JP2015209581A - Surface-treated copper foil and laminate sheet - Google Patents

Surface-treated copper foil and laminate sheet Download PDF

Info

Publication number
JP2015209581A
JP2015209581A JP2014093003A JP2014093003A JP2015209581A JP 2015209581 A JP2015209581 A JP 2015209581A JP 2014093003 A JP2014093003 A JP 2014093003A JP 2014093003 A JP2014093003 A JP 2014093003A JP 2015209581 A JP2015209581 A JP 2015209581A
Authority
JP
Japan
Prior art keywords
copper foil
base material
plating layer
resin base
copper plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014093003A
Other languages
Japanese (ja)
Other versions
JP5756547B1 (en
Inventor
室賀 岳海
Takemi Muroga
岳海 室賀
千鶴 後藤
Chizuru Goto
千鶴 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SH Copper Products Co Ltd
Original Assignee
SH Copper Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SH Copper Products Co Ltd filed Critical SH Copper Products Co Ltd
Priority to JP2014093003A priority Critical patent/JP5756547B1/en
Priority to TW104110924A priority patent/TWI536878B/en
Priority to KR1020150046805A priority patent/KR101974687B1/en
Priority to CN201510161887.7A priority patent/CN105034478B/en
Application granted granted Critical
Publication of JP5756547B1 publication Critical patent/JP5756547B1/en
Publication of JP2015209581A publication Critical patent/JP2015209581A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique of improving mounting workability in mounting e.g. electronic parts on a flexible printed wiring board.SOLUTION: Surface-treated copper foil includes a copper foil substrate, a copper plating layer formed on the copper foil substrate and a roughened copper plating layer formed on the copper plating layer. When the surface-treated copper foil is stuck to both principal surfaces of a resin surface so that the surface-treated copper foils on both principal surfaces face each other and the surface on the side provided with the roughened copper plating layer comes in contact with the resin substrate and then the surface-treated copper foil is removed from both principal surfaces of the resin substrate, the resin substrate has a HAZE value of 80% or lower and a transparency of 70% or higher, and the peel strength between the surface-treated copper foil and the resin substrate is 0.6 N/mm or higher.

Description

本発明は、表面処理銅箔及び積層板に関する。   The present invention relates to a surface-treated copper foil and a laminate.

従来より、携帯電話等の電子機器の配線板として用いられるフレキシブルプリント配線板(FPC)は、例えば、銅箔と、銅箔の少なくともいずれかの主面上に設けられるポリイミドフィルム等の樹脂基材と、を備える積層板で形成されている。積層板には、エッチング等により所定箇所の銅箔を除去することで回路パターン(銅配線)が形成されている。FPCに電子部品等が実装される際、銅箔が除去された箇所の樹脂基材を介して(銅箔が除去された箇所の樹脂基材越しに)位置決めマークを視認し、電子部品等の実装位置の位置決めが行われる。従って、FPCには、銅箔が貼り合わされて除去された後の樹脂基材の透明性(以下では、単に「樹脂基材の透明性」とも言う。)が高いことが要求されている。そこで、樹脂基材の光透過率が30%となるように銅箔の表面粗さを調整したり、樹脂基材の光透過率が40%以上、樹脂基材のHAZE値(曇価)が30%以下となるように、銅箔の表面粗さを調整することが提案されている(例えば特許文献1〜3参照)。   Conventionally, a flexible printed wiring board (FPC) used as a wiring board of an electronic device such as a mobile phone is, for example, a resin base material such as a copper foil and a polyimide film provided on at least one main surface of the copper foil. And a laminated board provided with. A circuit pattern (copper wiring) is formed on the laminate by removing the copper foil at a predetermined location by etching or the like. When an electronic component or the like is mounted on the FPC, the positioning mark is visually recognized through the resin base material where the copper foil is removed (over the resin base material where the copper foil is removed). The mounting position is positioned. Therefore, the FPC is required to have high transparency of the resin base material after the copper foil is bonded and removed (hereinafter, also simply referred to as “transparency of the resin base material”). Therefore, the surface roughness of the copper foil is adjusted so that the light transmittance of the resin base material is 30%, the light transmittance of the resin base material is 40% or more, and the HAZE value (cloudiness value) of the resin base material is It has been proposed to adjust the surface roughness of the copper foil so as to be 30% or less (see, for example, Patent Documents 1 to 3).

特開2013−147688号公報JP 2013-147688 A 特許第5035220号公報Japanese Patent No. 5035220 特開2004−98659号公報JP 2004-98659 A

しかしながら、FPCに電子部品等が実装される際、樹脂基材と位置決めマークとは密着しておらず、所定の距離があけられている。従って、樹脂基材の光透過率、樹脂基材のHAZE値を調整しても、FPCに電子部品等を実装する際、樹脂基材越しに位置決めマークを視認することができなかったり、視認することが難しいことがある。その結果、実装作業性が低下してしまう。   However, when an electronic component or the like is mounted on the FPC, the resin base material and the positioning mark are not in close contact with each other, and a predetermined distance is provided. Therefore, even if the light transmittance of the resin base material and the HAZE value of the resin base material are adjusted, the positioning mark cannot or cannot be visually recognized through the resin base material when an electronic component or the like is mounted on the FPC. It can be difficult. As a result, the mounting workability is degraded.

本発明は、上記課題を解決し、フレキシブルプリント配線板に電子部品等を実装する際の実装作業性を向上させる技術を提供することを目的とする。   An object of the present invention is to solve the above-mentioned problems and to provide a technique for improving the mounting workability when mounting an electronic component or the like on a flexible printed wiring board.

本発明の一態様によれば、銅箔基材と、前記銅箔基材上に形成された銅めっき層と、前記銅めっき層上に形成された粗化銅めっき層と、を備える表面処理銅箔であって、樹脂基材の両主面上に、前記表面処理銅箔を対向させて、前記粗化銅めっき層が設けられた側の面が前記樹脂基材に接するように前記表面処理銅箔を貼り合わせた後、前記樹脂基材の両主面上から前記表面処理銅箔を除去したとき、前記樹脂基材のHAZE値が80%以下、透明度が70%以上となり、前記表面処理銅箔と前記樹脂基材との間のピール強度が0.6N/mm以上となるように形成されている表面処理銅箔が提供される。   According to one aspect of the present invention, a surface treatment comprising a copper foil base material, a copper plating layer formed on the copper foil base material, and a roughened copper plating layer formed on the copper plating layer. It is a copper foil, the surface treated with the surface-treated copper foil facing both main surfaces of the resin base material, and the surface on which the roughened copper plating layer is provided is in contact with the resin base material. After bonding the treated copper foil, when the surface-treated copper foil is removed from both main surfaces of the resin substrate, the resin substrate has a HAZE value of 80% or less and a transparency of 70% or more. There is provided a surface-treated copper foil that is formed so that a peel strength between the treated copper foil and the resin base material is 0.6 N / mm or more.

本発明の他の態様によれば、銅箔基材、前記銅箔基材上に形成された銅めっき層、及び前記銅めっき層上に形成された粗化銅めっき層、を備える表面処理銅箔と、前記粗化銅めっき層が設けられた側の面に接するように形成された樹脂基材と、を備え、前記表面処理銅箔は、前記樹脂基材の両主面上に、前記表面処理銅箔を対向させて前記表面処理銅箔を貼り合わせた後、前記樹脂基材の両主面上から前記表面処理銅箔を除去したとき、前記樹脂基材のHAZE値が80%以下、透明度が70%以上となり、前記表面処理銅箔と前記樹脂基材との間のピール強度が0.6N/mm以上となるように形成されている積層板が提供される。   According to another aspect of the present invention, a surface-treated copper comprising a copper foil substrate, a copper plating layer formed on the copper foil substrate, and a roughened copper plating layer formed on the copper plating layer. A foil and a resin base formed so as to be in contact with the surface on which the roughened copper plating layer is provided, and the surface-treated copper foil is formed on both main surfaces of the resin base, After bonding the surface-treated copper foil with the surface-treated copper foil facing each other, when the surface-treated copper foil is removed from both main surfaces of the resin substrate, the HAZE value of the resin substrate is 80% or less. Further, there is provided a laminate having a transparency of 70% or higher and a peel strength between the surface-treated copper foil and the resin base material of 0.6 N / mm or higher.

本発明によれば、フレキシブルプリント配線板に電子部品等を実装する際の実装作業性を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the mounting workability | operativity at the time of mounting an electronic component etc. on a flexible printed wiring board can be improved.

本発明の一実施形態にかかる表面処理銅箔を備える積層板の概略断面図である。It is a schematic sectional drawing of a laminated board provided with the surface treatment copper foil concerning one Embodiment of this invention. 樹脂基材のHAZE値の測定装置を示す概略図である。It is the schematic which shows the measuring apparatus of the HAZE value of a resin base material. (a)は樹脂基材の透明度の測定装置を示す概略図であり、(b)は(a)に示す装置に用いられるセンサの平面概略図である。(A) is the schematic which shows the measuring apparatus of the transparency of a resin base material, (b) is a plane schematic diagram of the sensor used for the apparatus shown to (a). 本発明の一実施形態にかかる表面処理銅箔及び積層板の製造工程を示すフロー図である。It is a flowchart which shows the manufacturing process of the surface treatment copper foil and laminated sheet concerning one Embodiment of this invention. 本発明の一実施形態にかかる積層板で形成したフレキシブルプリント配線板に電子部品等を実装する際の様子を示す概略図である。It is the schematic which shows a mode at the time of mounting an electronic component etc. on the flexible printed wiring board formed with the laminated board concerning one Embodiment of this invention.

(発明者等が得た知見)
まず、本発明の実施形態の説明に先立ち、発明者等が得た知見について説明する。FPC等の配線板には、銅箔基材及び銅箔基材のいずれかの主面上に設けられた粗化銅めっき層を有する表面処理銅箔と、樹脂基材と、を備える積層板(銅張積層板)が用いられている。積層板は、表面処理銅箔の粗化銅めっき層が設けられた側の面と、樹脂基材と、を貼り合わせて形成されている。例えば図5に示すように、FPC100に電子部品等を実装する際の電子部品等の実装位置の位置合わせは、光源101から光を照射しつつ、例えばCCDカメラ102等を用い、銅配線を形成するために表面処理銅箔が除去された箇所の樹脂基材越しに、実装位置の位置決めマーク103を視認して行われる。このため、表面処理銅箔が除去された箇所の樹脂基材には、透明性が高いことが要求されている。しかしながら、積層板を形成する際に樹脂基材と表面処理銅箔とが貼り合わされると、粗化銅めっき層により表面処理銅箔の表面に形成された凹凸が樹脂基材に転写されてしまうため、樹脂基材の透明性が低下してしまう。そこで、表面処理銅箔を貼り合わせて除去した後の樹脂基材のHAZE値や光透過率(以下では、これらをそれぞれ「樹脂基材のHAZE値」や「樹脂基材の光透過率」とも言う。)が所定の値となるように、表面処理銅箔の樹脂基材に貼り合わせられる側の面の表面粗さを調整している。なお、樹脂基材のHAZE値とは、樹脂基材を透過した全光線の光量に対する拡散透過光量(直進せずに拡散した光の量)の割合である。樹脂基材の光透過率は、光の反射や散乱を考慮せずに、平行光線で測定した値である。光の反射や散乱が多いと、樹脂基材の光透過率が低くなる。つまり、樹脂基材の光透過率は、樹脂基材を透過した全光線の光量に対する直進透過光量(拡散せずに直進した光の量)の割合と相関している。ただし、光透過率と直進透過光量とでは、測定機器及び測定方法が異なるため、光透過率の数値の絶対値と直進透過光量の割合の数値の絶対値とは一致しない。このように、樹脂基材のHAZE値と樹脂基材の透過率とはそれぞれ、樹脂基材自体の透明性(濁り度)を示す指標であり、表裏一体の関係にある。例えば、樹脂基材のHAZE値が大きくなると、樹脂基材の光透過率の値が小さくなり、樹脂基材のHAZE値が小さくなると、樹脂基材の光透過率の値が大きくなる。
(Knowledge obtained by the inventors)
First, prior to the description of the embodiment of the present invention, knowledge obtained by the inventors will be described. A wiring board such as an FPC is a laminated board comprising a surface-treated copper foil having a roughened copper plating layer provided on either main surface of a copper foil base material or a copper foil base material, and a resin base material. (Copper-clad laminate) is used. The laminated board is formed by bonding the surface of the surface-treated copper foil on which the roughened copper plating layer is provided and the resin base material. For example, as shown in FIG. 5, when mounting electronic components on the FPC 100, the mounting positions of the electronic components etc. are aligned by irradiating light from the light source 101 and using, for example, a CCD camera 102 to form a copper wiring. In order to achieve this, the positioning mark 103 at the mounting position is visually recognized over the resin substrate where the surface-treated copper foil has been removed. For this reason, it is requested | required that the resin base material of the location from which the surface treatment copper foil was removed has high transparency. However, when the resin base material and the surface-treated copper foil are bonded together when forming the laminate, the unevenness formed on the surface of the surface-treated copper foil by the roughened copper plating layer is transferred to the resin base material. Therefore, the transparency of the resin base material is lowered. Therefore, the HAZE value and light transmittance of the resin base material after the surface-treated copper foil is bonded and removed (hereinafter referred to as the “HAZE value of the resin base material” and the “light transmittance of the resin base material”, respectively). The surface roughness of the surface of the surface-treated copper foil to be bonded to the resin base material is adjusted so that the predetermined value is obtained. The HAZE value of the resin base material is the ratio of the diffuse transmitted light amount (the amount of light diffused without going straight) to the total light amount transmitted through the resin base material. The light transmittance of the resin substrate is a value measured with parallel rays without considering light reflection and scattering. When there is much reflection and scattering of light, the light transmittance of a resin base material will become low. That is, the light transmittance of the resin base material correlates with the ratio of the amount of linearly transmitted light (the amount of light that travels straight without being diffused) with respect to the amount of light of all rays that have passed through the resin base material. However, since the measuring device and the measuring method are different between the light transmittance and the linearly transmitted light amount, the absolute value of the numerical value of the light transmittance does not match the absolute value of the numerical value of the ratio of the linearly transmitted light amount. As described above, the HAZE value of the resin base material and the transmittance of the resin base material are indices indicating the transparency (turbidity) of the resin base material itself, and are in an integrated relationship. For example, when the HAZE value of the resin substrate increases, the light transmittance value of the resin substrate decreases, and when the HAZE value of the resin substrate decreases, the light transmittance value of the resin substrate increases.

実際にFPC100に電子部品等を実装する際、樹脂基材(FPC100)は、位置決めマーク103から離間した位置に配置されている(図5参照)。つまり、実際の実装工程では、樹脂基材と位置決めマーク103とが密着しているわけではない。このため、実際の実装工程では、光源101から樹脂基材に光を照射した際、樹脂基材を透過した光の一部が散乱してしまう。その結果、樹脂基材のHAZE値や光透過率が所定の値となるように表面処理銅箔を調整しても、実際の実装工程では、樹脂基材越しに位置決めマーク103を視認することが難しく、実装作業性が低下してしまうことがある。つまり、樹脂基材自身の透明性を評価する指標であり、樹脂基材を透過した光の散乱については考慮されていない樹脂基材のHAZE値や光透過率を制御するだけでは、実装作業性を向上させることができないことがある。本発明は、発明者が見出した上記知見に基づくものである。   When an electronic component or the like is actually mounted on the FPC 100, the resin base material (FPC 100) is disposed at a position separated from the positioning mark 103 (see FIG. 5). That is, in the actual mounting process, the resin base material and the positioning mark 103 are not in close contact with each other. For this reason, in the actual mounting process, when light is irradiated from the light source 101 to the resin base material, a part of the light transmitted through the resin base material is scattered. As a result, even if the surface-treated copper foil is adjusted so that the HAZE value and light transmittance of the resin base material become predetermined values, the positioning mark 103 can be visually recognized through the resin base material in the actual mounting process. It is difficult and the mounting workability may be reduced. In other words, it is an index for evaluating the transparency of the resin base material itself, and does not take into account scattering of light transmitted through the resin base material. By simply controlling the HAZE value and light transmittance of the resin base material, mounting workability is improved. May not be improved. The present invention is based on the above findings found by the inventors.

<本発明の一実施形態>
(1)表面処理銅箔及び積層板の構成
まず、本発明の一実施形態にかかる表面処理銅箔の構成について、図1を参照しながら説明する。図1は、本実施形態にかかる表面処理銅箔1を備える積層板10の概略断面図である。
<One Embodiment of the Present Invention>
(1) Structure of surface-treated copper foil and laminated board First, the structure of the surface-treated copper foil concerning one Embodiment of this invention is demonstrated, referring FIG. FIG. 1 is a schematic cross-sectional view of a laminate 10 provided with a surface-treated copper foil 1 according to this embodiment.

