JPH0921767A - Fluorescent x-ray analyzing method - Google Patents

Fluorescent x-ray analyzing method

Info

Publication number
JPH0921767A
JPH0921767A JP19418195A JP19418195A JPH0921767A JP H0921767 A JPH0921767 A JP H0921767A JP 19418195 A JP19418195 A JP 19418195A JP 19418195 A JP19418195 A JP 19418195A JP H0921767 A JPH0921767 A JP H0921767A
Authority
JP
Japan
Prior art keywords
fluorescent
sample
ray
roughness
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19418195A
Other languages
Japanese (ja)
Inventor
Mamoru Yamaji
守 山路
Toru Okazawa
亨 岡沢
Akio Takayama
昭夫 高山
Takuji Taniguchi
卓史 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP19418195A priority Critical patent/JPH0921767A/en
Publication of JPH0921767A publication Critical patent/JPH0921767A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the analyzing accuracy of a high content components such as Cr, Ni in stainless steel by excluding the influence of the finished state of the surface of a metal sample. SOLUTION: In the method for fluorescent x-ray analyzing having the steps of irradiating the surface of a sample such as a metal with first-order x-rays, spectrally separating the intrinsic x-ray generated from the element in the sample by analyzing crystal, measuring the intensity of the intrinsic x-ray, and measuring the content of the element, a roughness regression coefficient computing equation of each element to be measured is previously obtained from the relationship between the sample surface roughness and the varying amount of each element to be measured, the surface roughness of the sample surface is previously measured, and the fluorescent x-ray analytical value is corrected according to the correction value calculated from the equation of the measured surface roughness and the each measured element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、金属等の固体試料中
に含有される元素、特にステンレス鋼中の高含有成分、
例えば、Cr、Ni等を高精度で定量できる蛍光X線分
析方法に関する。
FIELD OF THE INVENTION The present invention relates to elements contained in solid samples such as metals, especially high content components in stainless steel,
For example, the present invention relates to a fluorescent X-ray analysis method capable of quantifying Cr, Ni and the like with high accuracy.

【0002】[0002]

【従来の技術】鉄鋼、スラグ、鉄鉱石の分析およびめっ
き鋼板のめっき厚さの測定等に広く利用されている蛍光
X線分析法は、試料にX線管球から発する一次X線を照
射し、試料中の元素から発生する固有X線(特性X線)
を分光結晶により分光して固有X線の強度を測定し、元
素の定性および定量を行う分析方法である。
2. Description of the Related Art A fluorescent X-ray analysis method, which is widely used for the analysis of steel, slag, iron ore, and the measurement of the plating thickness of plated steel sheets, is performed by irradiating a sample with primary X-rays emitted from an X-ray tube. , Characteristic X-rays generated from elements in the sample (characteristic X-rays)
Is an analysis method of qualitatively and quantitatively determining an element by measuring the intensity of an intrinsic X-ray by dispersing the element with a dispersive crystal.

【0003】蛍光X線分析装置は、X線発生部、分光お
よび受光部、係数記録部その他から構成されている。X
線発生部は、試料を照射する一次X線を発生させるため
のX線管球と、これに高電圧を供給する電源装置からな
る。分光および受光部は、発生した蛍光X線を分光し、
検出器によって受光する部分である。係数記録部は、検
出された蛍光X線強度を記録および表示する部分であ
る。その他一般には、測定値の再現精度を高める目的
で、電源や装置の変動を補償するための手段が取られて
いる。
An X-ray fluorescence analyzer is composed of an X-ray generator, a spectroscopic / light-receiving unit, a coefficient recording unit and others. X
The ray generator includes an X-ray tube for generating primary X-rays that irradiate the sample, and a power supply device that supplies a high voltage to the X-ray tube. The spectroscopic and light receiving section disperses the generated fluorescent X-rays,
This is the part that receives light by the detector. The coefficient recording section is a section for recording and displaying the detected fluorescent X-ray intensity. In addition, in general, a means for compensating for fluctuations in a power supply and a device is taken for the purpose of increasing the accuracy of reproducing measured values.

