JP2015204338A - Superconducting current lead and method of manufacturing superconducting current lead - Google Patents

Superconducting current lead and method of manufacturing superconducting current lead Download PDF

Info

Publication number
JP2015204338A
JP2015204338A JP2014082242A JP2014082242A JP2015204338A JP 2015204338 A JP2015204338 A JP 2015204338A JP 2014082242 A JP2014082242 A JP 2014082242A JP 2014082242 A JP2014082242 A JP 2014082242A JP 2015204338 A JP2015204338 A JP 2015204338A
Authority
JP
Japan
Prior art keywords
superconducting
superconducting wire
current lead
electrode
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014082242A
Other languages
Japanese (ja)
Other versions
JP6314022B2 (en
Inventor
高橋 亨
Toru Takahashi
亨 高橋
康雄 引地
Yasuo Hikichi
康雄 引地
昌啓 箕輪
Masahiro Minowa
昌啓 箕輪
一成 木村
Kazunari Kimura
一成 木村
勉 小泉
Tsutomu Koizumi
勉 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
SWCC Showa Cable Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SWCC Showa Cable Systems Co Ltd filed Critical SWCC Showa Cable Systems Co Ltd
Priority to JP2014082242A priority Critical patent/JP6314022B2/en
Publication of JP2015204338A publication Critical patent/JP2015204338A/en
Application granted granted Critical
Publication of JP6314022B2 publication Critical patent/JP6314022B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly reliable superconducting current lead having high connection strength and stabilized superconducting characteristics, which can be obtained stably by reducing the connection resistance.SOLUTION: A superconducting current lead 10 includes a tape-like superconducting wire rod 11 where an intermediate layer 112, a superconducting layer 113, and a stabilization layer 114 are laminated, in order, on a metal substrate 111, first and second electrodes 12-1, 12-2 being bonded to the opposite ends of the superconducting wire rod 11, and a cylindrical reinforcement member 14 for housing a lead body including the superconducting wire rod 11 and the first and second electrodes 12-1, 12-2 while positioning so that a predetermined distance between electrodes can be obtained. The electrodes 12-1, 12-2 consist of a plurality of split bodies 122, 124, and the end of the superconducting wire rod 11 is sandwiched by the joint surfaces 122a, 124a of these split bodies 122, 124 and bonded to the superconducting wire rod 11.

Description

本発明は、酸化物超電導線材を用いた超電導電流リードに関し、特に、超電導線材及び金属電極が補強部材に収容されて構成される超電導電流リード及びこの製造方法に関する。   The present invention relates to a superconducting current lead using an oxide superconducting wire, and more particularly to a superconducting current lead constituted by containing a superconducting wire and a metal electrode in a reinforcing member, and a method for manufacturing the same.

近年、超電導ケーブルや超電導マグネット等、超電導を利用した超電導応用機器について、実用化に向けてさかんに研究、開発が行われている。一般に、超電導応用機器は、低温部(低温容器)に設置され、常温部に設置された外部機器(例えば電源)と、電流リードを介して接続される。   In recent years, superconducting devices using superconductivity, such as superconducting cables and superconducting magnets, have been researched and developed for practical use. In general, a superconducting application device is installed in a low temperature part (low temperature container) and connected to an external device (for example, a power source) installed in a normal temperature part via a current lead.

超電導応用機器の運転は、極低温環境下で行われるため、低温部の断熱性が極めて重要となる。低温部の断熱性が悪く、低温部への熱侵入が大きいと、超電導応用機器の冷却効率が低下して超電導状態を維持するための冷却コストが増大することとなり、場合によっては超電導応用機器を運転できなくなってしまうためである。この低温部への熱侵入の経路としては、低温容器を伝熱する経路、電流リードを伝熱する経路が考えられる。   Since the operation of superconducting equipment is performed in a cryogenic environment, the heat insulation of the low temperature part is extremely important. If the heat insulation property of the low temperature part is poor and the heat penetration into the low temperature part is large, the cooling efficiency of the superconducting application equipment will decrease and the cooling cost for maintaining the superconducting state will increase. This is because it becomes impossible to drive. As a path of heat penetration into the low temperature part, a path for transferring heat through the low temperature container and a path for transferring heat through the current leads are conceivable.

低温容器を介した熱侵入を防止するための手法としては、液体窒素等の冷媒及び超電導応用機器を収容する冷媒槽と、冷媒槽の外側に設けられる真空槽とを有する二重構造の低温容器が知られている。この低温容器によれば、真空断熱により低温部への熱侵入が低減される。   As a technique for preventing heat intrusion through a cryogenic vessel, a dual-structure cryogenic vessel having a refrigerant tank containing a refrigerant such as liquid nitrogen and a superconducting application device and a vacuum tank provided outside the refrigerant vessel It has been known. According to this low-temperature container, heat penetration into the low-temperature part is reduced by vacuum insulation.