(表面処理銅箔)
図1に示すように、本実施形態にかかる表面処理銅箔1は、銅箔基材2と、銅箔基材2上に形成された銅めっき層3と、銅めっき層3上に形成された粗化銅めっき層4と、を備えている。また、表面処理銅箔1は、樹脂基材としての例えばポリイミド樹脂フィルムの両主面上に、表面処理銅箔1を対向させて、粗化銅めっき層4の側が樹脂基材に接するように表面処理銅箔1を貼り合わせた後、表面処理銅箔1を樹脂基材から除去したとき、樹脂基材のHAZE値が80%以下、透明度が70%以上となり、表面処理銅箔と樹脂基材との間のピール強度が0.6N/mmとなるように形成されている。
(Surface treated copper foil)
As shown in FIG. 1, a surface-treated copper foil 1 according to this embodiment is formed on a copper foil base 2, a copper plating layer 3 formed on the copper foil base 2, and a copper plating layer 3. And a roughened copper plating layer 4. Moreover, the surface-treated copper foil 1 makes the surface-treated copper foil 1 face each other on both main surfaces of, for example, a polyimide resin film as a resin base, and the roughened copper plating layer 4 side is in contact with the resin base. After bonding the surface-treated copper foil 1, when the surface-treated copper foil 1 is removed from the resin substrate, the resin substrate has a HAZE value of 80% or less and a transparency of 70% or more. It is formed so that the peel strength between the materials is 0.6 N / mm.

樹脂基材のHAZE値(曇価)とは、樹脂基材の見た目の透明性(見た目の濁り度)を評価する指標である。つまり、樹脂基材のHAZE値とは、樹脂基材を透過した全光線の光量(全光線透過光量)に対する樹脂基材の拡散透過光の光量(拡散透過光量)の割合である。樹脂基材の両主面上に、2つの表面処理銅箔1を粗化銅めっき層4の側が樹脂基材に接するとともに、2つの表面処理銅箔1をそれぞれ対向させて貼り合わせた後、例えばエッチング等により表面処理銅箔1を除去した樹脂基材(以下では、単に「エッチング後の樹脂基材」とも言う。)のHAZE値を測定することで、エッチング後の樹脂基材と位置決めマーク(認識マーク、アライメントマーク)とを密着させたとき、エッチング後の樹脂基材を介して(エッチング後の樹脂基材越しに)位置決めマークを視認できるか否かを評価できる。   The HAZE value (cloudiness value) of the resin base material is an index for evaluating the apparent transparency (apparent turbidity) of the resin base material. That is, the HAZE value of the resin base material is the ratio of the amount of diffuse transmitted light (diffuse transmitted light amount) of the resin base material to the amount of total light transmitted through the resin base material (total light transmitted light amount). After bonding the two surface-treated copper foils 1 on both main surfaces of the resin base material, the surface of the roughened copper plating layer 4 is in contact with the resin base material and the two surface-treated copper foils 1 are opposed to each other, For example, by measuring the HAZE value of a resin base material (hereinafter, also simply referred to as “resin base material after etching”) from which the surface-treated copper foil 1 has been removed by etching or the like, the resin base material and positioning mark after etching are measured. When the (recognition mark and alignment mark) are brought into close contact with each other, it can be evaluated whether or not the positioning mark can be visually recognized through the etched resin base material (over the etched resin base material).

HAZE値の測定は、例えば図2に示す測定装置20を用いて行われる。例えば、HAZE値は、積分球21と、光源22と、検出器23と、を備える装置で測定される。積分球21の内周面は、光源22から出射されて光導入口21aから積分球21内に導入された光を一様に拡散(反射)させるように構成されている。積分球21には、光源22からの光を導入する光導入口21aと、光導入口21aに対向する位置に設けられ、光を排出する光排出口21bと、が壁を貫通するように設けられている。光排出口21bには、光排出口21bを塞ぐ蓋体24が設けられている。蓋体24の積分球21の内側に位置する面は、積分球21内に導入された光を拡散(反射)させるように構成されている。   The measurement of the HAZE value is performed using, for example, a measuring apparatus 20 shown in FIG. For example, the HAZE value is measured by an apparatus including an integrating sphere 21, a light source 22, and a detector 23. The inner peripheral surface of the integrating sphere 21 is configured to uniformly diffuse (reflect) the light emitted from the light source 22 and introduced into the integrating sphere 21 from the light entrance 21a. The integrating sphere 21 is provided with a light inlet 21a for introducing light from the light source 22 and a light outlet 21b provided at a position facing the light inlet 21a and for discharging light so as to penetrate the wall. It has been. The light outlet 21b is provided with a lid 24 that closes the light outlet 21b. The surface located inside the integrating sphere 21 of the lid 24 is configured to diffuse (reflect) the light introduced into the integrating sphere 21.

積分球21の外側であって、光導入口21aと対向する位置には、光源22が配置されている。光源22は、例えば光源22の光軸と光導入口21aの中心位置とが一致するように配置されている。光源22は、光の出射位置と光導入口21aの中心位置との間の距離Lが、実装距離と一致するように配置されているとよい。しかしながら、光源22は、距離Lと実装距離とが一致するように配置されていなくてもよい。なお、実装距離とは、後述の積層板10に電子部品等が実装される際の樹脂基材11と光源22との間の距離を言う。検出器23は、光源22から出射されて光導入口21aから積分球21内に導入された光の量を測定するように構成されている。   A light source 22 is disposed outside the integrating sphere 21 and at a position facing the light entrance 21a. The light source 22 is disposed, for example, so that the optical axis of the light source 22 and the center position of the light entrance 21a coincide. The light source 22 is preferably arranged such that the distance L between the light emission position and the center position of the light entrance 21a matches the mounting distance. However, the light source 22 may not be arranged so that the distance L and the mounting distance coincide with each other. The mounting distance refers to a distance between the resin base material 11 and the light source 22 when an electronic component or the like is mounted on a laminated plate 10 described later. The detector 23 is configured to measure the amount of light emitted from the light source 22 and introduced into the integrating sphere 21 from the light entrance 21a.

樹脂基材のHAZE値の測定は、以下のように行う。まず、光導入口21aに測定対象である樹脂基材25を配置する。例えば、積分球21の外側から光導入口21aを塞ぐように、樹脂基材25を配置する。そして、蓋体24により光排出口21bを塞いだ(閉じた)状態で、光源22から光を照射し、樹脂基材25を透過して積分球21内に導入された光の量(全光線透過光量)を検出器23で測定する。続いて、蓋体24を外し、光排出口21bを開いた状態で、光源22から光を照射し、樹脂基材25を透過して積分球21内に導入された光のうち、光排出口21bから排出されなかった光の量(拡散透過光量)を測定する。そして、下記(数1)から測定対象である樹脂基材25のHAZE値を算出する。
(数1)
HAZE値(%)=(拡散透過光量/全光線透過光量)×100
The measurement of the HAZE value of the resin base material is performed as follows. First, the resin base material 25 which is a measurement object is disposed at the light entrance 21a. For example, the resin base material 25 is disposed so as to block the light entrance 21 a from the outside of the integrating sphere 21. Then, in a state where the light outlet 21 b is closed (closed) by the lid 24, light is emitted from the light source 22, passes through the resin base material 25, and is introduced into the integrating sphere 21 (total light ray). The amount of transmitted light) is measured by the detector 23. Subsequently, with the lid 24 removed and the light outlet 21 b opened, light is emitted from the light source 22, out of the light introduced through the resin base material 25 and introduced into the integrating sphere 21. The amount of light not emitted from 21b (diffuse transmitted light amount) is measured. And the HAZE value of the resin base material 25 which is a measuring object is calculated from the following (Equation 1).
(Equation 1)
HAZE value (%) = (diffuse transmitted light amount / total light transmitted light amount) × 100

透明度(CLARITY)とは、樹脂基材を透過した光の指向性を評価する指標である。特に、透明度とは、樹脂基材を透過して直進した光の指向性を評価する指標である。つまり、透明度とは、樹脂基材を透過して直進した光の散乱光(狭角度散乱光)を検出することで、樹脂基材の透明度を評価するものである。エッチング後の樹脂基材の透明度を測定することで、エッチング後の樹脂基材が位置決めマークから離間した位置に配置されているとき(つまり、エッチング後の樹脂基材と位置決めマークとが密着していないとき)、エッチング後の樹脂基材を介して位置決めマークを視認できるか否かを評価できる。   Transparency (CLARY) is an index for evaluating the directivity of light transmitted through a resin base material. In particular, the transparency is an index for evaluating the directivity of light that has traveled straight through the resin base material. That is, the transparency is to evaluate the transparency of the resin base material by detecting the scattered light (narrow angle scattered light) of light that has passed straight through the resin base material. By measuring the transparency of the resin base material after etching, when the resin base material after etching is located at a position away from the positioning mark (that is, the resin base material after etching and the positioning mark are in close contact with each other). It is possible to evaluate whether the positioning mark can be visually recognized through the resin base material after etching.

透明度の測定は、例えば図3(a)に示す測定装置30を用いて行われる。図3に示す測定装置30は、光排出口21bにセンサ31を設けたこと以外は、図2に示すHAZE値の測定装置20と同一である。測定装置30のセンサ31は、円板状のセンターセンサ31aと、円環状のリングセンサ31bとを備えている。図3(b)に示すように、リングセンサ31bは、センターセンサ31aの外周を囲うように設けられている。   The measurement of transparency is performed using, for example, a measuring device 30 shown in FIG. The measuring apparatus 30 shown in FIG. 3 is the same as the HAZE value measuring apparatus 20 shown in FIG. 2 except that a sensor 31 is provided at the light outlet 21b. The sensor 31 of the measuring device 30 includes a disc-shaped center sensor 31a and an annular ring sensor 31b. As shown in FIG. 3B, the ring sensor 31b is provided so as to surround the outer periphery of the center sensor 31a.

樹脂基材の透明度の測定は、以下のように行う。まず、光源22の光の出射位置に測定対象である樹脂基材25を配置する。そして、蓋体24を設けずに、光源22から光を照射し、樹脂基材25を透過して光導入口21aから積分球21内に導入された光をセンターセンサ31aとリングセンサ31bとでそれぞれ受光する。センターセンサ31aで受光した光量(IC)と、リングセンサ31bで受光した光量(IR)と、を用い、下記(数2)から測定対象である樹脂基材25の透明度を算出する。
(数2)
透明度(%)={(IC−IR)/(IC+IR)}×100
The measurement of the transparency of the resin substrate is performed as follows. First, the resin base material 25 that is the measurement target is disposed at the light emission position of the light source 22. Then, without providing the lid 24, the light emitted from the light source 22, the light transmitted through the resin base material 25 and introduced into the integrating sphere 21 from the light inlet 21 a is transmitted by the center sensor 31 a and the ring sensor 31 b Each receives light. Using the light quantity (IC) received by the center sensor 31a and the light quantity (IR) received by the ring sensor 31b, the transparency of the resin base material 25 to be measured is calculated from the following (Equation 2).
(Equation 2)
Transparency (%) = {(IC−IR) / (IC + IR)} × 100

ピール強度とは、樹脂基材と表面処理銅箔との間の密着性を評価する指標である。ピール強度が高いほど、密着性が高いことを示す。   The peel strength is an index for evaluating the adhesion between the resin base material and the surface-treated copper foil. Higher peel strength indicates higher adhesion.

(銅箔基材)
上述したように、本実施形態にかかる表面処理銅箔1は、銅箔基材2を備えている。銅箔基材2として、例えば圧延銅箔や電解銅箔が用いられる。銅箔基材2として、電解銅箔よりも耐屈曲性に優れ、繰り返して折り曲げても破断しにくい圧延銅箔が用いられるとよりよい。圧延銅箔の形成材料として、例えば無酸素銅(OFC:Oxygen-Free Copper)やタフピッチ銅(TPC:Tough-Pitch Copper)の純銅が用いられている。無酸素銅とは、JIS C1020やJIS H3100等に規定する純度が99.96%以上の銅材である。無酸素銅には、例えば数ppm程度の酸素が含有されていてもよい。つまり、無酸素銅は、酸素含有量がゼロでなくてもよい。タフピッチ銅とは、例えばJIS C1100やJIS H3100等に規定する純度が99.9%以上の銅材である。タフピッチ銅には、例えば100ppm〜600ppm程度の酸素が含有されていてもよい。圧延銅箔の形成材料として、無酸素銅やタフピッチ銅に、微量のスズ(Sn)や銀(Ag)等の所定の添加材が添加された希薄銅合金が用いられてもよい。これにより、圧延銅箔の耐熱性等を向上させることができる。
(Copper foil base material)
As described above, the surface-treated copper foil 1 according to this embodiment includes the copper foil base material 2. As the copper foil base material 2, for example, a rolled copper foil or an electrolytic copper foil is used. As the copper foil base material 2, it is better to use a rolled copper foil that is superior in bending resistance than the electrolytic copper foil and is not easily broken even if it is repeatedly bent. As a material for forming the rolled copper foil, for example, pure copper such as oxygen-free copper (OFC) or tough pitch copper (TPC) is used. Oxygen-free copper is a copper material having a purity specified in JIS C1020, JIS H3100, etc. of 99.96% or higher. The oxygen-free copper may contain, for example, about several ppm of oxygen. That is, oxygen-free copper does not have to have an oxygen content of zero. Tough pitch copper is, for example, a copper material having a purity of 99.9% or more as defined in JIS C1100, JIS H3100, or the like. The tough pitch copper may contain, for example, about 100 ppm to 600 ppm of oxygen. As a material for forming the rolled copper foil, a dilute copper alloy in which a predetermined amount of additive such as tin (Sn) or silver (Ag) is added to oxygen-free copper or tough pitch copper may be used. Thereby, the heat resistance etc. of rolled copper foil can be improved.

(銅めっき層)
銅箔基材2のいずれかの主面上には、例えば電解めっき等により銅めっき層3が形成されている。銅めっき層3は、平滑銅めっき層であり、粗化銅めっき層4の下地層として機能する。銅めっき層3には、所定量の硫黄元素(S)が含まれている。つまり、銅めっき層3は、メルトカプト基を有する有機化合物(有機硫黄化合物)が添加された銅めっき液を用いて形成されている。以下では、銅めっき層3を形成する銅めっき液を、単に「銅めっき液」という。メルトカプト基を有する有機化合物として、例えばビス(3−スルホプロピル)ジスルフィド(SPS)が用いられる。
(Copper plating layer)
A copper plating layer 3 is formed on any main surface of the copper foil substrate 2 by, for example, electrolytic plating. The copper plating layer 3 is a smooth copper plating layer and functions as a base layer for the roughened copper plating layer 4. The copper plating layer 3 contains a predetermined amount of sulfur element (S). That is, the copper plating layer 3 is formed using a copper plating solution to which an organic compound having a meltcapto group (organic sulfur compound) is added. Hereinafter, the copper plating solution for forming the copper plating layer 3 is simply referred to as “copper plating solution”. As the organic compound having a meltcapto group, for example, bis (3-sulfopropyl) disulfide (SPS) is used.

有機硫黄化合物の添加量は、例えば5mg/L以上60mg/L以下であるとよく、5mg/L以上45mg/L以下であるとよりよく、5mg/L以上30mg/L以下であるとさらによい。有機硫黄化合物の添加量が5mg/L未満であると、樹脂基材の透明性を高くしつつ、密着性の低下を抑制する効果が十分に得られないことがある。有機硫黄化合物の添加量を5mg/L以上とすることで、これを解決でき、樹脂基材の透明性を高くしつつ、密着性の低下を抑制できる。つまり、所望の樹脂基材の透明性と、所望の密着性と、を得ることができる。しかしながら、有機硫黄化合物の添加量が60mg/Lを超えると、銅めっき液に対する有機硫黄化合物の溶解性が低下し、有機硫黄化合物を添加する効果を十分に得られないことがある。有機硫黄化合物は高価な原料であるため、添加量が60mg/Lを超えると、表面処理銅箔の製造コストが高くなってしまう。有機硫黄化合物の添加量を60mg/L以下とすることで、これらを解消できる。つまり、有機硫黄化合物の溶解性の低下を抑制できるとともに、製造コストの上昇を抑制できる。有機硫黄化合物の添加量を45mg/Lとすることで、有機硫黄化合物の溶解性の低下をより抑制できるとともに、製造コストの上昇をより抑制できる。有機硫黄化合物の添加量を30mg/Lとすることで、有機硫黄化合物の溶解性の低下をさらに抑制できるとともに、製造コストの上昇をさらに抑制できる。   The addition amount of the organic sulfur compound is, for example, preferably 5 mg / L or more and 60 mg / L or less, more preferably 5 mg / L or more and 45 mg / L or less, and further preferably 5 mg / L or more and 30 mg / L or less. When the addition amount of the organic sulfur compound is less than 5 mg / L, the effect of suppressing the decrease in adhesion may not be sufficiently obtained while increasing the transparency of the resin base material. By making the addition amount of the organic sulfur compound 5 mg / L or more, this can be solved, and the decrease in adhesion can be suppressed while increasing the transparency of the resin base material. That is, it is possible to obtain desired transparency of the resin substrate and desired adhesion. However, when the addition amount of the organic sulfur compound exceeds 60 mg / L, the solubility of the organic sulfur compound in the copper plating solution is lowered, and the effect of adding the organic sulfur compound may not be sufficiently obtained. Since an organic sulfur compound is an expensive raw material, when the addition amount exceeds 60 mg / L, the production cost of the surface-treated copper foil becomes high. These can be eliminated by making the addition amount of the organic sulfur compound 60 mg / L or less. That is, a decrease in solubility of the organic sulfur compound can be suppressed, and an increase in manufacturing cost can be suppressed. By making the addition amount of the organic sulfur compound 45 mg / L, it is possible to further suppress a decrease in solubility of the organic sulfur compound and to further suppress an increase in manufacturing cost. By making the addition amount of the organic sulfur compound 30 mg / L, it is possible to further suppress the decrease in solubility of the organic sulfur compound and further suppress the increase in manufacturing cost.