【0004】蛍光X線分析に供する試料は、塊状試料の
場合は試料ホルダーに入る程度の大きさに切断または破
砕(切断ができない試料、例えばフェロアロイなど)し
て用意し、一次X線照射面の大きさは径20mm以上が
必要である。定量に際しては、試料の平坦な面が必要な
ので測定面を60番以上のベルトサンダまたは砥石によ
り測定面を研磨しなければならない。標準試料と分析試
料とは、誤差が許容される範囲の同じ粗さに調製する必
要がある。また、試料表面は、巣、ガスホールなどの表
面欠陥、研磨材からの汚染、研磨時の加熱による変色そ
の他がないようにする。
In the case of a bulk sample, a sample to be subjected to fluorescent X-ray analysis is prepared by cutting or crushing (a sample that cannot be cut, such as a ferroalloy) into a size that fits in a sample holder. The size is required to have a diameter of 20 mm or more. Since a flat surface of the sample is required for the quantification, the measurement surface must be polished with a belt sander of No. 60 or above or a grindstone. It is necessary to prepare the standard sample and the analytical sample to have the same roughness within a margin of error. In addition, the sample surface should be free from surface defects such as cavities and gas holes, contamination from the polishing material, discoloration due to heating during polishing, and the like.

【0005】従来の試料調製において切断後の試料の研
磨には、通常ベルトサンダが用いられているが、回転す
るベルト状研磨布に試料の切断面を押し付け、試料の測
定面を研磨するのであるが、押し付け圧力あるいは時間
とかは、作業者の経験、カンにたよっていた。このよう
な研磨のやり方では、仕上げ状態に個人差が生じること
は避けられず、得られる分析値に対する信頼性が低いも
のとなるばかりでなく、ベルトサンダのベルト状研磨布
の取替え前後の仕上げ状態の間に急激な変化を及ぼさな
いようにする必要があり、ベルト状研磨布の寿命を縮め
る結果となっている。
In the conventional sample preparation, a belt sander is usually used for polishing the sample after cutting, but the cutting surface of the sample is pressed against a rotating belt-shaped polishing cloth to polish the measurement surface of the sample. However, the pressing pressure or the time depended on the experience of the worker. With such a polishing method, it is unavoidable that individual differences occur in the finish state, and not only the reliability of the obtained analysis value becomes low, but also the finish state before and after the replacement of the belt-shaped polishing cloth of the belt sander. It is necessary to prevent a sudden change during this period, which results in shortening the life of the belt-shaped polishing cloth.

【0006】上記の試料調製における研磨の欠陥を解消
する方法としては、サンプリングした金属試料を切断し
たのち、この分析用切断面をショットブラストすること
によって、仕上げ状態の個人差を無くすると共に、長期
安定した分析値を得る方法(特公昭60−15018号
公報)が提案されている。
As a method of eliminating the polishing defect in the above-mentioned sample preparation, after cutting the sampled metal sample, this analytical cut surface is shot blasted to eliminate individual differences in the finished state and to achieve long-term A method for obtaining stable analysis values (Japanese Patent Publication No. 60-15018) has been proposed.

【0007】[0007]

【発明が解決しようとする課題】上記特公昭60−15
018号公報に開示の方法は、ショットブラストするこ
とにより金属試料の表面状態を均一化せしめようとした
ものであるが、表面粗さが均一化しているかどうかは不
明である。また、この方法では、低含有領域(含有量1
%前後あるいは1%未満)の分析精度は従来法(ベルト
サンダ仕上げ)と変わらないことを確認しているが、表
面粗さの影響が顕著な高含有量成分の分析精度について
は言及されておらず、分析精度の向上はできない。
[Problems to be Solved by the Invention] Japanese Patent Publication No. 60-15
The method disclosed in Japanese Patent Laid-Open No. 018 discloses an attempt to make the surface condition of a metal sample uniform by shot blasting, but it is unknown whether the surface roughness is made uniform. In addition, in this method, a low content area (content 1
% Or less than 1%) has been confirmed to be the same as that of the conventional method (belt sander finishing), but no mention has been made of the analysis accuracy of high content components where the effect of surface roughness is remarkable. Therefore, analysis accuracy cannot be improved.

【0008】一般的には、分析精度維持のため、研磨作
業の標準化によって一定の精度内となるよう管理される
が、ステンレス鋼中のCr、Niのごとく高含有量成分
については、製鋼過程での高価な合金鉄使用量の削減の
ため、分析精度の向上が望まれている。
[0008] Generally, in order to maintain the accuracy of analysis, standardization of polishing work is performed so that the accuracy is kept within a certain level. However, for high content components such as Cr and Ni in stainless steel, the steel is produced during the steelmaking process. In order to reduce the amount of expensive ferro-alloy used in, the accuracy of analysis is desired to be improved.

