the inner surface carburization depth d i is smaller than the steel pipe wall thickness t. It is assumed that. Incidentally, the total amount S CA of carbon content is represented by ∫C (t) dt obtained by integrating the steel pipe wall thickness direction C concentration C (t) to a thickness t.

したがって、鋼管肉厚方向の炭素量の総量SCA、母材炭素量SCB、外表面部からの浸炭量SCO、内表面部からの浸炭量SCIは、以下の計算式で求められる。
CA=SCO+SCI+SCB=∫C(t)dt ・・・(A)
CB=Cb×t ・・・(B)
CO=(CO−C)× dO/2 ・・・(C)
CI=(Ci−C)× di/2 ・・・(D)
また、外表面浸炭深さdOと内表面浸炭深さdiは、
O=(CO−C)/KO ・・・(E)
i=(Ci−C)/Ki ・・・(F)
で求められ、内表面浸炭深さdiは、更に
i=2{SCA−(CO−C/(2×KO)−C×t}/Ki ・・・(G)
で求められる。
Therefore, the total amount S CA of the carbon amount in the thickness direction of the steel pipe, the base material carbon amount S CB , the carburizing amount S CO from the outer surface portion, and the carburizing amount S CI from the inner surface portion can be obtained by the following calculation formulas.
S CA = S CO + S CI + S CB = ∫C (t) dt (A)
S CB = C b × t (B)
S CO = (C O −C b ) × d O / 2 (C)
S CI = (C i −C b ) × d i / 2 (D)
Further, the outer surface carburization depth d O and the inner surface carburization depth d i are:
d O = (C O -C b ) / K O (E)
d i = (C i −C b ) / K i (F)
The inner surface carburization depth d i is further determined by d i = 2 {S CA − (C O −C b ) 2 / (2 × K O ) −C b × t} / K i. G)
Is required.

上記(G)式において、あらかじめ鋼管外面のC濃度COを測定しておけば、CO、Cb、KO、Ki、tは既知であり、更に鋼管肉厚方向の炭素量の総量SCAが測定されれば、内表面浸炭深さdiが求められることが計算上も明らかである。そのためCrを含むフェライト系鋼管の浸炭後の炭素量の総量SCAを非破壊的に計測できる技術が必要であった。 In the above formula (G), if the C concentration C O of the outer surface of the steel pipe is measured in advance, C O , C b , K O , K i , t are known, and the total amount of carbon in the thickness direction of the steel pipe It is clear from the calculation that if the SCA is measured, the inner surface carburization depth d i can be obtained. Therefore nondestructive measurement technique capable of total S CA carbon amount after carburization ferritic steel containing Cr is required.

図3(a)、(b)に、本発明の炭素量の総量を算出する炭素総量測定機1の概念図を示す。炭素総量測定機1は、被測定対象の鋼管Pの管肉部を軸方向に磁化するための電磁石11、磁化された管肉部の磁束変化を検出するための検出コイル12、直流磁気特性の磁化曲線を測定する磁気測定部13、直流磁気特性と炭素量の総量との関係の所定のデータに基づき、測定された鋼管Pの管肉部の直流磁気特性から、浸炭層を含む炭素量の総量を算出する演算部14とから構成されている。 The conceptual diagram of the carbon total amount measuring device 1 which calculates the total amount of the carbon content of this invention to Fig.3 (a), (b) is shown. The total carbon measuring machine 1 includes an electromagnet 11 for magnetizing a tube portion of the steel pipe P to be measured in the axial direction, a detection coil 12 for detecting a magnetic flux change in the magnetized tube portion, and a DC magnetic characteristic. The magnetic measurement unit 13 for measuring the magnetization curve, based on the predetermined data of the relationship between the DC magnetic characteristics and the total amount of carbon, from the measured DC magnetic characteristics of the tube portion of the steel pipe P, the carbon content including the carburized layer It is comprised from the calculating part 14 which calculates total amount.

電磁石11は、励磁コイル111と軟磁性材料、例えば軟鉄製のヨーク112とから構成されている。励磁コイル111はヨーク112を巻回するように取り付けられ、ヨーク112の両端は、被測定対象の鋼管Pに円周方向から接するように、断面形状が鋼管の外径とほぼ同等の半径の半円形状になっている。そのため励磁コイル111で生成した磁場が、ヨーク112を磁化し、その磁束がヨーク112の片方の端部から被測定対象の鋼管Pに流入して、鋼管Pの管肉部を軸方向に磁化し、もう片方のヨーク112の端部から磁束が流出し、磁路を形成することになる。このように本発明ではヨーク112端面の断面形状が、鋼管Pの外径とほぼ同等の半径の半円形状になっているため磁路長のロスが少なく、鋼管Pを一様に飽和磁化まで磁化することが可能となる。 The electromagnet 11 includes an exciting coil 111 and a yoke 112 made of a soft magnetic material such as soft iron. The exciting coil 111 is attached so as to wind the yoke 112, and both ends of the yoke 112 have a half-section with a radius substantially equal to the outer diameter of the steel pipe so as to contact the steel pipe P to be measured from the circumferential direction. It has a circular shape. Therefore, the magnetic field generated by the exciting coil 111 magnetizes the yoke 112, and the magnetic flux flows into the steel pipe P to be measured from one end of the yoke 112, and magnetizes the tubular portion of the steel pipe P in the axial direction. Then, the magnetic flux flows out from the end of the other yoke 112 and forms a magnetic path. As described above, in the present invention, the cross-sectional shape of the end face of the yoke 112 is a semicircular shape having a radius substantially equal to the outer diameter of the steel pipe P, so there is little loss of the magnetic path length, and the steel pipe P can be uniformly saturated. It becomes possible to magnetize.

