JP2008045975A - Carbon concentration distribution measuring method, and manufacturing method of carburized member using it - Google Patents

Carbon concentration distribution measuring method, and manufacturing method of carburized member using it Download PDF

Info

Publication number
JP2008045975A
JP2008045975A JP2006221113A JP2006221113A JP2008045975A JP 2008045975 A JP2008045975 A JP 2008045975A JP 2006221113 A JP2006221113 A JP 2006221113A JP 2006221113 A JP2006221113 A JP 2006221113A JP 2008045975 A JP2008045975 A JP 2008045975A
Authority
JP
Japan
Prior art keywords
carbon concentration
steel
depth
carburizing
carburization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006221113A
Other languages
Japanese (ja)
Inventor
Toshiyuki Morita
敏之 森田
Kenjiro Sato
健二郎 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2006221113A priority Critical patent/JP2008045975A/en
Publication of JP2008045975A publication Critical patent/JP2008045975A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon concentration distribution measuring method capable of determining simply a carbon concentration distribution in a steel after carburization by nondestructive inspection, and a manufacturing method of a carburized member using it. <P>SOLUTION: In the measuring method, a regression curve showing in a dimensionless way a relation between the depth from the surface of the steel after carburization and the carbon concentration at the depth is assumed, and a carbon concentration axial direction of the regression curve is multiplied by (Q-P) and P is added thereto, and the depth axial direction of the regression curve is multiplied by (B-A)/äρ×S×(Q-P)}, to thereby determine the carbon concentration distribution in the steel after carburization. In this case, Q is a surface carbon concentration (wt.%) in the steel after carburization; P is a surface carbon concentration (wt.%) in the steel before carburization; B is a steel weight (g) after carburization; A is a steel weight (g) before carburization; ρ is a density (g/m<SP>3</SP>) of the steel; and S is a surface area (m<SP>2</SP>) of the steel. The manufacturing method has an inspection process for determining the depth from the surface at which a constant carbon concentration is acquired by using the measuring method, and performing nondestructive inspection of the carburized member. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、炭素濃度分布測定方法およびこれを用いた浸炭部材の製造方法に関するものである。   The present invention relates to a carbon concentration distribution measuring method and a carburized member manufacturing method using the same.

従来から、鋼を高強度化するために、鋼の浸炭処理が広く行なわれている。このような浸炭鋼では、品質を一定に保つために、浸炭工程における炭素濃度分布を管理することが重要となっている。そのため、浸炭後の鋼表面からその深さ方向への炭素濃度の分布を求めている。   Conventionally, carburizing treatment of steel has been widely performed in order to increase the strength of steel. In such carburized steel, it is important to manage the carbon concentration distribution in the carburizing process in order to keep the quality constant. Therefore, the carbon concentration distribution from the steel surface after carburizing in the depth direction is obtained.

例えば、非特許文献1には、浸炭鋼の断面を切り出し、EPMAを用いて各深さにおける炭素濃度を各々測定することにより、浸炭鋼の炭素濃度分布を測定する方法が開示されている。   For example, Non-Patent Document 1 discloses a method of measuring the carbon concentration distribution of carburized steel by cutting out a cross section of carburized steel and measuring the carbon concentration at each depth using EPMA.

また、非特許文献2には、浸炭鋼の表面を削って一定深さ毎の切粉を各々採取し、これを化学分析することにより、浸炭鋼の炭素濃度分布を測定する方法が開示されている。   Further, Non-Patent Document 2 discloses a method for measuring the carbon concentration distribution of carburized steel by cutting the surface of carburized steel, collecting chips each having a certain depth, and chemically analyzing the chips. Yes.

加藤万規男、狩野隆、「高濃度浸炭鋼のショットピーニング処理後の残留応力分布に及ぼす浸炭層硬さおよび炭化物の影響」、電気製鋼、電気製鋼研究会、2006年2月、第77巻、第1号、p.67−77Makio Kato, Takashi Kano, “Effects of Carburized Layer Hardness and Carbide on Residual Stress Distribution after Shot Peening of Highly Concentrated Carburized Steel”, Electric Steelmaking, Electric Steel Research Group, February 2006, Vol. 77, No. 1, p. 67-77 神原進、他4名、「浸炭処理鋼の炭素濃度分布の推定」、熱処理、日本熱処理技術協会、1983年12月、第23巻、第6号、p.337−341Susumu Kanbara and 4 others, “Estimation of carbon concentration distribution in carburized steel”, Heat Treatment, Japan Heat Treatment Technology Association, December 1983, Vol. 23, No. 6, p. 337-341

しかしながら、上記するどちらの方法も、試料作製に多くの時間や工数が必要であり、鋼材を破壊しなければ検査できないため、浸炭後の鋼の炭素濃度分布を簡便に求めることができないという問題があった。   However, both of the above-described methods require a lot of time and man-hours for sample preparation, and cannot be inspected without destroying the steel material. Therefore, there is a problem that the carbon concentration distribution of the steel after carburization cannot be easily obtained. there were.

本発明が解決しようとする課題は、非破壊検査により浸炭後の鋼の炭素濃度分布を簡便に求めることができる炭素濃度分布測定方法およびこれを用いた浸炭部材の製造方法を提供することにある。   The problem to be solved by the present invention is to provide a carbon concentration distribution measuring method capable of easily obtaining the carbon concentration distribution of steel after carburizing by nondestructive inspection and a method of manufacturing a carburized member using the carbon concentration distribution measuring method. .

