JPS59153166A - Flaw detection probe - Google Patents

Flaw detection probe

Info

Publication number
JPS59153166A
JPS59153166A JP58028051A JP2805183A JPS59153166A JP S59153166 A JPS59153166 A JP S59153166A JP 58028051 A JP58028051 A JP 58028051A JP 2805183 A JP2805183 A JP 2805183A JP S59153166 A JPS59153166 A JP S59153166A
Authority
JP
Japan
Prior art keywords
flaw detection
flaw
convex side
inspected
excitation coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58028051A
Other languages
Japanese (ja)
Inventor
Katsuhiro Kojima
小島 勝洋
Fumitaka Yoshimura
文孝 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP58028051A priority Critical patent/JPS59153166A/en
Publication of JPS59153166A publication Critical patent/JPS59153166A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9006Details, e.g. in the structure or functioning of sensors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To enable a wide range of flaw detection on a convex side of long sized work to be inspected by winding an excitation coil around the peripheral rim of a detecting surface. CONSTITUTION:A flaw detection probe 14 has an E-shaped body 16. A U-shaped cut is formed in pole sections at ends thereof and a concave detecting surface 18 arranged inside the cut to face a convex surface 12 to be inspected therealong with a specific clearance therebetween. When an AC exciting current is applied to the excitation coil 20 and a magnetic flux generated reaches a flat steel 10, an eddy current develops near the surface layer of the flat steel 10 pierced by the flux. When a flaw exists on the convex side 12, the flow of the eddy current changes and thus, the presence of the flaw can be detected by checking the level of the change with a detection coil 22. As the excitation coil 20 is wound around the peripheral rim of the detecting surface 18, a high detection sensitivity can be obtained even though the position of the flaw is deviated from the center of the convex side 12.

Description

【発明の詳細な説明】 本発明は、被検査部材の被検査面に磁束を及ぼして渦電
流を発生させその渦電流の変化を検出することによって
傷の有無を電磁気的に検出する探傷プローブに関し、特
に、その探傷プローブの探傷面に対向する長手状被検査
部材の凸状側面全体にわたって高い検出感度が得られる
探傷プローブに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flaw detection probe that electromagnetically detects the presence or absence of flaws by applying magnetic flux to the surface to be inspected of a member to be inspected to generate eddy currents and detecting changes in the eddy currents. In particular, the present invention relates to a flaw detection probe that provides high detection sensitivity over the entire convex side surface of a longitudinal member to be inspected that faces the flaw detection surface of the flaw detection probe.

一般に、長手状被検査部材の凸状側面を探傷するために
用いる探傷プローブには平坦な探傷面が形成されており
、その探傷面を被検査面である凸状側面に対向させたと
き、間隙の小さい中央部付近での検出感度が高いが探傷
面の周辺部付近では間隙が大きくなって充分な検出感度
が得られないという欠点があった。これに対し、被検査
部材の凸状側面に沿い且つ所定の間隙を隔てて対向する
凹状の探傷面を備えた探傷プローブが考えられている。
Generally, a flaw detection probe used to detect flaws on the convex side surface of a longitudinal inspected member has a flat flaw detection surface, and when the flaw detection surface is opposed to the convex side surface of the inspected surface, there is a gap. Although the detection sensitivity is high near the center where the flaw detection surface is small, there is a drawback that the gap becomes large near the periphery of the flaw detection surface and sufficient detection sensitivity cannot be obtained. In contrast, flaw detection probes have been considered that include a concave flaw detection surface that runs along the convex side surface of the member to be inspected and faces with a predetermined gap in between.

例えば、本出願人が先に出願した特願昭57−1088
0号に記載されたものがそれである。
For example, patent application No. 57-1088 filed earlier by the present applicant.
This is what is described in No. 0.

斯る探傷プローブによれば、探傷面が被検査面の凸状湾
曲形状と対応する凹状に形成され且つその探傷面の開口
幅及び深さは被検査面の幅の内側に存在する部分を覆い
得るように構成されているので、被検査面が凸状に湾曲
していても探傷可能な幅を広くとることができるととも
に、その幅の全域にわたって検出感度を高くすることが
できる利点がある。
According to such a flaw detection probe, the flaw detection surface is formed in a concave shape corresponding to the convex curved shape of the surface to be inspected, and the opening width and depth of the flaw detection surface cover a portion existing inside the width of the surface to be inspected. Even if the surface to be inspected is curved in a convex shape, the width that can be detected can be widened, and the detection sensitivity can be increased over the entire width.

