JPS62294987A - Method and apparatus for measuring magnetic property - Google Patents

Method and apparatus for measuring magnetic property

Info

Publication number
JPS62294987A
JPS62294987A JP13876686A JP13876686A JPS62294987A JP S62294987 A JPS62294987 A JP S62294987A JP 13876686 A JP13876686 A JP 13876686A JP 13876686 A JP13876686 A JP 13876686A JP S62294987 A JPS62294987 A JP S62294987A
Authority
JP
Japan
Prior art keywords
magnetic
electromagnet
metal material
steel plate
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13876686A
Other languages
Japanese (ja)
Inventor
Michiaki Ishihara
道章 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP13876686A priority Critical patent/JPS62294987A/en
Publication of JPS62294987A publication Critical patent/JPS62294987A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable online measurement, by a method wherein a DC current energizing an electromagnet is adjusted based on a transfer rate to DC magnetize metal material at a fixed magnetic flux density so that the detecting position of a ceramic detector follows a specified part thereof. CONSTITUTION:Electromagnets 103 and 104 are provided below a steel plate separated from each other at a proper distance in a transfer direction and currents is fed from a DC power source 105 to reverse the direction of magnetic fields which the electromagnets 103 and 104 apply to the steel plate respectively. The DC power source 105 can control the magnetizing force constantly by adjusting the values of the currents outputted from the electromagnets 103 and 104 based on a speed signal from a speed detector 4. In this case, the magnetic fields 103a and 104a are opposite in the direction respectively between the position (E) with the electromagnet 103 and the position (F) with the electromagnet 104 and the intensity of the magnetic fields also opposite in the polarity. Thus, hysteresis loop can be measured for all quadrants on a coordinate thereby enabling online measurement of various magnetic properties such as magnetic permeability, differential magnetic permeability at a high accuracy. The measurement of a cold processing level or the like is also possible.

Description

【発明の詳細な説明】 3、 発明の詳細な説明 〔産業上の利用分野〕 本発明は金属材の磁気特性を測定する方法及び装置に関
し、更に詳述すると上記金属材の磁気特性を特に製造ラ
インにおいて連続的に精度よく測定する方法及び装置に
関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method and apparatus for measuring the magnetic properties of a metal material, and more specifically, to a method and an apparatus for measuring the magnetic properties of the above-mentioned metal material. The present invention relates to a method and apparatus for continuously and accurately measuring in a line.

〔従来技術〕[Prior art]

鋼材の機械的性質,結晶粒度等の測定には鋼材の磁気特
性を利用した測定方法がある。鋼材の結晶粒度を測定す
る場合について説明すると、その測定には例えば特公昭
52−−40528号の方法がある。
There are measurement methods that utilize the magnetic properties of steel to measure the mechanical properties, grain size, etc. of steel. To explain the case of measuring the grain size of steel materials, for example, there is a method disclosed in Japanese Patent Publication No. 52-40528.

この方法は、測定対象材である鋼材を電磁石にて飽和磁
化する過程での鋼材の磁束密度変化を検出コイルにて検
出してその出力信号、つまり磁化曲線たる信号を増幅し
、これをパルス強度に応して複数のサンプリング回路に
て分級し、各級の磁化レベルの高さをパルス波高分析器
にて検出して磁化レヘル分布を求め(第8図参照)、そ
の形状又は特徴的な形状部分C,Dにおけるパルスの総
数に基づき結晶粒度を求める方法である。
This method uses a detection coil to detect changes in the magnetic flux density of the steel material during the process of saturation magnetizing the steel material, which is the material to be measured, using an electromagnet.The output signal, that is, the signal representing the magnetization curve, is amplified, and the pulse intensity is The magnetization levels of each class are classified using multiple sampling circuits, and the height of the magnetization level of each class is detected using a pulse wave height analyzer to determine the magnetization level distribution (see Figure 8), and its shape or characteristic shape is determined. This method calculates the grain size based on the total number of pulses in portions C and D.