【0009】この発明の目的は、上記従来技術の欠点を
解消し、金属試料表面の仕上げ状態の影響を排除し、ス
テンレス鋼中のCr、Niのごとき高含有量成分につい
ても高精度で定量できる蛍光X線分析方法を提供するこ
とにある。
The object of the present invention is to solve the above-mentioned drawbacks of the prior art, eliminate the influence of the finish state of the surface of a metal sample, and quantify with high accuracy even high content components such as Cr and Ni in stainless steel. It is to provide a fluorescent X-ray analysis method.

【0010】[0010]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく、より簡便な方法について実験検討を重
ね、同一試料で測定面の表面粗さを意図的に変化させた
場合の蛍光X線分析値が、前記測定面の表面粗さと強い
相関関係にあること、および試料が異なり測定対象元素
の含有量が変化した場合は、測定面の表面粗さと蛍光X
線分析値の回帰係数が変化するが、同様に強い相関関係
にあることを見い出し、かつ、回帰係数の変化は、蛍光
X線分析値レベルより一次回帰式によって求めることが
可能であるという知見に基づき、測定面の表面粗さによ
る蛍光X線分析値の補正を行うことによって、測定面の
表面粗さに起因する蛍光X線分析値のバラツキを低減で
きることを究明し、この発明に到達した。
Means for Solving the Problems In order to achieve the above object, the inventors of the present invention repeatedly conducted experiments and examinations on a simpler method, and when the surface roughness of the measurement surface was intentionally changed in the same sample. When the fluorescent X-ray analysis value has a strong correlation with the surface roughness of the measurement surface, and when the content of the element to be measured changes with different samples, the surface roughness of the measurement surface and the fluorescence X
Although the regression coefficient of the line analysis value changes, it was found that there is also a strong correlation, and the change in the regression coefficient can be obtained from the fluorescent X-ray analysis value level by a linear regression equation. Based on this, it was clarified that the variation of the fluorescent X-ray analysis value due to the surface roughness of the measurement surface can be reduced by correcting the fluorescent X-ray analysis value due to the surface roughness of the measurement surface, and the present invention was reached.

【0011】すなわちこの発明は、金属等の試料表面に
一次X線を照射し、試料中の元素から発生する固有X線
を分光結晶により分光して固有X線の強度を測定し、元
素の含有量を測定する蛍光X線分析方法において、予め
試料表面粗さと各測定元素の変化量との関係から各測定
元素の粗さ回帰係数演算式を求めておき、試料表面の表
面粗さを予め計測し、計測した表面粗さと各測定元素の
粗さ回帰係数演算式から計算される補正値によって、蛍
光X線分析値を補正することを特徴とする蛍光X線分析
方法である。
That is, according to the present invention, the surface of a sample such as a metal is irradiated with primary X-rays, the characteristic X-rays generated from the elements in the sample are dispersed by a dispersive crystal, and the intensity of the characteristic X-rays is measured. In the fluorescent X-ray analysis method for measuring the amount, the roughness regression coefficient calculation formula of each measurement element is obtained in advance from the relationship between the sample surface roughness and the change amount of each measurement element, and the surface roughness of the sample surface is measured in advance. Then, the fluorescent X-ray analysis value is corrected by the measured surface roughness and the correction value calculated from the roughness regression coefficient calculation formula of each measurement element.

【0012】また、金属等の試料表面に一次X線を照射
し、試料中の元素から発生する固有X線を分光結晶によ
り分光して固有X線の強度を測定し、元素の含有量を測
定する蛍光X線分析方法において、前記金属等の試料表
面の表面粗さRaを予め計測し、予め実験により求めた
各測定元素の下記(1)式の粗さ回帰係数Aと計測した
表面粗さRaによって、下記(2)式により蛍光X線分
析値を補正することを特徴とする蛍光X線分析方法であ
る。 A=a×[X]i+b………………………………(1)式 [X]f=A×Ra+[X]i…………………………(2)式 ただし、A:粗さ回帰係数、a、b:実験により求めら
れる元素毎の定数、[X]i:蛍光X線分析値(%)、
[X]f:補正後蛍光X線分析値(%)、Ra:試料表
面粗さ(μm)
Further, the surface of a sample such as a metal is irradiated with primary X-rays, the characteristic X-rays generated from the elements in the sample are dispersed by a dispersive crystal, the intensity of the characteristic X-rays is measured, and the content of the element is measured. In the fluorescent X-ray analysis method described above, the surface roughness Ra of the sample surface of the metal or the like is measured in advance, and the roughness regression coefficient A of the following formula (1) of each measurement element obtained by an experiment and the measured surface roughness The fluorescent X-ray analysis method is characterized in that the fluorescent X-ray analysis value is corrected by Ra according to the following formula (2). A = a × [X] i + b ………………………… (1) Equation [X] f = A × Ra + [X] i …………………… (2) Equation However, A: roughness regression coefficient, a, b: constants for each element obtained by experiment, [X] i: fluorescent X-ray analysis value (%),
[X] f: corrected fluorescent X-ray analysis value (%), Ra: sample surface roughness (μm)