しかしながら、斯る従来の探傷プローブによれば、その
励磁コイルは探傷プローブの外周に巻回されることによ
って構成されるのが一般的であり、被検査部材が特にそ
のキュリ一温度を超える高温の部材である場合には、被
検査部材が常磁性体となるために探傷面から及ぼされる
磁束が積極的に被検査部材内に導かれず、最も距離の短
かい凹状探傷面の底部間に磁束が集中する傾向が避けら
れなかった。このため、凸状の被検査面の周辺部におい
て必ずしも充分な検出感度が得られなかったのである。
However, according to such conventional flaw detection probes, the excitation coil is generally configured by being wound around the outer circumference of the flaw detection probe. In the case of a component, the component to be inspected is a paramagnetic material, so the magnetic flux applied from the testing surface is not actively guided into the component to be inspected, and the magnetic flux is distributed between the bottom of the concave testing surface, which is the shortest distance. The tendency to concentrate was inevitable. For this reason, sufficient detection sensitivity could not always be obtained in the periphery of the convex surface to be inspected.

本発明は以上の事情を背景として為されたものであり、
その目的とするところは、長手状被検査部材の凸状側面
(被検査面)の中央部のみならず周辺部(両側部)にお
いても充分な検出感度が得られて広範囲な探傷可能な面
積を備えた探傷プローブを提供することにある。
The present invention has been made against the background of the above circumstances,
The purpose is to obtain sufficient detection sensitivity not only at the center of the convex side surface (surface to be inspected) of the elongated inspected member, but also at the periphery (both sides), and to cover a wide range of flaw detection areas. The purpose of the present invention is to provide a flaw detection probe with the following features.

斯る目的を達成するため、本発明の要旨とするところは
、励磁コイルが設けられた本体と、その本体の磁極部に
形成され、長手状被検査部材の凸状側面に沿い且つ所定
の間隙を隔てて対向する凹状の探傷面とを備え、その被
検査部材と相対移動させられることによってその凸状側
面に存在する傷を電磁気的に検出する探傷プローブにお
いて、前記励磁コイルを、前記探傷面の外周縁に沿って
巻回したことにある。
In order to achieve such an object, the gist of the present invention is to provide a main body provided with an excitation coil, and a magnetic pole formed in the magnetic pole portion of the main body, extending along the convex side surface of the elongated member to be inspected and at a predetermined gap. In the flaw detection probe, the excitation coil is connected to the flaw detection surface, and the flaw detection probe electromagnetically detects flaws existing on the convex side surface by being moved relative to the inspected member. The reason is that it is wound along the outer periphery of the .

この様にすれば、励磁コイルが探傷面の外周縁に沿って
巻回されているので、凹状の探傷面全体から磁束が略均
等に発生させられ、探傷面に対向する被検査面全体にわ
たって高い検出感度が得られ、探傷可能な面積が広く得
られるのである。
In this way, since the excitation coil is wound along the outer periphery of the flaw detection surface, magnetic flux is generated almost uniformly from the entire concave flaw detection surface, and the magnetic flux is high over the entire surface to be inspected facing the flaw detection surface. This provides high detection sensitivity and a wide area that can be detected.

以下、本発明の一実施例を示す図面に基づいて詳却雨説
明する。
Hereinafter, an embodiment of the present invention will be explained in detail based on the drawings.

第1図において、長手状の被検査部材である平!111
0は図示しない熱間圧延ローラを経て長手方向に走行せ
しめられるようになっている。平鋼10の凸状側面12
は、位置固定に設けられた探傷プローブ14の磁極部に
形成されたU字状の切欠内に嵌め入れられている。
In FIG. 1, flat! which is a longitudinal member to be inspected! 111
0 is made to run in the longitudinal direction via hot rolling rollers (not shown). Convex side surface 12 of flat bar 10
is fitted into a U-shaped notch formed in the magnetic pole portion of the flaw detection probe 14, which is provided in a fixed position.