そのパルスは磁気雑音であり、バルクハウゼン雑音と称
されている。パルスの総数は結晶粒度と相関があること
が従来より知られており、この相関は鋼材を低周波、例
えば0.01〜0.1 tlz程度の周波数の電流を用
いて飽和磁化したときに磁化単位周期当たりに鋼材より
生じたパルス総数を測定することにより求められる。
The pulse is magnetic noise and is called Barkhausen noise. It has long been known that the total number of pulses has a correlation with the grain size, and this correlation shows that when a steel material is saturated magnetized using a current with a low frequency, for example, a frequency of about 0.01 to 0.1 tlz, the magnetization It is determined by measuring the total number of pulses generated by the steel material per unit period.

また、鋼材の機械的性質、例えば硬度、引張強・さ等は
炭素含有量により左右されることが公知である。第9図
は横軸に炭素含有量をとり、縦軸に残留磁束密度Br及
び保磁力+1cをとって、熱処理条件が異なる種々の場
合の両者の関係を示したグラフであり、残留磁束密度お
よび保磁力と炭素含有量との間には略−義的な関係があ
る。従ってこの図の例では熱処理条件を同一とすれば鋼
材を直流磁化してその残留磁束密度及び/又は0¥磁力
を測・定することにより炭素含有量、つまり機械的性質
を推定できる。
It is also known that the mechanical properties of steel, such as hardness, tensile strength, and width, are influenced by carbon content. Figure 9 is a graph showing the relationship between carbon content on the horizontal axis and residual magnetic flux density Br and coercive force +1c on the vertical axis under various heat treatment conditions. There is an approximate relationship between coercive force and carbon content. Therefore, in the example shown in this figure, if the heat treatment conditions are the same, the carbon content, that is, the mechanical properties, can be estimated by DC magnetizing the steel material and measuring its residual magnetic flux density and/or zero magnetic force.

更に、鋼材の機械的性質は冷間加工度によっても左右さ
れることが公知である。第1θ図は横軸に冷間加工率(
%)をとり、縦軸に比透磁率−1をとって、ステンレス
鋼材の種類が異なる種々の場合の両者の関係を示したグ
ラフであり、冷間加工度と透磁率との間には一義的な関
係がある。従って鋼材を直流磁化し、その透磁率を測定
することにより冷間加工度、つまり機械的性質を推定で
きる。
Furthermore, it is known that the mechanical properties of steel materials are also influenced by the degree of cold working. In Figure 1θ, the horizontal axis shows the cold working rate (
%) and the relative magnetic permeability -1 on the vertical axis, this is a graph showing the relationship between the two in various cases of different types of stainless steel materials. There is a relationship. Therefore, by magnetizing the steel material with direct current and measuring its magnetic permeability, the degree of cold work, that is, the mechanical properties can be estimated.

このように、鋼材の機械的性質、結晶粒度は磁気特性、
つまり上述のバルクハウゼン雑音、残留磁束密度、保磁
力、透磁率等を利用することにより測定可能である。
In this way, the mechanical properties of steel, the grain size, the magnetic properties,
That is, it can be measured by using the above-mentioned Barkhausen noise, residual magnetic flux density, coercive force, magnetic permeability, etc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら鋼材の磁気特性をオンライン測定する場合
は、第11図に示すように鋼材の移送速度(横軸)が変
動すると、鋼材の単位体積当りに受ける磁束密度(縦軸
)が変動し、スボ7)測定を行う場合には測定位置が測
定中に鋼材上を移動して広範囲となるため精度よい測定
を行なえないという問題点があった。
However, when measuring the magnetic properties of steel materials online, as shown in Figure 11, when the transport speed of the steel material (horizontal axis) changes, the magnetic flux density received per unit volume of the steel material (vertical axis) changes, and ) When performing measurements, there was a problem in that accurate measurements could not be performed because the measurement position moved over the steel material during the measurement and spread over a wide range.