磁化された管肉部の磁束変化を検出するための検出コイル12は、ヨーク112間に配置される。検出コイル12の構成は、鋼管Pの円周方向にコイルが巻回されており、コイルで囲まれる面内の磁束の時間変化を電磁誘導電圧として検出するものである。検出された電圧は、磁気測定部13の増幅・積分器133に入力される。なお実機管の場合には、現場で検出コイル12を巻回することが困難な場合があり、そのような場合には、フラットケーブル状のコイルで両端子間のコネクタ接続が隣接のケーブルとされることでケーブルが螺旋状に接続されるコイル等を使用することができる。 A detection coil 12 for detecting a change in magnetic flux in the magnetized tubular portion is disposed between the yokes 112. The configuration of the detection coil 12 is such that the coil is wound in the circumferential direction of the steel pipe P, and the time change of the magnetic flux in the plane surrounded by the coil is detected as an electromagnetic induction voltage. The detected voltage is input to the amplifier / integrator 133 of the magnetic measurement unit 13. In the case of an actual machine pipe, it may be difficult to wind the detection coil 12 at the site. In such a case, the connector connection between the two terminals is a neighboring cable with a flat cable coil. Thus, a coil or the like in which the cable is spirally connected can be used.

磁気測定部13は、本実施例では、検出コイル12からの誘導電圧を増幅、積分する増幅・積分器133と励磁コイル111を励磁するための発振器131と電力増幅器132、増幅・積分器133からの出力を磁束密度に変換し、電力増幅器132からの出力を磁場強度に変換して磁化曲線を生成する磁気特性評価器134とから構成されている。発振器131の周波数は、渦電流の発生を抑えるため、低周波、例えば0.01Hz程度が良好であり、三角波又はSIN波を利用することができる。電力増幅器132は、発振器131の出力を増幅して励磁コイル111に出力すると同時に、磁気特性評価器134に出力信号を出力する。磁気特性評価器134はこの出力信号を電磁石11の磁場強度に変換し、また増幅・積分器133からの出力に対応する磁束を鋼管Pの管肉部の断面積から磁束密度に変換して直流磁気特性の磁化曲線を生成する。なお、ホール素子をヨーク部先端に設置して磁場強度を計測し、その測定値を磁気特性評価器134に入力するような方式でも良い。 In this embodiment, the magnetic measurement unit 13 amplifies and integrates the induced voltage from the detection coil 12, the oscillator 131 and the power amplifier 132 for exciting the excitation coil 111, and the amplification / integrator 133. Is converted into magnetic flux density, and the output from the power amplifier 132 is converted into magnetic field strength to generate a magnetization curve. In order to suppress the generation of eddy current, the frequency of the oscillator 131 is preferably a low frequency, for example, about 0.01 Hz, and a triangular wave or a SIN wave can be used. The power amplifier 132 amplifies the output of the oscillator 131 and outputs the amplified output to the exciting coil 111 and simultaneously outputs an output signal to the magnetic property evaluator 134. The magnetic property evaluator 134 converts this output signal into the magnetic field strength of the electromagnet 11, and converts the magnetic flux corresponding to the output from the amplifier / integrator 133 from the cross-sectional area of the tubular portion of the steel pipe P to the magnetic flux density to generate a direct current. Generate a magnetization curve of magnetic properties. It is also possible to adopt a method in which a Hall element is installed at the tip of the yoke portion, the magnetic field strength is measured, and the measured value is input to the magnetic property evaluator 134.

直流磁気特性の磁化曲線から、初期透磁率μ、最大磁束密度Bm、飽和磁束密度Bs、残留磁束密度Br、保磁力Hc等のデータが得られる。なお鋼管Pに残留磁化が残っている場合には、原点からスタートできないので、測定前に発振器131の周波数を例えば60Hz程度にして、電力増幅器の出力を徐々に低下させる消磁を行えば良い。 Data such as initial permeability μ, maximum magnetic flux density Bm, saturation magnetic flux density Bs, residual magnetic flux density Br, coercive force Hc, and the like are obtained from the magnetization curve of the DC magnetic characteristics. If the residual magnetization remains in the steel pipe P, it is not possible to start from the origin. Therefore, before the measurement, the frequency of the oscillator 131 is set to, for example, about 60 Hz, and demagnetization that gradually decreases the output of the power amplifier may be performed.

浸炭層を含む炭素量の総量を算出する演算部14は、Crを含有するフェライト系鋼管の直流磁気特性と炭素量の総量との関係の所定のデータを有している。つまり、初期透磁率μ、最大磁束密度Bm、飽和磁束密度Bs、残留磁束密度Br、保磁力Hc等の各磁気特性と炭素量の総量との相関を示すデータを有している。演算部14は、測定された鋼管Pの管肉部の直流磁気特性を、直流磁気特性と炭素量の総量との相関を示すデータと比較して、浸炭層を含む炭素量の総量を算出する。なお、後述するが9Cr−1Mo鋼管では、最大磁束密度Bm又は飽和磁束密度Bsと炭素量の総量とは負の相関を示し、炭素量の総量が増加すると最大磁束密度Bmと飽和磁束密度Bsは減少するが、保磁力Hcと炭素量の総量とは正の相関を示し、炭素量の総量が増加すると保磁力Hcも増加する。残留磁束密度Brと炭素量の総量とについては、相関が認められなかった。また最大磁束密度Bm又は飽和磁束密度Bsと炭素量の総量との相関係数、保磁力Hcと炭素量の総量との相関係数は比較的高く、特に最大磁束密度Bm又は飽和磁束密度Bsと炭素量の総量との相関を示すデータを用いれば、浸炭層を含む炭素量の総量を極めて精度良く算出することができる。 The calculation unit 14 that calculates the total amount of carbon including the carburized layer has predetermined data on the relationship between the DC magnetic characteristics of the ferritic steel pipe containing Cr and the total amount of carbon. That is, it has data indicating the correlation between each magnetic characteristic such as the initial permeability μ, the maximum magnetic flux density Bm, the saturation magnetic flux density Bs, the residual magnetic flux density Br, the coercive force Hc, and the total amount of carbon. The computing unit 14 calculates the total amount of carbon including the carburized layer by comparing the DC magnetic characteristics of the measured thickness of the steel pipe P with the data indicating the correlation between the DC magnetic characteristics and the total amount of carbon. . As will be described later, in the 9Cr-1Mo steel pipe, the maximum magnetic flux density Bm or saturation magnetic flux density Bs and the total amount of carbon show a negative correlation, and when the total amount of carbon increases, the maximum magnetic flux density Bm and the saturation magnetic flux density Bs are Although it decreases, the coercive force Hc and the total amount of carbon show a positive correlation, and the coercive force Hc increases as the total amount of carbon increases. No correlation was found between the residual magnetic flux density Br and the total amount of carbon. Further, the correlation coefficient between the maximum magnetic flux density Bm or the saturation magnetic flux density Bs and the total amount of carbon, and the correlation coefficient between the coercive force Hc and the total amount of carbon are relatively high. In particular, the maximum magnetic flux density Bm or the saturation magnetic flux density Bs If the data showing the correlation with the total amount of carbon is used, the total amount of carbon including the carburized layer can be calculated with extremely high accuracy.

