JP2015206506A - 空調システム - Google Patents

空調システム Download PDF

Info

Publication number
JP2015206506A
JP2015206506A JP2014086046A JP2014086046A JP2015206506A JP 2015206506 A JP2015206506 A JP 2015206506A JP 2014086046 A JP2014086046 A JP 2014086046A JP 2014086046 A JP2014086046 A JP 2014086046A JP 2015206506 A JP2015206506 A JP 2015206506A
Authority
JP
Japan
Prior art keywords
air
pipe
heat exchange
underfloor
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014086046A
Other languages
English (en)
Inventor
哲三 福田
Tetsuzo Fukuda
哲三 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2014086046A priority Critical patent/JP2015206506A/ja
Publication of JP2015206506A publication Critical patent/JP2015206506A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps

Landscapes

  • Central Air Conditioning (AREA)

Abstract

【課題】蓄熱土壌の熱との熱交換に処される地中埋設のパイプの防カビ性を高める。
【解決手段】冷暖房空調システム100は、暖房要請期間において、電気抵抗加熱パネル102を発熱させて土壌Dを蓄熱状態とし、この蓄熱状態の土壌Dに埋設した熱交換用パイプ300に、床下空間FDの床下空気を給気する。冷暖房空調システム100は、土壌温度が低いために熱交換用パイプ300での結露が起き得る冷房要請期間においては、電気抵抗加熱パネル102を未発熱として、熱交換用パイプ300に床下空間FDの床下空気を給気する。
【選択図】図6