また、銅めっき液には、界面活性剤、レベリング剤、塩化物イオン等が添加されていてもよい。   Moreover, surfactant, a leveling agent, a chloride ion, etc. may be added to the copper plating solution.

界面活性剤として、ポリエチレングリコール、ポリプロピレングリコール、ポリオキシアルキレンエーテル等のいずれかが用いられる。具体的には、界面活性剤として、ポリエチレングリコール、ポリプロピレングリコール、ポリオキシアルキレンエーテルのいずれかを主成分とする薬液が用いられる。界面活性剤として、例えば荏原ユージライト株式会社製のCU−BRITE TH−RIII(登録商標)シリーズの界面活性剤薬液が用いられる。界面活性剤の添加量は例えば1ml/L以上4ml/L以下であるとよい。   As the surfactant, any of polyethylene glycol, polypropylene glycol, polyoxyalkylene ether and the like is used. Specifically, as the surfactant, a chemical solution mainly composed of polyethylene glycol, polypropylene glycol, or polyoxyalkylene ether is used. As the surfactant, for example, a CU-BRITE TH-RIII (registered trademark) series surfactant chemical solution manufactured by Sugawara Eugleite Co., Ltd. is used. The addition amount of the surfactant is preferably 1 ml / L or more and 4 ml / L or less, for example.

レベリング剤として、ジアリルジアルキルアンモニウムアルキルサルフェイト等が用いられる。具体的には、レベリング剤として、ジアリルジアルキルアンモニウムアルキルサルフェイト等を主成分とする薬液が用いられる。また、レベリング剤として、例えば荏原ユージライト株式会社製のCU−BRITE TH−RIIIシリーズ等の高分子炭化水素を主成分とするレベリング剤薬液を用いてもよい。レベリング剤としてのCU−BRITE TH−RIIIシリーズが用いられる場合、レベリング剤の添加量は例えば3ml/L以上10ml/L以下であるとよい。   As the leveling agent, diallyldialkylammonium alkyl sulfate or the like is used. Specifically, a chemical solution containing diallyldialkylammonium alkyl sulfate as a main component is used as the leveling agent. Further, as the leveling agent, for example, a leveling agent chemical solution mainly composed of a high molecular weight hydrocarbon such as CU-BRITE TH-RIII series manufactured by Ebara Eugene Corporation may be used. When the CU-BRITE TH-RIII series is used as the leveling agent, the amount of the leveling agent added may be, for example, 3 ml / L or more and 10 ml / L or less.

塩化物イオンとして、例えば塩素イオンを含む薬液(つまり塩酸、HCl水溶液)が用いられる。塩酸の添加量は例えば0.05ml/L以上0.3ml/L以下であるとよい。   As the chloride ion, for example, a chemical solution containing chlorine ion (that is, hydrochloric acid, HCl aqueous solution) is used. The amount of hydrochloric acid added is preferably 0.05 ml / L or more and 0.3 ml / L or less, for example.

銅めっき層3は、厚さが例えば0.1μm以上0.6μm以下となるように形成されているとよい。これにより、エッチング後の樹脂基材のHAZE値をより低くするとともに、透明度をより高くできる。つまり、エッチング後の樹脂基材の透明性をより向上させることができる。銅めっき層3の厚さが0.1μm未満であると、銅めっき層3を設ける効果が得られず、エッチング後の樹脂基材の透明性が低下してしまう。銅めっき層3の厚さが0.6μmを超えると、銅箔基材2として例えば圧延銅箔が用いられる場合、銅箔基材2の再結晶が妨げられてしまい、銅箔基材2の耐屈曲性が低下してしまうことがある。   The copper plating layer 3 is preferably formed to have a thickness of, for example, 0.1 μm or more and 0.6 μm or less. Thereby, while making the HAZE value of the resin base material after an etching lower, transparency can be made higher. That is, the transparency of the resin base material after etching can be further improved. If the thickness of the copper plating layer 3 is less than 0.1 μm, the effect of providing the copper plating layer 3 cannot be obtained, and the transparency of the resin base material after etching is lowered. When the thickness of the copper plating layer 3 exceeds 0.6 μm, for example, when a rolled copper foil is used as the copper foil base material 2, recrystallization of the copper foil base material 2 is hindered. Flex resistance may be reduced.

(粗化銅めっき層)
銅めっき層3上には、粗化銅めっき層4が形成されている。これにより、アンカー効果が得られ、後述の積層板10における表面処理銅箔1と樹脂基材11との間の密着性(以下では、単に「密着性」とも言う。)を向上させることができる。粗化銅めっき層4は、主に複数の粗化粒で構成されている。粗化銅めっき層4は、粗化抜けが発生していない状態にあるとよい。例えば、粗化銅めっき層4を上面から見た際、銅めっき層3が露出しないように、粗化銅めっき層4が形成されているとよい。
(Roughened copper plating layer)
A roughened copper plating layer 4 is formed on the copper plating layer 3. As a result, an anchor effect is obtained, and the adhesion between the surface-treated copper foil 1 and the resin base material 11 in the laminate 10 described later (hereinafter, also simply referred to as “adhesion”) can be improved. . The roughened copper plating layer 4 is mainly composed of a plurality of roughened grains. The roughened copper plating layer 4 is preferably in a state where no roughening omission has occurred. For example, the roughened copper plating layer 4 may be formed so that the copper plating layer 3 is not exposed when the roughened copper plating layer 4 is viewed from above.

粗化銅めっき層4を形成する粗化粒は、例えば銅(Cu)(つまりCu単体)で形成されている。粗化粒は、例えば、Cuと、鉄(Fe)、モリブデン(Mo)、ニッケル(Ni)、コバルト(Co)、クロム(Cr)、亜鉛(Zn)又はタングステン(W)の少なくともいずれかの金属元素と、を含むめっき液を用いて形成されていてもよい。   The roughened grains forming the roughened copper plating layer 4 are made of, for example, copper (Cu) (that is, Cu alone). The roughened grains are, for example, Cu and at least one of iron (Fe), molybdenum (Mo), nickel (Ni), cobalt (Co), chromium (Cr), zinc (Zn), or tungsten (W). And a plating solution containing the element.

粗化銅めっき層4は、平均厚さが0.05μm以上0.30μm以下となるように形成されているとよい。粗化銅めっき層4の平均厚さとは、粗化銅めっき層4を平均に均したときの厚さである。これにより、樹脂基材の透明性を向上させつつ、密着性を維持できる。粗化銅めっき層4の平均厚さが0.05μm未満であると、粗化銅めっき層4を設けることによるアンカー効果を得ることができず、密着性が低下してしまう。粗化銅めっき層4の平均厚さが0.30μmを超えると、後述の積層板10を形成する際、樹脂基材11に転写される凹凸の大きさが大きくなる(例えば凹部の深さが深くなる)ため、樹脂基材の透明性が低下してしまう。   Roughened copper plating layer 4 is good to be formed so that average thickness may be 0.05 micrometer or more and 0.30 micrometer or less. The average thickness of the roughened copper plating layer 4 is the thickness when the roughened copper plating layer 4 is averaged. Thereby, adhesiveness can be maintained, improving the transparency of a resin base material. If the average thickness of the roughened copper plating layer 4 is less than 0.05 μm, the anchor effect due to the provision of the roughened copper plating layer 4 cannot be obtained, and the adhesion is deteriorated. When the average thickness of the roughened copper plating layer 4 exceeds 0.30 μm, the size of the unevenness transferred to the resin base material 11 becomes large when the laminated plate 10 described later is formed (for example, the depth of the concave portion is large). Therefore, the transparency of the resin base material is lowered.

(防錆層)
粗化銅めっき層4上には、所定厚さ(例えば1nm以上70nm以下)の防錆層(後処理めっき層)5が形成されているとよい。防錆層5は、所定のめっき液を用いて形成されている。これにより、表面処理銅箔1の耐熱性や耐薬品性等を向上させることができる。また、積層板10を形成した後、エッチングにより表面処理銅箔1の所定箇所を除去して銅配線を形成する際、表面処理銅箔1を容易に除去できる。
(Rust prevention layer)
On the roughened copper plating layer 4, a rust prevention layer (post-treatment plating layer) 5 having a predetermined thickness (for example, 1 nm or more and 70 nm or less) may be formed. The rust prevention layer 5 is formed using a predetermined plating solution. Thereby, the heat resistance, chemical resistance, etc. of the surface-treated copper foil 1 can be improved. Moreover, after forming the laminated board 10, when removing the predetermined location of the surface treatment copper foil 1 by etching and forming a copper wiring, the surface treatment copper foil 1 can be removed easily.

防錆層5は、例えば、銅箔基材2の側から順に、厚さが10nm以上50nm以下であるニッケル(Ni)めっき層と、厚さが1nm以上10nm以下である亜鉛(Zn)めっき層と、厚さが1nm以上10nm以下であるクロメート処理層(3価のクロム化成処理層)と、厚さが非常に薄い(極薄の)シランカップリング層と、を備えているとよい。Niめっき層が設けられると、積層板10が形成された際、表面処理銅箔1のCuが樹脂基材側へ拡散することを抑制できるとともに、表面処理銅箔1の耐熱性や耐薬品性等を向上させることができる。Znめっき層は、クロメート処理層やシランカップリング層を設けるための下地層として機能する。また、Znめっき層が設けられると、表面処理銅箔1の耐熱性をより向上させることができる。クロメート処理層及びシランカップリング層はそれぞれ、化成処理層(化成処理皮膜)としても機能する。シランカップリング層が設けられると、表面処理銅箔1と後述の樹脂基材11との化学的密着性を向上させることができるため、密着性をより向上させることができる。   The rust prevention layer 5 includes, for example, a nickel (Ni) plating layer having a thickness of 10 nm to 50 nm and a zinc (Zn) plating layer having a thickness of 1 nm to 10 nm in this order from the copper foil substrate 2 side. And a chromate treatment layer (trivalent chromium conversion treatment layer) having a thickness of 1 nm or more and 10 nm or less and a very thin (ultra-thin) silane coupling layer. When the Ni plating layer is provided, when the laminated plate 10 is formed, Cu of the surface-treated copper foil 1 can be prevented from diffusing to the resin base material side, and heat resistance and chemical resistance of the surface-treated copper foil 1 can be suppressed. Etc. can be improved. The Zn plating layer functions as a base layer for providing a chromate treatment layer or a silane coupling layer. Moreover, when a Zn plating layer is provided, the heat resistance of the surface-treated copper foil 1 can be further improved. Each of the chromate treatment layer and the silane coupling layer also functions as a chemical conversion treatment layer (chemical conversion treatment film). When the silane coupling layer is provided, the chemical adhesion between the surface-treated copper foil 1 and the resin base material 11 described later can be improved, so that the adhesion can be further improved.

(積層板)
本実施形態にかかる積層板(CCL:Copper Clad Laminate)10は、表面処理銅箔1の粗化銅めっき層4が設けられた側の面と、樹脂基材11と、が貼り合わされて形成されている。積層板10は、例えば、2つの表面処理銅箔1を用いて形成されていてもよい。つまり、積層板10は、樹脂基材11の両方の主面(両面)上に、2つの表面処理銅箔1の粗化銅めっき層4が設けられた側がそれぞれ樹脂基材11に接するとともに、2つの表面処理銅箔1をそれぞれ対向させて貼り合わせることで形成されていてもよい。樹脂基材11として、例えばポリイミド(PI)樹脂フィルムや、ポリエチレンテレフタラート(PET)等のポリエステルフィルム、液晶ポリマ(LCP)等が用いられる。
(Laminated board)
A laminated plate (CCL: Copper Clad Laminate) 10 according to this embodiment is formed by bonding a surface of a surface-treated copper foil 1 on which a roughened copper plating layer 4 is provided and a resin base material 11. ing. For example, the laminated plate 10 may be formed using two surface-treated copper foils 1. That is, the laminated plate 10 is in contact with the resin base material 11 on the side where the roughened copper plating layer 4 of the two surface-treated copper foils 1 is provided on both main surfaces (both sides) of the resin base material 11, respectively. It may be formed by bonding the two surface-treated copper foils 1 so as to face each other. As the resin base material 11, for example, a polyimide (PI) resin film, a polyester film such as polyethylene terephthalate (PET), a liquid crystal polymer (LCP), or the like is used.

(2)表面処理銅箔及び積層板の製造方法
次に、本実施形態にかかる表面処理銅箔1、積層板10及びこの積層板10を用いて形成するフレキシブルプリント配線板(FPC)の製造方法について、図4を用いて説明する。図4は、本実施形態にかかる表面処理銅箔1及び積層板10の製造工程を示すフロー図である。
(2) Manufacturing method of surface-treated copper foil and laminated board Next, the surface-treated copper foil 1 concerning this embodiment, the laminated board 10, and the manufacturing method of the flexible printed wiring board (FPC) formed using this laminated board 10 Will be described with reference to FIG. FIG. 4 is a flowchart showing manufacturing steps of the surface-treated copper foil 1 and the laminate 10 according to the present embodiment.

[表面処理銅箔形成工程(S10)]
まず、本実施形態にかかる表面処理銅箔1の製造方法について説明する。
[Surface Treatment Copper Foil Formation Step (S10)]
First, the manufacturing method of the surface treatment copper foil 1 concerning this embodiment is demonstrated.

(銅箔基材形成工程(S11))
銅箔基材2としての例えば圧延銅箔や電解銅箔を形成する。銅箔基材2として、例えば圧延銅箔を用いる場合、まず、無酸素銅やタフピッチ銅からなる純銅の鋳塊や、無酸素銅やタフピッチ銅を母相とし、母相中に所定量のSnやAg等の添加剤を添加した希薄銅合金の鋳塊を鋳造する。そして、鋳造した鋳塊に対し、所定の熱間圧延処理、所定の冷間圧延処理、所定の焼鈍処理等を行い、所定厚さ(例えば11μm)の圧延銅箔を形成する。このとき、圧延銅箔を再結晶させる際の加熱温度に応じて、圧延銅箔の耐熱性を調整するとよい。
(Copper foil base material forming step (S11))
For example, a rolled copper foil or an electrolytic copper foil is formed as the copper foil base 2. When using, for example, rolled copper foil as the copper foil base material 2, first, a pure copper ingot made of oxygen-free copper or tough pitch copper, oxygen-free copper or tough pitch copper as a parent phase, and a predetermined amount of Sn in the mother phase. An ingot of a dilute copper alloy to which additives such as Ag and Ag are added is cast. And a predetermined hot rolling process, a predetermined cold rolling process, a predetermined annealing process, etc. are performed with respect to the cast ingot, and the rolled copper foil of predetermined thickness (for example, 11 micrometers) is formed. At this time, it is good to adjust the heat resistance of rolled copper foil according to the heating temperature at the time of recrystallizing rolled copper foil.

(銅めっき層形成工程(S12))
銅箔基材形成工程(S11)が終了した後、まず、銅箔基材2の表面を清浄する処理を行う。そして、銅箔基材2のいずれかの主面上に、銅めっき層3を形成する銅めっき処理を行う。
(Copper plating layer forming step (S12))
After a copper foil base material formation process (S11) is complete | finished, the process which cleans the surface of the copper foil base material 2 is performed first. And the copper plating process which forms the copper plating layer 3 on any main surface of the copper foil base material 2 is performed.

<清浄処理(S121)>
銅箔基材形成工程(S11)が終了したら、銅箔基材2の表面を清浄する処理を行う。例えば、銅箔基材2の表面に、清浄処理として、電解脱脂処理と酸洗処理とを行う。電解脱脂処理として、例えば、水酸化ナトリウム等のアルカリ溶液を用いた陰極電解脱脂処理を行う。アルカリ溶液として、例えば、水酸化ナトリウムを20g/L以上60g/L以下含み、炭酸ナトリウムを10g/L以上30g/L以下含む水溶液が用いられる。酸洗処理として、例えば硫酸等の酸性水溶液に銅箔基材2を浸漬し、銅箔基材2の表面に残存するアルカリ成分を中和したり、銅酸化膜を除去する処理を行う。酸性水溶液として、硫酸を120g/L以上180g/L以下含む水溶液、クエン酸等を含む水溶液、銅をエッチングする銅エッチング液等が用いられる。
<Cleaning process (S121)>
When the copper foil base material forming step (S11) is completed, a process for cleaning the surface of the copper foil base material 2 is performed. For example, electrolytic degreasing treatment and pickling treatment are performed on the surface of the copper foil base 2 as a cleaning treatment. As the electrolytic degreasing treatment, for example, cathodic electrolytic degreasing treatment using an alkali solution such as sodium hydroxide is performed. As the alkaline solution, for example, an aqueous solution containing 20 g / L to 60 g / L of sodium hydroxide and 10 g / L to 30 g / L of sodium carbonate is used. As the pickling treatment, for example, the copper foil base material 2 is immersed in an acidic aqueous solution such as sulfuric acid, and the alkali component remaining on the surface of the copper foil base material 2 is neutralized or the copper oxide film is removed. As the acidic aqueous solution, an aqueous solution containing 120 g / L or more and 180 g / L or less of sulfuric acid, an aqueous solution containing citric acid, a copper etching solution for etching copper, or the like is used.