電流リードを介した熱侵入を防止するための手法としては、酸化物超電導体を用いた超電導電流リードが提案されている。酸化物超電導体は、液体窒素温度以下では電気抵抗がゼロ、かつ熱伝導率が小さい(銅の数10分の1)。そのため、超電導電流リードにおいては、通電時にジュール熱の発生はなく、低温部への伝熱量も極めて小さくなる。したがって、超電導電流リードによれば、低温部への熱侵入が低減される。   As a technique for preventing heat intrusion through the current lead, a superconducting current lead using an oxide superconductor has been proposed. An oxide superconductor has zero electrical resistance and low thermal conductivity below the liquid nitrogen temperature (one tenth of copper). Therefore, in the superconducting current lead, Joule heat is not generated during energization, and the amount of heat transferred to the low temperature portion is extremely small. Therefore, according to the superconducting current lead, heat penetration into the low temperature portion is reduced.

従来の超電導電流リード50を図1に示す。図1Aは超電導電流リード50の全体図である。図1Bは図1AのI−I矢視断面図である。   A conventional superconducting current lead 50 is shown in FIG. FIG. 1A is an overall view of a superconducting current lead 50. FIG. 1B is a cross-sectional view taken along the line II in FIG. 1A.

図1Aに示すように、超電導電流リード50は、テープ状の超電導線材51と、超電導線材51の一端部(高温側)に配置される第1の金属電極52、及び超電導線材51の他端部(低温側)に配置される第2の金属電極53を備える。図1Bに示すように、第1の金属電極52は超電導線材51が挿入される凹部521を有する。   As shown in FIG. 1A, a superconducting current lead 50 includes a tape-shaped superconducting wire 51, a first metal electrode 52 disposed at one end (high temperature side) of the superconducting wire 51, and the other end of the superconducting wire 51. A second metal electrode 53 is provided on the (low temperature side). As shown in FIG. 1B, the first metal electrode 52 has a recess 521 into which the superconducting wire 51 is inserted.

一般に、接続作業が容易であり、良好な電気特性が得られることから、超電導線材51と第1の金属電極52とは半田によって接続される(例えば特許文献1)。具体的には、溶融した半田を金属電極52の凹部521に充填した状態で、凹部521に超電導線材51を挿入し、支持部材(図示略)によって鉛直に支持する。そして、冷却により半田が凝固すると、超電導線材51は金属電極52に固着される。つまり、超電導線材51と金属電極52とは、半田56を介して電気的に接続されることになる。超電導線材51と第2の金属電極53との接続部も同様である。また、凹部521内に金属電極52を挿入して、凹部521内に半田を充填することで超電導線材51と金属電極52とを接続してもよい。   In general, since the connection work is easy and good electrical characteristics are obtained, the superconducting wire 51 and the first metal electrode 52 are connected by solder (for example, Patent Document 1). Specifically, the superconducting wire 51 is inserted into the recess 521 in a state where the melted solder is filled in the recess 521 of the metal electrode 52, and is vertically supported by a support member (not shown). When the solder is solidified by cooling, the superconducting wire 51 is fixed to the metal electrode 52. That is, the superconducting wire 51 and the metal electrode 52 are electrically connected via the solder 56. The connection between the superconducting wire 51 and the second metal electrode 53 is the same. Alternatively, the superconducting wire 51 and the metal electrode 52 may be connected by inserting the metal electrode 52 into the recess 521 and filling the recess 521 with solder.

特開平10−275641号公報Japanese Patent Laid-Open No. 10-275641

しかしながら、上述した超電導線材の接続部においては、金属電極52の凹部521に溶融した半田を充填して、凹部521に超電導線材51を挿入して鉛直に支持する作業は難しく、熟練の作業が必要となる。これにより、超電導線材の超電導層側の面(第1の面)と金属電極との間に介在する半田層の厚さを所望の厚みにできず、接続抵抗が高くなるという問題がある。また、厚みにばらつきが生じると、金属電極52において超電導線材51に対する接続強度が低下する虞も生じる。   However, in the connection portion of the superconducting wire described above, it is difficult to fill the concave portion 521 of the metal electrode 52 with molten solder and insert the superconducting wire 51 into the concave portion 521 so as to support it vertically. It becomes. As a result, there is a problem that the thickness of the solder layer interposed between the surface (first surface) of the superconducting wire on the superconducting layer side and the metal electrode cannot be set to a desired thickness, and the connection resistance increases. Further, when the thickness varies, the connection strength of the metal electrode 52 to the superconducting wire 51 may be reduced.

つまり、半田層の厚さを均一に制御しにくく、所望の接続抵抗を安定的に得ることが困難となる。特に、複数の超電導線材を並べて1つの金属電極に接続する場合、それぞれの接続部間で接続抵抗のばらつきが大きくなり、クエンチの原因となる偏流が生じる虞がある。   That is, it is difficult to uniformly control the thickness of the solder layer, and it becomes difficult to stably obtain a desired connection resistance. In particular, when a plurality of superconducting wires are arranged and connected to one metal electrode, variation in connection resistance between the respective connecting portions increases, and there is a risk that drift that causes quenching may occur.

本発明の目的は、接続抵抗を低減して安定的に得ることができるとともに、接続強度が高く、安定した超電導特性を有する信頼性の高い超電導電流リード及び超電導線材の製造方法を提供することである。   An object of the present invention is to provide a highly reliable superconducting current lead and a method of manufacturing a superconducting wire that can be stably obtained by reducing connection resistance, have high connection strength, and have stable superconducting characteristics. is there.