Description

本発明は、空調システムに関する。
近年になり、建築物の土壌をヒーターにて蓄熱状態とし、その蓄熱土壌の熱を地中埋設のパイプ内の空気との熱交換の熱源とする空調システムが種々提案されている(例えば、特許文献1等)。
特許第4694168号公報 実用新案登録第3185552号公報
こうした空調システムでは、熱交換に用いられるパイプは地中に埋設されたままであるため、パイプ内の防カビ性対策が求められる。特許文献2では、パイプ内壁を防カビ性の薬剤を塗布することで防カビ性を発揮しているが、建築物の外部から吸引した空気をパイプに導いているので、建築物内外の温度差が大きい状況では、パイプ内壁に結露が起き得る。パイプ内の結露は、カビの生育をもたらしかねないので、防カビ性の薬剤の剥離があると、その剥離箇所でのカビの生育が危惧される。こうしたことから、蓄熱土壌の熱との熱交換に処される地中埋設のパイプの防カビ性を高めることが要請されるに到った。この他、空調システムの構造の簡略化も要請されている。
上記した課題の少なくとも一部を達成するために、本発明は、以下の形態として実施することができる。
(1)本発明の一形態によれば、空調システムが提供される。この空調システムは、建築物の空調システムであって、建築物土台の受けとなる基礎凸部で取り囲まれた土壌の表面もしくは該土壌の表面を覆う基礎コンクリートの表面に設置され、通電を受けて発熱して前記土壌を蓄熱状態とする複数の発熱体と、暖房空調が要請される暖房要請期間において前記複数の発熱体を発熱制御し、冷房空調が要請される冷房要請期間において前記複数の発熱体を未発熱とする制御部と、前記土壌に埋設され、前記土壌に蓄熱された熱との熱交換に用いられる熱交換用パイプと、前記熱交換用パイプと繋がって建築物の床下空間に延びる床下パイプを有し、該床下空間への通気孔を備える建築物床と前記基礎コンクリートとの間の前記床下空間に存在する床下空気を吸引し、該吸引した床下空気を前記床下パイプを経て前記熱交換用パイプに給気する給気部と、前記熱交換用パイプを通過する間における前記土壌との熱交換を経て空調された空調済み空気の導出対象の建築物内部領域まで前記熱交換用パイプから延びる導出パイプを有し、前記空調済み空気を前記導出パイプを経て前記建築物内部領域に送気する送気部とを備える。
上記形態の空調システムは、暖房要請期間において、複数の発熱体の発する熱により土壌を蓄熱状態とし、この蓄熱状態の土壌に埋設した熱交換用パイプにより、パイプ内に給気済み空気を、蓄熱状態の土壌との熱交換を経て暖める。複数の発熱体による土壌の蓄熱状態は、制御部による発熱体の発熱制御により種々変更できるので、上記形態の空調システムによれば、厳冬期であっても、十分に暖めた暖気を導出パイプを経て建築物内部領域に導いて、この建築内部領域を暖房する。また、上記形態の空調システムは、冷房要請期間においては発熱体を未発熱とするので、熱交換用パイプは、土壌自体が本来有する熱をパイプ内空気と熱交換する。冷房要請期間では、外気温が高いとは言え、土壌は外気温に比べれば十分に低い温度であるので、上記形態の空調システムは、冷房要請期間において、熱交換用パイプにより、パイプ内に給気済み空気を土壌との熱交換を経て冷やし、こうして得た冷気を導出パイプを経て建築物内部領域に導いて、この建築内部領域を冷房する。このようにして冷暖房を図るに当たり、上記形態の空調システムは、熱交換用パイプを介した土壌との熱交換の対象となる空気を、建築物床と基礎コンクリートとの間の床下空間の床下空気とする。床下空間の温度は、暖房要請期間と冷房要請期間の両期間において土壌温度と高低の差はあるものの、土壌温度との温度差は、外気温と土壌温度の温度差に比べれば、小さい。よって、土壌温度が低いために熱交換用パイプでの結露が起き得る冷房要請期間であっても、上記形態の空調システムによれば、パイプ内の結露をより効果的に抑制して、地中埋設の熱交換用パイプの防カビ性を高めることが可能となる。なお、暖房要請期間においては、土壌は複数の発熱体の発する熱により蓄熱状態にあるため、パイプ内はカビの生育環境とはならないので、特段の防カビ対策は不要である。
(2)上記形態の空調システムにおいて、前記給気部は、前記冷房要請期間においては、前記熱交換用パイプへの前記床下空気の給気を継続するようにできる。こうすれば、冷房要請期間においては、継続して熱交換用パイプにおいて床下空気を通気するので、パイプ内結露の抑制の実効性が高まり、熱交換用パイプの防カビ性をより確実に高めることが可能となる。
(3)上記した形態の空調システムにおいて、前記給気部は、前記冷房要請期間における前記熱交換用パイプへの前記床下空気の給気を、ユーザーによる冷房実行操作がない場合であっても継続するようにできる。こうすれば、熱交換用パイプの防カビ性の実効性がより高まる。
(4)上記した形態の空調システムにおいて、前記給気部は、ユーザーによる冷房実行操作がない場合の前記熱交換用パイプへの前記床下空気の給気を、ユーザーによる冷房実行操作がある場合の給気より少量の給気量で継続するようにできる。こうすれば、継続給気に伴う通気音を低減できる。
(5)上記したいずれかの形態の空調システムにおいて、前記送気部は、前記導出パイプから前記床下空間に到るよう分岐した分岐パイプを備え、ユーザーによる冷房実行操作がない場合に前記給気部が前記熱交換用パイプに給気した前記床下空気を、前記分岐パイプを経て前記床下空間に放出するようにできる。こうすれば、建築物内部領域まで延びる導出パイプでの通気を行わないことから、建築物内部領域に居るユーザーに継続給気に伴う通気音をより気づかせ難くできるので、継続給気に伴う違和感を緩和できる。
なお、本発明は、種々の形態で実現することが可能であり、例えば、複数の住居域を有する住宅建築物の他、体育館、講演会会場、映画館等の大規模建築物にも適用できる。
本発明の実施形態としての冷暖房空調システム100を用いた床暖房建築物の概要を説明するための説明図である。 冷暖房空調システム100の構成と建築物床との関係を説明するための説明図である。 電気抵抗加熱パネル102の設置領域と熱交換用パイプ300の埋設経路を概略的に斜視にて示す説明図である。 電気抵抗加熱パネル102の設置の様子を概略的に平面視にて示す説明図である。 熱交換用パイプ300の埋設経路の様子を概略的に平面視にて示す説明図である。 本実施形態の冷暖房空調システム100において2階住居域JH3の空調に用いる熱交換用パイプ300の埋設の様子を概略的に縦断面視して示す説明図である。 本実施形態の冷暖房空調システム100において1階住居域J3の空調に用いる熱交換用パイプ300の埋設の様子を概略的に縦断面視して示す説明図である。 送気ファン機構322における送風量制限の様子を概略的に示す説明図である。 冷暖房空調システム100の冷暖房運転の運転モードを決定するフローチャートである。 短経路送気管部320Lに分岐官320Lbを設けた実施形態の冷暖房空調システム100Aを概略的に縦断面視して示す説明図である。 また別の実施形態の冷暖房空調システム100Bを概略的に縦断面視して示す説明図である。
以下、本発明の実施の形態について、図面に基づき説明する。図1は本発明の実施形態としての冷暖房空調システム100を用いた床暖房建築物の概要を説明するための説明図、図2は冷暖房空調システム100の構成と建築物床との関係を説明するための説明図である。
図示するように、建築物Kは、住人の住居域を複数有する住宅建築物であって、建築物Kの基礎部分に、実施形態としての冷暖房空調システム100を備え、その制御装置200を、例えば基礎部分や建築物壁面に有する。本実施形態では、制御装置200は、防塵と防水機能を有する図示しない開閉式のボックス内に組み込まれ、このボックスごと基礎部分に埋設されている。制御装置200を建築物壁面に設置する場合には、操作可能な適宜箇所に設置すればよい。冷暖房空調システム100は、建築物Kの下の土壌を蓄熱状態とするためのものであり、図2に詳しく示すように、建築物Kの土間基礎DKの土壌Dの上面に、電気抵抗加熱パネル102と、コンクリート層105と、断熱体107と、熱交換用パイプ300とを有する。この場合、電気抵抗加熱パネル102は、土壌Dを覆うよう施工済みの基礎コンクリートの上面に配設することも可能であり、施工済み基礎コンクリートは、少なくとも100〜150mmの厚みを有することが、強度および後述の土壌Dの蓄熱に当たって望ましい。以下の説明に当たっては、土壌Dの表面に電気抵抗加熱パネル102を配設する構成について行い、施工済み基礎コンクリートの表面に電気抵抗加熱パネル102を配設する構成については、その説明を省略する。