<銅めっき処理(S122)>
清浄処理(S121)が終了したら、銅めっき液を準備する。銅めっき液として、例えば硫酸銅及び硫酸を主成分とする水溶液(酸性銅めっき浴)を準備する。そして、銅めっき液中に、有機硫黄化合物として例えばSPSを、所定量(例えば5mg/L以上60mg/L以下)添加する。また、必要に応じて、銅めっき液中に、界面活性剤、レベリング剤、塩化物イオンを添加してもよい。銅めっき液中に、界面活性剤として例えば荏原ユージライト株式会社製のCU−BRITE TH−RIIIシリーズの界面活性剤薬液を所定量(例えば1ml/以上4ml/L以下)添加してもよい。また、銅めっき液中に、レベリング剤として例えば荏原ユージライト株式会社製のCU−BRITE TH−RIIIシリーズのレベリング剤薬液を所定量(例えば3ml/L以上10ml/L以下)添加してもよい。また、銅めっき液中に、塩化物イオンとして例えば塩酸を所定量(例えば0.05ml/L以上0.3ml/L以下)添加してもよい。
<Copper plating treatment (S122)>
When the cleaning process (S121) is completed, a copper plating solution is prepared. As the copper plating solution, for example, an aqueous solution (acid copper plating bath) mainly containing copper sulfate and sulfuric acid is prepared. Then, a predetermined amount (for example, 5 mg / L or more and 60 mg / L or less) of SPS is added as an organic sulfur compound to the copper plating solution. Moreover, you may add surfactant, a leveling agent, and a chloride ion in a copper plating solution as needed. A predetermined amount (for example, 1 ml / L or more and 4 ml / L or less) of a surfactant chemical solution of CU-BRITE TH-RIII series manufactured by Ebara Eugleite Co., Ltd. may be added to the copper plating solution. Moreover, you may add predetermined amount (for example, 3 ml / L or more and 10 ml / L or less) of the leveling agent chemical | medical solution of CU-BRITE TH-RIII series made from Ebara Eugelite Co., Ltd. as a leveling agent in copper plating solution. Moreover, you may add predetermined amount (for example, 0.05 ml / L or more and 0.3 ml / L or less) of hydrochloric acid as a chloride ion in a copper plating solution.

そして、銅めっき処理として、銅めっき液中で電解めっき処理を行い、銅箔基材2のいずれかの主面上に、所定厚さ(例えば0.1μm以上0.6μm以下)の銅めっき層3を形成する。銅めっき層3を形成する際の電流密度は、めっき条件における限界電流密度未満の密度とする。つまり、銅めっき液中に金属粒を析出させることがない(いわゆる「やけめっき」とはならない)電流密度とする。これにより、銅めっき層3として平滑銅めっき層を形成できる。その一方、電流密度を高くするほど、生産性を向上させることができる。従って、電流密度は、限界電流密度未満の範囲内で、できるだけ高くするとよい。   And as a copper plating process, an electrolytic plating process is performed in a copper plating solution, and a copper plating layer having a predetermined thickness (for example, 0.1 μm or more and 0.6 μm or less) is formed on any main surface of the copper foil base 2. 3 is formed. The current density at the time of forming the copper plating layer 3 is set to a density less than the limit current density in the plating conditions. That is, the current density is such that no metal particles are deposited in the copper plating solution (so-called “burn plating” is not achieved). Thereby, a smooth copper plating layer can be formed as the copper plating layer 3. On the other hand, the higher the current density, the more the productivity can be improved. Therefore, the current density should be as high as possible within the range less than the limit current density.

銅めっき処理(S122)では、銅めっき液の液組成、液温、電流密度、処理時間(めっき時間)等の処理条件は、例えば下記の表1に示すように設定できる。このとき、陽極としてCu板を用い、銅めっき処理(S122)を施す対象である銅箔基材2自体を陰極とするとよい。

Figure 2015209581
In the copper plating process (S122), the processing conditions such as the liquid composition, liquid temperature, current density, and processing time (plating time) of the copper plating solution can be set as shown in Table 1 below, for example. At this time, it is preferable to use a Cu plate as the anode, and the copper foil base material 2 itself, which is a target to be subjected to the copper plating process (S122), as the cathode.
Figure 2015209581

銅めっき液中の硫酸銅五水和物の添加量を50g/L以上300g/L以下とし、硫酸の添加量を30g/L以上200g/L以下とするとよりよい。表1に示すように、処理時間を1秒以上30秒以下とすることで、銅めっき層3の厚さを0.1μm以上0.6μm以下にできる。   More preferably, the addition amount of copper sulfate pentahydrate in the copper plating solution is 50 g / L or more and 300 g / L or less, and the addition amount of sulfuric acid is 30 g / L or more and 200 g / L or less. As shown in Table 1, the thickness of the copper plating layer 3 can be 0.1 μm or more and 0.6 μm or less by setting the treatment time to 1 second or more and 30 seconds or less.

(粗化銅めっき層形成工程(S13))
銅めっき層形成工程(S12)が終了したら、銅めっき層3を形成した銅箔基材2を水洗した後、銅めっき層3上に所定厚さ(例えば0.05μm以上0.3μm以下)の粗化銅めっき層4を形成する。つまり、粗化銅めっき層4を形成するめっき液(粗化銅めっき液)中で電解めっき処理を行い、粗化銅めっき層4を形成する。粗化銅めっき液として、例えば硫酸銅および硫酸を主成分とする酸性銅めっき浴が用いられる。また、粗化銅めっき液中に、例えば所定量(例えば10g/L以上30g/L以下)の硫酸鉄七水和物を含む水溶液を添加するとよい。
(Roughening copper plating layer forming step (S13))
When the copper plating layer forming step (S12) is completed, the copper foil base 2 on which the copper plating layer 3 is formed is washed with water, and then a predetermined thickness (for example, 0.05 μm or more and 0.3 μm or less) is formed on the copper plating layer 3. A roughened copper plating layer 4 is formed. That is, electrolytic plating is performed in a plating solution (roughened copper plating solution) for forming the roughened copper plating layer 4 to form the roughened copper plating layer 4. As the roughened copper plating solution, for example, an acidic copper plating bath mainly composed of copper sulfate and sulfuric acid is used. Further, an aqueous solution containing a predetermined amount (for example, 10 g / L or more and 30 g / L or less) of iron sulfate heptahydrate may be added to the roughened copper plating solution.

粗化銅めっき層4を形成する際の電流密度は、めっき条件における限界電流密度以上とする。つまり、粗化銅めっき液中に金属粒を析出させて、銅めっき層3上に粗化粒を付着させる(いわゆる「やけめっき」となる)ことができる電流密度とする。   The current density at the time of forming the roughened copper plating layer 4 is not less than the limit current density in the plating conditions. That is, the current density is set such that metal particles are deposited in the roughened copper plating solution, and the roughened particles are deposited on the copper plating layer 3 (so-called “burn plating”).

粗化銅めっき層形成工程(S13)では、粗化銅めっき液の液組成、液温、電流密度、処理時間等のめっき処理条件は、例えば下記の表2に示すように設定できる。このとき、陽極としてCu板を用い、粗化銅めっき処理を施す対象である銅箔基材2自体を陰極とする。

Figure 2015209581
In the roughened copper plating layer forming step (S13), the plating conditions such as the liquid composition, liquid temperature, current density, and processing time of the roughened copper plating solution can be set as shown in Table 2 below, for example. At this time, a Cu plate is used as the anode, and the copper foil base material 2 itself to be subjected to the roughening copper plating process is used as the cathode.
Figure 2015209581

表2に示すように、処理時間を0.3秒以上2.5秒以下とすることで、粗化銅めっき層4の平均厚さを0.05μm以上0.3μm以下にできる。   As shown in Table 2, the average thickness of the roughened copper plating layer 4 can be set to 0.05 μm or more and 0.3 μm or less by setting the treatment time to 0.3 seconds or more and 2.5 seconds or less.

(防錆層形成工程(S14))
粗化銅めっき層形成工程(S13)が終了したら、粗化銅めっき層4を形成した銅箔基材2を水洗した後、粗化銅めっき層4上に所定厚さ(例えば1nm以上70nm以下)の防錆層5を形成する。つまり、防錆層5を形成するめっき液中で電解めっき処理を行い、防錆層5を形成する。防錆層5の厚さはめっき量と一定の関係を有する。つまり、めっき量が多くなると、防錆層5の厚さが厚くなる。従って、所定のめっき量となるように、防錆層5を形成する電解めっき処理を行うとよい。
(Rust prevention layer forming step (S14))
When the roughened copper plating layer forming step (S13) is completed, the copper foil base material 2 on which the roughened copper plating layer 4 is formed is washed with water, and then a predetermined thickness (for example, 1 nm to 70 nm) on the roughened copper plating layer 4. ) Is formed. That is, the electrolytic plating process is performed in the plating solution for forming the rust prevention layer 5 to form the rust prevention layer 5. The thickness of the rust preventive layer 5 has a certain relationship with the plating amount. That is, as the plating amount increases, the thickness of the rust prevention layer 5 increases. Therefore, it is good to perform the electroplating process which forms the antirust layer 5 so that it may become a predetermined plating amount.

防錆層形成工程(S14)では、例えば、Niめっき層を形成するNiめっき処理と、Znめっき層を形成するZnめっき処理と、クロメート処理層を形成するクロメート処理(3価クロム化成処理)と、シランカップリング層を形成するシランカップリング処理と、を順に行う。   In the rust prevention layer forming step (S14), for example, Ni plating treatment for forming a Ni plating layer, Zn plating treatment for forming a Zn plating layer, and chromate treatment (trivalent chromium conversion treatment) for forming a chromate treatment layer, A silane coupling process for forming a silane coupling layer is sequentially performed.

<Niめっき処理>
粗化銅めっき層形成工程(S13)が終了したら、粗化銅めっき層4を形成した銅箔基材2を水洗した後、Niめっき処理を行い、粗化銅めっき層4上に所定厚さ(例えば10nm以上50nm以下)のNiめっき層を形成する。例えば、硫酸ニッケル六水和物を280g/L以上320g/L以下と、塩化ニッケルを40g/L以上50g/L以下と、硼酸を40g/L以上60g/L以下と、を含むめっき液(めっき浴)を用いて電解めっき処理を行うことで、Niめっき層を形成する。Niめっき層の厚さの調整は、めっき時間を調整することで行う。
<Ni plating treatment>
When the roughened copper plating layer forming step (S13) is completed, the copper foil base material 2 on which the roughened copper plating layer 4 is formed is washed with water, then Ni plating is performed, and a predetermined thickness is formed on the roughened copper plating layer 4. A Ni plating layer (for example, 10 nm or more and 50 nm or less) is formed. For example, a plating solution (plating) containing 280 g / L to 320 g / L of nickel sulfate hexahydrate, 40 g / L to 50 g / L of nickel chloride, and 40 g / L to 60 g / L of boric acid. An Ni plating layer is formed by performing an electrolytic plating process using a bath. The thickness of the Ni plating layer is adjusted by adjusting the plating time.

<Znめっき処理>
Niめっき処理が終了したら、Niめっき層を形成した銅箔基材2を水洗した後、Znめっき処理を行い、Niめっき層上に所定厚さ(例えば1nm以上10nm以下)のZnめっき層を形成する。例えば、硫酸亜鉛を80g/L以上120g/L以下と、硫酸ナトリウムを60g/L以上80g/L以下と、を含むめっき液を用いて電解めっき処理を行うことで、Znめっき層を形成する。Znめっき層の厚さの調整は、めっき時間を調整することで行う。
<Zn plating treatment>
When the Ni plating process is completed, the copper foil base material 2 on which the Ni plating layer is formed is washed with water, and then the Zn plating process is performed to form a Zn plating layer having a predetermined thickness (for example, 1 nm to 10 nm) on the Ni plating layer. To do. For example, the Zn plating layer is formed by performing an electroplating process using a plating solution containing zinc sulfate of 80 g / L or more and 120 g / L or less and sodium sulfate of 60 g / L or more and 80 g / L or less. The thickness of the Zn plating layer is adjusted by adjusting the plating time.

<クロメート処理>
Znめっき処理が終了したら、Znめっき層を形成した銅箔基材2を水洗した後、クロメート処理を行い、Znめっき層上に所定厚さ(例えば1nm以上10nm以下)クロメート処理層を形成する。例えば、処理液として3価クロムタイプの反応型クロメート液を用いて化成処理を行うことで、クロメート処理層を形成する。クロメート処理層の厚さの調整は、化成処理時間等を調整することで行う。
<Chromate treatment>
When the Zn plating treatment is completed, the copper foil base material 2 on which the Zn plating layer is formed is washed with water, and then chromate treatment is performed to form a chromate treatment layer having a predetermined thickness (for example, 1 nm to 10 nm) on the Zn plating layer. For example, a chromate treatment layer is formed by performing a chemical conversion treatment using a trivalent chromium type reactive chromate solution as a treatment solution. The thickness of the chromate treatment layer is adjusted by adjusting the chemical conversion treatment time and the like.

<シランカップリング処理>
クロメート処理が終了したら、クロメート処理層を形成した銅箔基材2を水洗した後、シランカップリング処理を行い、クロメート処理層上に、厚さが非常に薄いシランカップリング層を形成する。例えば、処理液として、シランカップリング液を用いて化成処理を行うことで、シランカップリング層を形成する。シランカップリング層の厚さの調整は、化成処理時間や処理液の濃度等を調整することで行う。以上により、本実施形態に係る表面処理銅箔1が製造される。
<Silane coupling treatment>
When the chromate treatment is completed, the copper foil substrate 2 on which the chromate treatment layer is formed is washed with water, and then a silane coupling treatment is performed to form a very thin silane coupling layer on the chromate treatment layer. For example, a silane coupling layer is formed by performing a chemical conversion treatment using a silane coupling solution as a treatment solution. The thickness of the silane coupling layer is adjusted by adjusting the chemical conversion treatment time, the concentration of the treatment liquid, and the like. Thus, the surface-treated copper foil 1 according to this embodiment is manufactured.

[積層板形成工程(S20)]
続いて、表面処理銅箔1を用いて積層板10を形成する。まず、表面処理銅箔1を所定の大きさに裁断する。また、いずれかの主面上に熱可塑性層が形成された樹脂基材(例えばポリイミド(PI)樹脂フィルム)11を準備する。そして、2つの表面処理銅箔1がそれぞれ対向するとともに、各表面処理銅箔1の粗化銅めっき層が設けられた側の面と、樹脂基材11の熱可塑性層と、が接するように、表面処理銅箔1と樹脂基材11とを配置する。続いて、例えば真空プレス機等を用い、表面処理銅箔1と樹脂基材11とを所定温度(例えば150℃以上350℃以下)に加熱しつつ、表面処理銅箔1と樹脂基材11とに所定圧力(例えば0.5MPa以上3.0MPa以下)を所定時間(例えば1分以上120分以下)加えることで、表面処理銅箔1と樹脂基材11とを貼り合わせて、積層板10として2層CCLを形成する。
[Laminated plate forming step (S20)]
Subsequently, the laminate 10 is formed using the surface-treated copper foil 1. First, the surface-treated copper foil 1 is cut into a predetermined size. Moreover, the resin base material (for example, polyimide (PI) resin film) 11 in which the thermoplastic layer was formed on either main surface is prepared. Then, the two surface-treated copper foils 1 face each other, and the surface of each surface-treated copper foil 1 on which the roughened copper plating layer is provided is in contact with the thermoplastic layer of the resin base material 11. The surface-treated copper foil 1 and the resin base material 11 are disposed. Subsequently, the surface-treated copper foil 1 and the resin base material 11 are heated while heating the surface-treated copper foil 1 and the resin base material 11 to a predetermined temperature (for example, 150 ° C. or higher and 350 ° C. or lower) using, for example, a vacuum press machine. By applying a predetermined pressure (for example, 0.5 MPa or more and 3.0 MPa or less) for a predetermined time (for example, 1 minute or more and 120 minutes or less), the surface-treated copper foil 1 and the resin base material 11 are bonded together to form a laminate 10. A two-layer CCL is formed.