図4(a)、(b)に本発明の炭素量の総量を算出する炭素総量測定機1の変形例を示す。本変形例では鋼管Pと接するヨーク112は、端面の断面形状が鋼管の外径とほぼ同等の半径の半円形状からなるそれぞれ第1の部材112aと第2の部材112bとからなり、第2の部材112bを第1の部材112aにネジ止め等することで、第1の部材112aと第2の部材112bとの組み合わせで鋼管Pを全円周方向から取り囲んで接するようなヨーク112であることを特徴とする。このようなヨーク112構成であれば、鋼管Pの全円周方向から鋼管Pの管肉部を軸方向に磁化することができるので、鋼管Pの管肉部を貫通する磁束がより均一になり、検出コイル12から検出される電磁誘導電圧をより正確に検出することができる。 4 (a) and 4 (b) show a modification of the total carbon amount measuring machine 1 for calculating the total amount of carbon according to the present invention. In this modification, the yoke 112 in contact with the steel pipe P is composed of a first member 112a and a second member 112b, each of which has a semicircular shape with a cross-sectional shape of the end face substantially equal to the outer diameter of the steel pipe. The member 112b is screwed or the like to the first member 112a, so that the yoke 112 surrounds and contacts the steel pipe P from the entire circumferential direction by a combination of the first member 112a and the second member 112b. It is characterized by. With such a yoke 112 configuration, the tube wall portion of the steel pipe P can be magnetized in the axial direction from the entire circumferential direction of the steel pipe P, so that the magnetic flux penetrating the tube wall portion of the steel pipe P becomes more uniform. The electromagnetic induction voltage detected from the detection coil 12 can be detected more accurately.

なお、図3(a)、(b)に示した電磁石11を2個使用し、ヨーク112の端部を突き合わせるようにすれば、鋼管Pの全円周方向から鋼管Pの管肉部を軸方向に更に一様に磁化することができるので、鋼管Pの管肉部を貫通する磁束がより均一になり、検出コイル12から検出される電磁誘導電圧を更に正確に検出することができる。 If the two electromagnets 11 shown in FIGS. 3 (a) and 3 (b) are used and the ends of the yoke 112 are brought into contact with each other, the tubular portion of the steel pipe P is removed from the entire circumferential direction of the steel pipe P. Since the magnet can be magnetized more uniformly in the axial direction, the magnetic flux penetrating the tubular portion of the steel pipe P becomes more uniform, and the electromagnetic induction voltage detected from the detection coil 12 can be detected more accurately.

新材の9Cr−1Mo鋼管(サンプルNo.1)と種々の浸炭雰囲気に暴露した9Cr−1Mo実機鋼管(サンプルNo.2〜7)の7つのサンプルを用いて、本発明の検討を行った。鋼管のサイズは外径114mm、内径102mm、肉厚6mmのものである。なお、新材の9Cr−1Mo鋼管のC濃度は、化学分析により、0.12(wt%)と決定されており、浸炭層がないので炭素量の総量は、C濃度に肉厚6mmを掛けた0.72(wt%・mm)と計算上なるが、サンプルNo.2〜7と同じく、鋼管を切り出して、内外表面から0.3mmずつ削り出しては可搬型発光分析装置を用いて肉厚方向のC濃度が0.12(wt%)であることを確認した。サンプルNo.2〜7の浸炭雰囲気に暴露した9Cr−1Mo実機鋼管の場合は、鋼管を切り出し、内外表面を脱スケールしてから、内外表面から0.3mmずつ削り出しては可搬型発光分析装置を用いて肉厚方向のC濃度分布C(t)を求めた。そして、C(t)を厚みtで積分した∫C(t)dtにより炭素量の総量を計算した。表1に各サンプルの炭素量の総量を示す。 The present invention was examined using seven samples of a new 9Cr-1Mo steel pipe (sample No. 1) and a 9Cr-1Mo actual steel pipe (samples No. 2 to 7) exposed to various carburizing atmospheres. The steel pipe has an outer diameter of 114 mm, an inner diameter of 102 mm, and a wall thickness of 6 mm. The C concentration of the new 9Cr-1Mo steel pipe is determined to be 0.12 (wt%) by chemical analysis, and since there is no carburized layer, the total amount of carbon is obtained by multiplying the C concentration by the thickness of 6 mm. The sample number is 0.72 (wt% · mm). Similar to 2-7, the steel pipe was cut out and cut out by 0.3 mm from the inner and outer surfaces, and it was confirmed that the C concentration in the thickness direction was 0.12 (wt%) using a portable emission analyzer. . Sample No. In the case of 9Cr-1Mo actual steel pipe exposed to 2 to 7 carburizing atmosphere, cut out the steel pipe, descal the inner and outer surfaces, and then cut out 0.3 mm each from the inner and outer surfaces using a portable emission analyzer. The C concentration distribution C (t) in the thickness direction was determined. Then, the total amount of carbon was calculated from ∫C (t) dt obtained by integrating C (t) with thickness t. Table 1 shows the total amount of carbon in each sample.