探傷プローブ14は磁性材料で形成されたE字状の本体
16を備えている。本体I6の各端部である磁極部には
前述のU字状の切欠が形成されることによってその内側
に凹状の探傷面18がそれぞれ備えられ、探傷面18が
凸状側面I2に沿い且つ所定の間隙を隔てて対向させら
れている。すなわち、探傷面18を形成するU字状の切
欠の幅Wは平鋼10の板厚Tに所定のギャップの2倍を
加えた値に設定されており、ナた、U字状の切欠の深さ
Dは凸状側面12の曲率半径rよりも充分大きく設定さ
れて、凸状側面12に対して探傷面18が所定の間隙を
隔てて対向したとき、探傷面18の両端部が平鋼10の
上下平面に充分対向させられるようになっている。
The flaw detection probe 14 includes an E-shaped main body 16 made of a magnetic material. The above-mentioned U-shaped notch is formed in the magnetic pole portion at each end of the main body I6, so that a concave flaw detection surface 18 is provided inside the magnetic pole portion, and the flaw detection surface 18 extends along the convex side face I2 and at a predetermined position. They are facing each other with a gap between them. That is, the width W of the U-shaped notch forming the flaw detection surface 18 is set to a value equal to the plate thickness T of the flat steel 10 plus twice the predetermined gap. The depth D is set to be sufficiently larger than the radius of curvature r of the convex side surface 12, so that when the flaw detection surface 18 faces the convex side surface 12 with a predetermined gap in between, both ends of the flaw detection surface 18 are flat steel. The upper and lower planes of 10 are sufficiently opposed to each other.

そして、励磁コイル20及び検出コイル22が、本体1
6の磁極部において、探傷面18の外周縁に沿ってそれ
ぞれ同様に巻回されている。すなわち、第2図に示され
るように、励磁コイル20は、本体16の磁極部に探傷
面18を形成するU字状の切欠の外側において、2つの
U字状部24とそれ等U字状部24の端部を連結するた
めに本体16の端面に位置する連結部26とから構成さ
れ、本体16に電気的絶縁状態で貼着されている。
Then, the excitation coil 20 and the detection coil 22 are connected to the main body 1.
The magnetic pole portions 6 are similarly wound along the outer periphery of the flaw detection surface 18, respectively. That is, as shown in FIG. 2, the excitation coil 20 has two U-shaped parts 24 and two U-shaped parts on the outside of the U-shaped cutout that forms the flaw detection surface 18 in the magnetic pole part of the main body 16. The connecting part 26 is located on the end face of the main body 16 to connect the ends of the parts 24 and is attached to the main body 16 in an electrically insulated state.

以上の様に構成された探傷プローブ14において、励磁
コイル20に数十J(Hz乃至数百KHz程度の交流励
磁電流が加えられると、これによって発生させられた磁
束は探傷面18がらこれに対向する平鋼10に向ってそ
れぞれ及ぼされる。この様な磁束が平鋼10に及ぼされ
ると磁束が貫通する平鋼10表層付近において渦電流が
発生し、このうず電流によって発生した磁束が検出コイ
ル22によって検出される。この渦電流は被検査面であ
る凸状側面120表層付近において発生させられるので
あるが、凸状側面12において傷が存在するとこの傷に
よって渦電流の流れが変化することを利用し、この渦電
流の変化の大きさが検出コイル22によって検出される
ことにより傷の存在が検出される。
In the flaw detection probe 14 configured as described above, when an alternating current excitation current of several tens of J (Hz to several hundred KHz) is applied to the excitation coil 20, the magnetic flux generated thereby is directed toward the flaw detection surface 18. When such magnetic flux is applied to the flat steel 10, an eddy current is generated near the surface layer of the flat steel 10 through which the magnetic flux penetrates, and the magnetic flux generated by this eddy current is applied to the detection coil 22. This eddy current is generated near the surface of the convex side surface 120, which is the surface to be inspected, and if there is a flaw on the convex side surface 12, this flaw changes the flow of the eddy current. However, the presence of a flaw is detected by detecting the magnitude of this change in eddy current by the detection coil 22.