表面処理銅箔1と樹脂基材11とを貼り合わせる際の加熱により、最終の冷間圧延処理により加工硬化している銅箔基材2(圧延銅箔)の再結晶が起こり、圧延銅箔が軟化する。つまり、表面処理銅箔1と樹脂基材11との貼り合わせを行いつつ、銅箔基材2の再結晶焼鈍処理を行う。圧延銅箔が再結晶することで、圧延銅箔が再結晶組織を有するようになり、圧延銅箔の耐屈曲性が向上する。また、このときの加熱により、銅めっき層3の少なくとも一部も銅箔基材2とともに再結晶する。   Recrystallization of the copper foil base material 2 (rolled copper foil) that has been work-hardened by the final cold rolling treatment occurs due to heating when the surface-treated copper foil 1 and the resin base material 11 are bonded together, and the rolled copper foil Softens. That is, the recrystallization annealing process of the copper foil base material 2 is performed while bonding the surface-treated copper foil 1 and the resin base material 11 together. By recrystallizing the rolled copper foil, the rolled copper foil comes to have a recrystallized structure, and the bending resistance of the rolled copper foil is improved. In addition, at this time, at least a part of the copper plating layer 3 is recrystallized together with the copper foil base 2 by the heating at this time.

[HAZE値検査工程(S30)]
続いて、樹脂基材11のHAZE値を測定する。まず、例えばエッチングにより、積層板10から少なくとも一部(例えばHAZE値及び後述の透明度の測定に必要な面積分)の表面処理銅箔1を除去して樹脂基材11を露出させる。そして、積分球21の光導入口21aを塞ぐように、測定対象である樹脂基材11(積層板10の樹脂基材11が露出した部分)を配置する(図2参照)。蓋体24により光排出口21bを閉じた状態で、光源22から光を照射し、検出器23で全光線透過光量を測定する。続いて、蓋体24を外して光排出口21bを開いた状態で、光源22から光を照射し、検出器23で拡散透過光量を測定する。そして、上記(数1)から、表面処理銅箔1を除去した箇所の樹脂基材11のHAZE値を算出する。樹脂基材11のHAZE値が80%以下であった場合、表面処理銅箔1を合格と判定する。樹脂基材11のHAZE値が80%を超えた場合、表面処理銅箔1を不良品と判定する。
[HAZE value inspection step (S30)]
Subsequently, the HAZE value of the resin base material 11 is measured. First, at least a part of the surface-treated copper foil 1 (for example, an area necessary for measurement of the HAZE value and transparency described later) is removed from the laminated plate 10 by, for example, etching to expose the resin base material 11. And the resin base material 11 (part where the resin base material 11 of the laminated board 10 was exposed) which is a measuring object is arrange | positioned so that the optical entrance 21a of the integrating sphere 21 may be plugged up (refer FIG. 2). With the light outlet 21 b closed by the lid 24, light is emitted from the light source 22, and the total light transmitted light amount is measured by the detector 23. Subsequently, light is emitted from the light source 22 in a state where the lid 24 is removed and the light outlet 21b is opened, and the diffused and transmitted light amount is measured by the detector 23. And the HAZE value of the resin base material 11 of the location from which the surface-treated copper foil 1 is removed is calculated from the above (Equation 1). When the HAZE value of the resin base material 11 is 80% or less, the surface-treated copper foil 1 is determined to be acceptable. When the HAZE value of the resin base material 11 exceeds 80%, the surface-treated copper foil 1 is determined as a defective product.

[透明度検査工程(S40)]
HAZE値検査工程(S30)で測定したHAZE値が80%以下であった場合、積層板10から表面処理銅箔1を除去した箇所の樹脂基材11の透明度を測定する。まず、光源22の光の出射位置に樹脂基材11を配置する(図3(a)参照)。続いて、蓋体24を外した状態で、光源22から光を照射し、センターセンサ31aとリングセンサ31bとでそれぞれ、樹脂基材11を透過して光導入口21aから積分球21内に導入された光の光量を測定する。そして、センターセンサ31aで受光した光量(IC)とリングセンサ31bで受光した光量(IR)とを用い、上記(数2)から樹脂基材11の透明度を算出する。樹脂基材11の透明度が70%以上であった場合、表面処理銅箔1を合格と判定する。樹脂基材11の透明度が70%未満であった場合、表面処理銅箔1を不良品と判定する。そして、積層板10の製造工程を終了する。
[Transparency inspection process (S40)]
When the HAZE value measured in the HAZE value inspection step (S30) is 80% or less, the transparency of the resin base material 11 at the location where the surface-treated copper foil 1 is removed from the laminate 10 is measured. First, the resin base material 11 is arrange | positioned in the light emission position of the light source 22 (refer Fig.3 (a)). Subsequently, light is emitted from the light source 22 with the lid 24 removed, and the center sensor 31a and the ring sensor 31b transmit the resin base material 11 and are introduced into the integrating sphere 21 from the light entrance 21a. Measure the amount of light emitted. Then, the transparency of the resin base material 11 is calculated from the above (Equation 2) using the light quantity (IC) received by the center sensor 31a and the light quantity (IR) received by the ring sensor 31b. When the transparency of the resin base material 11 is 70% or more, the surface-treated copper foil 1 is determined to be acceptable. When the transparency of the resin base material 11 is less than 70%, the surface-treated copper foil 1 is determined as a defective product. And the manufacturing process of the laminated board 10 is complete | finished.

(4)本実施形態にかかる効果
本実施形態によれば、以下に示す1つまたは複数の効果を奏する。
(4) Effects According to the Present Embodiment According to the present embodiment, one or more effects described below are exhibited.

(a)本実施形態によれば、樹脂基材の両主面上に、表面処理銅箔1を対向させて、粗化銅めっき層4の側が樹脂基材に接するように表面処理銅箔1を貼り合わせた後、樹脂基材の両主面上から表面処理銅箔1を除去したとき、樹脂基材のHAZE値が80%以下、透明度が70%以上となるように、表面処理銅箔1を形成している。これにより、エッチング後の樹脂基材と位置合わせマークとが密着している場合はもちろん、エッチング後の樹脂基材が位置合わせマークと離間した位置に配置されている場合であっても、エッチング後の樹脂基材越しに、位置合わせマークを視認しやすくなる。従って、表面処理銅箔1を用いて形成した積層板10で形成したFPCに電子部品等を実装する際、実装位置の位置決めを容易に行うことができ、実装作業性を向上させることができる。 (A) According to the present embodiment, the surface-treated copper foil 1 is disposed so that the surface-treated copper foil 1 is opposed to both main surfaces of the resin substrate, and the roughened copper plating layer 4 side is in contact with the resin substrate. After the surface treatment copper foil 1 is removed from both main surfaces of the resin base material, the surface-treated copper foil is such that the HAZE value of the resin base material is 80% or less and the transparency is 70% or more. 1 is formed. As a result, not only when the resin base material after etching and the alignment mark are in close contact, but also when the resin base material after etching is arranged at a position separated from the alignment mark, It becomes easy to visually recognize the alignment mark through the resin base material. Therefore, when an electronic component or the like is mounted on the FPC formed by the laminated plate 10 formed using the surface-treated copper foil 1, the mounting position can be easily positioned and the mounting workability can be improved.

つまり、エッチング後の樹脂基材のHAZE値を80%以下にすることで、エッチング後の樹脂基材と位置合わせマークとが密着している際に、エッチング後の樹脂基材越しに、位置合わせマークを視認できる。また、エッチング後の樹脂基材の透明度を70%以上にすることで、エッチング後の樹脂基材が位置合わせマークと離間した位置に配置されている場合であっても、エッチング後の樹脂基材越しに位置合わせマークを視認できる。従って、本実施形態は、例えばFPCを搬送させつつ電子部品等の実装が行われる場合であっても、実装位置の位置決めを精度よく、容易に行うことができる。このように、本実施形態は、FPCを搬送させつつ電子部品等の実装が行われる場合に特に有効である。   In other words, by setting the HAZE value of the resin base material after etching to 80% or less, when the resin base material after etching and the alignment mark are in close contact with each other, the alignment is performed over the resin base material after etching. You can see the mark. Further, by setting the transparency of the resin base material after etching to 70% or more, even if the resin base material after etching is arranged at a position separated from the alignment mark, the resin base material after etching The alignment mark can be seen through the screen. Therefore, in the present embodiment, for example, even when an electronic component or the like is mounted while transporting the FPC, the mounting position can be accurately and easily performed. As described above, this embodiment is particularly effective when an electronic component or the like is mounted while transporting the FPC.

(b)表面処理銅箔1と樹脂基材との間のピール強度が0.6N/mm以上となるように、表面処理銅箔1を形成することで、積層板10を形成した際の表面処理銅箔1が樹脂基材11から剥がれることを抑制できる。例えば、積層板10から所定箇所の表面処理銅箔1を除去することで所定形状の銅配線が形成された場合であっても、表面処理銅箔1が樹脂基材11から剥がれることを抑制できる。つまり、FPCの信頼性を向上させることができる。 (B) The surface at the time of forming the laminated board 10 by forming the surface-treated copper foil 1 so that the peel strength between the surface-treated copper foil 1 and the resin substrate is 0.6 N / mm or more. It can suppress that the process copper foil 1 peels from the resin base material 11. FIG. For example, even if it is a case where the predetermined shape copper wiring is formed by removing the surface treatment copper foil 1 of the predetermined location from the laminated board 10, it can suppress that the surface treatment copper foil 1 peels from the resin base material 11. FIG. . That is, the reliability of the FPC can be improved.

(c)銅めっき層3を、メルカプト基を有する有機化合物が添加された銅めっき液を用いて形成することで、密着性を低下させることなく、エッチング後の樹脂基材の透明性の低下を抑制できる。具体的には、通常、光沢剤として用いられるメルトカプト基を有する有機化合物を、光沢剤として用いる場合の適正量(例えば1.5mg/L以下)よりも多くすることで、密着性を低下させることなく、透明性の低下を抑制できる。つまり、通常、光沢剤として用いられるメルトカプト基を有する有機化合物添加剤の他の用途を見出した。その結果、上記(a)(b)の効果をより得ることができる。 (C) By forming the copper plating layer 3 using a copper plating solution to which an organic compound having a mercapto group is added, the transparency of the resin base material after etching is reduced without reducing the adhesion. Can be suppressed. Specifically, the adhesiveness is lowered by increasing the amount of the organic compound having a meltcapto group, which is usually used as a brightener, to an appropriate amount (for example, 1.5 mg / L or less) when used as a brightener. And the decrease in transparency can be suppressed. That is, the present inventors have found another use of an organic compound additive having a meltcapto group that is usually used as a brightener. As a result, the effects (a) and (b) can be further obtained.

一般的に、樹脂基材の透明性と密着性とは表裏一体の関係にあり、例えばエッチング後の樹脂基材の透明性が高くなるほど、密着性が低下してしまう。樹脂基材の透明性を高くするためには、粗化銅めっき層を形成する粗化粒の大きさを小さくする必要がある。しかしながら、粗化粒の大きさを小さくすると、得られるアンカー効果が少なくなるため密着性が低下してしまう。これに対し、メルカプト基を有する有機化合物が添加された銅めっき液を用いて銅めっき層3を形成することで、樹脂基材の透明性を高くしつつも密着性の低下を抑制できる。この作用因子等については、鋭意研究中である。   In general, the transparency and adhesion of the resin base material are in an integrated relationship. For example, the higher the transparency of the resin base material after etching, the lower the adhesion. In order to increase the transparency of the resin base material, it is necessary to reduce the size of the roughened grains forming the roughened copper plating layer. However, if the size of the roughened grains is reduced, the resulting anchor effect is reduced, resulting in a decrease in adhesion. On the other hand, by forming the copper plating layer 3 using a copper plating solution to which an organic compound having a mercapto group is added, a decrease in adhesion can be suppressed while increasing the transparency of the resin substrate. This active factor is under intensive research.

(d)銅めっき層3を、厚さが0.1μm以上0.6μm以下となるように形成することで、上記(a)(b)の効果をより得ることができる。また、銅箔基材2を再結晶させる際、銅めっき層3を銅箔基材2(圧延銅箔)と共に再結晶させることができる。 (D) By forming the copper plating layer 3 so that the thickness is 0.1 μm or more and 0.6 μm or less, the effects (a) and (b) can be obtained more. Moreover, when recrystallizing the copper foil base material 2, the copper plating layer 3 can be recrystallized with the copper foil base material 2 (rolled copper foil).

(e)粗化銅めっき層4を、厚さが0.05μm以上0.3μm以下となるように形成することで、樹脂基材の透明性の低下を抑制しつつ、密着性を維持できる。つまり、上述の(a)(b)の効果をより得ることができる。また、粗化銅めっき層4を形成する際の処理時間(めっき時間)が不必要に長くなってしまうことを抑制でき、生産性を向上させることができる。 (E) By forming the roughened copper plating layer 4 to have a thickness of 0.05 μm or more and 0.3 μm or less, adhesion can be maintained while suppressing a decrease in transparency of the resin base material. That is, the effects (a) and (b) described above can be obtained more. Moreover, it can suppress that the processing time (plating time) at the time of forming the roughening copper plating layer 4 becomes unnecessarily long, and can improve productivity.

(f)表面処理銅箔1と樹脂基材11とを貼り合わせて積層板10を形成する際の加熱により、銅箔基材2の再結晶焼鈍処理を行うことで、表面処理銅箔1が変形することを低減できる。つまり、銅箔基材2として例えば圧延銅箔が用いられる場合、再結晶焼鈍処理が行われる前の銅箔基材2は硬化した状態である。従って、積層板10が形成されるまでの間に表面処理銅箔1を搬送する際に、表面処理銅箔1が破断したり、伸びたり、折れたり、表面処理銅箔1にしわが入ること等を低減できる。これにより、表面処理銅箔1の製造が中断されることを低減できるため、生産性を向上させることができる。また、表面処理銅箔1と樹脂基材11とを貼り合わせる際、変形が生じていない表面処理銅箔1に樹脂基材11を貼り合わせることができる。 (F) The surface-treated copper foil 1 is obtained by performing the recrystallization annealing treatment of the copper foil base material 2 by heating when the surface-treated copper foil 1 and the resin base material 11 are bonded together to form the laminated plate 10. Deformation can be reduced. That is, for example, when a rolled copper foil is used as the copper foil base material 2, the copper foil base material 2 before the recrystallization annealing process is in a cured state. Accordingly, when the surface-treated copper foil 1 is transported before the laminated plate 10 is formed, the surface-treated copper foil 1 is broken, stretched, broken, wrinkled in the surface-treated copper foil 1, etc. Can be reduced. Thereby, since it can reduce that the manufacture of the surface treatment copper foil 1 is interrupted, productivity can be improved. Moreover, when bonding the surface-treated copper foil 1 and the resin base material 11, the resin base material 11 can be bonded to the surface-treated copper foil 1 that is not deformed.

(本発明の他の実施形態)
以上、本発明の一実施形態を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で適宜変更可能である。
(Other embodiments of the present invention)
As mentioned above, although one Embodiment of this invention was described concretely, this invention is not limited to the above-mentioned embodiment, In the range which does not deviate from the summary, it can change suitably.

上述の実施形態では、光源22の光の出射位置と積分球21の光導入口21aの中心位置との間の距離Lが実装距離と一致するように、積分球21と光源22とをそれぞれ配置したが、これに限定されない。つまり、光源22の光の出射位置と光導入口21aの中心位置との間の距離Lが実装距離よりも長くなるように、積分球21と光源22とをそれぞれ配置してもよい。この場合、測定対象である樹脂基材11(25)の透明度を測定する際、光源22の光軸上であって、測定対象である樹脂基材11と光導入口21aとの間の距離が実装距離となる位置に、樹脂基材11を配置すればよい。また、樹脂基材11と光導入口21aとの間の距離が実装距離よりも長くなる位置に、樹脂基材11を配置してもよい。つまり、光源22と光導入口21aとの間の距離や、樹脂基材11と光導入口21aとの間の距離は任意の距離に設定でき、実装距離と一致していなくてもよい。   In the above-described embodiment, the integrating sphere 21 and the light source 22 are arranged so that the distance L between the light emission position of the light source 22 and the center position of the light entrance 21a of the integrating sphere 21 matches the mounting distance. However, it is not limited to this. That is, the integrating sphere 21 and the light source 22 may be arranged so that the distance L between the light emission position of the light source 22 and the center position of the light entrance 21a is longer than the mounting distance. In this case, when measuring the transparency of the resin substrate 11 (25) as the measurement target, the distance between the resin substrate 11 as the measurement target and the light entrance 21a is on the optical axis of the light source 22. What is necessary is just to arrange | position the resin base material 11 in the position used as mounting distance. Further, the resin base material 11 may be arranged at a position where the distance between the resin base material 11 and the light entrance 21a is longer than the mounting distance. That is, the distance between the light source 22 and the light entrance 21a and the distance between the resin base material 11 and the light entrance 21a can be set to arbitrary distances and do not have to coincide with the mounting distance.