本発明は斯かる事情に鑑みてなされたものであり、特に
製造ライン等を移送されている金属材磁気特性を正確に
オンライン測定できる磁気特性測定方法及び装置を提供
することを目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method and apparatus for measuring magnetic properties that can accurately measure on-line the magnetic properties of metal materials being transported through a production line or the like.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は金属材の移送速度に応じて磁場の強さを変化さ
せて金属材に一定磁束密度で直流磁化し、その磁化した
金属材部分に臨ませて移送方向に沿って設けである磁気
検出器にて検出した信号のうち、金兄けの同一部分につ
いての信号を用いて磁気特性を測定する。即ち、本発明
に斯かる磁気特性測定方法は、移送される金属材の移送
速度を検出し、金属材を磁化すべ(設けた電磁石へ通電
するVi流電流を移送速度に基づいて調整して金属材を
一定磁束密度で直流磁化し、直流磁化される金属材部分
に臨ませて設けた磁気検出器の検出位置を金属材の特定
部分に追随させることを特徴とする。
The present invention changes the strength of the magnetic field according to the transport speed of the metal material, magnetizes the metal material with a constant magnetic flux density with direct current, and provides magnetic detection that faces the magnetized metal material part along the transport direction. Among the signals detected by the instrument, the magnetic characteristics are measured using signals from the same part of the metal. That is, the method for measuring magnetic properties according to the present invention detects the transfer speed of the metal material to be transferred, and magnetizes the metal material (by adjusting the Vi current flowing to the provided electromagnet based on the transfer speed). The material is DC-magnetized with a constant magnetic flux density, and the detection position of a magnetic detector provided facing the DC-magnetized part of the metal material is made to follow a specific part of the metal material.

〔実施例〕〔Example〕

以下本発明を図面に基づいて具体的に説明−する。 The present invention will be specifically explained below based on the drawings.

第1図は本発明を残留磁束密度の測定に通用した場合の
実施状態を示す模式図であり、図中1は鋼板を示す。鋼
板1は白抜矢符方向に移送されており、鋼板1の下方に
はその移送速度を検出する速度検出器4及びヨーク形の
電磁石3が設けられている。電磁石3は移送方向に軸心
を一致させて励磁コイル3aがU字形の鉄心2の胴部2
aに巻回されたものであり、電磁石3の鉄心2の両端部
は鋼板l側へ屈曲して磁極2b、 2cとなっている。
FIG. 1 is a schematic diagram showing an implementation state when the present invention is applied to measurement of residual magnetic flux density, and 1 in the figure indicates a steel plate. The steel plate 1 is being transferred in the direction of the outlined arrow, and a speed detector 4 and a yoke-shaped electromagnet 3 are provided below the steel plate 1 to detect the transfer speed. The electromagnet 3 has its axis aligned with the transfer direction, and the excitation coil 3a is attached to the body 2 of the U-shaped iron core 2.
Both ends of the iron core 2 of the electromagnet 3 are bent toward the steel plate 1 to form magnetic poles 2b and 2c.

上記励磁コイル3aは、直流型#5と接続されており、
直流電源5には速度検出器4から検出した移送速度信号
が入力されるようになっている。直流電源5は移送速度
が速いと出力電流を大に、逆に移送速度が遅いと出力電
流を小に調整してこれを励磁コイル3aへ給電し、励磁
コイル3aは鋼板1を直流磁化する。
The excitation coil 3a is connected to DC type #5,
A transfer speed signal detected from the speed detector 4 is input to the DC power source 5. The DC power supply 5 adjusts the output current to be large when the transfer speed is fast, and to reduce the output current when the transfer speed is slow, and supplies this to the excitation coil 3a, which magnetizes the steel plate 1 with DC current.

鋼板1を挾んで電磁石3と反対側には複数の磁気検出器
11.・・・、1n、例えば検出コイルが移送方向に沿
って相互に適長離隔させて設けられている。
A plurality of magnetic detectors 11 are placed on the opposite side of the electromagnet 3 across the steel plate 1. . . , 1n, for example, detection coils are provided at appropriate distances from each other along the transport direction.

検出された信号はフィルタ7へ与えられ、ここで所要周
波数帯域の信号のみが抽出されて演算部40に入力され
る。
The detected signals are applied to the filter 7, where only signals in the required frequency band are extracted and input to the arithmetic unit 40.