上記課題を解決するために本発明に係る炭素濃度分布測定方法は、浸炭後の鋼の表面からの深さと、その深さにおける炭素濃度との関係を無次元化して表した回帰曲線を仮定し、前記回帰曲線の炭素濃度軸方向を(Q−P)倍してPを加えるとともに、前記回帰曲線の深さ軸方向を(B−A)/{ρ×S×(Q−P)}倍し、浸炭後の鋼の炭素濃度分布を求めることを要旨とする。
但し、
Q:浸炭後の鋼の表面炭素濃度(wt%)
P:浸炭前の鋼の表面炭素濃度(wt%)
B:浸炭後の鋼の重量(g)
A:浸炭前の鋼の重量(g)
ρ:鋼の密度(g/m
S:鋼の表面積(m
In order to solve the above problems, the carbon concentration distribution measuring method according to the present invention assumes a regression curve that represents the relationship between the depth from the surface of the steel after carburizing and the carbon concentration at the depth in a dimensionless manner. The carbon concentration axis direction of the regression curve is multiplied by (QP) and P is added, and the depth axis direction of the regression curve is multiplied by (BA) / {ρ × S × (QP)}. The gist is to determine the carbon concentration distribution of the steel after carburizing.
However,
Q: Surface carbon concentration (wt%) of steel after carburizing
P: Surface carbon concentration of steel before carburization (wt%)
B: Weight of steel after carburization (g)
A: Weight of steel before carburizing (g)
ρ: density of steel (g / m 3 )
S: Surface area of steel (m 2 )

この場合、前記回帰曲線は、近似した減少指数関数であることが好ましい。   In this case, the regression curve is preferably an approximate decreasing exponential function.

一方、本発明に係る浸炭部材の製造方法は、上記測定方法を用いて、一定炭素濃度となる表面からの深さを求め、浸炭後の鋼を非破壊検査する検査工程を有することを要旨とする。   On the other hand, the manufacturing method of the carburized member according to the present invention is characterized by having an inspection step of obtaining a depth from the surface having a constant carbon concentration by using the above measuring method and performing non-destructive inspection of the steel after carburizing. To do.

本発明に係る炭素濃度分布測定方法によれば、浸炭後の鋼の表面からの深さとその深さにおける炭素濃度との関係を無次元化して表した回帰曲線を仮定して、浸炭前後の鋼の重量と、鋼の表面積と、浸炭前後の鋼の表面炭素濃度とから、浸炭後の鋼の表面からその深さ方向への炭素濃度分布が求まる。そのため、非破壊検査により炭素濃度分布を簡便に求めることができる。   According to the carbon concentration distribution measuring method according to the present invention, the steel before and after carburizing is assumed on the assumption of a regression curve representing the relationship between the depth from the surface of the steel after carburizing and the carbon concentration at that depth. From the weight of the steel, the surface area of the steel, and the surface carbon concentration of the steel before and after carburizing, the carbon concentration distribution in the depth direction from the surface of the steel after carburizing is obtained. Therefore, the carbon concentration distribution can be easily obtained by nondestructive inspection.

この場合、前記回帰曲線が、近似した減少指数関数であれば、浸炭後の鋼の表面からの深さとその深さにおける炭素濃度との関係が適正に表される。   In this case, if the regression curve is an approximate decrease exponential function, the relationship between the depth from the surface of the steel after carburizing and the carbon concentration at that depth is properly represented.

一方、本発明に係る浸炭部材の製造方法は、上記測定方法を用いて、一定炭素濃度となる表面からの深さを求め、浸炭後の鋼を非破壊検査する検査工程を有するので、品質検査が簡便になり、品質の安定した浸炭部材の生産性が向上する。   On the other hand, the method for manufacturing a carburized member according to the present invention uses the measurement method described above to determine the depth from the surface at which the carbon concentration is constant, and has an inspection process for nondestructive inspection of the steel after carburization. Becomes simple and the productivity of the carburized member with stable quality is improved.

以下に本発明の一実施形態について詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail.

本発明に係る炭素濃度分布測定方法(以下、本測定方法ということがある。)は、浸炭後の鋼の表面からの深さとその深さにおける炭素濃度との関係を無次元化して表した回帰曲線を仮定し、この回帰曲線の炭素濃度軸方向を(Q−P)倍してPを加え、深さ軸方向を(B−A)/{ρ×S×(Q−P)}倍して、浸炭後の鋼の炭素濃度分布を求めるものである。   The carbon concentration distribution measuring method according to the present invention (hereinafter sometimes referred to as the present measuring method) is a regression that represents the relationship between the depth from the surface of steel after carburizing and the carbon concentration at that depth in a non-dimensional manner. Assuming a curve, the carbon concentration axis direction of this regression curve is multiplied by (Q−P), P is added, and the depth axis direction is multiplied by (B−A) / {ρ × S × (Q−P)}. Thus, the carbon concentration distribution of the steel after carburizing is obtained.