【0013】この発明においては、予め試料表面粗さと
各測定元素の変化量との関係から各測定元素の粗さ回帰
係数演算式を求めておき、試料表面の表面粗さを予め計
測し、計測した表面粗さと各測定元素の粗さ回帰係数演
算式から計算される補正値によって、蛍光X線分析値を
補正することによって、測定面の表面粗さに起因する蛍
光X線分析値のバラツキを低減でき、ステンレス鋼中の
Cr、Niのごとく高含有量成分についても高精度で定
量することができ、製鋼過程での高価な合金鉄使用量の
削減に寄与することができる。
In the present invention, the roughness regression coefficient arithmetic expression of each measurement element is obtained in advance from the relationship between the sample surface roughness and the change amount of each measurement element, and the surface roughness of the sample surface is measured in advance and measured. By correcting the fluorescent X-ray analysis value with the corrected surface roughness and the correction value calculated from the roughness regression coefficient calculation formula of each measurement element, the variation of the fluorescent X-ray analysis value due to the surface roughness of the measurement surface is corrected. It is possible to reduce the amount, and it is possible to quantify with high accuracy even high content components such as Cr and Ni in stainless steel, which can contribute to the reduction of the expensive alloy iron usage in the steel making process.

【0014】また、この発明においては、前記金属等の
試料表面の表面粗さRaを予め計測し、予め実験により
求めた各測定元素の前記(1)式の粗さ回帰係数Aと計
測した表面粗さRaによって、前記(2)式により蛍光
X線分析値を補正することによって、測定面の表面粗さ
に起因する蛍光X線分析値のバラツキを低減でき、ステ
ンレス鋼中のCr、Niのごとく高含有量成分について
も高精度で定量することができ、製鋼過程での高価な合
金鉄使用量の削減に寄与することができる。
Further, according to the present invention, the surface roughness Ra of the surface of the sample such as the metal is measured in advance, and the surface is measured with the roughness regression coefficient A of the formula (1) of each measurement element previously obtained by the experiment. By correcting the fluorescent X-ray analysis value by the expression (2) with the roughness Ra, the variation in the fluorescent X-ray analysis value due to the surface roughness of the measurement surface can be reduced, and the Cr and Ni content in the stainless steel can be reduced. As described above, the high content component can be quantified with high accuracy, and it can contribute to the reduction of the amount of expensive alloy iron used in the steelmaking process.

【0015】試料表面粗さの評価指標としては、JIS
B 0601−1982 表面粗さの定義と表示で
は、断面曲線、粗さ曲線の評価項目として微細な凹凸の
振幅に関する中心線平均粗さRa、最大高さRmax、
十点平均粗さRzの3種類が採用されているが、実験よ
り中心線平均粗さRaが最も蛍光X線分析値との相関が
強く、表面状態を的確に表しており、中心線平均粗さR
aを採用するのが適当である。
JIS is used as an evaluation index of sample surface roughness.
B 0601-1982 In the definition and display of the surface roughness, the center line average roughness Ra, the maximum height Rmax, and the amplitude of fine irregularities are evaluated as the evaluation items of the sectional curve and the roughness curve.
Although three types of ten-point average roughness Rz are adopted, the centerline average roughness Ra has the strongest correlation with the fluorescent X-ray analysis value from the experiment and accurately represents the surface state. R
It is appropriate to adopt a.