演算部40には前記速度検出器4にて検出した移送速度
信号が入力されるようになっており、演算部40はこの
入力信号に基づいて鋼板1の同一箇所の信号を読込むべ
く、各磁気検出器11.・・・、 Inから夫々信号が
入力されるフィルタ21.・・・、21を経た信号の読
込み走査タイミングを決定し、そのタイミングで読込ん
だ信号に基づきヒステリシスループを検知して残留磁束
密度の測定を行う。
The transfer speed signal detected by the speed detector 4 is input to the calculation unit 40, and the calculation unit 40 reads the signals at the same location on the steel plate 1 based on this input signal. Magnetic detector 11. . . , filters 21 to which signals are input from In. . . , 21 is determined, and the residual magnetic flux density is measured by detecting a hysteresis loop based on the signal read at that timing.

このように構成された本発明に斯かる磁気時性測定装置
により残留磁束密度を測定する方法について説明する。
A method for measuring residual magnetic flux density using the magnetic temporal measurement device of the present invention configured as described above will be explained.

鋼板lの移送速度が速度検出器−4にて検出されると、
直流電源5はその検出信号に基づいて第11図に示した
如く、鋼材移送速度の変化に応じて変化する鋼材磁束密
度を一定値にすべく出力電流を調整する。
When the transfer speed of the steel plate l is detected by the speed detector-4,
Based on the detection signal, the DC power supply 5 adjusts the output current so as to keep the steel magnetic flux density, which changes in response to changes in the steel material transfer speed, to a constant value, as shown in FIG. 11.

第2図は例えば磁気検出器が9開設けられ、それらによ
る鋼板上の検出位置を下流側からa、  b。
In Figure 2, for example, nine magnetic detectors are installed, and the detection positions on the steel plate are shown in a and b from the downstream side.

c、d、e、f、g、h、iとし、また電磁石3の磁極
2b、 2cの中間位置と対向する鋼板上の位置をeと
し、更に位置eでの電磁石による最大の磁場の強さを)
Ieffとしたときの各位置での磁場の強さに基づき電
磁石3による等磁場分布を示したグラフであり、直流電
源5による出力電流の調整により1leffは移送速度
に応じて適当なレヘルに制御される。これにより山形分
布の磁場の中を移送される間、鋼板lに及ぶ磁束密度は
徐々に高くなっていき、最大値となったのち徐々に低下
していくが、直流電源を制御することによりその最大値
は、移送速度に拘わらず一定値となる。このため、鋼板
1は一定しヘルで直流磁化される。
Let c, d, e, f, g, h, and i, and let e be the position on the steel plate facing the middle position of magnetic poles 2b and 2c of electromagnet 3, and furthermore, let the maximum magnetic field strength by the electromagnet at position e be of)
This is a graph showing the equal magnetic field distribution by the electromagnet 3 based on the strength of the magnetic field at each position when Ieff is set, and by adjusting the output current by the DC power supply 5, Ieff is controlled to an appropriate level according to the transfer speed. Ru. As a result, the magnetic flux density reaching the steel plate 1 gradually increases while being transported through the magnetic field with the mountain-shaped distribution, and after reaching the maximum value, it gradually decreases, but by controlling the DC power supply, The maximum value is a constant value regardless of the transfer speed. For this reason, the steel plate 1 is magnetized with a constant amount of direct current.

第3図は横軸に磁場の強さ11をとり、線上に磁束密度
Bをとって鋼板1が電磁石3により磁化−消磁される間
の両者の関係を鋼板1上の1点について示したグラフで
ある。図中のa、b、c・・・iは第2図のそれと同一
であり、またa′、b′50へ・・1′は位置a、  
b、  c、・・・iでの各磁場の強さI4を受ける鋼
板1の磁束密度Bの値を示す。
Figure 3 is a graph showing the relationship between the magnetic field strength 11 on the horizontal axis and the magnetic flux density B on the line as the steel plate 1 is magnetized and demagnetized by the electromagnet 3 for one point on the steel plate 1. It is. a, b, c...i in the figure are the same as those in FIG. 2, and a', b' to 50...1' is the position a,
The values of the magnetic flux density B of the steel plate 1 subjected to each magnetic field strength I4 at b, c, . . . i are shown.