これまで、浸炭後の鋼の断面を切り出してEPMAによりその断面の炭素濃度測定をしたり、浸炭後の鋼の表面を少しずつ削って表面から一定深さの切粉を採取して化学分析をしたりするなどの破壊検査により、浸炭後の鋼の表面からその深さ方向への炭素濃度分布を求めている。   Up to now, cut the cross section of steel after carburizing and measure the carbon concentration of the cross section with EPMA, or cut the surface of the steel after carburizing little by little to collect chips of a certain depth from the surface for chemical analysis. The carbon concentration distribution in the depth direction from the surface of the steel after carburization is obtained by destructive inspection such as soldering.

これまでに上記破壊検査により求めた炭素濃度分布は浸炭条件の異なる浸炭後の鋼の場合もあるが、これらをそれぞれ浸炭後の鋼の表面からの深さとその深さにおける炭素濃度または硬さなど炭素濃度と相関のある物性との関係にしたグラフに表すと、一定の傾向があることが分かっている。つまり、これまでに上記破壊検査により求めた炭素濃度分布により、炭素濃度分布曲線の形状が指数減少的であることが分かっている。   The carbon concentration distribution obtained by the above destructive inspection may be for steel after carburizing under different carburizing conditions, but these are the depth from the surface of the steel after carburizing and the carbon concentration or hardness at that depth, etc. It is known that there is a certain tendency when expressed in a graph showing the relationship between the carbon concentration and the physical properties correlated. That is, it has been known that the shape of the carbon concentration distribution curve is exponentially reduced by the carbon concentration distribution obtained by the above destructive inspection.

そして、上記破壊検査により求めた炭素濃度分布を示す複数のグラフをそれぞれ無次元化して表すと、これらの複数のグラフは、ほとんど同じ形状、大きさのグラフに帰着することが分かった。   Then, it was found that when a plurality of graphs showing the carbon concentration distribution obtained by the destructive inspection are expressed in a non-dimensional manner, these graphs result in graphs having almost the same shape and size.

そこで、本測定方法では、経験的に、浸炭後の鋼の表面からの深さとその深さにおける炭素濃度との関係を無次元化して表した回帰曲線を仮定する。   Therefore, this measurement method empirically assumes a regression curve that represents the relationship between the depth from the surface of the steel after carburizing and the carbon concentration at that depth in a dimensionless manner.

上記回帰曲線を仮定するために無次元化する方法は、自由に定めることができる。例えば、炭素濃度を表面炭素濃度との比で表して炭素濃度軸を無次元化し、深さを任意の深さとの比で表して深さ軸を無次元化すると良い。   A method of making dimensionless to assume the regression curve can be freely determined. For example, it is preferable to make the carbon concentration axis dimensionless by expressing the carbon concentration as a ratio to the surface carbon concentration, and to make the depth axis dimensionless by expressing the depth as a ratio with an arbitrary depth.

炭素濃度軸を表面炭素濃度との比で無次元化すると、炭素濃度の最大値は1となり、最小値は0となる。これに対し、深さ軸は、例えば、両軸(炭素濃度軸と深さ軸)を無次元化して得られる曲線と両軸で囲まれる部分の面積が1になるように深さ軸を無次元化することが好ましい。   When the carbon concentration axis is made dimensionless by the ratio to the surface carbon concentration, the maximum value of the carbon concentration is 1 and the minimum value is 0. On the other hand, for the depth axis, for example, there is no depth axis so that the area surrounded by a curve obtained by making both axes (carbon concentration axis and depth axis) dimensionless and the area surrounded by both axes becomes 1. It is preferable to dimension.

図1に、仮定した回帰曲線の一例を示す。この回帰曲線は、浸炭後の鋼の表面からの深さとその深さにおける炭素濃度との関係を無次元化して表している。y軸は炭素濃度軸であり、炭素濃度を表面炭素濃度との比で表している。一方、x軸は深さ軸であり、両軸を無次元化して得られる曲線と両軸で囲まれる部分の面積が1になるように深さを任意の深さとの比とした後密度を乗じて表している。   FIG. 1 shows an example of an assumed regression curve. This regression curve represents the relationship between the depth from the surface of the steel after carburizing and the carbon concentration at that depth in a dimensionless manner. The y-axis is a carbon concentration axis, and the carbon concentration is expressed as a ratio to the surface carbon concentration. On the other hand, the x-axis is a depth axis, and the density after the ratio of the depth to an arbitrary depth is set so that the area obtained by making the both axes dimensionless and the area surrounded by both axes becomes 1. Expressed by multiplication.

図1に示す回帰曲線を指数減少関数で近似すると、以下のような近似式が得られ、浸炭後の鋼の表面からの深さとその深さにおける炭素濃度との関係が適正に表される。   When the regression curve shown in FIG. 1 is approximated by an exponential decreasing function, the following approximate expression is obtained, and the relationship between the depth from the surface of the steel after carburizing and the carbon concentration at the depth is appropriately represented.

(式1)
y=exp(−C×x
但し、C、Dは定数
(Formula 1)
y = exp (−C × x D )
C and D are constants

本測定方法は、上記のように仮定した回帰曲線に基づいて、未知の炭素濃度分布を有する浸炭後の鋼の炭素濃度分布を測定する。その方法を以下に述べる。   This measurement method measures the carbon concentration distribution of steel after carburization having an unknown carbon concentration distribution based on the regression curve assumed as described above. The method is described below.