【0016】表面粗さの測定方法としては、触針法、レ
ーザ光による反射光分布の利用、鏡面反射率法、対比光
沢度法、スペックルパターン法、シーン現象の利用など
多数あるが、触針法、レーザ光による反射光分布の利用
を採用するのが適している。この発明の実験では、触針
法を採用したが、その繰り返し測定精度は、中心線平均
粗さRa1.9μmのときで±0.05μmであり、蛍
光X線分析値への影響は、表1に示すとおり、約Cr:
18%のときで0.006%程度と推定される。したが
って、中心線平均粗さRaの補正によって蛍光X線分析
値のバラツキは、低減することができる。
There are many methods for measuring surface roughness, such as a stylus method, use of reflected light distribution by laser light, specular reflectance method, contrast gloss method, speckle pattern method, and scene phenomenon. It is suitable to adopt the needle method or the use of the reflected light distribution by laser light. In the experiment of the present invention, the stylus method was adopted, but the repetitive measurement accuracy was ± 0.05 μm when the center line average roughness Ra was 1.9 μm, and the influence on the fluorescent X-ray analysis value is shown in Table 1. As shown in, about Cr:
It is estimated to be about 0.006% at 18%. Therefore, the variation of the fluorescent X-ray analysis value can be reduced by correcting the center line average roughness Ra.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【実施例】【Example】

実施例1 中心線平均粗さRaと蛍光X線分析値との関係を調査す
るため、表2に示すとおり、標準試料(同一組成の試料
12個)を3種類準備し、表3に示すとおり、研磨条件
を4段階に変更して各研磨条件で3個の研磨試料を調製
した。調製した試料No.1〜3の36個について、触
針法により中心線平均粗さRaを測定すると共に、表4
に示す条件でCr、Ni、Mnの蛍光X線分析を行い、
中心線平均粗さRaと蛍光X線分析値の関係を調査し
た。その結果を図1〜図12に示す。
Example 1 In order to investigate the relationship between the centerline average roughness Ra and the fluorescent X-ray analysis value, as shown in Table 2, three types of standard samples (12 samples of the same composition) were prepared, and as shown in Table 3. The polishing conditions were changed to 4 steps, and 3 polishing samples were prepared under each polishing condition. The prepared sample No. The center line average roughness Ra of 36 pieces of 1 to 3 was measured by the stylus method, and Table 4
X-ray fluorescence analysis of Cr, Ni, Mn is performed under the conditions shown in
The relationship between the centerline average roughness Ra and the fluorescent X-ray analysis value was investigated. The results are shown in FIGS.

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

【0021】[0021]

【表4】 [Table 4]

【0022】図1〜図12に示すとおり、中心線平均粗
さRaの値が大きくなる(試料表面が粗くなる)ほど、
蛍光X線分析値は低い値を示し、かつ強い相関関係にあ
る。また、研磨紙#100新と古のプロットから多数回
使用によって中心線平均粗さRaは低くなり、蛍光X線
分析値は高くなっている。さらに、Cr、Ni、Mn共
に、含有量が低くなるほど表面粗さと蛍光X線分析値と
の回帰係数(A)が小さくなっている。その関係を図示
したのが図4、図8、図12であり、蛍光X線分析値で
上記回帰係数(A)が計算できる。以上の結果から、下
記補正式を導き出した。 A=a×[X]i+b………………………………(1)式 [X]f=A×Ra+[X]i…………………………(2)式 ただし、A:粗さ回帰係数、a、b:実験により求めら
れる元素毎の定数、[X]i:蛍光X線分析値(%)、
[X]f:補正後蛍光X線分析値(%)、Ra:試料表
面粗さ(μm)
As shown in FIGS. 1 to 12, as the value of the centerline average roughness Ra becomes larger (the sample surface becomes rougher),
The X-ray fluorescence analysis shows a low value and has a strong correlation. Further, from the plots of the new and old abrasive paper # 100, the centerline average roughness Ra becomes low and the fluorescent X-ray analysis value becomes high after many uses. Further, the regression coefficients (A) between the surface roughness and the fluorescent X-ray analysis values are smaller as the contents of Cr, Ni, and Mn are lower. The relationship is illustrated in FIGS. 4, 8 and 12, and the regression coefficient (A) can be calculated by the fluorescent X-ray analysis value. From the above results, the following correction formula was derived. A = a × [X] i + b ………………………… (1) Equation [X] f = A × Ra + [X] i …………………… (2) Equation However, A: roughness regression coefficient, a, b: constants for each element obtained by experiment, [X] i: fluorescent X-ray analysis value (%),
[X] f: corrected fluorescent X-ray analysis value (%), Ra: sample surface roughness (μm)

【0023】実施例2 上記補正式の効果を確認するため、オンライン実試料1
0個の触針法による中心線平均粗さRa、前記表4に示
す条件でCr、Ni、Mnの蛍光X線分析および化学分
析を行い、蛍光X線分析値と化学分析値との差のバラツ
キを ̄R/d2で推定すると表5のとおりであった。
Example 2 In order to confirm the effect of the above correction formula, an online actual sample 1
Center line average roughness Ra by 0 stylus method, fluorescent X-ray analysis and chemical analysis of Cr, Ni, and Mn under the conditions shown in Table 4 above were carried out to find the difference between the fluorescent X-ray analysis value and the chemical analysis value. Table 5 shows the variation estimated by R / d 2 .