この図より理解される如HRFj、I上の1測定点は電
磁石3からの磁界が及ぶ範囲を移送される間の+4とB
との関係が第1象現内のヒステリシスループA上の点と
なる。
As can be understood from this figure, one measurement point on HRFj,I is +4 and B while being transferred through the range covered by the magnetic field from electromagnet 3.
The relationship between the two is the point on the hysteresis loop A in the first quadrant.

一方、演算部40は速度検出器4からの移すJ速度信号
に基づいて鋼板1の1測定点が各位置a、  b。
On the other hand, the calculation unit 40 determines whether one measurement point of the steel plate 1 is at each position a or b based on the J speed signal transferred from the speed detector 4.

C・・・iを通過するタイミングを求め、該当する磁気
検出23 t l、・・・、 Inからの信号を処理す
るフィルタ21.・・・、 2nを経た信号を、求めた
タイミングで読込む。このため、鋼板lの同一筒所の磁
気変化を経時的に検出し得る。
Filters 21 . ..., reads the signal that has passed through 2n at the determined timing. Therefore, it is possible to detect magnetic changes in the same cylindrical location of the steel plate 1 over time.

演算部40には位置a、b、c・・・lでの電磁石3か
らの磁場の強さF(及び硬度、引張強さと関連性のある
炭素含有皇と残留磁束密度との関係式が予め設定されて
おり、演算部40は磁束密度イぼ号を読込むと磁場の強
さHと磁束密度Bとの関係より鋼板1の1 iJ’J定
点についてのヒステリシスループAを算出して励磁後に
磁場の強さI(がゼロとなるときの残留磁束密度Br 
(第3図参照)をIす定し、その残留磁束密度と上記関
係式とりこ基づき硬度、引張強さ等を測定し、これを図
示しない表示器に表示させる。
The calculation unit 40 contains in advance the strength F of the magnetic field from the electromagnet 3 at positions a, b, c, . When the calculation unit 40 reads the magnetic flux density number, it calculates the hysteresis loop A for the 1 iJ'J fixed point of the steel plate 1 from the relationship between the magnetic field strength H and the magnetic flux density B, and calculates the magnetic field after excitation. The residual magnetic flux density Br when the strength I (becomes zero)
(see FIG. 3), hardness, tensile strength, etc. are measured based on the residual magnetic flux density and the above relational expression, and these are displayed on a display (not shown).

なお、/i1′W部40の替わりにマルチチャンネルア
ナライザを設けることにより、磁化の強さが変化してい
るときに鋼板lから発するバルクハウゼン雑音の数を測
定し、例えば特願昭59−159−1(号の結晶粒度測
定方法を用いることにより又は検量線により結晶粒度の
高精度のオンライン測定がi’l imとなる。
By providing a multi-channel analyzer in place of the /i1'W section 40, the number of Barkhausen noises emitted from the steel plate l when the magnetization strength is changed can be measured. By using the grain size measurement method of No.-1 (No. 1) or by using a calibration curve, highly accurate on-line measurement of grain size can be achieved.

第4図は本発明の他の実施例を示す模式図であり、第1
図と同一部分には同一番号を付している。
FIG. 4 is a schematic diagram showing another embodiment of the present invention.
The same parts as those in the figure are given the same numbers.

鋼板1の下方には電磁石103と104とを移送方向に
適長離隔して設けてあり、電磁石103と104 とが
夫々鋼板1・\及ぼす磁界の方向を逆方向となるように
直流電源105より夫々電流が通電さ?しるようになっ
ている。直流電源105は速度検出器4からの速度信号
に基づいて電磁石103と104 とに出力する電流値
を調整して磁化力を一定に制御可能となっている。
Electromagnets 103 and 104 are provided below the steel plate 1 at an appropriate distance apart in the transfer direction, and are connected to a DC power source 105 so that the directions of the magnetic fields exerted by the electromagnets 103 and 104 on the steel plate 1 are opposite to each other. Is the current flowing in each case? It's starting to look like this. The DC power supply 105 can control the magnetizing force to a constant level by adjusting the current value output to the electromagnets 103 and 104 based on the speed signal from the speed detector 4.