本発明の超電導電流リードの一つの態様は、
金属基板上に中間層、超電導層、安定化層が順に積層されたテープ状の超電導線材と、 前記超電導線材の両端部に接合する金属電極と、
前記超電導線材と前記金属電極とを含むリード本体を、所定の電極間距離となるように収容する補強部材と、
を備え、
前記金属電極は、複数の分割体からなり、且つ、前記複数の分割体の接合面にて前記超電導線材の端部を挟持して前記超電導線材と接合している、
構成を採る。
One aspect of the superconducting current lead of the present invention is:
A tape-shaped superconducting wire in which an intermediate layer, a superconducting layer, and a stabilization layer are laminated in order on a metal substrate; and metal electrodes that are bonded to both ends of the superconducting wire;
A reinforcing member that accommodates a lead body including the superconducting wire and the metal electrode so as to have a predetermined inter-electrode distance;
With
The metal electrode is composed of a plurality of divided bodies, and is joined to the superconducting wire by sandwiching an end portion of the superconducting wire at a joining surface of the plurality of divided bodies.
Take the configuration.

本発明の超電導電流リードの製造方法の一つの態様は、
金属基板上に中間層、超電導層、安定化層が順に積層されたテープ状の超電導線材と、前記超電導線材の両端部に接合される金属電極と、前記超電導線材と前記金属電極とを含むリード本体を、所定の電極間距離となるように補強部材に収容して超電導電流リードを製造する超電導電流リードの製造方法において、
前記金属電極は複数の分割体から構成されており、
前記複数の分割体の間に前記超電導線材の端部を配置する配置工程と、
前記複数の分割体によって前記超電導線材を押圧した状態で、前記複数の分割体の接合面にて前記超電導線材を半田にて接続する接続工程と、
を有するようにした。
One aspect of the method of manufacturing a superconducting current lead of the present invention is:
A tape-shaped superconducting wire in which an intermediate layer, a superconducting layer, and a stabilizing layer are sequentially laminated on a metal substrate, a metal electrode joined to both ends of the superconducting wire, and a lead including the superconducting wire and the metal electrode In the method of manufacturing a superconducting current lead, the main body is accommodated in the reinforcing member so as to have a predetermined inter-electrode distance, and the superconducting current lead is manufactured.
The metal electrode is composed of a plurality of divided bodies,
An arrangement step of arranging an end of the superconducting wire between the plurality of divided bodies;
In the state where the superconducting wire is pressed by the plurality of divided bodies, a connecting step of connecting the superconducting wires with solder at the joint surfaces of the plurality of divided bodies,
It was made to have.

本発明によれば、接続抵抗を低減して安定的に得ることができるとともに、接続強度が高く、安定した超電導特性を有する信頼性の高い超電導電流リードを提供できる。   According to the present invention, it is possible to provide a highly reliable superconducting current lead that can be stably obtained by reducing connection resistance, has high connection strength, and has stable superconducting characteristics.

従来の超電導電流リードにおける超電導線材と電極との接続構造を示す図The figure which shows the connection structure of the superconducting wire and the electrode in the conventional superconducting current lead 本発明の一実施の形態に係る超電導電流リードを用いた超電導磁石装置を示す図The figure which shows the superconducting magnet apparatus using the superconducting electric current lead which concerns on one embodiment of this invention 本発明の一実施の形態に係る超電導電流リードにおける超電導線材の構成を模式的に示す図The figure which shows typically the structure of the superconducting wire in the superconducting current | flow lead which concerns on one embodiment of this invention. 本発明の一実施の形態の超電導電流リードの斜視図1 is a perspective view of a superconducting current lead according to an embodiment of the present invention. 本発明の一実施の形態の超電導電流リードを示す図であり、図5Aは超電導電流リードの平面図、図5Bは、同超電導電流リードの側面図FIG. 5A is a plan view of the superconducting current lead, and FIG. 5B is a side view of the superconducting current lead according to the embodiment of the present invention. 図5におけるII−II線矢視断面図Sectional view taken along line II-II in FIG. 図6のIII−III線で示す部分の断面図Sectional drawing of the part shown by the III-III line of FIG. 図5におけるIV−IV線矢視断面図IV-IV arrow directional cross-sectional view in FIG. 電極の構成を示す分解斜視図Exploded perspective view showing electrode configuration 超電導電流リードの製造方法を模式的に示す図The figure which shows the manufacturing method of the superconducting current lead schematically 本発明の一実施の形態の超電導電流リードの変形例1の要部構成を示す斜視図The perspective view which shows the principal part structure of the modification 1 of the superconducting electric current lead of one embodiment of this invention 本発明の一実施の形態の超電導電流リードの変形例1の要部構成を示す断面図Sectional drawing which shows the principal part structure of the modification 1 of the superconducting electric current lead of one embodiment of this invention

以下、本発明の実施の形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図2は、本発明の一実施の形態に係る超電導電流リード10を用いた超電導磁石装置1を示す図である。図3は、本発明の一実施の形態に係る超電導電流リード10における超電導線材11の構成を模式的に示す図である。図4は、本発明の一実施の形態の超電導電流リード10の斜視図である。 FIG. 2 is a diagram showing a superconducting magnet device 1 using a superconducting current lead 10 according to an embodiment of the present invention. FIG. 3 is a diagram schematically showing the configuration of the superconducting wire 11 in the superconducting current lead 10 according to the embodiment of the present invention. FIG. 4 is a perspective view of the superconducting current lead 10 according to the embodiment of the present invention.