上述の実施形態では、有機硫黄化合物と、界面活性剤と、レベリング剤と、をそれぞれ別々に添加したが、これに限定されない。例えば、有機硫黄化合物、界面活性剤、レベリング剤等のうちの2種以上が予め配合された添加剤を用いてもよい。このような添加剤は、単独で用いてもよく、上述の実施形態で記載した有機硫黄化合物、界面活性剤、レベリング剤と組み合わせて用いてもよい。   In the above-described embodiment, the organic sulfur compound, the surfactant, and the leveling agent are added separately, but the present invention is not limited to this. For example, an additive in which two or more of organic sulfur compounds, surfactants, leveling agents and the like are blended in advance may be used. Such additives may be used alone or in combination with the organic sulfur compounds, surfactants, and leveling agents described in the above-described embodiments.

上述の実施形態では、防錆層5を設けたが、これに限定されない。つまり、表面処理銅箔1の用途や目的等に応じて、防錆層5を設けなくてもよい。また、上述の実施形態では、防錆層5を、Niめっき層と、Znめっき層と、クロメート処理層と、シランカップリング層とで構成したが、これに限定されるものではない。つまり、防錆層5の層構成は、表面処理銅箔1の用途や目的等に応じて、適宜変更してもよい。また、Niめっき層は、Co等の他の金属元素を含むNi合金で形成されていてもよい。Znめっき層は、他の金属を含むZn合金で形成されていてもよい。   In the above-mentioned embodiment, although the rust prevention layer 5 was provided, it is not limited to this. That is, it is not necessary to provide the rust prevention layer 5 according to the use or purpose of the surface-treated copper foil 1. Moreover, in the above-mentioned embodiment, although the antirust layer 5 was comprised with the Ni plating layer, Zn plating layer, the chromate treatment layer, and the silane coupling layer, it is not limited to this. That is, the layer structure of the rust preventive layer 5 may be appropriately changed according to the use or purpose of the surface-treated copper foil 1. The Ni plating layer may be formed of a Ni alloy containing other metal elements such as Co. The Zn plating layer may be formed of a Zn alloy containing another metal.

上述の実施形態では、粗化銅めっき層4上のみに防錆層5を形成する場合について説明したが、これに限定されない。例えば、表面処理銅箔1が備える銅箔基材2の、粗化銅めっき層4が設けられた側とは反対側の主面(以下では、便宜上、表面処理銅箔1(銅箔基材2)の裏面とも言う。)上にも防錆層が設けられていてもよい。つまり、銅箔基材2の裏面に、銅箔基材2の側から順に、防錆層として、例えば、Niめっき層と、Znめっき層と、クロメート処理層とが設けられていてもよい。これにより、表面処理銅箔1の耐熱性や耐薬品性をより向上させることができる。   Although the above-mentioned embodiment demonstrated the case where the antirust layer 5 was formed only on the roughening copper plating layer 4, it is not limited to this. For example, the main surface of the copper foil base 2 provided in the surface-treated copper foil 1 on the side opposite to the side on which the roughened copper plating layer 4 is provided (hereinafter, the surface-treated copper foil 1 (copper foil base for convenience). It is also referred to as the back surface of 2).) A rust prevention layer may also be provided on the top. That is, for example, a Ni plating layer, a Zn plating layer, and a chromate treatment layer may be provided on the back surface of the copper foil base material 2 as a rust prevention layer in order from the copper foil base material 2 side. Thereby, the heat resistance and chemical resistance of the surface-treated copper foil 1 can be further improved.

上述の実施形態では、樹脂基材11の両面に表面処理銅箔1が設けられた積層板10について説明したが、これに限定されない。つまり、樹脂基材11のいずれかの主面に表面処理銅箔1が設けられていればよい。   In the above-mentioned embodiment, although the laminated board 10 in which the surface-treated copper foil 1 was provided on both surfaces of the resin base material 11 was demonstrated, it is not limited to this. That is, it is only necessary that the surface-treated copper foil 1 is provided on any main surface of the resin base material 11.

上述の実施形態では、表面処理銅箔1と樹脂基材11との貼り合わせを、接着剤を用いることなく行ったが、これに限定されない。例えば、表面処理銅箔1と樹脂基材とを接着剤を介して貼り合わせてもよい。つまり、積層板10として3層CCLを形成してもよい。   In the above-described embodiment, the surface-treated copper foil 1 and the resin base material 11 are bonded without using an adhesive, but the present invention is not limited to this. For example, the surface-treated copper foil 1 and the resin base material may be bonded together with an adhesive. That is, a three-layer CCL may be formed as the laminated plate 10.

例えば、粗化銅めっき層形成工程では、銅めっき層3上に粗化粒を付着させた後、さらにカプセル銅めっき処理を行うことで粗化銅めっき層4を形成してもよい。つまり、カプセル銅めっき層(いわゆる被せめっき層)によって、銅めっき層3上に付着した粗化粒を覆ってもよい。これにより、粗化粒をコブ状の突起へと成長させることができる。つまり、粗化粒の大きさをより大きくできる。なお、カプセル銅めっき処理を行う場合は、樹脂基材のHAZE値が80%以下、透明度が70%以上となるように行う。   For example, in the roughened copper plating layer forming step, the roughened copper plating layer 4 may be formed by further applying a capsule copper plating process after the roughened particles are attached on the copper plating layer 3. That is, you may cover the roughening grain which adhered on the copper plating layer 3 with the capsule copper plating layer (what is called a covering plating layer). Thereby, roughening grains can be grown into bump-like projections. That is, the size of the roughened grains can be increased. In addition, when performing a capsule copper plating process, it carries out so that the HAZE value of a resin base material may be 80% or less, and transparency may be 70% or more.

上述の実施形態では、銅めっき層形成工程で電解脱脂処理と酸洗処理とを行う清浄工程を行ったが、これに限定されない。例えば、清浄工程として、電解脱脂処理又は酸洗処理のいずれかを行ってもよい。また、清浄工程で、電解脱脂処理及び酸洗処理に加えて、他の処理を行ってもよい。また、清浄工程は省略してもよい。   In the above-mentioned embodiment, although the cleaning process which performs an electrolytic degreasing process and a pickling process at the copper plating layer formation process was performed, it is not limited to this. For example, you may perform either an electrolytic degreasing process or a pickling process as a cleaning process. In addition to the electrolytic degreasing process and the pickling process, other processes may be performed in the cleaning process. Further, the cleaning step may be omitted.

上述の実施形態では、粗化銅めっき層4上のみに防錆層5を設けたが、これに限定されない。例えば、銅箔基材2の粗化銅めっき層4が設けられた側とは反対側の主面上にも防錆層(以下では、裏面防錆層とも言う。)を設けてもよい。この場合、防錆層5と裏面防錆層とを同時に設けるとよい。また、防錆層5と裏面防錆層とを別々に設けてもよい。例えば、防錆層5を形成する工程を行った後に、裏面防錆層を形成する工程を行ってもよい。裏面防錆層の層構成は、防錆層5と同一の構成であってもよく、防錆層5と異なる構成であってもよい。例えば、裏面防錆層は、シランカップリング層を備えていなくてもよい。   In the above-mentioned embodiment, although the rust prevention layer 5 was provided only on the roughening copper plating layer 4, it is not limited to this. For example, you may provide a rust prevention layer (it is also hereafter called a back surface rust prevention layer) also on the main surface on the opposite side to the side in which the roughening copper plating layer 4 of the copper foil base material 2 was provided. In this case, it is preferable to provide the rust prevention layer 5 and the back surface rust prevention layer simultaneously. Moreover, you may provide the antirust layer 5 and a back surface antirust layer separately. For example, after performing the process of forming the rust prevention layer 5, you may perform the process of forming a back surface rust prevention layer. The layer configuration of the back surface antirust layer may be the same as the antirust layer 5 or may be different from the antirust layer 5. For example, the back surface rust preventive layer may not include a silane coupling layer.

上述の実施形態では、表面処理銅箔1と樹脂基材とを貼り合わせつつ、表面処理銅箔1が備える銅箔基材2の再結晶焼鈍処理を行ったが、これに限定されない。つまり、表面処理銅箔1及び樹脂基材の貼り合わせと、銅箔基材2の再結晶焼鈍処理と、をそれぞれ別の工程で行ってもよい。   In the above-described embodiment, the recrystallization annealing process of the copper foil base material 2 included in the surface-treated copper foil 1 is performed while bonding the surface-treated copper foil 1 and the resin base material, but the present invention is not limited to this. That is, you may perform the bonding of the surface treatment copper foil 1 and the resin base material, and the recrystallization annealing process of the copper foil base material 2 in a separate process, respectively.

上述の実施形態では、表面処理銅箔1がFPCに用いられる場合について説明したが、これに限定されない。本実施形態にかかる表面処理銅箔1は、リチウムイオン二次電池の負極集電銅箔、プラズマディスプレイ用電磁波シールド、ICカードのアンテナ等にも用いることができる。   Although the above-mentioned embodiment demonstrated the case where the surface treatment copper foil 1 was used for FPC, it is not limited to this. The surface-treated copper foil 1 according to this embodiment can also be used for a negative electrode current collector copper foil of a lithium ion secondary battery, an electromagnetic wave shield for plasma display, an IC card antenna, and the like.

次に、本発明の実施例を説明するが、本発明はこれらに限定されるものではない。   Next, examples of the present invention will be described, but the present invention is not limited thereto.

<試料の作製>
まず、試料1〜21の各試料となる表面処理銅箔を作製した。
<Preparation of sample>
First, the surface-treated copper foil used as each sample of the samples 1-21 was produced.

(試料1)
試料1では、まず、銅箔基材として、無酸素銅(OFC)で形成され、厚さが11μmの圧延銅箔を準備した。この銅箔基材に電解脱脂処理と酸洗処理とを行い、銅箔基材の表面の清浄を行った。まず、水酸化ナトリウムを40g/Lと、炭酸ナトリウムを20g/Lと、を含む水溶液を用いて電解脱脂処理を行った。このとき、液温を40℃とし、電流密度を10A/dmとし、処理(めっき)時間を10秒間とした。電解脱脂処理が終了した後、銅箔基材を水洗した。その後、硫酸を150g/L含み、液温が25℃である水溶液中に、銅箔基材を10秒間浸漬して酸洗処理を行った。酸洗処理が終了した後、銅箔基材を水洗した。
(Sample 1)
In Sample 1, first, a rolled copper foil having a thickness of 11 μm was prepared as the copper foil base material, which was formed of oxygen-free copper (OFC). The copper foil base material was subjected to electrolytic degreasing treatment and pickling treatment to clean the surface of the copper foil base material. First, electrolytic degreasing treatment was performed using an aqueous solution containing 40 g / L sodium hydroxide and 20 g / L sodium carbonate. At this time, the liquid temperature was 40 ° C., the current density was 10 A / dm 2 , and the treatment (plating) time was 10 seconds. After the electrolytic degreasing treatment was completed, the copper foil base material was washed with water. Thereafter, the copper foil base material was immersed in an aqueous solution containing 150 g / L sulfuric acid and having a liquid temperature of 25 ° C. for 10 seconds to perform pickling. After the pickling treatment was completed, the copper foil base material was washed with water.

次に、銅箔基材のいずれかの主面上に銅めっき層を形成した。まず、銅めっき液として、硫酸銅五水和物を170g/Lと、硫酸を70g/Lと、有機硫黄化合物としてのSPSの粉末試薬を30mg/Lと、界面活性剤として、荏原ユージライト株式会社製のCU−BRITE TH−RIIIシリーズの界面活性剤薬液を4ml/Lと、レベリング剤として、荏原ユージライト株式会社製のCU−BRITE TH−RIIIシリーズのレベリング剤薬液を5ml/Lと、塩化物イオンとしての塩酸(HCl水溶液)を0.15ml/Lと、を含む水溶液を作製した。そして、銅めっき液の液温を35℃とし、電流密度を7A/dmとし、処理時間を10秒間として、電解めっき処理を行い、厚さが0.1μmである銅めっき層を形成した。 Next, a copper plating layer was formed on any main surface of the copper foil base material. First, as the copper plating solution, 170 g / L of copper sulfate pentahydrate, 70 g / L of sulfuric acid, 30 mg / L of SPS powder reagent as an organic sulfur compound, and Ebara Eugene Corporation as a surfactant CU-BRITE TH-RIII series surfactant chemical solution manufactured by the company is 4 ml / L, and the leveling agent CU-BRITE TH-RIII series leveling agent chemical solution is 5 ml / L, and chlorinated. An aqueous solution containing 0.15 ml / L of hydrochloric acid (HCl aqueous solution) as a product ion was prepared. And the liquid temperature of the copper plating solution was set to 35 ° C., the current density was set to 7 A / dm 2 , the processing time was set to 10 seconds, and an electrolytic plating process was performed to form a copper plating layer having a thickness of 0.1 μm.

銅めっき層を形成した後、銅めっき層を形成した銅箔基材を水洗した。その後、銅めっき層上に、粗化銅めっき層を形成した。粗化銅めっき液として、硫酸銅五水和物を100g/Lと、硫酸を70g/Lと、硫酸鉄七水和物を20g/Lと、を含む水溶液を作製した。そして、粗化銅めっき液の液温を30℃とし、電流密度を60A/dmとし、処理時間を0.5秒間として、主に粗化粒で形成され、厚さが0.05μmである粗化銅めっき層を形成した。つまり、粗化銅めっき層を平均に均したときの厚さ(平均厚さ)が0.05μm相当となるようにめっき条件を設定して、粗化銅めっき層を形成した。 After forming the copper plating layer, the copper foil base material on which the copper plating layer was formed was washed with water. Thereafter, a roughened copper plating layer was formed on the copper plating layer. As the roughened copper plating solution, an aqueous solution containing 100 g / L of copper sulfate pentahydrate, 70 g / L of sulfuric acid, and 20 g / L of iron sulfate heptahydrate was prepared. And, the liquid temperature of the roughened copper plating solution is 30 ° C., the current density is 60 A / dm 2 , the treatment time is 0.5 seconds, and it is mainly formed of roughened grains, and the thickness is 0.05 μm. A roughened copper plating layer was formed. That is, the roughening copper plating layer was formed by setting the plating conditions such that the thickness (average thickness) when the roughening copper plating layer was averaged was equivalent to 0.05 μm.

粗化銅めっき層を形成した後、粗化銅めっき層を形成した銅箔基材を水洗した。その後、粗化銅めっき層上に防錆層を形成した。具体的には、まず、硫酸ニッケル六水和物を300g/Lと、塩化ニッケルを45g/Lと、硼酸を50g/Lと、を含む水溶液(Niめっき液)を作製した。そして、Niめっき液の液温を50℃とし、電流密度を2A/dmとし、処理時間を5秒間として、粗化銅めっき層上に厚さが25nmであるNiめっき層を形成した。Niめっき層を形成した後、銅箔基材を水洗した。その後、硫酸亜鉛を90g/Lと、硫酸ナトリウムを70g/Lと、を含む水溶液(Znめっき液)を作製した。そして、Znめっき液の液温を30℃とし、電流密度を1.5A/dmとし、処理時間を4秒間として、Niめっき層上に厚さが7nmであるZnめっき層を形成した。Znめっき層を形成した後、銅箔基材を水洗した。続いて、3価クロム化成処理を行って、Znめっき層上に厚さが5nmであるクロメート処理層を形成した。クロメート処理層を形成した後、銅箔基材を水洗した。そして、3−アミノプロピルトリメトキシシランの濃度が5%であり、液温が25℃であるシランカップリング液中に、クロメート処理層を形成した銅箔基材を5秒間浸漬した後、直ちに200℃の温度で乾燥することで、クロメート処理層上に、ごく薄い厚さのシランカップリング処理層を形成した。 After forming the roughened copper plating layer, the copper foil base material on which the roughened copper plating layer was formed was washed with water. Thereafter, a rust preventive layer was formed on the roughened copper plating layer. Specifically, first, an aqueous solution (Ni plating solution) containing 300 g / L of nickel sulfate hexahydrate, 45 g / L of nickel chloride, and 50 g / L of boric acid was prepared. Then, a Ni plating layer having a thickness of 25 nm was formed on the roughened copper plating layer by setting the Ni plating solution temperature to 50 ° C., the current density to 2 A / dm 2 , and the treatment time to 5 seconds. After forming the Ni plating layer, the copper foil substrate was washed with water. Thereafter, an aqueous solution (Zn plating solution) containing 90 g / L of zinc sulfate and 70 g / L of sodium sulfate was prepared. Then, a Zn plating layer having a thickness of 7 nm was formed on the Ni plating layer with a Zn plating solution temperature of 30 ° C., a current density of 1.5 A / dm 2 , and a treatment time of 4 seconds. After forming the Zn plating layer, the copper foil substrate was washed with water. Subsequently, trivalent chromium conversion treatment was performed to form a chromate treatment layer having a thickness of 5 nm on the Zn plating layer. After forming the chromate treatment layer, the copper foil substrate was washed with water. And after immersing the copper foil base material in which the chromate treatment layer was formed in the silane coupling liquid whose concentration of 3-aminopropyltrimethoxysilane is 5% and whose liquid temperature is 25 ° C for 5 seconds, immediately 200 By drying at a temperature of 0 ° C., a very thin silane coupling treatment layer was formed on the chromate treatment layer.