【0024】[0024]

【表5】 [Table 5]

【0025】表5に示すとおり、Cr、Niについて
は、中心線平均粗さRa補正した場合、蛍光X線分析の
分析精度が中心線平均粗さRa補正なしに比較して約4
0%向上している。Mnについては、中心線平均粗さR
a補正の効果が認められなかったが、その要因は粗さ回
帰係数(A)が小さいためである。したがって、この発
明における中心線平均粗さRa補正式の適用において
は、実験により求めた含有量の範囲にすべきであり、か
つ、Cr、Niのように高含有領域の元素に限られる。
As shown in Table 5, when the center line average roughness Ra is corrected for Cr and Ni, the analysis accuracy of the fluorescent X-ray analysis is about 4 as compared with the case where the center line average roughness Ra is not corrected.
It has improved by 0%. For Mn, centerline average roughness R
The effect of a correction was not recognized, but the reason is that the roughness regression coefficient (A) is small. Therefore, in the application of the centerline average roughness Ra correction formula in the present invention, the content should be within the range determined by experiments, and is limited to elements in the high content region such as Cr and Ni.

【0026】[0026]

【発明の効果】以上述べたとおり、この発明方法によれ
ば、オーステナイト系ステンレス鋼中のCr、Niおよ
びフェライト系ステンレス鋼中のCrのような高含有量
領域の元素に対し、蛍光X線分析の分析精度を約40%
向上させることができる。
As described above, according to the method of the present invention, fluorescent X-ray analysis is performed for elements in a high content region such as Cr and Ni in austenitic stainless steel and Cr in ferritic stainless steel. About 40% analysis accuracy
Can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1における試料No.1の中心線平均粗
さRaとCrの蛍光X線分析値との関係を示すグラフで
ある。
1 is a sample No. 1 in Example 1. FIG. It is a graph which shows the relationship between the center line average roughness Ra of 1 and the fluorescent X-ray-analysis value of Cr.

【図2】実施例1における試料No.2の中心線平均粗
さRaとCrの蛍光X線分析値との関係を示すグラフで
ある。
2 is a sample No. 1 in Example 1. FIG. It is a graph which shows the relationship between the center line average roughness Ra of 2 and the fluorescent X-ray-analysis value of Cr.

【図3】実施例1における試料No.3の中心線平均粗
さRaとCrの蛍光X線分析値との関係を示すグラフで
ある。
3 is a sample No. 1 in Example 1. FIG. 3 is a graph showing the relationship between the centerline average roughness Ra of No. 3 and the fluorescent X-ray analysis value of Cr.

【図4】実施例1におけるCrの蛍光X線分析値と中心
線平均粗さRa回帰係数との関係を示すグラフである。
FIG. 4 is a graph showing a relationship between a fluorescent X-ray analysis value of Cr and a centerline average roughness Ra regression coefficient in Example 1.

【図5】実施例1における試料No.1の中心線平均粗
さRaとNiの蛍光X線分析値との関係を示すグラフで
ある。
5 is a sample No. 1 in Example 1. FIG. 2 is a graph showing the relationship between the centerline average roughness Ra of No. 1 and the fluorescent X-ray analysis value of Ni.

【図6】実施例1における試料No.2の中心線平均粗
さRaとNiの蛍光X線分析値との関係を示すグラフで
ある。
6 is a sample No. 1 in Example 1. FIG. It is a graph which shows the relationship between the center line average roughness Ra of 2 and the fluorescent X-ray analysis value of Ni.

【図7】実施例1における試料No.3の中心線平均粗
さRaとNiの蛍光X線分析値との関係を示すグラフで
ある。
7 is a sample No. 1 in Example 1. FIG. 3 is a graph showing the relationship between the centerline average roughness Ra of No. 3 and the fluorescent X-ray analysis value of Ni.

【図8】実施例1におけるNiの蛍光X線分析値と中心
線平均粗さRa回帰係数との関係を示すグラフである。
FIG. 8 is a graph showing a relationship between a fluorescent X-ray analysis value of Ni and a centerline average roughness Ra regression coefficient in Example 1.

【図9】実施例1における試料No.1の中心線平均粗
さRaとMnの蛍光X線分析値との関係を示すグラフで
ある。
9 is a sample No. 1 in Example 1. FIG. It is a graph which shows the relationship between the center line average roughness Ra of 1 and the fluorescent X-ray analysis value of Mn.