電気抵抗加熱パネル102は、平板状を成し、水密性を持って折り返し備えた電気抵抗加熱線により、面状に発熱する構成を備え、土壌Dの表面或いは施工済みの基礎コンクリートの表面に後述するように複数設置されている。電気抵抗加熱パネル102を覆うコンクリート層105は、建築物Kの建築物床150との間に床下空間FDを形成し、この床下空間FDの高さ方向間隙Tを50〜300mmの範囲で確保した上で、100〜300mmの厚みで電気抵抗加熱パネル102を覆い、その下層への水の浸入回避、下層保護等の機能を果たす。断熱体107は、土壌Dから立ち上がって建築物Kの土台150Dの受けとなる基礎凸部KTに装着され、この基礎凸部KTで取り囲まれた後述の建築物床下領域の断熱を図る。なお、基礎凸部KTは、布基礎として構成されても良いほか、ベタ基礎として構成されても良い。また、断熱体107については、省略してもよい。
上記の冷暖房空調システム100を土壌Dに構築するに当たり、土壌Dの上面に、図示しない最下層砂層を小石の無い山砂等を用いて約30mmの厚みで形成して、この砂層に電気抵抗加熱パネル102を設置するようにすることもできる。また、電気抵抗加熱パネル102をコンクリート層105にて覆う前に、小石の無い山砂等を用いた約50mmの砂層(上部砂層)にて予め電気抵抗加熱パネル102を覆い尽くし、これをコンクリート層105にて覆うようにすることもできる。この場合には、電気抵抗加熱パネル102は、上部砂層とその上のコンクリート層105の2層で覆われることになる。なお、上部砂層とコンクリート層105との境界に、図示しない防湿フィルムを介在させるようにしてもよい。
上記構成を備える冷暖房空調システム100は、電気抵抗加熱パネル102への通電により当該パネルを発熱させ、土壌Dを蓄熱状態とし、この土壌Dに逆ドーム状の蓄熱層Dhを形成する。こうした蓄熱層Dhの形成の様子は、上記の特許文献にて提案された既存構成と変わるものではない。
熱交換用パイプ300は、電気抵抗加熱パネル102により逆ドーム状の蓄熱層Dhとされる土壌Dに所定の埋設深さDLで埋設される塩化ビニル製のパイプであり、内部の空気を土壌Dの蓄熱層Dhと熱交換する。熱交換用パイプ300の直径と埋設経路長PLは、建築物Kの居間等の空調済み外気の導出対象の内容積に応じて定められる。熱交換用パイプ300の埋設深さDLや直径、埋設経路長PLについては後述する。本実施形態の建築物Kは、図1に示すように2階建てであり、1階住居域J3と2階住居域JH3とに別系統で冷暖房空調可能に構成されている。
次に、電気抵抗加熱パネル102と熱交換用パイプ300の設置の様子について説明する。図3は電気抵抗加熱パネル102の設置領域と熱交換用パイプ300の埋設経路を概略的に斜視にて示す説明図、図4は電気抵抗加熱パネル102の設置の様子を概略的に平面視にて示す説明図、図5は熱交換用パイプ300の埋設経路の様子を概略的に平面視にて示す説明図である。
図示するように、基礎凸部KTは、土間基礎DKを取り囲むと共に、この土間基礎DKを建築物Kの住空間区画に対応して区画し、建築物Kの土台150Dを受ける。こうして基礎凸部KTにて区画されて取り囲まれた土間基礎DKは、本実施形態では、図3〜図4に示すように、第1床下領域R1〜第5床下領域R5とされ、第5床下領域R5は、玄関土間DCの土間基礎DKを除く領域とされている。そして、本実施形態の冷暖房空調システム100では、図4に示すように、第1床下領域R1〜第5床下領域R5の各床下領域ごとに、電気抵抗加熱パネル102を土壌Dの表面に複数設置して備える。こうして設置された電気抵抗加熱パネル102は、後述する制御装置200からの制御を受けて発熱して、その熱を土壌Dに伝え、土壌Dを蓄熱状態とする。第1床下領域R1〜第5床下領域R5の各床下領域ごとの電気抵抗加熱パネル102の設置枚数は、各床下領域の広さや建築物Kで各床下領域が占める位置に応じて設定される。この場合、建築物Kが体育館や公民館等の広い平屋状建築であれば、各床下領域は、ほぼ同じとなるので、同じ枚数の電気抵抗加熱パネル102を設置すればよい。なお、電気抵抗加熱パネル102による土壌Dの蓄熱化は、コンクリート層105(図1参照)にて覆われてからなされ、コンクリート層105からの反射熱も土壌Dに伝わる。
建築物Kの建築物床150は、本実施形態では、図2に示すように、冷暖房空調システム100の側から、土台150D、大引151、根太152、床下地材153、フローリング材154を備え、土台150Dに掛け渡された大引151と根太152にて、コンクリート層105の表層との間に床下空間FDを形成する。つまり、大引151や根太152の寸法やその組構造を変えることで、或いはコンクリート層105の厚みを変えることで床下空間FDの間隙Tを種々のものとでき、この間隙Tは、冷暖房空調システム100の設置箇所での暖房の要請程度、詳しくは暖房温度や頻度等の他、住空間に導出する空調済み空気の空調程度と冷暖房空調システム100による土壌蓄熱の状況に応じて規定される。
図6は本実施形態の冷暖房空調システム100において2階住居域JH3の空調に用いる熱交換用パイプ300の埋設の様子を概略的に縦断面視して示す説明図、図7は本実施形態の冷暖房空調システム100において1階住居域J3の空調に用いる熱交換用パイプ300の埋設の様子を概略的に縦断面視して示す説明図である。
本実施形態では、1階の最大面積の第3床下領域R3に対応する住空間、例えば、居間と台所が繋がった高内容積の1階住居域J3と、この1階住居域J3の上に当たる2階住居域JH3(図6参照)を、冷暖房空調システム100の熱交換用パイプ300による空調済み空気の導出対象とした。この1階住居域J3は、縦横が約4mx10mで天井高が約3mの1階住居であり、本実施形態では、この1階住居域J3の空調に用いる熱交換用パイプ300と、2階住居域JH3の空調に用いる熱交換用パイプ300の両パイプを、土壌Dに埋設した。1階住居域J3の空調に用いる熱交換用パイプ300は、最大面積の第3床下領域R3に対応する1階住居域J3の内容積(120m)に応じて、パイプ直径を100〜150mmの市販の塩化ビニル製パイプ(例えば、120mm)とし、埋設経路長PLについては、15mとした。熱交換用パイプ300の埋設経路は、土間基礎DKにおいてにおいて任意に設定できる。本実施形態では、1階住居域J3の空調に用いる熱交換用パイプ300を、図3と図5に示すように、第1床下領域R1から第3床下領域R3まで延びるL字状の経路で埋設し、熱交換用パイプ300への給気をエアー吸引管部310により第1床下領域R1における床下空間FDで行い、1階住居域J3への送気(図7参照)は、熱交換用パイプ300からこの1階住居域J3まで延びる短経路送気管部320Lにて行う。熱交換用パイプ300の土壌Dの表面からの埋設深さDL(図2参照)については、これを約100cmとした。こうして土壌Dに埋設された熱交換用パイプ300は、パイプ内に給気済みの空気を、土壌Dとの熱交換を埋設経路長PLに亘って行うことで空調し、その空調済み空気を短経路送気管部320Lを経て1階住居域J3に送り込む(図7参照)。熱交換用パイプ300における空気吸引と空調済み空気の導出、並びに、熱交換用パイプ300の経路勾配の様子については、後述する。
1階天井157(図6参照)により1階住居域J3から区画された2階住居域JH3の空調に用いる熱交換用パイプ300は、1階住居域J3と同様に住居域内容積に応じたパイプ直径と埋設経路長の塩化ビニル製パイプであり、熱交換用パイプ300の埋設経路は、図3と図5に示すように第3床下領域R3においてコの字状とした。これにより、2階住居域JH3の内容積に応じ経路長が確保される。熱交換用パイプ300の埋設深さDL(図2参照)については、1階住居域J3と同様であり、こうして土壌Dに埋設された熱交換用パイプ300は、パイプ内に給気済みの空気を、土壌Dとの熱交換を埋設経路長PLに亘って行うことで空調し、その空調済み空気を長経路送気管部320Hを経て2階住居域JH3に送り込む(図6参照)。なお、第1床下領域R1〜第3床下領域R3以外の床下領域に対応する住居域についても、熱交換用パイプ300を用いた空調済み空気の導出対象としてもよい。また、第1床下領域R1〜第3床下領域R3以外の床下領域において、熱交換用パイプ300を埋設してもよい。
図6に示すように、冷暖房空調システム100は、2階住居域JH3の空調用の熱交換用パイプ300を、電気抵抗加熱パネル102により蓄熱状態とされる土壌Dに埋設して備え、この熱交換用パイプ300の両端にエアー吸引管部310と長経路送気管部320Hとを繋げて備える。2階住居域JH3の空調用の熱交換用パイプ300は、図3や図5に示す第3床下領域R3において土壌Dの内部に延び、コの字状に屈曲したパイプ経路を採る。エアー吸引管部310は、熱交換用パイプ300と同径の塩化ビニル製パイプであって、熱交換用パイプ300の一端において当該パイプと繋がり、土壌Dから建築物Kの床下空間FDにほぼ鉛直に延びる。その上で、エアー吸引管部310は、床下空間FDにおいて建築物床150に沿って水平に延びた管路端部312に、吸引ファン機構314を有する。