粗化銅めっき層上の防錆層の形成と併行して(粗化銅めっき層上への防錆層の形成と同時に)、銅箔基材の粗化銅めっき層が設けられた側とは反対側の主面に、防錆層(裏面防錆層)として、銅箔基材の側から順に、Niめっき層と、Znめっき層と、クロメート処理層と、を形成した。なお、Niめっき層、Znめっき層、クロメート処理層の形成方法は、粗化銅めっき層上に設けた防錆層としてのNiめっき層、Znめっき層、クロメート処理層と同様である。これにより、表面処理銅箔を作製し、これを試料1とした。   In parallel with the formation of the rust prevention layer on the roughened copper plating layer (simultaneously with the formation of the rust prevention layer on the roughened copper plating layer), the side of the copper foil base on which the roughened copper plating layer is provided; In the main surface on the opposite side, a Ni plating layer, a Zn plating layer, and a chromate treatment layer were formed in order from the copper foil base material side as a rust prevention layer (back surface rust prevention layer). In addition, the formation method of Ni plating layer, Zn plating layer, and chromate treatment layer is the same as that of the Ni plating layer, Zn plating layer, and chromate treatment layer as a rust prevention layer provided on the roughened copper plating layer. In this way, a surface-treated copper foil was produced and used as Sample 1.

(試料2〜3)
試料2〜3ではそれぞれ、銅めっき層の厚さを表3に示す通りに変更した。この他は、試料1と同様にして表面処理銅箔を作製した。
(Samples 2-3)
In Samples 2 and 3, the thickness of the copper plating layer was changed as shown in Table 3. Other than this, a surface-treated copper foil was prepared in the same manner as Sample 1.

(試料4〜6)
試料4では、粗化銅めっき層の平均厚さを0.11μmとした。つまり、粗化銅めっき層を形成する際のめっき処理条件を変更し、粗化粒の大きさを小さくした。この他は、試料1と同様にして表面処理銅箔を作製した。試料5〜6ではそれぞれ、銅めっき層の厚さを表3に示す通りに変更した。この他は、試料4と同様にして表面処理銅箔を作製した。
(Samples 4-6)
In sample 4, the average thickness of the roughened copper plating layer was 0.11 μm. That is, the plating treatment conditions for forming the roughened copper plating layer were changed to reduce the size of the roughened grains. Other than this, a surface-treated copper foil was prepared in the same manner as Sample 1. In each of Samples 5 to 6, the thickness of the copper plating layer was changed as shown in Table 3. Other than this, a surface-treated copper foil was prepared in the same manner as Sample 4.

(試料7〜9)
試料7では、粗化銅めっき層の平均厚さを0.3μmとした。つまり、粗化銅めっき層を形成する際のめっき処理条件を変更し、粗化粒の大きさを大きくした。この他は、試料1と同様にして表面処理銅箔を作製した。試料8〜9ではそれぞれ、銅めっき層の厚さを表3に示す通りに変更した。この他は、試料7と同様にして表面処理銅箔を作製した。
(Samples 7-9)
In Sample 7, the average thickness of the roughened copper plating layer was 0.3 μm. That is, the plating process conditions for forming the roughened copper plating layer were changed to increase the size of the roughened grains. Other than this, a surface-treated copper foil was prepared in the same manner as Sample 1. In each of Samples 8 to 9, the thickness of the copper plating layer was changed as shown in Table 3. Other than this, a surface-treated copper foil was prepared in the same manner as Sample 7.

(試料10〜11)
試料10では、粗化銅めっき層の平均厚さを0.03μmとした。この他は、試料2と同様にして表面処理銅箔を作製した。試料11では、銅めっき層を、有機硫黄化合物としてのSPSを添加していない銅めっき液を用いて形成した。この他は、試料10と同様にして表面処理銅箔を作製した。
(Samples 10-11)
In Sample 10, the average thickness of the roughened copper plating layer was 0.03 μm. Other than this, a surface-treated copper foil was prepared in the same manner as Sample 2. In sample 11, the copper plating layer was formed using a copper plating solution to which SPS as an organic sulfur compound was not added. Other than this, a surface-treated copper foil was produced in the same manner as Sample 10.

(試料12〜13)
試料12では、粗化銅めっき層を、硫酸鉄七水和物を添加していない粗化銅めっき液を用いて形成した。この他は、試料10と同様にして表面処理銅箔を作製した。試料13では、銅めっき層を形成しなかった。この他は、試料12と同様にして表面処理銅箔を作製した。
(Samples 12 to 13)
In sample 12, the roughened copper plating layer was formed using a roughened copper plating solution to which iron sulfate heptahydrate was not added. Other than this, a surface-treated copper foil was produced in the same manner as Sample 10. In Sample 13, a copper plating layer was not formed. Other than this, a surface-treated copper foil was produced in the same manner as Sample 12.

(試料14〜16)
試料14では、粗化銅めっき層の平均厚さを0.35μmとした。この他は、試料2と同様にして表面処理銅箔を作製した。試料15では、銅めっき層を、有機硫黄化合物としてのSPSを添加していない銅めっき液を用いて形成した。この他は、試料14と同様にして表面処理銅箔を作製した。試料16では、粗化銅めっき層を、硫酸鉄七水和物を添加していない粗化銅めっき液を用いて形成した。この他は、試料14と同様にして表面処理銅箔を作製した。
(Samples 14-16)
In Sample 14, the average thickness of the roughened copper plating layer was 0.35 μm. Other than this, a surface-treated copper foil was prepared in the same manner as Sample 2. In sample 15, the copper plating layer was formed using a copper plating solution to which SPS as an organic sulfur compound was not added. Other than this, a surface-treated copper foil was produced in the same manner as Sample 14. In sample 16, the roughened copper plating layer was formed using a roughened copper plating solution to which iron sulfate heptahydrate was not added. Other than this, a surface-treated copper foil was produced in the same manner as Sample 14.

(試料17〜21)
試料17では、銅めっき層を、有機硫黄化合物としてのSPSを添加していない銅めっき液を用いて形成した。この他は、試料5と同様にして表面処理銅箔を作製した。試料18では、粗化銅めっき層を、硫酸鉄七水和物を添加していない粗化銅めっき液を用いて形成した。この他は、試料5と同様にして表面処理銅箔を作製した。試料19では、銅めっき層を形成しなかった。この他は、試料1と同様にして表面処理銅箔を作製した。試料20では、銅めっき層を形成しなかった。この他は、試料4と同様にして表面処理銅箔を作製した。試料21では、銅めっき層を形成しなかった。この他は、試料7と同様にして表面処理銅箔を作製した。
(Samples 17 to 21)
In sample 17, the copper plating layer was formed using a copper plating solution to which SPS as an organic sulfur compound was not added. Other than this, a surface-treated copper foil was prepared in the same manner as Sample 5. In sample 18, the roughened copper plating layer was formed using a roughened copper plating solution to which iron sulfate heptahydrate was not added. Other than this, a surface-treated copper foil was prepared in the same manner as Sample 5. In sample 19, the copper plating layer was not formed. Other than this, a surface-treated copper foil was prepared in the same manner as Sample 1. In sample 20, the copper plating layer was not formed. Other than this, a surface-treated copper foil was prepared in the same manner as Sample 4. In sample 21, a copper plating layer was not formed. Other than this, a surface-treated copper foil was prepared in the same manner as Sample 7.

Figure 2015209581
Figure 2015209581

<積層板の作製>
試料1〜21の各表面処理銅箔を用いて、積層板として両面FCCL(Flexible Copper Clad Laminate)をそれぞれ作製した。樹脂基材として、厚さが25μmであるポリイミド樹脂フィルム(株式会社カネカ製のピクシオ(登録商標))を用いた。試料1〜21の各表面処理銅箔と樹脂基材とを、所定の大きさ(縦100mm×横60mm)に裁断した。そして、樹脂基材の両面上にそれぞれ、所定形状に裁断した各試料である表面処理銅箔を積層した。このとき、各試料である表面処理銅箔の粗化銅めっき層が設けられた側の面が樹脂基材と接するように各試料を積層した。その後、真空プレス機を用いて、300℃、5MPa、15分間の条件下で各試料である表面処理銅箔と樹脂基材とを貼り合わせて、両面FCCLを作製した。なお、真空プレス機による貼り合わせ条件は、各試料である表面処理銅箔が再結晶されて再結晶組織を有することとなる熱量を表面処理銅箔に付与するとともに、ポリイミド樹脂フィルムメーカの推奨条件を満たし、表面処理銅箔と樹脂基材とを貼り合わせることができるように設定した。
<Production of laminated plate>
Double-sided FCCL (Flexible Copper Clad Laminate) was each produced as a laminated board using each surface-treated copper foil of Samples 1-21. As a resin base material, a polyimide resin film (Pixio (registered trademark) manufactured by Kaneka Corporation) having a thickness of 25 μm was used. Each surface-treated copper foil and the resin base material of Samples 1 to 21 were cut into a predetermined size (length 100 mm × width 60 mm). And each surface-treated copper foil which is each sample cut | judged to the predetermined shape was laminated | stacked on both surfaces of the resin base material, respectively. At this time, each sample was laminated | stacked so that the surface by which the roughening copper plating layer of the surface treatment copper foil which is each sample was provided contact | connects the resin base material. Then, using the vacuum press machine, the surface-treated copper foil which is each sample, and the resin base material were bonded together on conditions of 300 degreeC, 5 Mpa, and 15 minutes, and produced double-sided FCCL. In addition, the bonding conditions by the vacuum press machine are the conditions that the surface-treated copper foil as each sample is recrystallized to give the surface-treated copper foil the amount of heat that has a recrystallized structure, and the recommended conditions of the polyimide resin film manufacturer The surface-treated copper foil and the resin base material were set to be bonded together.

<透明性の評価>
試料1〜21の各表面処理銅箔を用いて形成した積層板について、樹脂基材の透明性の評価を行った。樹脂基材の透明性の評価として、積層板から各試料である表面処理銅箔を除去した後の樹脂基材のHAZE値及び透明度の測定を行った。具体的には、各試料を用いて作製した積層板に対し、塩化第二鉄を用いてスプレーエッチング処理を行うことで、積層板から表面処理銅箔を全て除去した。つまり、樹脂基材の両面(両主面)の全面を露出させた状態とした。そして、表面処理銅箔が除去された樹脂基材のそれぞれについて、BYK製のhaze-gard plusを用いてHAZE値及び透明度の測定を行った。
<Evaluation of transparency>
About the laminated board formed using each surface treatment copper foil of Samples 1-21, the transparency of the resin base material was evaluated. As evaluation of the transparency of the resin base material, the HAZE value and transparency of the resin base material after removing the surface-treated copper foil as each sample from the laminate were measured. Specifically, all the surface-treated copper foils were removed from the laminate by performing a spray etching treatment using ferric chloride on the laminate produced using each sample. That is, the entire surface of both surfaces (both main surfaces) of the resin base material was exposed. And about each of the resin base material from which the surface treatment copper foil was removed, the measurement of the HAZE value and transparency was performed using haze-gard plus made from BYK.

<密着性の評価>
試料1〜21の各表面処理銅箔を用いて形成した積層板の密着性は、表面処理銅箔を樹脂基材から剥離する際のピール強度を測定することで評価した。ピール強度の測定は、以下のように行った。まず、試料1〜21の各表面処理銅箔を用いて形成した積層板のそれぞれの一方の主面(表面処理銅箔の樹脂基材と接する側とは反対側の面)上に、幅が1mmで、所定長さのマスキングテープを貼った。また、各積層板の他方の主面の全面にマスキングテープを貼った。そして、マスキングテープを貼った各積層板に対し、塩化第二鉄を用いてスプレーエッチング処理を行うことで、積層板から表面処理銅箔の所定箇所(マスキングテープが貼られていない箇所)を除去した。その後、マスキングテープを除去した。続いて、表面処理銅箔31を樹脂基材32から引き剥がした際の強度を測定した。具体的には、エッチングされて1mm幅となった表面処理銅箔を、樹脂基材から90°の角度で(引き剥がされた表面処理銅箔と樹脂基材との為す角が90°となるように)、表面処理銅箔を樹脂基材から引き剥がしたときに要する力をピール強度として測定した。このように測定したピール強度の値が大きいほど、密着性が高いといえる。
<Evaluation of adhesion>
The adhesion of the laminates formed using the surface-treated copper foils of Samples 1 to 21 was evaluated by measuring the peel strength when peeling the surface-treated copper foil from the resin base material. The peel strength was measured as follows. First, on one main surface (surface opposite to the side in contact with the resin base material of the surface-treated copper foil) of each of the laminates formed using the surface-treated copper foils of Samples 1 to 21, the width is A masking tape having a predetermined length of 1 mm was applied. Moreover, the masking tape was stuck on the whole surface of the other main surface of each laminated board. And by applying spray etching treatment to each laminated board with masking tape applied using ferric chloride, the predetermined part of the surface-treated copper foil (the place where the masking tape is not applied) is removed from the laminated board. did. Thereafter, the masking tape was removed. Subsequently, the strength when the surface-treated copper foil 31 was peeled from the resin base material 32 was measured. Specifically, the surface-treated copper foil having a width of 1 mm is etched by an angle of 90 ° from the resin base material (the angle between the peeled surface-treated copper foil and the resin base material is 90 °. Thus, the force required to peel the surface-treated copper foil from the resin substrate was measured as the peel strength. The larger the peel strength value measured in this way, the higher the adhesion.

<評価結果>
試料1〜21について、樹脂基材の透明性(HAZE値、透明度)、表面処理銅箔と樹脂基材との密着性の評価結果を表3にそれぞれ示す。
<Evaluation results>
Table 3 shows the evaluation results of the transparency (HAZE value, transparency) of the resin base material and the adhesion between the surface-treated copper foil and the resin base material for Samples 1 to 21, respectively.

試料1〜9から、樹脂基材のHAZE値が80%以下であり、樹脂基材の透明度が70%以上であると、試料1〜9の表面処理銅箔を用いて形成したFPCに電子部品等を実装する際の実装作業性が向上することを確認した。つまり、電子部品等を実装する際、樹脂基材越しに、電子部品等の実装位置を決める位置決めマークを容易に確認できる。具体的には、樹脂基材と位置決めマークとが密着している場合であっても、樹脂基材が位置決めマークと離間した位置に配置されている場合であっても、樹脂基材越しに位置決めマークを容易に確認できる。   From Samples 1 to 9, when the HAZE value of the resin base material is 80% or less and the transparency of the resin base material is 70% or more, an electronic component is formed on the FPC formed using the surface-treated copper foil of Samples 1 to 9 It was confirmed that the mounting workability when mounting etc. improved. That is, when mounting an electronic component etc., the positioning mark which determines the mounting position of an electronic component etc. can be easily confirmed over a resin base material. Specifically, even when the resin base material and the positioning mark are in close contact, or even when the resin base material is arranged at a position separated from the positioning mark, the positioning is performed over the resin base material. The mark can be easily confirmed.

試料1と試料19との比較、試料4と試料20との比較、試料7と試料21との比較、試料12と試料13との比較から、銅めっき層を形成すると、樹脂基材の透明性を向上させることができることを確認した。つまり、樹脂基材のHAZE値をより低くでき、樹脂基材の透明度をより高くできることを確認した。   From the comparison of sample 1 and sample 19, the comparison of sample 4 and sample 20, the comparison of sample 7 and sample 21, and the comparison of sample 12 and sample 13, the formation of the copper plating layer reveals the transparency of the resin base material. It was confirmed that can be improved. That is, it was confirmed that the HAZE value of the resin base material can be made lower and the transparency of the resin base material can be made higher.

試料5と試料17との比較、試料10と試料11との比較から、有機硫黄化合物を含む銅めっき液で銅めっき層を形成すると、樹脂基材の透明性を向上させることができることを確認した。   Comparison between sample 5 and sample 17 and comparison between sample 10 and sample 11 confirmed that the transparency of the resin base material can be improved by forming a copper plating layer with a copper plating solution containing an organic sulfur compound. .

試料2と試料10との比較から、粗化銅めっき層の平均厚さが0.05μm未満であると、樹脂基材の透明性を向上させることはできるが、密着性が低下する傾向にあることを確認した。また、試料8と試料14との比較から、粗化銅めっき層の平均厚さが0.30μmより厚くなると、密着性を向上させることはできるが、樹脂基材の透明性が低下してしまうことを確認した。試料14、15から、粗化銅めっき層の平均厚さが厚すぎると(0.30μmより厚くなると)、有機硫黄化合物を含む銅めっき液で銅めっき層を形成したか否かに関わらず、密着性を向上させることはできるが、樹脂基材の透明性を向上させる効果を発揮できないことを確認した。   From the comparison between Sample 2 and Sample 10, when the average thickness of the roughened copper plating layer is less than 0.05 μm, the transparency of the resin base material can be improved, but the adhesion tends to decrease. It was confirmed. Moreover, from the comparison between the sample 8 and the sample 14, when the average thickness of the roughened copper plating layer is larger than 0.30 μm, the adhesion can be improved, but the transparency of the resin base material is lowered. It was confirmed. From Samples 14 and 15, if the average thickness of the roughened copper plating layer is too thick (thickness greater than 0.30 μm), regardless of whether the copper plating layer was formed with a copper plating solution containing an organic sulfur compound, It was confirmed that the adhesiveness can be improved, but the effect of improving the transparency of the resin base material cannot be exhibited.