このように構成された本発明装置による場合は、第5図
に示すように電磁石103による場合(E)と電磁石1
04による場合(F)とで夫々の磁界103aと104
aとが逆方向となり、また磁場の強さが正・負正になる
。このため、第6図に示す如く横軸に磁場の強さHをと
り、縦軸に磁束密度Bをとった座標上の第1. 2. 
3. 4仝象現でのヒステリシスループの測定が可能と
なり、これにより残留磁束密度だけでな(種々の磁気特
性、例えば透磁率。
In the case of the apparatus of the present invention configured in this way, as shown in FIG.
In case (F) according to 04, the respective magnetic fields 103a and 104
a is in the opposite direction, and the strength of the magnetic field is positive and negative. Therefore, as shown in FIG. 6, the first . 2.
3. It is possible to measure hysteresis loops in four phenomena, which not only determine the residual magnetic flux density but also various magnetic properties, e.g. permeability.

微分透磁率等を高精度でオンライン測定でき、冷間加工
度等の測定も可能となる。
Differential magnetic permeability, etc. can be measured online with high accuracy, and cold working degree, etc. can also be measured.

なお、上記2実施例ではヨーク形電磁石を用いているが
、本発明はこれに限らず第7図に第1図と対比して示す
如くポイントボール形電磁石を用いても同様に実施でき
る。
Although a yoke type electromagnet is used in the above two embodiments, the present invention is not limited to this, and can be similarly implemented using a point ball type electromagnet as shown in FIG. 7 in comparison with FIG. 1.

また、上記説明では磁気検出器を一定間隔離隔して配し
ているが、本発明はこれに限らず複数の検出コイル又は
感磁性素子を隙間なく連続配置した磁気検出器を使用し
ても或いは1つの検出コイル、感磁性素子を鋼板1と同
速度で追随移動させるようにしても実施できることは勿
論である。この場合は連続的或いはより明瞭なヒステリ
シスループの測定が可能である。
Further, in the above description, the magnetic detectors are arranged at regular intervals, but the present invention is not limited to this, and the present invention may also be implemented by using a magnetic detector in which a plurality of detection coils or magnetically sensitive elements are arranged continuously without any gaps. Of course, the present invention can also be implemented by moving one detection coil or magnetically sensitive element at the same speed as the steel plate 1. In this case, continuous or more clearly defined hysteresis loops can be measured.

更に、上記実施例では鋼板の磁気特性を測定しているが
、本発明はこれに限らず常磁性2強磁性の金属材一般の
磁気特性を測定できることは勿論である。
Further, in the above embodiment, the magnetic properties of a steel plate are measured, but the present invention is not limited to this, and it goes without saying that the magnetic properties of paramagnetic and diferromagnetic metal materials in general can be measured.

〔効果〕〔effect〕

以上詳述した如く本発明による場合は、移送さ。 As described in detail above, according to the present invention, the transport is carried out.

れる金属材を移送速度に拘わらず一定磁束密度で直流磁
化でき、また1測定点についての磁気特性のスポット測
定が可能であるので、高ヰh度の磁気特性測定を行うこ
とができ、これによりオンライン測定が可能となり、ま
た金属材の機械的性質。
It is possible to direct current magnetize the metal material being transported at a constant magnetic flux density regardless of the transfer speed, and it is also possible to perform spot measurements of magnetic properties at one measurement point. It is now possible to measure online and also the mechanical properties of metal materials.