この時、励磁フィル2oは探傷面18の外周縁に沿って
巻回されているので、第3図に示されるように、傷位置
が凸状側面12の中央部からずれても高い検出感度が得
られるのである。すなわち、第3図は傷位置が凸状側面
12の中央部にある時の信号の大きさを100とし、同
じ大きさの傷の位置をその中央部から離隔させたときの
傷信号の大きさの変化を実線で表わしたものであり、破
線に示される探傷面18が平坦な場合や、二点鎖線に示
される探傷面18が凹状であっても励磁コイルが本体外
周に巻回された場合に比較して高い検出感度が幅広く得
られ、幅広い面積の凸状側面12において傷を検出でき
ることが判る。これは、励磁コイル20が探傷面18の
外周縁に沿って巻回されることにより、探傷面18全体
から略均等に磁束が発生させられて平鋼10の凸状側面
12に磁束が及ぼされる結果であり、このことは以下の
様に理解される。すなわち、励磁コイル20が単に本体
の外周に巻回された従来の探傷プローブにあっては、特
に、平鋼10が高温の鋼材またはアルミ材等の常磁性体
であった場合には、探傷面18に発生する磁束は平鋼1
0に導かれることが極めて少ないので、第4図のAに示
されるように、磁束は最も磁気抵抗の小さい短い通路を
選択して流れる結果、磁束は探傷面18の底部に偏在し
易いのである。しかし、励磁コイル20が探傷面18の
外周縁に沿って巻回される本実施例の探傷プローブ14
においては、磁束発生源である励磁コイル20が探傷面
18に沿って位置するので、磁束は探傷面18の底部及
び両端部からも同様に発生し、第5図のBに示されるよ
うに、磁束が探傷面18の略全体にわたって均等に発生
させられる。
At this time, the excitation filter 2o is wound along the outer periphery of the flaw detection surface 18, so even if the flaw position deviates from the center of the convex side surface 12, as shown in FIG. You can get it. That is, in FIG. 3, the magnitude of the signal when the flaw position is at the center of the convex side surface 12 is set as 100, and the magnitude of the flaw signal when the flaw position of the same size is moved away from the center. The solid line represents the change in the flaw detection surface 18 shown by the broken line, or when the flaw detection surface 18 shown by the two-dot chain line is concave but the excitation coil is wound around the outer periphery of the main body. It can be seen that higher detection sensitivity can be obtained over a wide range compared to the above, and flaws can be detected on a wide area of the convex side surface 12. This is because the excitation coil 20 is wound along the outer periphery of the flaw detection surface 18, so that magnetic flux is generated almost uniformly from the entire flaw detection surface 18, and the magnetic flux is applied to the convex side surface 12 of the flat bar 10. This is the result, and this can be understood as follows. That is, in a conventional flaw detection probe in which the excitation coil 20 is simply wound around the outer periphery of the main body, especially when the flat bar 10 is a paramagnetic material such as high-temperature steel or aluminum, the flaw detection surface The magnetic flux generated at 18 is the flat steel 1
Since it is extremely rare for the magnetic flux to be guided to 0, the magnetic flux selects the short path with the lowest magnetic resistance and flows, as shown in A in FIG. . However, the flaw detection probe 14 of this embodiment in which the excitation coil 20 is wound along the outer periphery of the flaw detection surface 18
Since the excitation coil 20, which is a magnetic flux generation source, is located along the flaw detection surface 18, magnetic flux is similarly generated from the bottom and both ends of the flaw detection surface 18, as shown in FIG. 5B. Magnetic flux is generated uniformly over substantially the entire flaw detection surface 18.

この結果、探傷面18が対向する被検査面全体にわたっ
て高い検出感度が得られるのである。
As a result, high detection sensitivity can be obtained over the entire surface to be inspected that the flaw detection surface 18 faces.

以上、本発明の一実施例を示す図面に基づいて説明した
が、本発明はその他の態様においても適用される。尚、
以下の説明において前述の実施例と共通する部分には同
一の符号を付して説明を省略する。
Although the embodiment of the present invention has been described above based on the drawings, the present invention can also be applied to other aspects. still,
In the following description, parts common to those in the above-mentioned embodiments are given the same reference numerals, and the description thereof will be omitted.