吸引ファン機構314は、後述の制御装置200の制御を受けて駆動して床下空間FDに存在する床下空気を吸引し、その吸引した床下空気をエアー吸引管部310を経て熱交換用パイプ300に給気する。吸引ファン機構314の上流側には、図示しない防虫網が配設されているので、虫或いは虫程度のゴミが除去された床下空気が、熱交換用パイプ300に給気される。建築物床150は、1階住居域J3から床下空間FDに到るガラリ160を備え、1階住居域J3の住居域内空気は、ガラリ160を経て床下空間FDに流れ込む。なお、図6や図5では、ガラリ160をエアー吸引管部310の吸引ファン機構314の近傍に示しているが、ガラリ160は、吸引ファン機構314が存在する床下空間FDと1階住居域J3とを隔てる建築物床150のいずれの箇所に配設してもよい。
熱交換用パイプ300は、土壌Dの内部においてコの字状に屈曲したパイプ経路で延びるに当たり、各屈曲経路部を、図3の黒塗りの傾斜記号および図6のパイプ経路で示したように、エアー吸引管部310との繋ぎ箇所である管路末端に向けた下り勾配で土壌Dに埋設される。熱交換用パイプ300は、下り勾配経路の最上部側のパイプ端部に、長経路送気管部320Hを繋げて備える。長経路送気管部320Hは、熱交換用パイプ300と同径の塩化ビニル製パイプであり、建築物床150および1階天井157を貫通して2階住居域JH3までほぼ鉛直に延びる。つまり、長経路送気管部320Hは、熱交換用パイプ300を通過する間における土壌Dとの熱交換を経て空調された空調済み空気の導出対象たる2階住居域JH3まで熱交換用パイプ300から延びる。なお、この長経路送気管部320Hを建築物Kの外壁内に設置し、後述の送気ファン機構322が2階住居域JH3に露出するようにしてもよい。
長経路送気管部320Hは、2階住居域JH3において水平に延びた管路端部321の下端開放端側を1階天井157の側に向け、その下方開放端に、送気ファン機構322を備える。送気ファン機構322は、エアー吸引管部310の吸引ファン機構314と協働して第一種機械換気を果たし、後述の制御装置200の制御を受けて駆動して熱交換用パイプ300の内部の空気、即ち熱交換用パイプ300により熱交換された空調済み床下空気を長経路送気管部320Hを経て2階住居域JH3に送気する。1階天井157は、2階住居域JH3から1階住居域J3に到るガラリ160Hを備え、2階住居域JH3の住居域内空気は、ガラリ160Hを経て1階住居域J3に流れ込み、その後は、ガラリ160を経て床下空間FDに流れ込む。なお、図6では、ガラリ160Hを長経路送気管部320Hの送気ファン機構322に対向して示しているが、ガラリ160Hは、1階天井157のいずれの箇所に配設してもよい。
図7に示すように、冷暖房空調システム100は、1階住居域J3の空調用の熱交換用パイプ300を、電気抵抗加熱パネル102により蓄熱状態とされる土壌Dに埋設して備え、この熱交換用パイプ300の両端にエアー吸引管部310と短経路送気管部320Lとを繋げて備える。1階住居域J3の空調用の熱交換用パイプ300は、図3や図5に示すように第1床下領域R1〜第3床下領域R3に掛けて土壌Dの内部に延び、L字状に屈曲したパイプ経路を採る。エアー吸引管部310は、既述したように熱交換用パイプ300との一端において繋がり、土壌Dから建築物Kの床下空間FDにほぼ鉛直に延び、既述した吸引ファン機構314にて、床下空間FDの床下空気を熱交換用パイプ300に給気する。防虫網を有する点も既述した通りである。建築物床150のガラリ160についても、2階住居域JH3の空調用の構成と同様である。
1階住居域J3の空調用の熱交換用パイプ300は、土壌Dの内部においてL字状に屈曲したパイプ経路で延びるに当たり、各屈曲経路部を、図3の黒塗りの傾斜記号および図7のパイプ経路で示したように、エアー吸引管部310との繋ぎ箇所である管路末端に向けた下り勾配で土壌Dに埋設される。この他、熱交換用パイプ300は、下り勾配経路の最上部側のパイプ端部に、短経路送気管部320Lを繋げて備える。短経路送気管部320Lにあっては、熱交換用パイプ300と同径の塩化ビニル製パイプであり、建築物床150を貫通して1階住居域J3までほぼ鉛直に延びる。なお、この短経路送気管部320Lを建築物Kの外壁内に設置し、の送気ファン機構322が1階住居域J3に露出するようにしてもよい。
短経路送気管部320Lは、長経路送気管部320Hと同様に、1階住居域J3において水平に延びた管路端部321の下端開放端側を建築物床150の側に向け、その下方開放端に、既述した送気ファン機構322を備え、当該ファイン機構により、熱交換用パイプ300の内部の空気(空調済み床下空気)を1階住居域J3に送気する。なお、1階住居域J3の空調用の熱交換用パイプ300は、図5に示す第1床下領域R1と第2床下領域R2を区画する基礎凸部KTと、第2床下領域R2と第3床下領域R3を区画する基礎凸部KTを貫通して、土壌Dの内部に延び、L字状に屈曲したパイプ経路を採る。
上記したパイプ配設により、本実施形態の冷暖房空調システム100は、床下空間FDの床下空気を熱交換用パイプ300にエアー吸引管部310を経て給気した上で、熱交換用パイプ300を通過した空調済み床下空気を短経路送気管部320L或いは長経路送気管部320Hを経て送気する。そして、本実施形態の冷暖房空調システム100は、こうした給送気を行うに当たり、その風量が60m/h程度で、風速が2.2m/sec程度の小風量・低風速にて床下空気が給送気されるよう、吸引ファン機構314と送気ファン機構322を制御装置200により駆動制御する。
本実施形態の冷暖房空調システム100は、送気ファン機構322における送気風量を制限する。図8は送気ファン機構322における送風量制限の様子を概略的に示す説明図である。図示するように、送気ファン機構322は、送気ファンの送気下流側にシャッター323を備える。このシャッター323は、送気ファン下流の送気流路に対して進退可能に送気ファン機構322に組み込まれ、流路面積を絞る。本実施形態の冷暖房空調システム100は、上記したように小風量・低風速で床下空気の給送気を行うことと相まって、シャッター323による流路面積の制限により、送気の際の異音発生を抑制できる。
上記した熱交換用パイプ300と、エアー吸引管部310と、長経路送気管部320Hおよび短経路送気管部320Lは、パイプ内壁に防カビ被膜308を有する。この防カビ被膜308は、防カビ性の薬剤、例えばイミダゾール系やピリジン系の防カビ性薬剤をパイプ内壁に塗布等して形成される。なお、本実施形態の冷暖房空調システム100は、後述するように高い防カビ性を発揮することから、防カビ被膜308については、これを省略したり、薄膜化してもよい。
制御装置200は、図1に示すように、定格送電線LAからの給電と図示しない非常用送電線からの給電が可能とされ、冷暖房空調システム100の電気抵抗加熱パネル102に通電を図る。非常用送電線としては、建築物Kに付随して設置され、或いは建築物Kが属する市町村内等に設置された図示しない風力発電装置から制御装置200まで架線されている。この他、非常用送電線として、建築物Kに付随して制御装置200から延びて架線され、内燃機関を利用して発電を図る図示しない発電機の発電電力を、制御装置200に送電するものを用意してもよい。発電機は、ポータブル式であって持ち運び自在であることから、通常時には建築物Kに付属しておく必要はなく、地震や津波等の天災による定格送電線LAからの給電喪失が起きた際に用意すればよい。
制御装置200は、上記したように配設された個々の電気抵抗加熱パネル102を深夜電力の通電を受ける契約に基づく電力契約時間帯における深夜電力を用いて加熱制御すべく、CPU、ROM、RAM等の論理演算回路を備える制御部202と、メモリ部204と、I/O部206と、入力部208、報知部209等を有する。メモリ部204は、電気抵抗加熱パネル102への通電プログラム等を記憶する。I/O部206は、建築物床150の温度(床温)を検出する床温センサー210や外気温度を検出する外気温センサー212の他、ユーザーにて操作される操作盤250(図1参照)と接続され、信号入力を図る。入力部208は、上記の各送電線と接続され、制御部202の制御下で、給電を受ける送電線を選択する。制御装置200の制御部202は、上記のセンサー入力に応じた電気抵抗加熱パネル102への通電制御等、冷暖房空調システム100の全体の制御を担う。この場合、入力部208については、手動による送電線選択を行うよう構成したり、定格送電線LAからの給電が天災等により停止すると、上記した非常用送電線からの給電に自動切り換えするよう構成できる。報知部209は、電気抵抗加熱パネル102が深夜電力にて加熱制御されると、当該制御が実行されている旨を、ランプ等にて点灯して報知する。