まず、上記回帰曲線の炭素濃度軸方向を(Q−P)倍してPを加え、深さ軸方向を(B−A)/{ρ×S×(Q−P)}倍する。なお、Q〜Sは、以下に示す。   First, the carbon concentration axis direction of the regression curve is multiplied by (QP), P is added, and the depth axis direction is multiplied by (BA) / {ρ × S × (QP)}. Q to S are shown below.

Q:浸炭後の鋼の表面炭素濃度(wt%)
P:浸炭前の鋼の表面炭素濃度(wt%)
B:浸炭後の鋼の重量(g)
A:浸炭前の鋼の重量(g)
ρ:鋼の密度(g/m
S:鋼の表面積(m
Q: Surface carbon concentration (wt%) of steel after carburizing
P: Surface carbon concentration of steel before carburization (wt%)
B: Weight of steel after carburization (g)
A: Weight of steel before carburizing (g)
ρ: density of steel (g / m 3 )
S: Surface area of steel (m 2 )

深さ軸方向を(B−A)/{ρ×S×(Q−P)}倍するのは、上記回帰曲線で無次元となっている深さ軸方向を深さ(長さ)の単位にするためである。   The depth axis direction is multiplied by (BA) / {ρ × S × (QP)} because the depth axis direction that is dimensionless in the regression curve is a unit of depth (length). It is to make it.

A、Bは、それぞれ鋼の重量であり、B−Aは、浸炭による鋼の重量増加であるから、A、B、B−Aの単位は(g)である。Sは、鋼の表面積を表しており、単位は(m)である。P,Qはそれぞれ鋼の表面炭素濃度であり、Q−Pは浸炭による鋼の表面炭素濃度の増加であるから、P、Q、Q−Pの単位は(g/g)である。ρは、鋼の密度を表しており、単位は(g/m)である。 Since A and B are the weight of steel, respectively, and B-A is the weight increase of steel by carburizing, the unit of A, B, and B-A is (g). S represents the surface area of the steel, and the unit is (m 2 ). Since P and Q are respectively the surface carbon concentrations of steel and QP is the increase in the surface carbon concentration of steel due to carburization, the units of P, Q and QP are (g / g). ρ represents the density of the steel, and the unit is (g / m 3 ).

よって、深さ軸方向を(B−A)/{ρ×S×(Q−P)}倍すれば、[g]/{[g/m][m][g/g]}=[m]となり、深さ軸は深さ(長さ)の単位となる。 Therefore, if the depth axis direction is multiplied by (BA) / {ρ × S × (QP)}, [g] / {[g / m 3 ] [m 2 ] [g / g]} = [M], and the depth axis is a unit of depth (length).

一方、炭素濃度軸方向を(Q−P)倍するのは、炭素濃度軸方向を重量濃度(wt%=g/g)の単位にするためであり、(Q−P)倍に縮尺してPを加えるのは、浸炭後の表面炭素濃度を最大とし、浸炭前の表面炭素濃度を最小とするためである。   On the other hand, the reason why the carbon concentration axis direction is multiplied by (QP) is to make the carbon concentration axis direction a unit of weight concentration (wt% = g / g), and is reduced to (QP) times. The reason for adding P is to maximize the surface carbon concentration after carburizing and minimize the surface carbon concentration before carburizing.

以上により、深さ軸が深さ(m)の単位となり、炭素濃度軸が重量濃度(wt%=g/g)となる炭素濃度分布曲線を得ることができる。つまり、本測定方法では、上記パラメータA〜Pを測定すれば、浸炭後の鋼の炭素濃度分布を求めることができる。   As described above, it is possible to obtain a carbon concentration distribution curve in which the depth axis is the unit of depth (m) and the carbon concentration axis is the weight concentration (wt% = g / g). That is, in this measurement method, if the parameters A to P are measured, the carbon concentration distribution of the steel after carburizing can be obtained.

ここで、上記パラメータA〜Pの測定は、次のようにして行なう。すなわち、鋼の浸炭前に、浸炭前の鋼の重量A(g)と、鋼の表面積S(m)と、浸炭前の鋼の表面炭素濃度P(wt%=g/g)とを測定し、浸炭後に、浸炭後の鋼の重量B(g)と、浸炭後の鋼の表面炭素濃度Q(wt%=g/g)とを測定する。なお、ρは、鋼の密度であり、定数である。 Here, the parameters A to P are measured as follows. That is, before carburizing the steel, the weight A (g) of the steel before carburizing, the surface area S (m 2 ) of the steel, and the surface carbon concentration P (wt% = g / g) of the steel before carburizing are measured. Then, after carburizing, the weight B (g) of the steel after carburizing and the surface carbon concentration Q (wt% = g / g) of the steel after carburizing are measured. Note that ρ is the density of the steel and is a constant.