例えば、本実施例の探傷プローブ14は高温の鋼材やア
ルミ材等の常磁性体部材において特に効果を発揮するが
、常温の鋼材等の強磁性体であってもきわめて有効であ
る。
For example, the flaw detection probe 14 of this embodiment is particularly effective on paramagnetic materials such as high-temperature steel and aluminum materials, but is also extremely effective even on ferromagnetic materials such as steel at room temperature.

また、凸状側面は、第6図に示されるように、断面が三
角状に突き出されたものであっても良いのである。この
様な場合には、その様な凸状側面に対応して探傷面18
が凹状に形成され且つ励磁コイル20がその探傷面18
の外周縁に沿って巻回されれば良いのである。また、第
7図に示されるように、被検査部材が角柱状のものであ
り、その角部の凸状側面12が検査されるようにしても
良いのである。同様に、第8図に示されるように、円柱
状の被検査部材の側面半分を凸状側面12として考え、
それぞれの凸状側面に対向した探傷プローブ14を一対
用意することによって円柱状の側面全体の傷を検査する
ことができる。
Furthermore, the convex side surface may have a protruding triangular cross section as shown in FIG. In such a case, the flaw detection surface 18 should be adjusted to correspond to such a convex side surface.
is formed in a concave shape, and the excitation coil 20 is located on the flaw detection surface 18.
It suffices if it is wound along the outer periphery of the. Further, as shown in FIG. 7, the member to be inspected may be prismatic, and the convex side surface 12 of the corner may be inspected. Similarly, as shown in FIG.
By preparing a pair of flaw detection probes 14 facing each convex side surface, the entire cylindrical side surface can be inspected for flaws.

更に、前述の実施例の探傷プローブ14は、第9図及び
第1O図に示されるように、その磁極形状及び励磁コイ
ル20の形状に種々の変更が加えられ得るものである。
Furthermore, the flaw detection probe 14 of the above-described embodiment can be modified in various ways in the shape of its magnetic pole and the shape of the excitation coil 20, as shown in FIGS. 9 and 1O.

要するに、探傷面18が被検査部材の凸状側面12に沿
い且つ所定の間隙を隔てて対向するように形成され、更
に励磁コイル20がその探傷面の外周縁に沿って巻回さ
れておれば良いのである。
In short, if the flaw detection surface 18 is formed so as to face the convex side surface 12 of the inspected member with a predetermined gap therebetween, and the excitation coil 20 is further wound along the outer periphery of the flaw detection surface. It's good.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例である探傷プローブを用い
て被検査部材の検査をしている状態を示す斜視図である
。第2図は、第1図の実施例に備えられている励磁コイ
ルの拡大図である。第3図は、第1図に示す探傷プロー
ブの検出感度を従来装置の場合と比較した図表である。 第4図は従来装置の磁束経路を説明する図であり、第5
図は第1図の実施例における磁束経路を説明する図であ
る。第6図乃至第8図は、それぞれ被検査部材の断面形
状にあわせて実施態様を変更した本発明の一例を示す図
である。第9図及び第1O図は、それぞれ本発明におけ
る励磁コイル巻回形状の他の態様の一例を示す図である
。 10:平鋼(被検査部材) 12:凸状側面   14:探傷プローブ16:本体 
    18:探傷面 20:励磁コイル 出願人  大同特殊鋼株式会社 第1図 第3図 第8図 第9図    第10図
FIG. 1 is a perspective view showing a state in which a member to be inspected is being inspected using a flaw detection probe according to an embodiment of the present invention. FIG. 2 is an enlarged view of the excitation coil provided in the embodiment of FIG. 1. FIG. 3 is a chart comparing the detection sensitivity of the flaw detection probe shown in FIG. 1 with that of a conventional device. FIG. 4 is a diagram explaining the magnetic flux path of the conventional device, and the fifth
The figure is a diagram illustrating the magnetic flux path in the embodiment of FIG. 1. FIGS. 6 to 8 are diagrams each showing an example of the present invention in which the embodiment is modified according to the cross-sectional shape of the member to be inspected. FIG. 9 and FIG. 1O are diagrams each showing an example of another embodiment of the exciting coil winding shape in the present invention. 10: Flat steel (part to be inspected) 12: Convex side surface 14: Flaw detection probe 16: Main body
18: Flaw detection surface 20: Excitation coil Applicant: Daido Steel Co., Ltd. Figure 1 Figure 3 Figure 8 Figure 9 Figure 10