Figure 2012037315
Figure 2012037315

直流磁気測定は、図4(a)、(b)に示す装置により行い、ヨーク112はSS400相当の軟鉄を用い、ヨーク112の第1の部材112aと第2の部材112bのそれぞれの半径は鋼管Pの外径の半径より1%大きい57.6mmとして設計した。発振器131は、0.01Hzの三角波を出力し、電流増幅器132では、三角波の出力に対応し、最大値の10Aと最小値の−10Aを出力する。この最大値10Aは、励磁コイル111を励磁して、ヨーク112から鋼管Pに作用する磁場として4000A/mに該当する。 DC magnetism measurement is performed by the apparatus shown in FIGS. 4A and 4B. The yoke 112 uses soft iron equivalent to SS400, and the radius of each of the first member 112a and the second member 112b of the yoke 112 is a steel pipe. It was designed as 57.6 mm which is 1% larger than the radius of the outer diameter of P. The oscillator 131 outputs a triangular wave of 0.01 Hz, and the current amplifier 132 outputs a maximum value of 10 A and a minimum value of −10 A corresponding to the output of the triangular wave. The maximum value 10A corresponds to 4000 A / m as a magnetic field that acts on the steel pipe P from the yoke 112 by exciting the exciting coil 111.

図5は、浸炭層のない炭素量の総量が最も少ないサンプルNo.1(実線で示す)と浸炭層のある炭素量の総量が最も多いサンプルNo.7(破線で示す)の磁気特性のループを示したものである。この磁気特性のループから、炭素量の総量が多いほど最大磁束密度Bmが低いことが解る。本実施例の場合には、ヨーク112から鋼管Pに作用する磁場が4000A/mと大きいので、最大磁束密度Bmを飽和磁束密度Bsと見なすことができる。厳密には、直接、飽和磁束密度Bsで評価するのが良い。新材のサンプルNo.1の磁気特性である飽和磁束密度Bs、保磁力Hc、残留磁束密度Brで規格化した各サンプルの磁気特性の相対値を表1に示す。 FIG. 5 shows the sample No. with the smallest total amount of carbon with no carburized layer. No. 1 (indicated by the solid line) and sample No. with the largest total carbon content with carburized layers. 7 shows a magnetic characteristic loop 7 (indicated by a broken line). From the loop of this magnetic characteristic, it turns out that the maximum magnetic flux density Bm is so low that the total amount of carbon is large. In the case of the present embodiment, since the magnetic field acting on the steel pipe P from the yoke 112 is as large as 4000 A / m, the maximum magnetic flux density Bm can be regarded as the saturation magnetic flux density Bs. Strictly speaking, it is preferable to directly evaluate the saturation magnetic flux density Bs. New material sample No. Table 1 shows the relative values of the magnetic characteristics of each sample normalized by the saturation magnetic flux density Bs, the coercive force Hc, and the residual magnetic flux density Br, which are the magnetic characteristics of No. 1.

図6には、炭素量の総量と飽和磁束密度Bsの相対値の関係、図7には、炭素量の総量と保磁力Hcの相対値の関係、図8には、炭素量の総量と残留磁束密度Brの相対値の関係をそれぞれ示す。図6から明らかなように、炭素量の総量と飽和磁束密度Bsの相対値は一次関数で表され、極めて高い相関関係(相関係数R=0.97)を示し、炭素量の総量を直流磁気特性の内の飽和磁気特性から求めることができる。また図7から、炭素量の総量と保磁力Hcの相対値の関係を一次関数で評価すると、相関係数R=0.64の相関が得られ、ある程度の相関があることが解った。一方、図8から炭素量の総量と残留磁束密度Brの相対値の関係を一次関数で評価すると、ほとんど相関がないことが明らかとなった。 6 shows the relationship between the total amount of carbon and the relative value of the saturation magnetic flux density Bs, FIG. 7 shows the relationship between the total amount of carbon and the relative value of the coercive force Hc, and FIG. 8 shows the total amount of carbon and the residual amount. The relationship of the relative value of magnetic flux density Br is shown, respectively. As is clear from FIG. 6, the relative value of the total amount of carbon and the saturation magnetic flux density Bs is expressed by a linear function and shows an extremely high correlation (correlation coefficient R = 0.97). It can be determined from the saturation magnetic characteristics of the magnetic characteristics. Further, from FIG. 7, it was found that when the relationship between the total amount of carbon and the relative value of the coercive force Hc was evaluated by a linear function, a correlation coefficient R = 0.64 was obtained, and there was a certain degree of correlation. On the other hand, when the relationship between the total amount of carbon and the relative value of the residual magnetic flux density Br is evaluated by a linear function, it is clear from FIG. 8 that there is almost no correlation.

以上のような構成で、9Cr−1Moフェライト系鋼管の直流磁気特性である飽和磁束密度Bsと炭素量の総量との高い相関関係を示す一次関数のデータが得られたので、このデータに基づき、測定された鋼管の管肉部の直流磁気特性、例えば飽和磁束密度Bsから、その鋼管の肉厚方向の浸炭層を含む炭素量の総量を逆に算出することができる。 With the above configuration, data of a linear function showing a high correlation between the saturation magnetic flux density Bs, which is the DC magnetic characteristic of the 9Cr-1Mo ferritic steel pipe, and the total amount of carbon was obtained. Based on this data, The total amount of carbon including the carburized layer in the thickness direction of the steel pipe can be calculated in reverse from the measured DC magnetic characteristics of the pipe wall portion of the steel pipe, for example, the saturation magnetic flux density Bs.