本実施形態では、地震や津波等の天災による給電喪失に備え、制御装置200を既述したように基礎コンクリートに埋め込み設置したが、冷暖房空調システム100の制御を2系統に分けることもできる。具体的には、定格送電線LAからの深夜電力給電による電気抵抗加熱パネル102の制御系統と、非常用送電線からの非常時給電による制御系統とに分ける。そして、前者の制御系統についての制御装置200にあっては、建築物Kの外壁に設け、後者の制御系統の制御装置200を既述したように基礎コンクリートに埋設することもできる。こうすれば、定格送電線LAからの給電が有る通常時のメンテナンスが簡便となる。また、天災による電力喪失時にあっては、基礎コンクリートに埋設済みの制御装置200を用いて、非常用送電線からの給電による床暖房を継続もしくは開始することができる。
次に、上記した制御装置200の制御部202による冷暖房空調システム100での防カビ対策について説明する。図9は冷暖房空調システム100の冷暖房運転の運転モードを決定するフローチャートである。
この運転モード決定ルーチンは、所定時間(例えば、24時間)ごとに制御部202にて繰り返され、その都度に、冷暖房空調システム100の運転モードが決定される。まず、制御部202は、季節情報を読み込む(ステップS100)。この場合の季節情報としては、制御部202が備えるタイマーに基づいた日時情報や外気温推移、湿度推移等の気象情報があり、制御部202は、暖房要請の有無、或いは冷房要請の有無を判定できるに足りる気象情報を読み込む。例えば、タイマーに基づいた日時と、建築物Kが属する地方自治体において通常、冷暖房が要請され始める時期とを対比することで、制御部202は、現時点での暖房要請の有無や冷房要請の有無を判定できる。この他、暦で定めた冬期から春先まで、或いは日付で定めた期間、外気温が所定温度を下回るようになってから所定温度を上回るように推移する期間を暖房要請期間とし、これらを規定する気象情報を読み込む。冷房要請期間についても同様である。なお、気象情報については、気象庁等が公表済みの各種情報を図示しない公衆回線から入手できる。建築物Kに備え付けた外気温センサーや湿度センサーから入手した建築物周辺の外気温推移・湿度推移を季節情報として読み取るようにしてもよい。
次いで、制御部202は、読み込んだ気象情報に基づいて暖房要請があるか否かを判定し(ステップS110)、暖房要請があれば、冷暖房空調システム100の運転モードを暖房運転モードに決定し(ステップS120)、一旦、本ルーチンを終了する。このステップS120で決定した暖房運転モードでの運転は、冷暖房空調システム100の電気抵抗加熱パネル102を深夜電力を用いて既述したように定常的に継続通電する。この際、制御部202は、ユーザーが設定した設定暖房温度に基づいて、電気抵抗加熱パネル102を通電制御する。これにより、土壌Dは、電気抵抗加熱パネル102の熱を受けて蓄熱状態となるので、これ以降においては、ユーザーが暖房スイッチをONとして暖房実行を所望すれば、熱交換用パイプ300にて土壌Dの熱と熱交換されて暖められた暖房済み床下空気を1階住居域J3等に送り出し、住居域の暖房がなされる。土壌Dの蓄熱状態は、新たな運転モード決定ルーチンにより暖房要請がないと判定されるまで継続する。また、吸引ファン機構314や送気ファン機構322については、操作盤250にてユーザーが設定した設定風量に対応するよう、制御部202に駆動制御されると共に、暖房のON/OFFスイッチ操作によりファンのON/OFFもなされる。
ステップS110で暖房要請がないと否定判定すると、制御部202は、ステップS100で読み込んだ気象情報に基づいて冷房要請の有無を判定する(ステップS130)。ここで冷房要請があると肯定判定すれば、制御部202は、冷暖房空調システム100の運転モードを冷房運転モードに決定し(ステップS140)、一旦、本ルーチンを終了する。このステップS140で決定した冷房運転モードでの運転は、電気抵抗加熱パネル102の通電を行わない通電停止制御が常時なされる。これにより、土壌Dは、外気温より低い建築物Kの外側領域土壌と同温度となるので、これ以降においては、ユーザーが冷房スイッチをONとして冷房実行を所望すれば、熱交換用パイプ300にて土壌Dの熱と熱交換されて冷やされた冷房済み床下空気を1階住居域J3等に送り出し、住居域の冷房がなされる。また、吸引ファン機構314や送気ファン機構322については、ユーザーが冷房スイッチをONとしている期間において、操作盤250にてユーザーが設定した設定風量に対応するよう、制御部202に駆動制御される。ユーザーは、就寝時或いは外出の際に、冷房スイッチをOFFとすることが有り得る。ステップS140の冷房運転モードでは、こうした冷房スイッチOFFの期間において、吸引ファン機構314や送気ファン機構322は、ユーザーによる設定風量の1/2〜1/4程度の風量に対応するよう、制御部202に駆動制御される。つまり、ステップS140の冷房運転モードでは、ステップS130にて冷房要請があるとされた期間において、熱交換用パイプ300への床下空気の給気を、ユーザーによる冷房スイッチのオン操作がない場合であっても継続すると共に、その際の床下空気の給気を、ユーザーによる冷房スイッチのオン操作がある場合の給気より少量の給気量で継続することになる。
その一方、ステップS130で冷房要請はないと否定判定した状況は、ステップS110での暖房要請なしとの否定判定に続くものであることから、暖房要請期間から冷房要請期間ヘの推移期間、または、この逆の推移期間となる。換言すれば、冷暖房が共に要請されないことが多い5月〜7月初旬までの期間や9月下旬〜11月までの期間は、往々にして、ステップS130で冷房要請はないと否定判定される。なお、建築物Kの建築地域によって、これら期間は異なる。
制御部202は、ステップS130で冷房要請はないと否定判定すると、ステップS100で読込済みの季節情報の内の外気温推移や湿度推移、場合によっては床温センサー210から得た床温推移に基づいて、熱交換用パイプ300におけるカビの生育の可能性の有無を判定する(ステップS150)。ここで否定判定すれば、制御部202は、何の処理も行うことなく本ルーチンを一旦、終了する。これにより、電気抵抗加熱パネル102は常時通電停止となり、吸引ファン機構314や送気ファン機構322にあっても、常時停止となる。
制御部202は、ステップS150での肯定判定を受けて、冷暖房空調システム100の運転モードを防カビ運転モードに決定し(ステップS160)、一旦、本ルーチンを終了する。このステップS160で決定した防カビ運転モードでの運転は、電気抵抗加熱パネル102の通電を行わない通電停止制御が常時なされる。これにより、土壌Dは、外気温より低い建築物Kの外側領域土壌と同温度となるので、これ以降において、仮にユーザーが冷房スイッチをONとすれば、既述した冷房運転モードと同様に、1階住居域J3等の冷房が可能となる。また、吸引ファン機構314と送気ファン機構322については、冷房運転モード或いは暖房運転モードにおいてユーザーによる設定風量の1/2〜1/4程度の風量に対応するよう、制御部202に駆動制御される。つまり、ステップS160の防カビ運転モードでは、暖房要請期間から冷房要請期間に推移する期間、或いは冷房要請期間から暖房要請期間に推移する期間において、熱交換用パイプ300への床下空気の給気を冷暖房時の給気より少量の給気量で継続することになる。なお、熱交換用パイプ300におけるカビの生育の可能性は、外気温推移や湿度推移、或いは床温センサー210から得た床温推移に基づいて予め実験的に規定できるので、その規定した外気温推移等に基づき、カビの生育可能性を判定できる。
以上説明したように、建築物Kが備える本実施形態の冷暖房空調システム100は、土壌Dの熱との熱交換を図るよう土壌Dに埋設した熱交換用パイプ300に、エアー吸引管部310を経て床下空間FDの床下空気を給気する。その上で、暖房要請があると判定すると(ステップS110)、この暖房要請期間において、複数の電気抵抗加熱パネル102を深夜電力により発熱させて、その熱により土壌Dを蓄熱状態とし、この蓄熱状態の土壌Dに埋設した熱交換用パイプ300により、パイプ内に給気済み床下空気を、蓄熱状態の土壌Dとの熱交換を経て暖める。複数の電気抵抗加熱パネル102による土壌Dの蓄熱状態は、外気温等に基づいた制御部202による電気抵抗加熱パネル102の発熱制御により種々変更できるので、本実施形態の冷暖房空調システム100によれば、厳冬期であっても、十分に暖めた床下空気を暖気として短経路送気管部320L、長経路送気管部320Hを経て1階住居域J3や2階住居域JH3に導いて、これら住居域を暖房する(ステップS120)。