Claims (1)

【特許請求の範囲】[Claims] 励磁コイルが設けられた本体と、該本体の磁極部に形成
され、長手状被検査部材の凸状側面に沿い且つ所定の間
隙を隔てて対向する凹状の探傷面とを備え、該被検査部
材と相対移動させられることによって該凸状側面に存在
する傷を電磁気的に検出する探傷プローブにおいて、前
記励磁コイルを、前記探傷面の外周縁に沿って巻回した
ことを特徴とする探傷プローブ。
A main body provided with an excitation coil, and a concave flaw detection surface formed on a magnetic pole part of the main body and facing along a convex side surface of a longitudinal test member with a predetermined gap therebetween, the test member A flaw detection probe that electromagnetically detects flaws existing on the convex side surface by being moved relative to the flaw detection probe, characterized in that the excitation coil is wound along the outer periphery of the flaw detection surface.
JP58028051A 1983-02-22 1983-02-22 Flaw detection probe Pending JPS59153166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58028051A JPS59153166A (en) 1983-02-22 1983-02-22 Flaw detection probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58028051A JPS59153166A (en) 1983-02-22 1983-02-22 Flaw detection probe

Publications (1)

Publication Number Publication Date
JPS59153166A true JPS59153166A (en) 1984-09-01

Family

ID=12237951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58028051A Pending JPS59153166A (en) 1983-02-22 1983-02-22 Flaw detection probe

Country Status (1)

Country Link
JP (1) JPS59153166A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037315A (en) * 2010-08-05 2012-02-23 Sumitomo Kinzoku Technol Kk Total carbon amount measuring instrument and carburized depth evaluation device for ferritic steel pipe containing chromium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037315A (en) * 2010-08-05 2012-02-23 Sumitomo Kinzoku Technol Kk Total carbon amount measuring instrument and carburized depth evaluation device for ferritic steel pipe containing chromium

Similar Documents

Publication Publication Date Title
KR100246244B1 (en) Magnetic sensor
US4002967A (en) Annular eddy current test coil with magnetic laminations adjacent a limited circumferential extent
WO2002033398A1 (en) Leakage magnetism detecting sensor of magnetic penetration apparatus
US3710236A (en) Magnetic leakage field flaw detector utilizing partially overlapping hall probes
JPS5841347A (en) Detecting device of welded section
JPS59153166A (en) Flaw detection probe
JP4117645B2 (en) Eddy current testing probe and eddy current testing equipment for magnetic materials
GB1591814A (en) Method and apparatus for continuous manufacture and non-destruction testing of tubes
JPH05142204A (en) Electromagnetic-induction type inspecting apparatus
US4835470A (en) Magnetizer having a main electromagnet and leakage flux reducing auxiliary electromagnets for magnetographic inspection
JP2003344362A (en) Eddy current flaw detection probe and eddy current flaw detector
JPH03105245A (en) Remote field type probe for eddy current flaw detection
JPH05312786A (en) Magnetic flaw-detecting device
JP2001108659A (en) Eddy current prove for detecting metal surface flaw
JPS632235Y2 (en)
JPH07311180A (en) Eddy current flaw detection coil
JP3530472B2 (en) Bar detection system
JPH05281198A (en) Eddy current flaw detection device
JPH05149926A (en) Flaw detecting coil for metallic wire body
JPH1114600A (en) Eddy current flaw-detecting device
JPS5839408Y2 (en) Detection coil for eddy current flaw detection
JPH10170481A (en) Eddy current flaw detector
JP3648713B2 (en) Eddy current flaw detector
JPH06194341A (en) Magnetic head
JPS58127160A (en) Probe for flaw detecting