図2に示す超電導磁石装置1は、超電導電流リード10、常電導電流リード35、超電導コイル20、電源30、及び低温容器40等を備える。   A superconducting magnet apparatus 1 shown in FIG. 2 includes a superconducting current lead 10, a normal conducting current lead 35, a superconducting coil 20, a power source 30, a low-temperature container 40, and the like.

低温容器40は、内側の容器41と外側の真空槽42とからなる二重構造を有する。容器41は冷凍機(図示略)に接続される。真空槽42は真空ポンプ(図示略)に接続され、内部を真空状態に保持される。   The cryogenic container 40 has a double structure composed of an inner container 41 and an outer vacuum chamber 42. The container 41 is connected to a refrigerator (not shown). The vacuum chamber 42 is connected to a vacuum pump (not shown), and the inside is kept in a vacuum state.

超電導コイル20は、超電導線材を巻線したコイルである。超電導コイル20は、低温部となる容器41内に配置される。超電導コイル20は、超電導電流リード10と接続するためのコイル電極21を有する。   The superconducting coil 20 is a coil wound with a superconducting wire. The superconducting coil 20 is disposed in a container 41 serving as a low temperature part. The superconducting coil 20 has a coil electrode 21 for connecting to the superconducting current lead 10.

電源30は、低温容器40外である常温部に配置される。電源30は、常電導電流リード35及び超電導電流リード10を介して、超電導コイル20に電流を供給する。常電導電流リード35は、例えば銅線である。   The power supply 30 is disposed in a normal temperature part that is outside the cryogenic container 40. The power supply 30 supplies current to the superconducting coil 20 via the normal conducting current lead 35 and the superconducting current lead 10. The normal conductive current lead 35 is, for example, a copper wire.

超電導電流リード10は、図2に示すように複数のテープ状の超電導線材11、第1の電極12−1、第2の電極12−2、及び補強部材(ここでは、筒状の補強部材として筒状補強部材と称する)14を有する。超電導電流リード10は、容器41内に配置される。超電導電流リード10では、超電導線材11の高温側となる一端部は第1の電極12−1に接続され、低温側となる他端部は第2の電極12−2に接続される。超電導電流リード10は、常態時において、第1の電極12−1、超電導線材11及び第2の電極12−2が直線状に並ぶように、形成されている。超電導電流リード10は、第1の電極12−1で、所定位置に配置された常電導電流リード35に接続された導体引出部(図示略)に接続され、第2の電極12−2で、所定位置に配置された超電導コイル20のコイル電極21に接続されている。   As shown in FIG. 2, the superconducting current lead 10 includes a plurality of tape-shaped superconducting wires 11, a first electrode 12-1, a second electrode 12-2, and a reinforcing member (here, as a cylindrical reinforcing member). 14) (referred to as a cylindrical reinforcing member). The superconducting current lead 10 is disposed in the container 41. In the superconducting current lead 10, one end of the superconducting wire 11 on the high temperature side is connected to the first electrode 12-1, and the other end on the low temperature side is connected to the second electrode 12-2. The superconducting current lead 10 is formed so that the first electrode 12-1, the superconducting wire 11 and the second electrode 12-2 are arranged in a straight line in a normal state. The superconducting current lead 10 is connected to a conductor lead-out portion (not shown) connected to the normal conducting current lead 35 disposed at a predetermined position by the first electrode 12-1, and the second electrode 12-2. It is connected to the coil electrode 21 of the superconducting coil 20 arranged at a predetermined position.

超電導電流リード10では、超電導線材11を複数本(ここでは2本)備えた構成としたが、これに限らず、超電導線材11を1本用いた構成としてもよいし、3本以上備えた構成にしてもよい。   The superconducting current lead 10 has a configuration in which a plurality of superconducting wires 11 (here, two) are provided. However, the configuration is not limited to this, and a configuration in which one superconducting wire 11 is used, or a configuration in which three or more superconducting wires 11 are provided. It may be.

超電導線材11は、図3に示すように、超電導層113を有するテープ状の線材である。超電導線材11は、例えばテープ状の金属基板111上に、中間層112、超電導層113、安定化層114が順に形成された積層構造を有しており、可撓性を有する。   The superconducting wire 11 is a tape-like wire having a superconducting layer 113 as shown in FIG. The superconducting wire 11 has a laminated structure in which an intermediate layer 112, a superconducting layer 113, and a stabilizing layer 114 are formed in this order on a tape-shaped metal substrate 111, for example, and has flexibility.

金属基板111は、例えば、Ni−Cr系(具体的には、Ni−Cr−Fe−Mo系のハステロイ(登録商標)B、C、X等)、W−Mo系、Fe−Cr系(例えば、オーステナイト系ステンレス)、又は、Fe−Ni系(例えば、非磁性の組成系のもの)等の材料に代表される低磁性の結晶粒無配向・耐熱高強度金属基板である。   The metal substrate 111 may be, for example, a Ni—Cr system (specifically, a Ni—Cr—Fe—Mo system Hastelloy (registered trademark) B, C, X, etc.), a W—Mo system, a Fe—Cr system (for example, , Austenitic stainless steel) or Fe—Ni (for example, non-magnetic composition type) and other low magnetic crystal grain non-oriented heat resistant high strength metal substrates.