本実施形態の冷暖房空調システム100は、冷房要請があると判定すると(ステップS130)、この冷房要請期間においては電気抵抗加熱パネル102への通電を止めて未発熱とするので、熱交換用パイプ300は、土壌自体が本来有する熱をパイプ内空気と熱交換する。冷房要請期間では、外気温が高いとは言え、土壌Dは外気温に比べれば十分に低い温度であるので、本実施形態の冷暖房空調システム100は、冷房要請期間において、熱交換用パイプ300により、パイプ内に給気済みの床下空気を土壌Dとの熱交換を経て冷やし、こうして得た床下空気を冷気として短経路送気管部320L、長経路送気管部320Hを経て1階住居域J3や2階住居域JH3に導いて、これら住居域を冷房する。このようにして冷暖房を図るに当たり、本実施形態の冷暖房空調システム100は、熱交換用パイプ300を介した土壌Dとの熱交換の対象となる空気を、建築物床150とコンクリート層105との間の床下空間FDの床下空気とする(図6、図7参照)。床下空間の温度は、暖房要請期間と冷房要請期間の両期間において土壌温度と高低の差はあるものの、土壌温度との温度差は、外気温と土壌温度の温度差に比べれば、小さい。よって、土壌温度が低いために熱交換用パイプ300での結露が起き得る冷房要請期間であっても、本実施形態の冷暖房空調システム100によれば、パイプ内の結露をより効果的に抑制して、地中埋設の熱交換用パイプ300の防カビ性を高めることができる。なお、暖房要請期間においては、土壌Dは複数の電気抵抗加熱パネル102の発する熱により蓄熱状態にあるため、パイプ内はカビの生育環境とはならないので、特段の防カビ対策は不要である。
本実施形態の冷暖房空調システム100では、ステップS140での冷房運転モードにより、冷房要請期間においては、熱交換用パイプ300への床下空気の給気を継続するようにした。よって、本実施形態の冷暖房空調システム100によれば、冷房要請期間においては、継続した熱交換用パイプ300への床下空気の通気により、高い実効性でパイプ内結露を抑制でき、熱交換用パイプ300の防カビ性をより確実に高めることができる。
本実施形態の冷暖房空調システム100では、ステップS140での冷房運転モードにより、冷房要請期間における熱交換用パイプ300への床下空気の給気を、ユーザーによる冷房スイッチのオン操作がない場合であっても継続するようにした。よって、本実施形態の冷暖房空調システム100によれば、熱交換用パイプ300の防カビ性の実効性をより高めることができる。
本実施形態の冷暖房空調システム100では、ユーザーによる冷房スイッチのオン操作がない場合における熱交換用パイプ300への床下空気の給気を、ユーザーによる冷房スイッチのオン操作がある場合の給気より少量(1/2〜1/4)の給気量で継続するようにした。よって、本実施形態の冷暖房空調システム100によれば、継続給気に伴う通気音を低減できる。これに加え、本実施形態の冷暖房空調システム100によれば、送気ファン機構322の送気ファンの送気下流側にシャッター323を設けて流路面積を絞るので、通常の冷房運転モードにおいても風量が60m/h程度で風速が2.2m/sec程度の小風量・低風速で床下空気の給送気を行うことと相まって、送気の際の異音発生を抑制できる。
本実施形態の冷暖房空調システム100では、電気抵抗加熱パネル102の熱により、電気抵抗加熱パネル102を覆うコンクリート層105を暖めて、床下空間FDの床下空気も暖気する。よって、本実施形態の冷暖房空調システム100によれば、1階住居域J3や2階住居域JH3に暖房のために送気する空気を暖めるに当たり、土壌Dの蓄熱状態を不用意に高める必要がないので、省電力化も可能となる。
次に、他の実施形態について説明する。図10は短経路送気管部320Lに分岐官320Lbを設けた実施形態の冷暖房空調システム100Aを概略的に縦断面視して示す説明図である。図示するように、この実施形態の冷暖房空調システム100Aは、熱交換用パイプ300に繋がって1階住居域J3まで延びる短経路送気管部320Lに分岐官320Lbを分岐して備える。この分岐官320Lbは、いわゆる三方弁として構成された切換弁327において、短経路送気管部320Lから分岐し、流れ込んだ空気を床下空間FDに導く。制御部202は、ステップS140で決定した冷房運転モードにおける冷房スイッチOFFの際の小風量(設定風量の1/2〜1/4)での程度の床下空気の送気と、ステップS160で決定した防カビ運転モードにおける小風量(設定風量の1/2〜1/4)での程度の床下空気の送気とにおいて、切換弁327を分岐官320Lbの側に切換制御する。よって、この実施形態の冷暖房空調システム100Aは、上記の小風量送気の際に、分岐官320Lbから床下空間FDに空気を導き、1階住居域J3まで延びる短経路送気管部320Lでの通気を行わない。こうしたことから、この実施形態の冷暖房空調システム100Aによれば、1階住居域J3に居るユーザーに継続給気に伴う通気音をより気づかせ難くできるので、継続給気に伴う違和感を緩和できる。2階住居域JH3まで延びる長経路送気管部320Hについても同様である。
図11はまた別の実施形態の冷暖房空調システム100Bを概略的に縦断面視して示す説明図である。この実施形態の冷暖房空調システム100Bは、熱交換用パイプ300とエアー吸引管部310との繋ぎ箇所近傍にメンテナンスホールMHを有する。このメンテナンスホールMHは、コンクリート層105の表層から土壌Dまで延び、通常は、ホールキャップHCにて塞がれている。建築物床150には、ホールキャップHCに重ねて図示しない貫通孔が形成され、当該貫通孔も蓋にて通常は塞がれている。この貫通孔と蓋体は、図示の都合上示されていない。そして、この冷暖房空調システム100Bは、熱交換用パイプ300からメンテナンスホールMHまでドレンパイプ301を延ばし、当該パイプをスクリューキャップ301cにて塞いでいる。この実施形態の冷暖房空調システム100Bによれば、長期に亘るユーザーの不在等により、仮に熱交換用パイプ300において結露が発生して熱交換用パイプ300に水が貯まっても、その水をメンテナンスホールMHに延びたドレンパイプ301から排出できる。
本発明は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態の技術的特徴は、上述の課題の一部又は全部を解決するために、或いは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
上記した実施形態では、冷暖房空調システム100〜100Bを、住人の住居域を複数有する住宅や事務所等の建築物Kに適用したが、保育園や学校等の体育館や公民館といった住居域を有しない住居外建築物に適用してもよい。このような住居外建築物に適用する場合には、当該建築物の内容積に応じて熱交換用パイプ300の直径や埋設経路長PLを規定するほか、住居外建築物に求められる換気の度合いに応じて規定してもよい。例えば、住居該建築物の内部の空気の半分を1時間に一度換気することが求めあれる換気度合いであれば、この換気度合いをも考慮して、熱交換用パイプ300の直径や埋設経路長PLを規定すればよい。また、3階建ての建築物Kにも適用できる。
上記した実施形態では、電気抵抗加熱パネル102を、深夜電力の通電を受ける契約に基づく電力契約時間帯における深夜電力を用いて加熱制御したが、他の電力契約により電気抵抗加熱パネル102を加熱制御してもよい。例えば、一日の内で通電可能な時間枠を19時間もしくは22時間というように定める電力契約に基づく電力を用いて加熱制御してもよい。
上記した実施形態では、熱交換用パイプ300を傾斜を持たせて土壌Dに埋設したが、パイプ経路に亘って水平に熱交換用パイプ300を埋設してもよい。
100、100A、100B…冷暖房空調システム
102…電気抵抗加熱パネル
105…コンクリート層
107…断熱体
150…建築物床
150D…土台
151…大引
152…根太
153…床下地材
154…フローリング材
157…1階天井
160…ガラリ
160H…ガラリ
200…制御装置
202…制御部
204…メモリ部
206…I/O部
208…入力部
209…報知部
210…床温センサー
212…外気温センサー
250…操作盤
300…熱交換用パイプ
301…ドレンパイプ
301c…スクリューキャップ
308…防カビ被膜
310…エアー吸引管部
312…管路端部
314…吸引ファン機構
320H…長経路送気管部
320L…短経路送気管部
320Lb…分岐官
321…管路端部
322…送気ファン機構
323…シャッター
327…切換弁
K…建築物
D…土壌
T…間隙
R1〜R5…第1〜第5床下領域
LA…定格送電線
HC…ホールキャップ
DC…玄関土間
FD…床下空間
MH…メンテナンスホール
DK…土間基礎
DL…埋設深さ
PL…埋設経路長
KT…基礎凸部
Dh…蓄熱層
J3…1階住居域
JH3…2階住居域