表面炭素濃度は、発光分光分析法や蛍光X線分光法により測定することができる。発光分光分析法は、鋼材と対電極との間の放電によって鋼材表面を励起させて発光させ、これを分光器で分光して、目的の特定元素(炭素など)の波長スペクトルの強度を測定して、各元素の定性および定量分析を行なうものである。また、蛍光X線分光法は、鋼材表面にX線を照射して発生した蛍光X線を分光器で分光して、目的の特定元素(炭素など)の波長スペクトルの強度を測定して、各元素の定性および定量分析を行なうものである。   The surface carbon concentration can be measured by emission spectroscopy or fluorescent X-ray spectroscopy. In the emission spectroscopic analysis method, the surface of a steel material is excited by a discharge between the steel material and a counter electrode to emit light, and this is spectroscopically dispersed to measure the intensity of the wavelength spectrum of a target specific element (such as carbon). Thus, qualitative and quantitative analysis of each element is performed. In addition, X-ray fluorescence spectroscopy is performed by measuring the intensity of the wavelength spectrum of a target specific element (such as carbon) by spectroscopically analyzing the fluorescent X-rays generated by irradiating the steel surface with X-rays. Qualitative and quantitative analysis of elements is performed.

いずれの分析方法も、鋼の表面のみを分析する方法なので、鋼の断面切り出しや表面切削などを必要とせず、鋼を破壊して分析するものではない。よって、例えば浸炭された鋼の製造ラインで流れる流れ材に対して定性および定量分析をすることが可能である。また、従来のように、EPMAを用いて行なうものではないので、分析費用はそれほど高価にはならない。   Since any of the analysis methods is a method for analyzing only the surface of the steel, it does not require cutting of the cross section of the steel or surface cutting, and does not analyze the steel by breaking it. Thus, for example, it is possible to perform qualitative and quantitative analysis on a flow material flowing in a carburized steel production line. Further, since the conventional method is not performed using EPMA, the analysis cost is not so expensive.

次に、本発明に係る浸炭部材の製造方法(以下、本製造方法ということがある。)について説明する。本製造方法は、本測定方法を用いて、一定炭素濃度となる表面からの深さを求め、浸炭後の鋼を非破壊検査する検査工程を有している。   Next, a method for manufacturing a carburized member according to the present invention (hereinafter sometimes referred to as the present manufacturing method) will be described. This manufacturing method has the inspection process which calculates | requires the depth from the surface used as a fixed carbon concentration using this measuring method, and nondestructively inspects the steel after carburizing.

本製造方法においては、鋼を浸炭処理して浸炭部材を製造する。本製造方法に用いられる鋼は、例えばSCr420、SCM420、SNCM220、SNCM420などの鋼種を例示することができる。   In this manufacturing method, the carburized member is manufactured by carburizing steel. The steel used for this manufacturing method can illustrate steel types, such as SCr420, SCM420, SNCM220, SNCM420, for example.

浸炭方法としては、ガス浸炭や、真空浸炭、プラズマ浸炭などの通常行なわれる方法を用いることができる。ガス浸炭は、天然ガス、プロパン、ブタン、アセチレンなどの炭化水素ガスを変成してCOを主体とする浸炭性ガスを作り、これによって鋼に浸炭を行なう。真空浸炭は、ガス浸炭の一種であり、浸炭処理を減圧下で浸炭ガスの変成を行なわず、直接炭化水素ガスを炉内に導入して行なう。   As the carburizing method, a commonly performed method such as gas carburizing, vacuum carburizing, or plasma carburizing can be used. In gas carburizing, hydrocarbon gas such as natural gas, propane, butane, and acetylene is modified to produce a carburizing gas mainly composed of CO, and thereby carburizing steel. Vacuum carburizing is a type of gas carburizing, and carburizing treatment is carried out by introducing hydrocarbon gas directly into the furnace without reducing the carburizing gas under reduced pressure.

浸炭は鋼の表面に炭素を拡散浸透させるものであり、上記浸炭方法において、浸炭温度・浸炭時間・拡散時間を適宜設定して浸炭処理を行なう。   Carburization diffuses and infiltrates carbon on the surface of steel. In the above carburizing method, carburizing treatment is performed by appropriately setting the carburizing temperature, carburizing time, and diffusion time.

本製造方法により製造される浸炭部材は、一定の規格にあるものが良い。一定の規格に合致しているか判断するために、表面炭素濃度および一定炭素濃度となる表面からの深さを評価する。   The carburized member manufactured by this manufacturing method is preferably in a certain standard. In order to judge whether a certain standard is met, the surface carbon concentration and the depth from the surface at which the carbon concentration is constant are evaluated.

表面炭素濃度は、0.6〜0.9%の範囲にあることが好ましい。より好ましくは、0.7〜0.8%の範囲である。表面炭素濃度が0.6%未満では表面硬さが低く、0.9%超では粒界に沿った炭化物が生成し、強度が低下するからである。   The surface carbon concentration is preferably in the range of 0.6 to 0.9%. More preferably, it is 0.7 to 0.8% of range. This is because if the surface carbon concentration is less than 0.6%, the surface hardness is low, and if it exceeds 0.9%, carbides along the grain boundaries are generated and the strength is lowered.

一方、一定炭素濃度となる表面からの深さは、本測定方法を用いて求める。なお、本測定方法は上記した通りであるから、ここでは説明を割愛する。   On the other hand, the depth from the surface at which the carbon concentration is constant is determined using this measurement method. In addition, since this measurement method is as above-mentioned, description is omitted here.