中間層112は、例えば金属基板111からの元素の拡散が超電導層113に及ぶのを防止するための第1の中間層(拡散防止層)と、超電導層113の結晶を一定の方向に配向させるための第2の中間層(配向層)など、複数の中間層を有する。第1の中間層は、例えばガリウムドープ酸化亜鉛層(GZO)又はイットリウム安定化ジルコニア層(YSZ)で構成される。第1の中間層の成膜には、例えばイオンビームアシスト蒸着法(IBAD:Ion Beam Assisted Deposition)を適用できる。第2の中間層は、例えば酸化セリウム層(CeO)で構成される。第2の中間層の成膜には、例えばRFスパッタ法を適用できる。また、2層以上の構造を有する中間層112として、第1の中間層としてのGZO層と、CeO層との間に、IBAD法によりなるMgO層、スパッタリング法によりなるLaMnO層を順に積層したものとしてもよい。 The intermediate layer 112 has, for example, a first intermediate layer (diffusion prevention layer) for preventing the diffusion of elements from the metal substrate 111 to reach the superconducting layer 113, and orients crystals of the superconducting layer 113 in a certain direction. A plurality of intermediate layers, such as a second intermediate layer (alignment layer). The first intermediate layer is composed of, for example, a gallium-doped zinc oxide layer (GZO) or an yttrium-stabilized zirconia layer (YSZ). For example, an ion beam assisted deposition (IBAD) can be applied to form the first intermediate layer. The second intermediate layer is composed of, for example, a cerium oxide layer (CeO 2 ). For example, an RF sputtering method can be applied to form the second intermediate layer. Further, as an intermediate layer 112 having a structure of two or more layers, an MgO layer formed by an IBAD method and an LaMnO 3 layer formed by a sputtering method are sequentially stacked between a GZO layer as a first intermediate layer and a CeO 2 layer. It is good also as what you did.

超電導層113は、例えばREBaCu系超電導体(REは、Y、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm及びYbから選択される1又は2種以上の希土類元素であり、y≦2及びz=6.2〜7)等の酸化物超電導体で構成される。RE系超電導体としては、YBaCuで表されるイットリウム系超電導体が代表的である。超電導層113の成膜には、有機金属体積法(MOD:Metal-organic deposition)、パルスレーザー蒸着法(PLD:Pulsed Laser Deposition)、スパッタ法、又は有機金属気相成長法(MOCVD:Metal Organic Chemical Vapor Deposition)を適用できる。 Superconducting layer 113, for example REBa y Cu 3 O z based superconductor (RE is, Y, Nd, Sm, Eu , Gd, Tb, Dy, Ho, Er, 1 or 2 or more selected from Tm and Yb It is a rare earth element and is composed of an oxide superconductor such as y ≦ 2 and z = 6.2 to 7). A typical example of the RE-based superconductor is an yttrium-based superconductor represented by YBa 2 Cu 3 O 7 . The superconducting layer 113 is formed by metal-organic deposition (MOD), pulsed laser deposition (PLD), sputtering, or metal organic chemical vapor deposition (MOCVD). Vapor Deposition) can be applied.

超電導層113には、Zr、Sn、Ce、Ti、Hf、Nbのうち少なくとも1つを含む50[nm]以下の酸化物粒子が磁束ピンニング点として分散していることが好ましい。この場合、超電導層113の成膜法としては、三フッ化酢酸塩(TFA)を用いたTFA−MOD法が好適である。例えば、TFAを含むBa溶液中に、Baと親和性の高いZr含有ナフテン酸塩等を混合することにより、RE系超電導体からなる超電導層113に、Zrを含む酸化物粒子(BaZrO)を磁束ピンニング点として分散させることができる。なお、超電導層113中に磁束ピンニング点を分散する手法は、公知の技術を適用することができる(例えば特開2012−059468号公報)。 In the superconducting layer 113, it is preferable that 50 [nm] or less oxide particles containing at least one of Zr, Sn, Ce, Ti, Hf, and Nb are dispersed as magnetic flux pinning points. In this case, as a method for forming the superconducting layer 113, a TFA-MOD method using trifluoroacetate (TFA) is suitable. For example, Zr-containing oxide particles (BaZrO 3 ) are added to the superconducting layer 113 made of a RE-based superconductor by mixing a Zr-containing naphthenate having a high affinity with Ba into a Ba solution containing TFA. It can be distributed as flux pinning points. A known technique can be applied to the method of dispersing the magnetic flux pinning points in the superconducting layer 113 (for example, JP 2012-059468 A).

超電導層113中に磁束ピンニング点を分散させることにより、超電導線材11が湾曲した状態で用いられても、磁場の影響を受けにくく、安定した超電導特性が発揮される。   By dispersing the magnetic flux pinning points in the superconducting layer 113, even if the superconducting wire 11 is used in a curved state, it is hardly affected by the magnetic field and exhibits stable superconducting characteristics.