図9は、本発明のCrを含有するフェライト系鋼管の内表面部の浸炭量の濃度分布評価装置100の構成例である。鋼管内表面部の浸炭量の濃度分布評価装置100は、前述の鋼管Pの炭素量の総量を直流磁気特性から算出する炭素総量測定機1と、鋼管Pの外表面部の炭素濃度を測定する外表面炭素濃度測定機15と、外表面炭素濃度測定機15に測定された炭素濃度に基づき所定の式に従って外表面部の浸炭量を算出し、炭素量の総量から外表面部の浸炭量と母材炭素量を差し引き、鋼管Pの内表面部の浸炭量を求め、所定の式に従って内表面部の浸炭量の濃度分布を評価する濃度分布評価機20とを備えており、炭素総量測定機1は、鋼管Pの管肉部を軸方向に磁化するための励磁コイル111とヨーク112とを備えた電磁石11と、ヨーク112間に配置され、鋼管Pの円周方向にコイルを巻回して鋼管Pの管肉部の磁束変化を検出する検出コイル12と、電磁石11の磁場強度と検出コイル12の出力値の積分に基づく磁束密度から鋼管Pの管肉部の直流磁気特性を測定する磁気測定部13と、Crを含有するフェライト系鋼管Pの直流磁気特性と炭素量の総量との関係の所定のデータに基づき、測定された鋼管Pの管肉部の直流磁気特性から、浸炭層を含む炭素量の総量を算出する演算部14とを備えたことを特徴としている。 FIG. 9 is a configuration example of the concentration distribution evaluation apparatus 100 for the carburizing amount of the inner surface portion of the ferritic steel pipe containing Cr of the present invention. The carburizing amount concentration distribution evaluation device 100 for the inner surface portion of the steel pipe measures the carbon concentration measuring device 1 for calculating the total carbon amount of the steel pipe P from the DC magnetic characteristics, and the carbon concentration of the outer surface portion of the steel pipe P. Based on the carbon concentration measured by the outer surface carbon concentration measuring device 15 and the carbon concentration measured by the outer surface carbon concentration measuring device 15, the carburizing amount of the outer surface portion is calculated according to a predetermined formula, and the carburizing amount of the outer surface portion is calculated from the total amount of carbon. A total carbon amount measuring machine is provided with a concentration distribution evaluator 20 that subtracts the base material carbon amount, determines the carburizing amount of the inner surface portion of the steel pipe P, and evaluates the concentration distribution of the carburizing amount of the inner surface portion according to a predetermined formula. 1 is disposed between the yoke 112 and the electromagnet 11 including the exciting coil 111 and the yoke 112 for magnetizing the tube portion of the steel pipe P in the axial direction, and the coil is wound in the circumferential direction of the steel pipe P. Detecting carp for detecting magnetic flux change in the pipe wall of steel pipe P 12, a magnetic measurement unit 13 that measures the DC magnetic characteristics of the tube wall portion of the steel pipe P from the magnetic flux density based on the integration of the magnetic field strength of the electromagnet 11 and the output value of the detection coil 12, and the ferritic steel pipe P containing Cr. A calculation unit 14 for calculating the total amount of carbon including the carburized layer from the measured DC magnetic characteristics of the tube portion of the steel pipe P based on predetermined data on the relationship between the DC magnetic characteristics and the total amount of carbon. It is characterized by that.

外表面部の炭素濃度を測定する外表面部浸炭量測定機15として本実施例では、可搬型の発光分析装置を使用したが、外表面部のC濃度が測定できるものであれば発光分析装置に限られない。濃度分布評価機20には、炭素総量測定機1の演算部14から算出された鋼管Pの炭素量の総量と外表面炭素濃度測定機15から測定された鋼管Pの外表面部のC濃度が入力される。濃度分布評価機20は、入力された外表面部の炭素濃度に基づき、鋼種に対応したC濃度の外表面からの傾きKO、内表面からの傾きKiのデータと母材C濃度により、外表面部の浸炭量を算出して、炭素量の総量から外表面部の浸炭量と母材炭素量を差し引き、鋼管Pの内表面部の浸炭量を求める。更に前記の内表面からの傾きKiのデータに従って前述の(F)式、(G)式で求められるように内表面部の浸炭量の濃度分布を評価することができる。 In the present embodiment, a portable emission analyzer is used as the outer surface carburizing amount measuring device 15 for measuring the carbon concentration of the outer surface portion. However, if the C concentration of the outer surface portion can be measured, the emission analyzer is used. Not limited to. The concentration distribution evaluation machine 20 includes the total amount of carbon of the steel pipe P calculated from the calculation unit 14 of the total carbon amount measuring machine 1 and the C concentration of the outer surface portion of the steel pipe P measured from the outer surface carbon concentration measuring machine 15. Entered. Based on the carbon concentration of the outer surface portion that is input, the concentration distribution evaluator 20 uses the data of the inclination K O from the outer surface of the C concentration corresponding to the steel type, the inclination K i from the inner surface, and the base material C concentration. The carburizing amount of the outer surface portion is calculated, and the carburizing amount of the outer surface portion and the base material carbon amount are subtracted from the total amount of carbon to obtain the carburizing amount of the inner surface portion of the steel pipe P. Furthermore, according to the data of the inclination K i from the inner surface, the concentration distribution of the carburizing amount on the inner surface portion can be evaluated so as to be obtained by the aforementioned equations (F) and (G).

浸炭雰囲気に暴露した9Cr−1Mo実機鋼管を用いて、本発明の検討を行った。鋼管のサイズは外径114mm、内径102mm、肉厚6mmのものである。図4(a)、(b)に示す炭素総量測定機で、直流磁気特性の飽和磁束密度Bsから算出された炭素量の総量は、2.7(wt%・mm)であった。また可搬型の発光分析装置で測定された鋼管の外表面部のC濃度は、1.1(wt%)であり、本装置の濃度分布評価機は、KO=−0.4(wt%/mm)、Ki=0.3(wt%/mm)、母材のC濃度0.12(wt%)から、外表面部の浸炭量を1.2(wt%・mm)と算出し、また母材C量が0.72(wt%・mm)から、内表面部の浸炭量は、0.78(wt%・mm)と算出した。更にKi=0.3(wt%/mm)より、内表面浸炭深さdi=2.28mmと評価した。 The present invention was examined using a 9Cr-1Mo real steel pipe exposed to a carburizing atmosphere. The steel pipe has an outer diameter of 114 mm, an inner diameter of 102 mm, and a wall thickness of 6 mm. 4A and 4B, the total amount of carbon calculated from the saturation magnetic flux density Bs of the DC magnetic characteristics was 2.7 (wt% · mm). The C concentration of the outer surface of the measured steel pipe emission spectrometer portable is 1.1 (wt%), a concentration distribution evaluator of the apparatus, K O = -0.4 (wt% / Mm), K i = 0.3 (wt% / mm), and the C concentration of the base material 0.12 (wt%), the carburizing amount of the outer surface portion is calculated as 1.2 (wt% · mm). Moreover, from the base material C amount of 0.72 (wt% · mm), the carburizing amount of the inner surface portion was calculated as 0.78 (wt% · mm). Furthermore, from K i = 0.3 (wt% / mm), the inner surface carburization depth d i = 2.28 mm was evaluated.