一定炭素濃度は、特に限定されるものではないが、表面炭素濃度が0.6〜0.9%の範囲にある浸炭部材について評価するので、例えば0.35%炭素濃度とするのが好ましい。このとき、0.35%炭素濃度となる表面からの深さは、0.5〜0.8mmの範囲にあることが好ましい。浸炭深さが十分深くなるので、例えば、高い面圧がかかるギアなどに適用できるからである。   The constant carbon concentration is not particularly limited. However, since the carburized member having a surface carbon concentration in the range of 0.6 to 0.9% is evaluated, for example, the carbon concentration is preferably 0.35%. At this time, it is preferable that the depth from the surface which becomes 0.35% carbon concentration exists in the range of 0.5-0.8 mm. This is because the carburization depth is sufficiently deep, so that the carburization depth can be applied to, for example, a gear to which high surface pressure is applied.

本製造方法によれば、非破壊検査により浸炭後の鋼の炭素濃度分布を簡便に求めることができるので、品質検査が簡便になり、品質の安定した浸炭部材の生産性が向上する。   According to this manufacturing method, since the carbon concentration distribution of the steel after carburizing can be easily obtained by nondestructive inspection, the quality inspection is simplified and the productivity of the carburized member with stable quality is improved.

以下、実施例で、本測定方法により、従来のEPMAを用いた炭素濃度分布測定方法と同等の精度で炭素濃度分布が求められることを確認する。   Hereinafter, in the Examples, it is confirmed that the carbon concentration distribution is obtained with the same accuracy as the carbon concentration distribution measuring method using the conventional EPMA by this measuring method.

但し、
Q:浸炭後の鋼の表面炭素濃度(wt%)
P:浸炭前の鋼の表面炭素濃度(wt%)
B:浸炭後の鋼の重量(g)
A:浸炭前の鋼の重量(g)
ρ:鋼の密度(g/m
S:鋼の表面積(m
である。
However,
Q: Surface carbon concentration (wt%) of steel after carburizing
P: Surface carbon concentration of steel before carburization (wt%)
B: Weight of steel after carburization (g)
A: Weight of steel before carburizing (g)
ρ: density of steel (g / m 3 )
S: Surface area of steel (m 2 )
It is.

(実施例1−9)
まず、図1に示す回帰曲線を、以下の(式2)のように近似した。
(Example 1-9)
First, the regression curve shown in FIG. 1 was approximated as (Equation 2) below.

(式2)
y=exp(−10766×x2.2
(Formula 2)
y = exp (−10766 × x 2.2 )

次いで、JIS SCr420に規定される鋼種で作製したギアの浸炭処理前に、表面積S(m)、重量A(g)、炭素濃度P(wt%)をそれぞれ測定し、真空浸炭処理した。真空浸炭処理は、炉内を10Paに減圧し、炉内温度が950℃で一定になった後、炉内圧を1500Paに保ちながら30分間アセチレンガスを供給し、その後、アセチレンガスの供給を停止して90分間保持することで行なった。室温まで冷却した後、真空浸炭処理したギアの重量B(g)、表面炭素濃度Q(wt%)をそれぞれ測定した。 Next, before carburizing the gears made of the steel types specified in JIS SCr420, the surface area S (m 2 ), the weight A (g), and the carbon concentration P (wt%) were measured and vacuum carburized. In the vacuum carburizing process, the inside of the furnace is depressurized to 10 Pa, and after the furnace temperature becomes constant at 950 ° C., acetylene gas is supplied for 30 minutes while maintaining the furnace pressure at 1500 Pa, and then the supply of acetylene gas is stopped. For 90 minutes. After cooling to room temperature, the weight B (g) and surface carbon concentration Q (wt%) of the gear subjected to vacuum carburization were measured.

次いで、上記(式2)について、炭素濃度側の軸方向を(Q−P)倍してPを加え、深さ側の軸方向を(B−A)/{ρ×S×(Q−P)}倍して、浸炭後の鋼の表面からの深さとその深さにおける炭素濃度との関係を表す曲線を作成した。この曲線を用いて、深さが0となる表面炭素濃度と、0.35%炭素濃度となる深さを求めた。その結果を表1に示す。   Next, with respect to the above (Equation 2), the carbon concentration side axial direction is multiplied by (Q−P), P is added, and the depth side axial direction is set to (BA) / {ρ × S × (Q−P). )} To create a curve representing the relationship between the depth from the surface of the carburized steel and the carbon concentration at that depth. Using this curve, the surface carbon concentration at which the depth was 0 and the depth at which the carbon concentration was 0.35% were determined. The results are shown in Table 1.

(参考例1−9)
EPMAを用いて、上記実施例で浸炭処理したギアと同じギアの断面を測定し、深さが0となる表面炭素濃度と、0.35%炭素濃度となる深さを求めた。その結果を表1に示す。
(Reference Example 1-9)
Using EPMA, a cross section of the same gear as the carburized gear in the above example was measured, and the surface carbon concentration at which the depth was 0 and the depth at which the 0.35% carbon concentration was obtained were obtained. The results are shown in Table 1.