結晶粒度等を測定できる等、本発明は優れた効果を奏す
る。
The present invention has excellent effects such as being able to measure crystal grain size and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施状態を示す模式図、第2図は電磁
石から発する磁場の強さの分布図、第3図は磁場の強さ
と磁束密度との関係を示すグラフ、第4図は本発明の他
の実施例、第5図はその場合の測定方法説明図、第6図
はその場合の測定可能範囲の説明図、第7図は本発明の
他の実施例、第8図は従来の結晶粒度の測定方法の説明
図、第9図は残留磁束密度及び保磁力と炭素含有量との
関連図、第10図は冷間加工度と透磁率との関連図、第
11図は鋼材移送速度と鋼材磁束密度との関連図である
。 1・・鋼板  3 、103.104.203・・・電
磁石  4・・・速度検出器  5,105・・・直流
型J、つr   11.  ・・、in・・・磁気検出
器  40・・・演算部特 許 出願人  住友金属工
業株式会社代理人 弁理士  河  野  登  夫d 第2図 第3図 第5図 第8図
Fig. 1 is a schematic diagram showing the implementation state of the present invention, Fig. 2 is a distribution diagram of the strength of the magnetic field emitted from the electromagnet, Fig. 3 is a graph showing the relationship between the strength of the magnetic field and magnetic flux density, and Fig. 4 is a graph showing the relationship between the strength of the magnetic field and the magnetic flux density. Another embodiment of the present invention, FIG. 5 is an explanatory diagram of the measuring method in that case, FIG. 6 is an explanatory diagram of the measurable range in that case, FIG. 7 is another embodiment of the present invention, and FIG. An explanatory diagram of the conventional method for measuring grain size, Figure 9 is a diagram of the relationship between residual magnetic flux density, coercive force, and carbon content, Figure 10 is a diagram of the relationship between degree of cold work and magnetic permeability, and Figure 11 is a diagram of the relationship between the degree of cold work and magnetic permeability. It is a relation diagram between steel material transfer speed and steel material magnetic flux density. 1... Steel plate 3, 103.104.203... Electromagnet 4... Speed detector 5,105... DC type J, Tsur 11. ..., in...Magnetic detector 40...Computation unit patent Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Noboru Kono d Fig. 2 Fig. 3 Fig. 5 Fig. 8

Claims (1)

【特許請求の範囲】 1、移送される金属材の移送速度を検出し、金属材を磁
化すべく設けた電磁石へ通電する直流電流を移送速度に
基づいて調整して金属材を一定磁束密度で直流磁化し、 直流磁化される金属材部分に臨ませて設けた磁気検出器
の検出位置を金属材の特定部分に追随させることを特徴
とする磁気特性測定方法。 2、移送される金属材の移送速度を検出する速度検出器
と、 前記金属材を直流磁化する電磁石と、 金属材を一定磁束密度にて直流磁化すべく、前記速度検
出器の検出移送速度に基づいて電磁石へ通電する電流を
調整する直流電源と、直流磁化される金属材部分に臨ま
せて設けてあり、金属材の移送方向の複数位置での磁気
特性の検出が可能な磁気検出器と、 前記検出移送速度に基づき磁気検出器の検出位置を走査
する装置と を具備することを特徴とする磁気特性測定装置。
[Claims] 1. Detecting the transfer speed of the metal material to be transferred, and adjusting the DC current applied to an electromagnet provided to magnetize the metal material based on the transfer speed, so that the metal material is kept at a constant magnetic flux density. A method for measuring magnetic properties characterized by direct current magnetization and causing the detection position of a magnetic detector placed facing the direct current magnetized portion to follow a specific portion of the metal material. 2. A speed detector that detects the transfer speed of the metal material to be transferred; an electromagnet that magnetizes the metal material with DC current; a DC power source that adjusts the current flowing to the electromagnet based on the current flow, and a magnetic detector that is placed facing the metal material that is to be magnetized with direct current and that can detect magnetic characteristics at multiple positions in the transport direction of the metal material. A device for measuring magnetic properties, comprising: a device for scanning a detection position of a magnetic detector based on the detected transfer speed.
JP13876686A 1986-06-13 1986-06-13 Method and apparatus for measuring magnetic property Pending JPS62294987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13876686A JPS62294987A (en) 1986-06-13 1986-06-13 Method and apparatus for measuring magnetic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13876686A JPS62294987A (en) 1986-06-13 1986-06-13 Method and apparatus for measuring magnetic property