一方、鋼管の内表面部の浸炭量の濃度分布評価装置の評価の妥当性を評価するため、前記の9Cr−1Mo実機鋼管の一部を切り出し、内表面部から0.25mmずつ削り出しては発光分析装置を用いて内表面部からの浸炭量の分布を求めた。その結果、内表面部からの浸炭距離は、2.25mmと実測され、濃度分布評価装置から得られた内表面部の浸炭量の評価が、妥当であることが確認された。 On the other hand, in order to evaluate the validity of the evaluation of the concentration distribution evaluation apparatus for the carburizing amount distribution on the inner surface of the steel pipe, a part of the 9Cr-1Mo actual steel pipe is cut out and cut out by 0.25 mm from the inner surface. The distribution of carburizing amount from the inner surface portion was obtained using an emission spectrometer. As a result, the carburizing distance from the inner surface portion was measured as 2.25 mm, and it was confirmed that the evaluation of the carburizing amount of the inner surface portion obtained from the concentration distribution evaluation apparatus was appropriate.

以上説明したように、本発明に係る炭素総量測定機は、Crを含有するフェライト系鋼管の浸炭層を含む炭素量の総量を直流磁気特性から算出するので、フェライト系鋼管の測定に用いられてきた従来の交流磁化法に比べ、鋼管外表面の酸化スケール等の影響を受けにくく、信号強度も大きいため、浸炭層を含む炭素量の総量をより高い精度で算出することができる。また上記の炭素総量測定機と、外表面炭素濃度測定機と、炭素総量測定機と外表面炭素濃度測定機から出力される信号から所定の演算を行って内表面部の浸炭量の濃度分布を評価する濃度分布評価機とを備えた鋼管内表面部の浸炭量の濃度分布評価装置によれば、直接測定が困難であった鋼管の内表面部の浸炭深さを正確に評価することが可能となった。 As described above, the carbon total amount measuring apparatus according to the present invention calculates the total amount of carbon including the carburized layer of the ferritic steel pipe containing Cr from the DC magnetic characteristics, and thus has been used for the measurement of ferritic steel pipe. Compared with the conventional alternating current magnetization method, the total amount of carbon including the carburized layer can be calculated with higher accuracy because it is less affected by the oxide scale on the outer surface of the steel pipe and the signal strength is large. In addition, a predetermined calculation is performed from the signals output from the above-mentioned total carbon measuring device, outer surface carbon concentration measuring device, carbon total measuring device and outer surface carbon concentration measuring device, and the concentration distribution of the carburizing amount on the inner surface portion is calculated. According to the concentration distribution evaluation device for the carburizing amount on the inner surface of the steel pipe equipped with a concentration distribution evaluation machine to evaluate, it is possible to accurately evaluate the carburizing depth of the inner surface of the steel pipe, which was difficult to measure directly. It became.

1 炭素総量測定機
11 電磁石
12 検出コイル
13 磁気測定部
14 演算部
15 外表面部浸炭量測定機
20 濃度分布評価機
100 濃度分布評価装置
111 励磁コイル
112 ヨーク
112a 第1の部材
112b 第2の部材
131 発振器
132 電力増幅器
133 増幅・積分器
134 磁気特性評価器
P 鋼管
DESCRIPTION OF SYMBOLS 1 Carbon total amount measuring machine 11 Electromagnet 12 Detection coil 13 Magnetic measuring part 14 Calculation part 15 Outer surface carburizing amount measuring machine 20 Concentration distribution evaluation machine 100 Concentration distribution evaluation apparatus 111 Excitation coil 112 Yoke 112a 1st member 112b 2nd member 131 Oscillator 132 Power Amplifier 133 Amplifier / Integrator 134 Magnetic Characteristic Evaluator P Steel Pipe

Claims (7)