安定化層114は、主に水分等から超電導層113を保護するとともに、超電導状態が部分的に破れて抵抗が発生(常電導転移)した場合に電流を迂回させるための層である。安定化層114は、電気抵抗率が低く、熱伝導率の高い材料で構成されるのが好ましく、例えばAg又はCuで構成される。安定化層114の成膜には、例えばスパッタ法を適用できる。   The stabilization layer 114 is a layer for protecting the superconducting layer 113 mainly from moisture and the like, and for diverting the current when the superconducting state is partially broken and resistance is generated (normal conducting transition). The stabilization layer 114 is preferably made of a material having a low electrical resistivity and a high thermal conductivity, for example, Ag or Cu. For example, a sputtering method can be applied to form the stabilization layer 114.

超電導線材11において、超電導層113側(安定化層114側)の面を第1面11aと称し、金属基板111側の面を第2面11bと称する。   In the superconducting wire 11, the surface on the superconducting layer 113 side (stabilizing layer 114 side) is referred to as a first surface 11a, and the surface on the metal substrate 111 side is referred to as a second surface 11b.

第1の電極12−1(高温側電極)及び第2の電極12−2(低温側電極)は、銅又は銅合金等の金属材料で構成される。第1の電極12−1は、容器41の底面近傍に配置され、導体引出部(図示略)を介して常電導電流リード35に接続される。第1の電極12−1の近傍の温度は、例えば77Kである。第2の電極12−2は、超電導コイル20の近傍に配置され、超電導コイル20のコイル電極21に接続される。第2の電極12−2の近傍の温度は、例えば4.2Kである。   The 1st electrode 12-1 (high temperature side electrode) and the 2nd electrode 12-2 (low temperature side electrode) are comprised with metal materials, such as copper or a copper alloy. The first electrode 12-1 is disposed in the vicinity of the bottom surface of the container 41 and is connected to the normal conductive current lead 35 via a conductor lead-out portion (not shown). The temperature in the vicinity of the first electrode 12-1 is, for example, 77K. The second electrode 12-2 is disposed in the vicinity of the superconducting coil 20 and is connected to the coil electrode 21 of the superconducting coil 20. The temperature in the vicinity of the second electrode 12-2 is, for example, 4.2K.

図5は、本発明の一実施の形態の超電導電流リード10を示す図であり、図5Aは超電導電流リード10の平面図、図5Bは、同超電導電流リード10の側面図である。図6は、図5におけるII−II線矢視断面図であり、図7は、図6のIII−III線で示す部分の断面図である。図8は、図5におけるIV−IV線矢視断面図であり、図9は、電極の構成を示す分解斜視図である。なお、図9では、接合面122a、124a間の半田13は省略している。   FIG. 5 is a diagram showing a superconducting current lead 10 according to an embodiment of the present invention, FIG. 5A is a plan view of the superconducting current lead 10, and FIG. 5B is a side view of the superconducting current lead 10. 6 is a cross-sectional view taken along the line II-II in FIG. 5, and FIG. 7 is a cross-sectional view taken along the line III-III in FIG. 8 is a cross-sectional view taken along the line IV-IV in FIG. 5, and FIG. 9 is an exploded perspective view showing the configuration of the electrodes. In FIG. 9, the solder 13 between the joint surfaces 122a and 124a is omitted.

図6及び図8に示すように、第1の電極12−1及び第2の電極12−2は、それぞれ接続する超電導線材11の延在方向(超電導電流リードの長手方向でもある)における一方の端面(電極同士の互いに対向する端面)に超電導線材11が取り付けられている。   As shown in FIGS. 6 and 8, the first electrode 12-1 and the second electrode 12-2 are each in the extending direction of the superconducting wire 11 to be connected (also the longitudinal direction of the superconducting current lead). Superconducting wire 11 is attached to end faces (end faces of the electrodes facing each other).

なお、第1の電極12−1と第2の電極12−2は、本実施の形態では同形状に構成され、超電導線材11の両端部のそれぞれに、同様の状態で接合されている。これにより、第1の電極12−1と第2の電極12−2の構成を電極12とも称して、超電導線材11との接続構造とともに説明する。   In addition, the 1st electrode 12-1 and the 2nd electrode 12-2 are comprised in the same shape in this Embodiment, and are joined to each of the both ends of the superconducting wire 11 in the same state. Thereby, the structure of the 1st electrode 12-1 and the 2nd electrode 12-2 is also called the electrode 12, and it demonstrates with the connection structure with the superconducting wire 11. FIG.

電極12(12−1、12−2)は、複数に分割される分割体(第1、第2分割体122、124)を有し、且つ、分割体で超電導線材11の端部を挟持して超電導線材11に接合される。電極12は、超電導線材11の両端部にそれぞれ接合されることによってリード本体を構成する。   The electrode 12 (12-1, 12-2) has a divided body (first and second divided bodies 122, 124) divided into a plurality of parts, and sandwiches the end of the superconducting wire 11 with the divided body. To the superconducting wire 11. The electrodes 12 constitute a lead body by being joined to both ends of the superconducting wire 11.

ここでは、電極12は、図6及び図8に示すように、超電導線材11の端部が接合する接合面122a(図8及び図9参照)を有する第1分割体122と、第1分割体における接合面122aとともに超電導線材11を挟持する第2分割体124と、を備える。   Here, as shown in FIGS. 6 and 8, the electrode 12 includes a first divided body 122 having a joining surface 122a (see FIGS. 8 and 9) to which the end of the superconducting wire 11 is joined, and a first divided body. And a second divided body 124 that sandwiches the superconducting wire 11 together with the joint surface 122a.