Publications (1)

Publication Number Publication Date
JPS62294987A true JPS62294987A (en) 1987-12-22

Family

ID=15229691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13876686A Pending JPS62294987A (en) 1986-06-13 1986-06-13 Method and apparatus for measuring magnetic property

Country Status (1)

Country Link
JP (1) JPS62294987A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085372A (en) * 2008-10-02 2010-04-15 Nippon Steel Corp Device and method for measuring magnetic characteristics
CN101887048A (en) * 2010-06-25 2010-11-17 南京航空航天大学 Barkhausen detection system and method under condition of high-speed operations
JP2012037315A (en) * 2010-08-05 2012-02-23 Sumitomo Kinzoku Technol Kk Total carbon amount measuring instrument and carburized depth evaluation device for ferritic steel pipe containing chromium
CN104081217A (en) * 2012-01-26 2014-10-01 Tdk株式会社 Magnetic measurement device
WO2020027028A1 (en) * 2018-08-01 2020-02-06 コニカミノルタ株式会社 Non-destructive inspection device, non-destructive inspection system, and non-destructive inspection method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085372A (en) * 2008-10-02 2010-04-15 Nippon Steel Corp Device and method for measuring magnetic characteristics
CN101887048A (en) * 2010-06-25 2010-11-17 南京航空航天大学 Barkhausen detection system and method under condition of high-speed operations
JP2012037315A (en) * 2010-08-05 2012-02-23 Sumitomo Kinzoku Technol Kk Total carbon amount measuring instrument and carburized depth evaluation device for ferritic steel pipe containing chromium
CN104081217A (en) * 2012-01-26 2014-10-01 Tdk株式会社 Magnetic measurement device
EP2808691A4 (en) * 2012-01-26 2016-01-27 Tdk Corp Magnetic measurement device
US9702945B2 (en) 2012-01-26 2017-07-11 Tdk Corporation Magnetic measurement device
WO2020027028A1 (en) * 2018-08-01 2020-02-06 コニカミノルタ株式会社 Non-destructive inspection device, non-destructive inspection system, and non-destructive inspection method
JPWO2020027028A1 (en) * 2018-08-01 2021-08-02 コニカミノルタ株式会社 Non-destructive inspection equipment, non-destructive inspection system and non-destructive inspection method

Similar Documents

Publication Publication Date Title
RU2593677C2 (en) Electromagnetic sensor and calibration thereof
FI90594C (en) Method and apparatus for non-destructive material testing and for magnetostructural material testing
US5619135A (en) Steel characteristics measurement system using Barkhausen jump sum rate and magnetic field intensity and method of using same
JP2004503765A (en) Magnetic transducer torque measurement
US4394193A (en) Method and device for the continuous, contactless monitoring of the structure state of cold strip
EP0096078B1 (en) Method of measuring on-line hardness of steel plate
JPS6352345B2 (en)
JPS62294987A (en) Method and apparatus for measuring magnetic property
JP2002257789A (en) Leakage flux detecting device
WO2019151422A1 (en) Inspection device
JPH06213872A (en) Method for measuring crystal grain diameter of steel plate
JPS59147253A (en) On-line hardness measurement of steel plate
JPS6153561A (en) Evaluator for low magnetic-permeability material
SU917071A1 (en) Method of detecting flaw in ferromagnetic articles
JPH01269049A (en) Method of inspecting deterioration of metallic material
SU838622A1 (en) Method of measuring ferromagnetic material parameters
JPH07113625B2 (en) Steel plate flaw detection device
JPH0654306B2 (en) Crystal grain size measuring method and apparatus
JP2663767B2 (en) Transformation rate measuring method and apparatus
RU2146817C1 (en) Electromagnetic flaw detector to test long-length articles
JPS62108148A (en) Method and device for detecting quality of metal
JPH0815227A (en) Magnetizing device for steel plate
SU996927A1 (en) Device for checking steel article mechanical properties
SU962798A1 (en) Method of non-destructive testing of continuous ferromagnetic articles
SU894540A1 (en) Method of magnetic noise structuroscopy