【図10】実施例1における試料No.2の中心線平均
粗さRaとMnの蛍光X線分析値との関係を示すグラフ
である。
10 is a sample No. 1 in Example 1. FIG. It is a graph which shows the relationship between the center line average roughness Ra of 2 and the fluorescent X-ray analysis value of Mn.

【図11】実施例1における試料No.3の中心線平均
粗さRaとMnの蛍光X線分析値との関係を示すグラフ
である。
11 is a sample No. 1 in Example 1. FIG. 3 is a graph showing the relationship between the center line average roughness Ra of No. 3 and the fluorescent X-ray analysis value of Mn.

【図12】実施例1におけるMnの蛍光X線分析値と中
心線平均粗さRa回帰係数との関係を示すグラフであ
る。
FIG. 12 is a graph showing a relationship between a fluorescent X-ray analysis value of Mn and a centerline average roughness Ra regression coefficient in Example 1.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷口 卓史 和歌山県和歌山市湊1850番地 住友金属工 業株式会社和歌山製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Takushi Taniguchi 1850 Minato Minato, Wakayama, Wakayama Sumitomo Metal Industries, Ltd. Wakayama Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属等の試料表面に一次X線を照射し、
試料中の元素から発生する固有X線を分光結晶により分
光して固有X線の強度を測定し、元素の含有量を測定す
る蛍光X線分析方法において、予め試料表面粗さと各測
定元素の変化量との関係から各測定元素の粗さ回帰係数
演算式を求めておき、試料表面の表面粗さを予め計測
し、計測した表面粗さと各測定元素の粗さ回帰係数演算
式から計算される補正値によって、蛍光X線分析値を補
正することを特徴とする蛍光X線分析方法。
1. A surface of a sample such as a metal is irradiated with a primary X-ray,
In the fluorescent X-ray analysis method in which the characteristic X-rays generated from the elements in the sample are dispersed by a dispersive crystal to measure the intensity of the characteristic X-rays, and the content of the element is measured, the sample surface roughness and the change of each measured element are measured in advance. The roughness regression coefficient calculation formula of each measurement element is calculated from the relationship with the amount, the surface roughness of the sample surface is measured in advance, and it is calculated from the measured surface roughness and the roughness regression coefficient calculation formula of each measurement element. A fluorescent X-ray analysis method, wherein the fluorescent X-ray analysis value is corrected by the correction value.
【請求項2】 金属等の試料表面に一次X線を照射し、
試料中の元素から発生する固有X線を分光結晶により分
光して固有X線の強度を測定し、元素の含有量を測定す
る蛍光X線分析方法において、前記金属等の試料表面の
表面粗さRaを予め計測し、予め実験により求めた各測
定元素の下記(1)式の粗さ回帰係数Aと計測した表面
粗さRaによって、下記(2)式により蛍光X線分析値
を補正することを特徴とする蛍光X線分析方法。 A=a×[X]i+b………………………………(1)式 [X]f=A×Ra+[X]i…………………………(2)式 ただし、A:粗さ回帰係数、a、b:実験により求めら
れる元素毎の定数、[X]i:蛍光X線分析値(%)、
[X]f:補正後蛍光X線分析値(%)、Ra:試料表
面粗さ(μm)
2. Irradiating the surface of a sample such as a metal with a primary X-ray,
In the fluorescent X-ray analysis method for measuring the content of an element by measuring the intensity of the characteristic X-ray by dispersing the characteristic X-ray generated from the element in the sample with a dispersive crystal, the surface roughness of the sample surface of the metal or the like. Ra is measured in advance and the fluorescent X-ray analysis value is corrected by the following equation (2) according to the roughness regression coefficient A of the following equation (1) and the measured surface roughness Ra of each measurement element previously obtained by experiments. A fluorescent X-ray analysis method comprising: A = a × [X] i + b ………………………… (1) Equation [X] f = A × Ra + [X] i …………………… (2) Equation However, A: roughness regression coefficient, a, b: constants for each element obtained by experiment, [X] i: fluorescent X-ray analysis value (%),
[X] f: corrected fluorescent X-ray analysis value (%), Ra: sample surface roughness (μm)
JP19418195A 1995-07-05 1995-07-05 Fluorescent x-ray analyzing method Pending JPH0921767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19418195A JPH0921767A (en) 1995-07-05 1995-07-05 Fluorescent x-ray analyzing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19418195A JPH0921767A (en) 1995-07-05 1995-07-05 Fluorescent x-ray analyzing method