Crを含有するフェライト系鋼管の浸炭層を含む炭素量の総量を直流磁気特性から算出する炭素総量測定機であって、
鋼管の管肉部を軸方向に磁化するための励磁コイルとヨークとを備えた電磁石と、
前記ヨーク間に配置され、前記鋼管の円周方向にコイルを巻回して鋼管の管肉部の磁束変化を検出する検出コイルと、
前記電磁石の磁場強度と前記検出コイルの出力値の積分に基づく磁束密度から前記鋼管の管肉部の直流磁気特性を測定する磁気測定部と、
Crを含有するフェライト系鋼管の直流磁気特性と炭素量の総量との関係の所定のデータに基づき、測定された鋼管の管肉部の直流磁気特性から、浸炭層を含む炭素量の総量を算出する演算部とを備えたことを特徴とする炭素総量測定機。
A total carbon measuring machine that calculates the total amount of carbon including carburized layers of ferritic steel pipes containing Cr from direct current magnetic characteristics,
An electromagnet including an exciting coil and a yoke for magnetizing a tubular portion of a steel pipe in an axial direction;
A detection coil that is disposed between the yokes and that detects a magnetic flux change in a tubular portion of the steel pipe by winding the coil in a circumferential direction of the steel pipe;
A magnetic measurement unit for measuring a DC magnetic characteristic of a tubular portion of the steel pipe from a magnetic flux density based on an integration of a magnetic field strength of the electromagnet and an output value of the detection coil;
Calculate the total amount of carbon, including the carburized layer, from the measured DC magnetic properties of the pipe wall of the steel pipe based on the prescribed data on the relationship between the DC magnetic properties of the ferritic steel pipe containing Cr and the total amount of carbon. A total carbon measuring machine, comprising:
前記直流磁気特性が、飽和磁束密度又は保磁力であることを特徴とする請求項1に記載の炭素総量測定機。 The total carbon amount measuring machine according to claim 1, wherein the DC magnetic characteristic is a saturation magnetic flux density or a coercive force. 前記鋼管と接するヨーク端面の断面形状が、前記鋼管に円周方向から接するように鋼管の外径の半径とほぼ同等の半径の半円形状になっていることを特徴とする請求項1又は2に記載の炭素総量測定機。 The cross-sectional shape of the yoke end surface in contact with the steel pipe is a semicircular shape having a radius substantially equal to the radius of the outer diameter of the steel pipe so as to contact the steel pipe from the circumferential direction. The total carbon measuring machine described in 1. 前記ヨークは、端面の断面形状が前記鋼管の外径の半径とほぼ同等の半径の半円形状からなるそれぞれ第1と第2の部材とからなり、前記第1と第2の部材との組み合わせで前記鋼管を全円周方向から取り囲んで接するようなヨークであることを特徴とする請求項1又は2に記載の炭素総量測定機。 The yoke has first and second members each having a semicircular shape with a cross-sectional shape of an end surface substantially equal to the radius of the outer diameter of the steel pipe, and the combination of the first and second members. The carbon total amount measuring machine according to claim 1 or 2, wherein the yoke is a yoke that surrounds and contacts the steel pipe from all circumferential directions. Crを含有するフェライト系鋼管が、1.9wt%以上、10wt%以下のCrを含むことを特徴とする請求項1から4のいずれかに記載の炭素総量測定機。 5. The carbon total amount measuring machine according to claim 1, wherein the ferritic steel pipe containing Cr contains 1.9 wt% or more and 10 wt% or less of Cr. Crを含有するフェライト系鋼管の炭素量の総量を直流磁気特性から算出する炭素総量測定機と、
前記鋼管の外表面部の炭素濃度を測定する外表面炭素濃度測定機と、
前記外表面炭素濃度測定機に測定された炭素濃度に基づき所定の式に従って外表面部の浸炭量を算出し、前記炭素量の総量から外表面部の浸炭量と母材炭素量を差し引き、鋼管の内表面部の浸炭量を求め、所定の式に従って内表面部の浸炭量の濃度分布を評価する濃度分布評価機とを備えた鋼管内表面部の浸炭量の濃度分布評価装置であって、
前記炭素総量測定機は、
鋼管の管肉部を軸方向に磁化するための励磁コイルとヨークとを備えた電磁石と、
前記ヨーク間に配置され、前記鋼管の円周方向にコイルを巻回して鋼管の管肉部の磁束変化を検出する検出コイルと、
前記電磁石の磁場強度と前記検出コイルの出力値の積分に基づく磁束密度から前記鋼管の管肉部の直流磁気特性を測定する磁気測定部と、
Crを含有するフェライト系鋼管の直流磁気特性と炭素量の総量との関係の所定のデータに基づき、測定された鋼管の管肉部の直流磁気特性から、浸炭層を含む炭素量の総量を算出する演算部とを備えたことを特徴とする、
Crを含有するフェライト系鋼管の内表面部の浸炭量の濃度分布評価装置。
A carbon total amount measuring machine for calculating the total amount of carbon of ferritic steel pipes containing Cr from DC magnetic characteristics;
An outer surface carbon concentration measuring machine for measuring the carbon concentration of the outer surface portion of the steel pipe;
Calculate the carburizing amount of the outer surface portion according to a predetermined formula based on the carbon concentration measured by the outer surface carbon concentration measuring device, and subtract the carburizing amount of the outer surface portion and the base material carbon amount from the total amount of carbon, A concentration distribution evaluation device for the carburizing amount of the inner surface portion of a steel pipe, comprising a concentration distribution evaluator that calculates a carburizing amount of the inner surface portion of the steel pipe and evaluates a concentration distribution of the carburizing amount of the inner surface portion according to a predetermined formula,
The total carbon measuring machine is
An electromagnet including an exciting coil and a yoke for magnetizing a tubular portion of a steel pipe in an axial direction;
A detection coil that is disposed between the yokes and that detects a magnetic flux change in a tubular portion of the steel pipe by winding the coil in a circumferential direction of the steel pipe;
A magnetic measurement unit for measuring a DC magnetic characteristic of a tubular portion of the steel pipe from a magnetic flux density based on an integration of a magnetic field strength of the electromagnet and an output value of the detection coil;
Calculate the total amount of carbon, including the carburized layer, from the measured DC magnetic properties of the pipe wall of the steel pipe based on the prescribed data on the relationship between the DC magnetic properties of the ferritic steel pipe containing Cr and the total amount of carbon. And an arithmetic unit for performing
An apparatus for evaluating the concentration distribution of the amount of carburization of the inner surface of a ferritic steel pipe containing Cr.
前記直流磁気特性が、飽和磁束密度又は保磁力であることを特徴とする請求項6に記載のCrを含有するフェライト系鋼管の内表面部の浸炭量の濃度分布評価装置。 7. The concentration distribution evaluation apparatus for carburizing amount of an inner surface portion of a ferritic steel pipe containing Cr according to claim 6, wherein the DC magnetic characteristic is a saturation magnetic flux density or a coercive force.
JP2010176130A 2010-08-05 2010-08-05 Total carbon measuring machine and carburizing depth evaluation device for ferritic steel pipes containing Cr Active JP5643023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010176130A JP5643023B2 (en) 2010-08-05 2010-08-05 Total carbon measuring machine and carburizing depth evaluation device for ferritic steel pipes containing Cr

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010176130A JP5643023B2 (en) 2010-08-05 2010-08-05 Total carbon measuring machine and carburizing depth evaluation device for ferritic steel pipes containing Cr

Publications (2)

Publication Number Publication Date
JP2012037315A true JP2012037315A (en) 2012-02-23
JP5643023B2 JP5643023B2 (en) 2014-12-17