第1分割体122は、第2分割体124の接合面124aとともに超電導線材11を挟む接合面122aを備える接合部1221と、筒状補強部材14に固定される固定部1222と、端子接続部1223と、を有する。   The first divided body 122 includes a joining portion 1221 having a joining surface 122a sandwiching the superconducting wire 11 together with the joining surface 124a of the second divided body 124, a fixing portion 1222 fixed to the tubular reinforcing member 14, and a terminal connection portion 1223. And having.

図8及び図9に示すように、本実施の形態では、電極12は円柱状であり、接合部1221は、第2分割体124とともに断面半円状の半割の円柱状に形成されている。この接合部1221は、円柱状の固定部1222の一端面から突出するように形成され、固定部1222の他端面には、端子接続部1223が、筒状補強部材14の外部で露出した状態で突出して形成されている。なお、電極12は、角柱状で形成してもよく、その場合、接合部1221や、第2分割体124は、断面矩形状の直方体状に形成される。   As shown in FIGS. 8 and 9, in the present embodiment, the electrode 12 has a cylindrical shape, and the joint portion 1221 is formed in a half-circular column shape with a semicircular cross section together with the second divided body 124. . The joint portion 1221 is formed so as to protrude from one end surface of the columnar fixing portion 1222, and the terminal connection portion 1223 is exposed to the other end surface of the fixing portion 1222 outside the cylindrical reinforcing member 14. Protrusively formed. Note that the electrode 12 may be formed in a prismatic shape. In that case, the joint portion 1221 and the second divided body 124 are formed in a rectangular parallelepiped shape having a rectangular cross section.

本実施の形態では、第1の電極12−1、第2の電極12−2は、接合部1221と第2分割体124とで円柱状に形成され、所定の距離(電極間距離)を空けて互いに対向して配置されている。   In the present embodiment, the first electrode 12-1 and the second electrode 12-2 are formed in a columnar shape by the joint portion 1221 and the second divided body 124, and have a predetermined distance (distance between electrodes). Are arranged opposite to each other.

そして、第1分割体122の接合部1221の接合面122aと、第2分割体124の接合面124aとの間には、超電導線材11が配置されている。超電導線材11は、接合面122a、124aのそれぞれに半田13を介して接合されている。   The superconducting wire 11 is disposed between the bonding surface 122a of the bonding portion 1221 of the first divided body 122 and the bonding surface 124a of the second divided body 124. Superconducting wire 11 is joined to each of joining surfaces 122a and 124a via solder 13.

超電導線材11は、電極12間で、長手方向に延在するように配置され、電極12間で架設した状態となっている。なお、本実施の形態では、リード本体が筒状補強部材14に収容されたときに、超電導線材11は、第1の電極12−1と第2の電極12−2との電極間において撓みを有している(図8参照)。   The superconducting wire 11 is arranged between the electrodes 12 so as to extend in the longitudinal direction, and is constructed between the electrodes 12. In the present embodiment, when the lead main body is accommodated in the cylindrical reinforcing member 14, the superconducting wire 11 bends between the first electrode 12-1 and the second electrode 12-2. (See FIG. 8).

詳細には、接合面122aに対して、超電導線材11が、超電導層113側(安定化層114側)の面である第1面11aを対向させている。   Specifically, the superconducting wire 11 opposes the first surface 11a, which is a surface on the superconducting layer 113 side (stabilizing layer 114 side), to the bonding surface 122a.

ここでは、接合面122a、124a間に、複数の超電導線材11の端部が並列で配置されており、それぞれの超電導線材11の第1面11aが、接合面122aに対向している。そして、これら第1面11aが、接合面122aに半田13を介して接合されて、超電導線材11と電極12とが電気的に接続される。この接合構造によって、超電導線材11からの電流は、第1分割体122及び第2分割体124との長手方向に垂直な接合面を通ることなく、第1分割体122の接合部1221、固定部1222、端子接続部1223の順に導通する。   Here, the end portions of the plurality of superconducting wires 11 are arranged in parallel between the joining surfaces 122a and 124a, and the first surface 11a of each superconducting wire 11 is opposed to the joining surface 122a. And these 1st surfaces 11a are joined to the joint surface 122a via the solder 13, and the superconducting wire 11 and the electrode 12 are electrically connected. With this joining structure, the current from the superconducting wire 11 does not pass through the joining surface perpendicular to the longitudinal direction of the first divided body 122 and the second divided body 124, and the joined portion 1221 and the fixed portion of the first divided body 122. Conduction is performed in the order of 1222 and the terminal connection portion 1223.

また、第1分割体122と第2分割体124は、接合面122a、124a間にある超電導線材11の端部に対して、接合面122a、124aの全面で互いを押圧した状態で半田13とともに挟持した状態で固定されている。これにより、第1分割体122と第2分割体124を備える電極12と超電導線材11との接続強度の向上が図られている。   Further, the first divided body 122 and the second divided body 124 together with the solder 13 in a state in which the end surfaces of the superconducting wire 11 between the bonding surfaces 122a and 124a are pressed against each other over the entire bonding surfaces 122a and 124a. It is fixed in a clamped state. Thereby, the improvement of the connection intensity | strength of the electrode 12 provided with the 1st division body 122 and the 2nd division body 124 and the superconducting wire 11 is achieved.