Figure 2008045975
Figure 2008045975

表1の実施例1−9および参考例1−9に示すように、本測定方法で測定した表面炭素濃度と、0.35%炭素濃度となる深さの値は、EPMAにより測定した表面炭素濃度と、0.35%炭素濃度となる深さとほぼ同じ値となった。このとき、本測定方法の信頼性を確認するために、実施例1−7に示すように、実験を7回繰り返し行なっているが、いずれの結果も、EPMAにより測定した結果とほぼ同じ値となった。   As shown in Example 1-9 and Reference Example 1-9 in Table 1, the surface carbon concentration measured by this measurement method and the depth value at which the 0.35% carbon concentration is obtained are the surface carbon measured by EPMA. The concentration was almost the same as the depth at which the carbon concentration was 0.35%. At this time, in order to confirm the reliability of this measurement method, as shown in Example 1-7, the experiment was repeated seven times. All the results were almost the same as the results measured by EPMA. became.

以上より、本測定方法によって、非破壊検査により、浸炭処理された鋼材の炭素濃度分布を簡便に求めることができ、EPMAと同等の精度で所定深さにおける炭素濃度が求められることが確認できた。   From the above, it was confirmed that the carbon concentration distribution of the carburized steel material can be easily obtained by nondestructive inspection by this measurement method, and the carbon concentration at a predetermined depth can be obtained with the same accuracy as EPMA. .

次いで、求めた表面炭素濃度と0.35%炭素濃度となる深さとから、浸炭規格に適合するものであるか否かの検査を行なった。浸炭規格範囲は、上記ギアの歯面ピッチ点における表面炭素濃度が0.7〜0.8%の範囲にあり、0.35%炭素深さが0.5〜0.8mmの範囲にあるものを合格とした。その結果を表1に示す。   Next, an inspection was made as to whether or not the carburizing standard was met from the surface carbon concentration and the depth at which the carbon concentration was 0.35%. The carburized standard range is such that the surface carbon concentration at the tooth surface pitch point of the gear is in the range of 0.7 to 0.8%, and the 0.35% carbon depth is in the range of 0.5 to 0.8 mm. Was passed. The results are shown in Table 1.

表1より、実施例8に示すように、浸炭量(B−A)が少ないと、0.35%炭素濃度となる深さが0.30mmとなり、規格を満たさないことが分かった。また、実施例9に示すように、浸炭量(B−A)が多いと、表面炭素濃度が0.91%となり、規格を満たさないことが分かった。   From Table 1, as shown in Example 8, it was found that when the carburization amount (BA) was small, the depth of 0.35% carbon concentration was 0.30 mm, which did not satisfy the standard. Further, as shown in Example 9, it was found that when the carburization amount (BA) was large, the surface carbon concentration was 0.91%, which did not satisfy the standard.

一方、実施例1−7に示すように、浸炭量(B−A)を適正にすれば、表面炭素濃度および0.35%炭素濃度となる深さが規格を満たすことが分かった。   On the other hand, as shown in Example 1-7, it was found that when the carburization amount (BA) was set appropriately, the surface carbon concentration and the depth at which the carbon concentration was 0.35% satisfied the standard.

以上、本測定方法により、浸炭規格に適合するか否かの検査も可能であることが確認できた。   As described above, it was confirmed that this measurement method can also inspect whether or not the carburization standard is met.

以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention.

経験的に定められる表面からの深さと表面からの深さに対する炭素濃度との関係を表す減少曲線を無次元化して表した回帰曲線の一例である。It is an example of the regression curve which expressed the reduction | restoration curve showing the relationship between the carbon concentration with respect to the depth from the surface and the depth from the surface defined empirically as non-dimensional.

Claims (3)

浸炭後の鋼の表面からの深さと、その深さにおける炭素濃度との関係を無次元化して表した回帰曲線を仮定し、
前記回帰曲線の炭素濃度軸方向を(Q−P)倍してPを加えるとともに、
前記回帰曲線の深さ軸方向を(B−A)/{ρ×S×(Q−P)}倍し、浸炭後の鋼の炭素濃度分布を求めることを特徴とする炭素濃度分布測定方法。
但し、
Q:浸炭後の鋼の表面炭素濃度(wt%)
P:浸炭前の鋼の表面炭素濃度(wt%)
B:浸炭後の鋼の重量(g)
A:浸炭前の鋼の重量(g)
ρ:鋼の密度(g/m
S:鋼の表面積(m
Assuming a regression curve that represents the relationship between the depth from the surface of the steel after carburizing and the carbon concentration at that depth,
While adding P by multiplying the carbon concentration axis direction of the regression curve by (QP),
A carbon concentration distribution measuring method, wherein the depth axis direction of the regression curve is multiplied by (BA) / {ρ × S × (QP)} to obtain a carbon concentration distribution of the steel after carburizing.
However,
Q: Surface carbon concentration (wt%) of steel after carburizing
P: Surface carbon concentration of steel before carburization (wt%)
B: Weight of steel after carburization (g)
A: Weight of steel before carburizing (g)
ρ: density of steel (g / m 3 )
S: Surface area of steel (m 2 )
前記回帰曲線は、近似した指数減少関数であることを特徴とする請求項1に記載の炭素濃度分布測定方法。   The carbon concentration distribution measuring method according to claim 1, wherein the regression curve is an approximate exponential decrease function. 請求項1または2に記載の測定方法を用いて、一定炭素濃度となる表面からの深さを求め、浸炭部材を非破壊検査する検査工程を有することを特徴とする浸炭部材の製造方法。   A method for producing a carburized member, comprising: an inspection step for obtaining a depth from a surface having a constant carbon concentration by using the measurement method according to claim 1 and performing a nondestructive inspection of the carburized member.
JP2006221113A 2006-08-14 2006-08-14 Carbon concentration distribution measuring method, and manufacturing method of carburized member using it Pending JP2008045975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006221113A JP2008045975A (en) 2006-08-14 2006-08-14 Carbon concentration distribution measuring method, and manufacturing method of carburized member using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006221113A JP2008045975A (en) 2006-08-14 2006-08-14 Carbon concentration distribution measuring method, and manufacturing method of carburized member using it