試料5と試料18との比較、試料10と試料12との比較から、銅めっき層を有機硫黄化合物を含む銅めっき液を用いて形成し、粗化銅めっき層を硫酸鉄七水和物を添加した粗化銅めっき液を用いて形成すると、粗化銅めっき層を構成する粗化粒の成長が抑制され、粗化粒の大きさの均一化を図れることを確認した。その結果、樹脂基材の透明性が向上することを確認した。また、試料14と試料16との比較から、粗化銅めっき層の平均厚さが厚すぎると、銅めっき層を有機硫黄化合物を含む銅めっき液を用いて形成し、粗化銅めっき層を硫酸鉄七水和物を添加した粗化銅めっき液を用いて形成しても、樹脂基材の透明性を向上させる効果を発揮できないことを確認した。   From comparison between sample 5 and sample 18 and comparison between sample 10 and sample 12, a copper plating layer is formed using a copper plating solution containing an organic sulfur compound, and the roughened copper plating layer is formed of iron sulfate heptahydrate. When formed using the added roughening copper plating solution, it was confirmed that the growth of the roughening grains constituting the roughening copper plating layer was suppressed and the size of the roughening grains could be made uniform. As a result, it was confirmed that the transparency of the resin base material was improved. Moreover, from the comparison between sample 14 and sample 16, if the average thickness of the roughened copper plating layer is too thick, the copper plating layer is formed using a copper plating solution containing an organic sulfur compound, and the roughened copper plating layer is formed. It was confirmed that the effect of improving the transparency of the resin base material could not be exhibited even when formed using a roughened copper plating solution to which iron sulfate heptahydrate was added.

<本発明の好ましい態様>
以下に、本発明の好ましい態様について付記する。
<Preferred embodiment of the present invention>
Hereinafter, preferred embodiments of the present invention will be additionally described.

[付記1]
本発明の一態様によれば、
銅箔基材と、
前記銅箔基材上に形成された銅めっき層と、
前記銅めっき層上に形成された粗化銅めっき層と、を備える表面処理銅箔であって、
樹脂基材の両主面上に、前記表面処理銅箔を対向させて、前記粗化銅めっき層が設けられた側の面が前記樹脂基材に接するように前記表面処理銅箔を貼り合わせた後、前記樹脂基材の両主面上から前記表面処理銅箔を除去したとき、前記樹脂基材のHAZE値が80%以下、透明度が70%以上となり、前記表面処理銅箔と前記樹脂基材との間のピール強度が0.6N/mm以上となるように形成されている表面処理銅箔が提供される。
[Appendix 1]
According to one aspect of the invention,
A copper foil base material;
A copper plating layer formed on the copper foil substrate;
A roughened copper plating layer formed on the copper plating layer, and a surface-treated copper foil comprising:
The surface-treated copper foil is bonded to both the main surfaces of the resin base material so that the surface-treated copper foil faces each other and the surface on which the roughened copper plating layer is provided is in contact with the resin base material. Then, when the surface-treated copper foil is removed from both main surfaces of the resin base material, the resin base material has a HAZE value of 80% or less and a transparency of 70% or more, and the surface-treated copper foil and the resin Provided is a surface-treated copper foil that is formed so that the peel strength between the substrate and the substrate is 0.6 N / mm or more.

[付記2]
付記1の表面処理銅箔であって、好ましくは、
前記銅めっき層は、メルカプト基を有する有機化合物が添加された銅めっき液を用いて形成されている。
[Appendix 2]
The surface-treated copper foil of Appendix 1, preferably,
The copper plating layer is formed using a copper plating solution to which an organic compound having a mercapto group is added.

[付記3]
付記2の表面処理銅箔であって、好ましくは、
前記銅めっき液中には、前記メルトカプト基を有する有機化合物が5mg/L以上60mg/L以下含まれている。
[Appendix 3]
The surface-treated copper foil of Appendix 2, preferably,
The copper plating solution contains the organic compound having the meltcapto group in an amount of 5 mg / L to 60 mg / L.

[付記4]
付記1ないし3のいずれかの表面処理銅箔であって、好ましくは、
前記銅めっき層は、厚さが0.1μm以上0.6μm以下となるように形成されている。
[Appendix 4]
The surface-treated copper foil according to any one of appendices 1 to 3, preferably
The copper plating layer is formed to have a thickness of 0.1 μm to 0.6 μm.

[付記5]
付記1ないし4のいずれかの表面処理銅箔であって、好ましくは、
前記粗化銅めっき層は、平均厚さが0.05μm以上0.30μm以下となるように形成されている。
[Appendix 5]
The surface-treated copper foil according to any one of appendices 1 to 4, preferably,
The roughened copper plating layer is formed to have an average thickness of 0.05 μm or more and 0.30 μm or less.

[付記6]
本発明の他の態様によれば、
銅箔基材、前記銅箔基材上に形成された銅めっき層、及び前記銅めっき層上に形成された粗化銅めっき層、を備える表面処理銅箔と、
前記粗化銅めっき層が設けられた側の面に接するように形成された樹脂基材と、を備え、
前記表面処理銅箔は、前記樹脂基材の両主面上に、前記表面処理銅箔を対向させて前記表面処理銅箔を貼り合わせた後、前記樹脂基材の両主面上から前記表面処理銅箔を除去したとき、前記樹脂基材のHAZE値が80%以下、透明度が70%以上となり、前記表面処理銅箔と前記樹脂基材との間のピール強度が0.6N/mm以上となるように形成されている積層板が提供される。
[Appendix 6]
According to another aspect of the invention,
A surface-treated copper foil comprising a copper foil base material, a copper plating layer formed on the copper foil base material, and a roughened copper plating layer formed on the copper plating layer;
A resin base material formed so as to be in contact with the surface on which the roughened copper plating layer is provided,
After the surface-treated copper foil is bonded to the two main surfaces of the resin base material so that the surface-treated copper foil is opposed to the surface-treated copper foil, the surface treatment copper foil is applied to the surface from both main surfaces of the resin base material. When the treated copper foil is removed, the resin substrate has a HAZE value of 80% or less, a transparency of 70% or more, and a peel strength between the surface-treated copper foil and the resin substrate of 0.6 N / mm or more. The laminated board currently formed so that it may become is provided.

1 表面処理銅箔
2 銅箔基材
3 銅めっき層
4 粗化銅めっき層
DESCRIPTION OF SYMBOLS 1 Surface treatment copper foil 2 Copper foil base material 3 Copper plating layer 4 Roughening copper plating layer

Claims (5)

銅箔基材と、
前記銅箔基材上に形成された銅めっき層と、
前記銅めっき層上に形成された粗化銅めっき層と、を備える表面処理銅箔であって、
樹脂基材の両主面上に、前記表面処理銅箔を対向させて、前記粗化銅めっき層が設けられた側の面が前記樹脂基材に接するように前記表面処理銅箔を貼り合わせた後、前記樹脂基材の両主面上から前記表面処理銅箔を除去したとき、前記樹脂基材のHAZE値が80%以下、透明度が70%以上となり、
前記表面処理銅箔と前記樹脂基材との間のピール強度が0.6N/mm以上となるように形成されている
表面処理銅箔。
A copper foil base material;
A copper plating layer formed on the copper foil substrate;
A roughened copper plating layer formed on the copper plating layer, and a surface-treated copper foil comprising:
The surface-treated copper foil is bonded to both the main surfaces of the resin base material so that the surface-treated copper foil faces each other and the surface on which the roughened copper plating layer is provided is in contact with the resin base material. After that, when the surface-treated copper foil is removed from both main surfaces of the resin base material, the resin base material has a HAZE value of 80% or less and a transparency of 70% or more.
A surface-treated copper foil formed so that a peel strength between the surface-treated copper foil and the resin base material is 0.6 N / mm or more.
前記銅めっき層は、メルカプト基を有する有機化合物が添加された銅めっき液を用いて形成されている
請求項1に記載の表面処理銅箔。
The surface-treated copper foil according to claim 1, wherein the copper plating layer is formed using a copper plating solution to which an organic compound having a mercapto group is added.
前記銅めっき層は、厚さが0.1μm以上0.6μm以下となるように形成されている
請求項1又は2に記載の表面処理銅箔。
The surface-treated copper foil according to claim 1, wherein the copper plating layer is formed to have a thickness of 0.1 μm or more and 0.6 μm or less.
前記粗化銅めっき層は、平均厚さが0.05μm以上0.30μm以下となるように形成されている
請求項1ないし3のいずれかに記載の表面処理銅箔。
The surface-treated copper foil according to claim 1, wherein the roughened copper plating layer is formed to have an average thickness of 0.05 μm to 0.30 μm.
銅箔基材、前記銅箔基材上に形成された銅めっき層、及び前記銅めっき層上に形成された粗化銅めっき層、を備える表面処理銅箔と、
前記粗化銅めっき層が設けられた側の面に接するように形成された樹脂基材と、を備え、
前記表面処理銅箔は、前記樹脂基材の両主面上に、前記表面処理銅箔を対向させて前記表面処理銅箔を貼り合わせた後、前記樹脂基材の両主面上から前記表面処理銅箔を除去したとき、前記樹脂基材のHAZE値が80%以下、透明度が70%以上となり、前記表面処理銅箔と前記樹脂基材との間のピール強度が0.6N/mm以上となるように形成されている
積層板。
A surface-treated copper foil comprising a copper foil base material, a copper plating layer formed on the copper foil base material, and a roughened copper plating layer formed on the copper plating layer;
A resin base material formed so as to be in contact with the surface on which the roughened copper plating layer is provided,
After the surface-treated copper foil is bonded to the two main surfaces of the resin base material so that the surface-treated copper foil is opposed to the surface-treated copper foil, the surface treatment copper foil is applied to the surface from both main surfaces of the resin base material. When the treated copper foil is removed, the resin substrate has a HAZE value of 80% or less, a transparency of 70% or more, and a peel strength between the surface-treated copper foil and the resin substrate of 0.6 N / mm or more. The laminated board currently formed so that it may become.
JP2014093003A 2014-04-28 2014-04-28 Surface-treated copper foil and laminate Active JP5756547B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014093003A JP5756547B1 (en) 2014-04-28 2014-04-28 Surface-treated copper foil and laminate
TW104110924A TWI536878B (en) 2014-04-28 2015-04-02 Surface treatment of copper foil and laminated board
KR1020150046805A KR101974687B1 (en) 2014-04-28 2015-04-02 Surface-treated copper foil and laminate
CN201510161887.7A CN105034478B (en) 2014-04-28 2015-04-07 Surface-treated copper foil and laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014093003A JP5756547B1 (en) 2014-04-28 2014-04-28 Surface-treated copper foil and laminate

Publications (2)

Publication Number Publication Date
JP5756547B1 JP5756547B1 (en) 2015-07-29
JP2015209581A true JP2015209581A (en) 2015-11-24

Family

ID=53759643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014093003A Active JP5756547B1 (en) 2014-04-28 2014-04-28 Surface-treated copper foil and laminate

Country Status (4)

Country Link
JP (1) JP5756547B1 (en)
KR (1) KR101974687B1 (en)
CN (1) CN105034478B (en)
TW (1) TWI536878B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020050331A1 (en) * 2018-09-06 2020-03-12 日立金属株式会社 Nickel-coated copper foil and method for producing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9673646B1 (en) * 2016-08-19 2017-06-06 Chang Chun Petrochemical Co., Ltd. Surface-treated electrolytic copper foil and method for wireless charging of flexible printed circuit board
US10337115B1 (en) * 2018-01-05 2019-07-02 Chang Chun Petrochemical Co., Ltd. Surface treated copper foil for high speed printed circuit board products including the copper foil and methods of making
US10697082B1 (en) * 2019-08-12 2020-06-30 Chang Chun Petrochemical Co., Ltd. Surface-treated copper foil

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1426334A (en) 1972-08-10 1976-02-25 Ici Ltd Pyrimidine azo dyes
JPS62122193A (en) * 1985-11-21 1987-06-03 信越化学工業株式会社 Flexible copper-clad laminated substrate
JP2004098659A (en) 2002-07-19 2004-04-02 Ube Ind Ltd Copper-clad laminate and its manufacturing process
JP5351461B2 (en) * 2008-08-01 2013-11-27 日立電線株式会社 Copper foil and copper foil manufacturing method
JP5497808B2 (en) 2012-01-18 2014-05-21 Jx日鉱日石金属株式会社 Surface-treated copper foil and copper-clad laminate using the same
JP5475897B1 (en) * 2012-05-11 2014-04-16 Jx日鉱日石金属株式会社 Surface-treated copper foil and laminate using the same, copper foil, printed wiring board, electronic device, and method for manufacturing printed wiring board
JP5417538B1 (en) * 2012-06-11 2014-02-19 Jx日鉱日石金属株式会社 Surface-treated copper foil, laminate using the same, printed wiring board, electronic device, and method for manufacturing printed wiring board
JP5362899B1 (en) * 2012-09-10 2013-12-11 Jx日鉱日石金属株式会社 Surface-treated copper foil and laminate using the same
JP5855259B2 (en) * 2012-09-10 2016-02-09 Jx日鉱日石金属株式会社 Surface-treated copper foil and laminate using the same
JP5362924B1 (en) * 2012-11-09 2013-12-11 Jx日鉱日石金属株式会社 Surface-treated copper foil and laminate using the same
JP5362898B1 (en) * 2012-11-09 2013-12-11 Jx日鉱日石金属株式会社 Surface-treated copper foil, laminate using the same, printed wiring board, and copper-clad laminate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020050331A1 (en) * 2018-09-06 2020-03-12 日立金属株式会社 Nickel-coated copper foil and method for producing same
US11753735B2 (en) 2018-09-06 2023-09-12 Proterial, Ltd. Nickel-coated copper foil and method for manufacturing the same

Also Published As

Publication number Publication date
JP5756547B1 (en) 2015-07-29
TWI536878B (en) 2016-06-01
KR20150124388A (en) 2015-11-05
CN105034478B (en) 2020-01-21
KR101974687B1 (en) 2019-05-02
TW201542048A (en) 2015-11-01
CN105034478A (en) 2015-11-11

Similar Documents

Publication Publication Date Title
US9258900B2 (en) Copper foil structure having blackened ultra-thin foil and manufacturing method thereof
JP5885791B2 (en) Surface-treated copper foil and laminate using the same, copper foil with carrier, copper foil, printed wiring board, electronic device, method for manufacturing electronic device, and method for manufacturing printed wiring board
TWI626150B (en) Composite copper foil and composite copper foil manufacturing method
JP5475897B1 (en) Surface-treated copper foil and laminate using the same, copper foil, printed wiring board, electronic device, and method for manufacturing printed wiring board
JP5756547B1 (en) Surface-treated copper foil and laminate
JP6367687B2 (en) Surface-treated copper foil and laminate
JP6373166B2 (en) Surface-treated copper foil and laminate
JP2015124426A (en) Surface-treated copper foil and laminate
JP4824828B1 (en) Composite metal foil, method for producing the same, and printed wiring board
JP2010201804A (en) Composite metal foil, method for producing the same, and printed wiring board
JP2016003378A (en) Surface-treated copper foil, production method thereof and laminate
JP5728118B1 (en) Surface-treated copper foil, method for producing the surface-treated copper foil, and copper-clad laminate using the surface-treated copper foil
JP2016141823A (en) Surface-treated copper foil and laminate sheet
JP5628106B2 (en) Composite metal foil, method for producing the same, and printed wiring board
JPWO2020246467A1 (en) Surface-treated copper foil, copper-clad laminate, and printed wiring board
JP5732181B1 (en) Copper-clad laminate and flexible printed wiring board using the copper-clad laminate
JP5702881B1 (en) Surface-treated copper foil and copper-clad laminate using the surface-treated copper foil
JP5695253B1 (en) Copper-clad laminate and flexible printed wiring board using the copper-clad laminate
JP5728117B1 (en) Surface-treated copper foil, method for producing the surface-treated copper foil, and copper-clad laminate using the surface-treated copper foil
JP6392674B2 (en) Surface-treated copper foil and laminate
JP2014122414A (en) Copper foil with carrier
JP5816230B2 (en) Surface-treated copper foil and laminate using the same, copper foil, printed wiring board, electronic device, and method for manufacturing printed wiring board
JP2012184498A (en) Electrolytic copper foil for electromagnetic-wave shielding, and manufacturing method therefor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150529

R150 Certificate of patent or registration of utility model

Ref document number: 5756547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250