Claims (5)

  1. 建築物の空調システムであって、
    建築物土台の受けとなる基礎凸部で取り囲まれた土壌の表面もしくは該土壌の表面を覆う基礎コンクリートの表面に設置され、通電を受けて発熱して前記土壌を蓄熱状態とする複数の発熱体と、
    暖房空調が要請される暖房要請期間において前記複数の発熱体を発熱制御し、冷房空調が要請される冷房要請期間において前記複数の発熱体を未発熱とする制御部と、
    前記土壌に埋設され、前記土壌に蓄熱された熱との熱交換に用いられる熱交換用パイプと、
    前記熱交換用パイプと繋がって建築物の床下空間に延びる床下パイプを有し、該床下空間への通気孔を備える建築物床と前記基礎コンクリートとの間の前記床下空間に存在する床下空気を吸引し、該吸引した床下空気を前記床下パイプを経て前記熱交換用パイプに給気する給気部と、
    前記熱交換用パイプを通過する間における前記土壌との熱交換を経て空調された空調済み空気の導出対象の建築物内部領域まで前記熱交換用パイプから延びる導出パイプを有し、前記空調済み空気を前記導出パイプを経て前記建築物内部領域に送気する送気部とを備える、空調システム。
  2. 前記給気部は、前記冷房要請期間においては、前記熱交換用パイプへの前記床下空気の給気を継続する、請求項1に記載の空調システム。
  3. 前記給気部は、前記冷房要請期間における前記熱交換用パイプへの前記床下空気の給気を、ユーザーによる冷房実行操作がない場合であっても継続する、請求項2に記載の空調システム。
  4. 前記給気部は、ユーザーによる冷房実行操作がない場合の前記熱交換用パイプへの前記床下空気の給気を、ユーザーによる冷房実行操作がある場合の給気より少量の給気量で継続する、請求項3に記載の空調システム。
  5. 前記送気部は、前記導出パイプから前記床下空間に到るよう分岐した分岐パイプを備え、ユーザーによる冷房実行操作がない場合に前記給気部が前記熱交換用パイプに給気した前記床下空気を、前記分岐パイプを経て前記床下空間に放出する、請求項3または請求項4に記載の空調システム。
JP2014086046A 2014-04-18 2014-04-18 空調システム Pending JP2015206506A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014086046A JP2015206506A (ja) 2014-04-18 2014-04-18 空調システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014086046A JP2015206506A (ja) 2014-04-18 2014-04-18 空調システム