Family

ID=45849471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010176130A Active JP5643023B2 (en) 2010-08-05 2010-08-05 Total carbon measuring machine and carburizing depth evaluation device for ferritic steel pipes containing Cr

Country Status (1)

Country Link
JP (1) JP5643023B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101482422B1 (en) * 2013-07-22 2015-01-13 주식회사 포스코 Method for predicting delamination of drawn wire rod and drawn wire rod having excellent strength and torsion property and method for manufacturing the same
CN116773645A (en) * 2023-08-24 2023-09-19 中国特种设备检测研究院 Alloy pipeline carburization damage degree determination method and system and electronic equipment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4750492B1 (en) * 1969-11-07 1972-12-19
JPS59153166A (en) * 1983-02-22 1984-09-01 Daido Steel Co Ltd Flaw detection probe
JPS62294987A (en) * 1986-06-13 1987-12-22 Sumitomo Metal Ind Ltd Method and apparatus for measuring magnetic property
JP2003057209A (en) * 2001-08-08 2003-02-26 Honshu-Shikoku Bridge Authority Method and apparatus for detecting corrosive section in a linear body
JP2003215104A (en) * 1993-09-09 2003-07-30 Japan Atom Energy Res Inst Method and device for checking deterioration of nuclear reactor pressure vessel
JP2006010646A (en) * 2004-06-29 2006-01-12 Tokyo Electric Power Co Inc:The Method and apparatus for detecting degradation of inner surface of steel pipe
JP2009122074A (en) * 2007-11-19 2009-06-04 Hitachi Ltd Flaw detector of wire rope
JP2009139220A (en) * 2007-12-06 2009-06-25 Sumitomo Kinzoku Technol Kk Method and apparatus for measuring carburization depth of steel material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4750492B1 (en) * 1969-11-07 1972-12-19
JPS59153166A (en) * 1983-02-22 1984-09-01 Daido Steel Co Ltd Flaw detection probe
JPS62294987A (en) * 1986-06-13 1987-12-22 Sumitomo Metal Ind Ltd Method and apparatus for measuring magnetic property
JP2003215104A (en) * 1993-09-09 2003-07-30 Japan Atom Energy Res Inst Method and device for checking deterioration of nuclear reactor pressure vessel
JP2003057209A (en) * 2001-08-08 2003-02-26 Honshu-Shikoku Bridge Authority Method and apparatus for detecting corrosive section in a linear body
JP2006010646A (en) * 2004-06-29 2006-01-12 Tokyo Electric Power Co Inc:The Method and apparatus for detecting degradation of inner surface of steel pipe
JP2009122074A (en) * 2007-11-19 2009-06-04 Hitachi Ltd Flaw detector of wire rope
JP2009139220A (en) * 2007-12-06 2009-06-25 Sumitomo Kinzoku Technol Kk Method and apparatus for measuring carburization depth of steel material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014042699; A Mitra, et al.: 'Evaluation of structural integrity of process heater tubes by magnetic techniques' Metals Materials and Processes Vol.7, No.3, 199510, p.185-190 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101482422B1 (en) * 2013-07-22 2015-01-13 주식회사 포스코 Method for predicting delamination of drawn wire rod and drawn wire rod having excellent strength and torsion property and method for manufacturing the same
CN116773645A (en) * 2023-08-24 2023-09-19 中国特种设备检测研究院 Alloy pipeline carburization damage degree determination method and system and electronic equipment
CN116773645B (en) * 2023-08-24 2023-11-10 中国特种设备检测研究院 Alloy pipeline carburization damage degree determination method and system and electronic equipment

Also Published As

Publication number Publication date
JP5643023B2 (en) 2014-12-17

Similar Documents

Publication Publication Date Title
Mierczak et al. A new method for evaluation of mechanical stress using the reciprocal amplitude of magnetic Barkhausen noise
KR101601204B1 (en) Apparatus and method for thinning pulse detection using eddy current probes
CN112903162B (en) Method for evaluating residual stress distribution characteristics of natural gas pipeline circumferential weld by using coercive force
CN107850570B (en) Defect measuring method, defect measuring device, and inspection probe
JP2006189347A (en) Flaw detection probe and flaw detector
JP2004279055A (en) Method and apparatus for measuring carburization depth on inner surface of steel pipe
CN111344564A (en) Method and system for non-destructive material inspection
JP5643023B2 (en) Total carbon measuring machine and carburizing depth evaluation device for ferritic steel pipes containing Cr
JP2013170910A (en) Carburization depth measuring method and device
Matsumoto et al. Investigation of measurement conditions of eddy current magnetic signature method for evaluating plastic deformation in carbon steels
JP5149604B2 (en) Method and apparatus for measuring carburization depth of steel material
JP2000266727A (en) Carburized depth measuring method
Augustyniak et al. A new eddy current method for nondestructive testing of creep damage in austenitic boiler tubing
RU2586261C2 (en) Device for magnetic flaw detector and method of reducing error in determining size of defects of pipeline magnetic flaw detectors
Yoshioka et al. Electromagnetic inspection method of carburization depth inside and outside of heating furnace steel tube
JP2004279054A (en) Method and apparatus for measuring carburization depth on inner surface of steel pipe
Roy et al. An electromagnetic sensing device for microstructural phase determination of steels through non-destructive evaluation
JP2010164483A (en) Nondestructive inspection apparatus and nondestructive inspection method
CN112378329B (en) Eddy current detection method for thickness of corrosion layer on inner wall of austenite pipe
JPH01119756A (en) Inspecting apparatus for deterioration of metal material
Liu et al. The effect of DC magnetic field on signal characteristics of magnetic Barkhausen noise
JP2019060723A (en) Eddy current flaw detector and eddy current flaw detection method
He et al. Simultaneous evaluation of residual stress and plastic deformation in ferromagnetic steel by using an integrated NDE method
WO2015194428A1 (en) Non-destructive inspection device and non-destructive inspection method
JP6782931B2 (en) Eddy current flaw detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141030

R150 Certificate of patent or registration of utility model

Ref document number: 5643023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531