Publications (1)

Publication Number Publication Date
JP2008045975A true JP2008045975A (en) 2008-02-28

Family

ID=39179861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006221113A Pending JP2008045975A (en) 2006-08-14 2006-08-14 Carbon concentration distribution measuring method, and manufacturing method of carburized member using it

Country Status (1)

Country Link
JP (1) JP2008045975A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012108003A (en) * 2010-11-17 2012-06-07 Mitsubishi Heavy Ind Ltd METHOD FOR MEASURING CARBURIZED DEPTH OF Cr-CONTAINING ALLOY
KR101263936B1 (en) 2011-12-08 2013-05-14 한국생산기술연구원 Method for drawing heat treatment depth in the product by specimen
JP2013167584A (en) * 2012-02-16 2013-08-29 Hiroshima Univ Specific surface area measurement method and device for thin-film sample
JP2015215203A (en) * 2014-05-09 2015-12-03 いすゞ自動車株式会社 Method of evaluating carburized component
JP2020106383A (en) * 2018-12-27 2020-07-09 株式会社堀場製作所 Analyzer, method for analysis, and program
CN116564452A (en) * 2023-05-24 2023-08-08 中国机械总院集团北京机电研究所有限公司 Method for calculating carbon concentration distribution in pulse carburizing process

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012108003A (en) * 2010-11-17 2012-06-07 Mitsubishi Heavy Ind Ltd METHOD FOR MEASURING CARBURIZED DEPTH OF Cr-CONTAINING ALLOY
KR101263936B1 (en) 2011-12-08 2013-05-14 한국생산기술연구원 Method for drawing heat treatment depth in the product by specimen
JP2013167584A (en) * 2012-02-16 2013-08-29 Hiroshima Univ Specific surface area measurement method and device for thin-film sample
JP2015215203A (en) * 2014-05-09 2015-12-03 いすゞ自動車株式会社 Method of evaluating carburized component
JP2020106383A (en) * 2018-12-27 2020-07-09 株式会社堀場製作所 Analyzer, method for analysis, and program
JP7198078B2 (en) 2018-12-27 2022-12-28 株式会社堀場製作所 ANALYSIS DEVICE, ANALYSIS METHOD, AND PROGRAM
CN116564452A (en) * 2023-05-24 2023-08-08 中国机械总院集团北京机电研究所有限公司 Method for calculating carbon concentration distribution in pulse carburizing process
CN116564452B (en) * 2023-05-24 2023-10-03 中国机械总院集团北京机电研究所有限公司 Method for calculating carbon concentration distribution in pulse carburizing process

Similar Documents

Publication Publication Date Title
JP2008045975A (en) Carbon concentration distribution measuring method, and manufacturing method of carburized member using it
Karabela et al. Effects of cyclic stress and temperature on oxidation damage of a nickel-based superalloy
JP3531736B2 (en) Carburizing method and carburizing device
JP4840516B2 (en) Method and apparatus for analyzing sulfur in metal samples
JP5164539B2 (en) Shot peening method
Xu et al. The high-accuracy prediction of carbon content in semi-coke by laser-induced breakdown spectroscopy
JP4629064B2 (en) Manufacturing method of carburized parts
JP5684675B2 (en) Analysis method and analyzer
John et al. Multi-element Saha Boltzmann plot (MESBP) coupled calibration-free laser-induced breakdown spectroscopy (CF-LIBS): an efficient approach for quantitative elemental analysis
JP5684674B2 (en) Analysis method and analyzer
EP2474641A2 (en) Method and apparatus for heat treating a metal
JP2010070791A (en) Method for using heat treatment furnace, method of heat treatment, and heat treatment furnace
JP2008208403A (en) Method for determining vacuum carburization condition by simulation
Dalcin et al. Response of a DIN 18MnCrSiMo6-4 continuous cooling bainitic steel to different plasma nitriding gas mixtures
JP6656970B2 (en) Steel carbon concentration measurement method, measurement device, and measurement program
JP5473872B2 (en) Method for measuring carburization depth of Cr-containing alloy
RU2494839C1 (en) Method of accelerated determination of optimum cutting speed
CN1298456A (en) Method for carburizing or carbonitriding metal parts
WO2015005074A1 (en) Gas-component measurement apparatus
Wang et al. Development of nitrogen-hydrocarbon atmospheric carburizing and process control methods
Acht et al. Simulation of the distortion of 20MnCr5 parts after asymmetrical carburization
JP2009139220A (en) Method and apparatus for measuring carburization depth of steel material
JP6413327B2 (en) Evaluation method for carburized parts
Sebayang Battery on Carburization ST 37 Steel
JP4858071B2 (en) Steel surface treatment method and surface-treated steel material