Publications (1)

Publication Number Publication Date
JPH0921767A true JPH0921767A (en) 1997-01-21

Family

ID=16320291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19418195A Pending JPH0921767A (en) 1995-07-05 1995-07-05 Fluorescent x-ray analyzing method

Country Status (1)

Country Link
JP (1) JPH0921767A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103460030A (en) * 2011-01-31 2013-12-18 新日铁住金株式会社 Steel type assessment method for steel material
CN105928963A (en) * 2016-04-14 2016-09-07 梧州市产品质量检验所 Method for detecting quality of raw coal
CN106537123A (en) * 2014-07-09 2017-03-22 杰富意钢铁株式会社 Method for analyzing nitrogen in metal samples, device for analyzing nitrogen in metal samples, method for adjusting nitrogen concentration in molten steel, and steel production method
CN107340379A (en) * 2017-06-21 2017-11-10 钢研纳克检测技术有限公司 A kind of metal material Fast Classification detection method of feature based quantitative elementary analysis

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103460030A (en) * 2011-01-31 2013-12-18 新日铁住金株式会社 Steel type assessment method for steel material
CN103460030B (en) * 2011-01-31 2015-12-02 新日铁住金株式会社 The type assessment method for steel material of steel
CN106537123A (en) * 2014-07-09 2017-03-22 杰富意钢铁株式会社 Method for analyzing nitrogen in metal samples, device for analyzing nitrogen in metal samples, method for adjusting nitrogen concentration in molten steel, and steel production method
CN106537123B (en) * 2014-07-09 2019-06-21 杰富意钢铁株式会社 The manufacturing method of the analysis method of nitrogen in test button, the analytical equipment of nitrogen in test button, the nitrogen concentration adjusting method in molten steel and steel
CN105928963A (en) * 2016-04-14 2016-09-07 梧州市产品质量检验所 Method for detecting quality of raw coal
CN107340379A (en) * 2017-06-21 2017-11-10 钢研纳克检测技术有限公司 A kind of metal material Fast Classification detection method of feature based quantitative elementary analysis
CN107340379B (en) * 2017-06-21 2019-07-23 钢研纳克检测技术股份有限公司 A kind of metal material Fast Classification detection method based on characteristic element quantitative analysis

Similar Documents

Publication Publication Date Title
Raynor Churchill Techniques of quantitative spectrographic analysis
Chandler Hardness testing
Putz et al. Methods for the measurement of ferrite content in multipass duplex stainless steel welds
JPH0921767A (en) Fluorescent x-ray analyzing method
Tobolski et al. Macroindentation hardness testing
WO2020183908A1 (en) Method for nondestructive assessment of steel
Robertson The effects of shot size on the residual stresses resulting from shot peening
TWI386639B (en) Method and device for analysing a coating of an auxiliary substance on a material to be transformed
KR20160058152A (en) Method and device for determining the abrasion properties of a coated flat product
US4372152A (en) Brinell hardness measuring system
JP6413327B2 (en) Evaluation method for carburized parts
JP3362511B2 (en) Rapid analysis method for alumina in steel
JP5526615B2 (en) Sample weight measurement method and apparatus, and hexavalent chromium analysis method and apparatus using the same
WO2023199591A1 (en) Emission spectroscopic analysis method for sb in metal material, method for measuring sb concentration in molten steel during refining, and method for manufacturing steel material
CN114002250B (en) Method for removing analysis peak interference of electronic probe line and application thereof
Vander Voort Measurement of extremely low inclusion contents by image analysis
JP2001281176A (en) High-accuracy analysis method for carbon in steel
Low et al. Technique to reduce bending issues in Rockwell B scale hardness reference blocks: preliminary results
US20060268284A1 (en) Method and apparatus for surface roughness measurement
JPH11352061A (en) Method for analyzing surface layer by emission spectrochemical analysis
JP2002097562A (en) Method for measuring coating thickness of thermal- sprayed roll
JPS5981545A (en) Identifying method of graphite exposed state of honing surface of cylinder liner made of cast iron
CN118829870A (en) Method for measuring Sb concentration in molten steel in metal material, method for measuring Sb concentration in molten steel in refining, and method for producing steel
JPH0933459A (en) X-ray fluorescence spectroscopy
Nanavati et al. An Experimental Comparative Review of Ferrite Measurement Techniques used in Duplex Stainless Steel (UNS S32205) Welds.