Publications (1)

Publication Number Publication Date
JP2015206506A true JP2015206506A (ja) 2015-11-19

Family

ID=54603435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014086046A Pending JP2015206506A (ja) 2014-04-18 2014-04-18 空調システム

Country Status (1)

Country Link
JP (1) JP2015206506A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220168593A (ko) * 2021-06-16 2022-12-26 주식회사 클린스쿨 스마트 체인지 IoT 방충방진막

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59170132U (ja) * 1983-04-29 1984-11-14 ナショナル住宅産業株式会社 地中温度を利用する空調構造
JPH06207739A (ja) * 1993-01-11 1994-07-26 Matsushita Seiko Co Ltd 空気調和機の結露防止装置
JP3185552U (ja) * 2013-06-10 2013-08-22 哲三 福田 空調システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59170132U (ja) * 1983-04-29 1984-11-14 ナショナル住宅産業株式会社 地中温度を利用する空調構造
JPH06207739A (ja) * 1993-01-11 1994-07-26 Matsushita Seiko Co Ltd 空気調和機の結露防止装置
JP3185552U (ja) * 2013-06-10 2013-08-22 哲三 福田 空調システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220168593A (ko) * 2021-06-16 2022-12-26 주식회사 클린스쿨 스마트 체인지 IoT 방충방진막
KR102643437B1 (ko) 2021-06-16 2024-03-06 주식회사 클린스쿨 스마트 체인지 IoT 방충방진막

Similar Documents

Publication Publication Date Title
JP2009264721A (ja) アース・ソーラーシステム(一層式)
JP2011190957A (ja) アース・ソーラーシステム改良型(地中熱回収パイプ方式)
JP5613486B2 (ja) 建物
JP6135905B2 (ja) アース・ソーラーシステム
KR101650811B1 (ko) 리노베이션 건물의 에너지절약 외피통풍구조
JP2015206506A (ja) 空調システム
JP3185552U (ja) 空調システム
Heiselberg Design principles for natural and hybrid ventilation
JP2006348743A (ja) 微気候デザイン建物
JP2016070044A (ja) 建築物の通気換気断熱システム
JP4638831B2 (ja) 床暖房システム
JP2002167986A (ja) 住宅建物
JP2007107334A (ja) 建物
JP2001279837A (ja) エアサイクル家屋及び家屋の換気システム
JP3192336U (ja) 空調システム
JP2011190961A (ja) アース・ソーラーシステム(地下室対応型)
JP5563326B2 (ja) 建物の換気設備
JP3123276U (ja) 住宅構造
JP6135907B2 (ja) アース・ソーラーシステム
CN201680483U (zh) 通风节能地暖装置
JP2009085553A (ja) 建物の地熱システム
JP4083137B2 (ja) 床下蓄熱暖房装置、これを備えた建物
JP2005163482A (ja) 建物の換気システム
US20080121367A1 (en) Reduction Of Power Consumption
JP4753985B2 (ja) 室内温浴関連施設の空気流通システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180731