固定部1222は、接合部1221と端子接続部1223との間に介設されている。固定部1222は、ここでは、酸化物超電導線材11を挟持した状態の接合部1221及び第2分割体124の外径と略同じ或は同じ外径の円柱状に形成されている。固定部1222は、筒状補強部材14に対して、筒状補強部材14の外部に端子接続部1223を露出させた状態で、固定ピン15を介して固定されている。   The fixing part 1222 is interposed between the joint part 1221 and the terminal connection part 1223. Here, the fixing portion 1222 is formed in a columnar shape having an outer diameter substantially the same as or the same as the outer diameter of the joining portion 1221 and the second divided body 124 in a state where the oxide superconducting wire 11 is sandwiched. The fixing portion 1222 is fixed to the cylindrical reinforcing member 14 via the fixing pin 15 with the terminal connection portion 1223 exposed to the outside of the cylindrical reinforcing member 14.

端子接続部1223は、超電導電流リード10の端部を構成する。すなわち、第1の電極12−1における端子接続部1223は、常電導電流リード35(図2参照)に接続された導体引出部(図示略)に導通可能に接続され、第2の電極12−2における端子接続部1223は、超電導コイル20のコイル電極21(図1参照)に導通可能に接続される。   The terminal connection portion 1223 constitutes the end portion of the superconducting current lead 10. That is, the terminal connection portion 1223 in the first electrode 12-1 is connected to the conductor lead portion (not shown) connected to the normal conductive current lead 35 (see FIG. 2) so as to be conductive, and the second electrode 12- 2 is connected to the coil electrode 21 (see FIG. 1) of the superconducting coil 20 so as to be conductive.

筒状補強部材14は、超電導線材11を覆う筒状体であり、超電導線材11の両端部に電極12がそれぞれ接合されたリード本体を、電極12間を所定距離空けた状態で収容し、支持する。筒状補強部材14は、超電導線材11を覆うように、電極12(12−1、12−2)間に架設されている。   The cylindrical reinforcing member 14 is a cylindrical body that covers the superconducting wire 11, and accommodates and supports the lead body in which the electrodes 12 are joined to both ends of the superconducting wire 11 with a predetermined distance between the electrodes 12. To do. The cylindrical reinforcing member 14 is installed between the electrodes 12 (12-1, 12-2) so as to cover the superconducting wire 11.

筒状補強部材14は、低熱伝導性の材料(例えば繊維強化プラスチック(GFRP:Glass Fiber Reinforced Plastics)、ステンレス合金、ニッケル基合金、チタン合金等)で構成される。   The cylindrical reinforcing member 14 is made of a low heat conductive material (for example, fiber reinforced plastics (GFRP), stainless alloy, nickel base alloy, titanium alloy, etc.).

筒状補強部材14は、超電導線材11よりも熱伝導率が低いことが望ましい。これにより、外部からの熱侵入量を低減することができる。熱侵入量を低減する観点からは、GFRPが好適である。77KにおけるGFRPの熱伝導率は0.39W/(m・K)であり、超電導線材11の熱伝導率よりも著しく小さい。また、77KにおけるGFRPの熱収縮率は0.213%であり、超電導線材11の熱収縮率よりも大きい。   The tubular reinforcing member 14 preferably has a lower thermal conductivity than the superconducting wire 11. Thereby, the amount of heat penetration from the outside can be reduced. From the viewpoint of reducing the amount of heat penetration, GFRP is preferred. The thermal conductivity of GFRP at 77 K is 0.39 W / (m · K), which is significantly smaller than the thermal conductivity of the superconducting wire 11. Moreover, the thermal contraction rate of GFRP at 77 K is 0.213%, which is larger than the thermal contraction rate of the superconducting wire 11.

一方、超電導線材11が破損したときに超電導磁石装置1を保護する観点からは、バイパスとして機能するステンレス合金、ニッケル基合金、チタン合金等が好適である。77Kにおけるステンレス合金(SUS304、SUS316)の熱伝導率は7.9W/(m・K)であり、超電導線材11の熱伝導率よりも小さい。また、77Kにおけるステンレス合金(SUS304)の熱収縮率は0.281であり、超電導線材11の熱収縮率よりも大きい。   On the other hand, from the viewpoint of protecting the superconducting magnet device 1 when the superconducting wire 11 is damaged, a stainless alloy, nickel-base alloy, titanium alloy, or the like that functions as a bypass is preferable. The thermal conductivity of the stainless alloy (SUS304, SUS316) at 77K is 7.9 W / (m · K), which is smaller than the thermal conductivity of the superconducting wire 11. Further, the heat shrinkage rate of the stainless alloy (SUS304) at 77K is 0.281, which is larger than the heat shrinkage rate of the superconducting wire 11.

このように構成された超電導電流リード10によれば、超電導線材11の両端部で接合される電極12は、複数に分割される第1分割体122、第2分割体124を有し、第1分割体122、第2分割体124によって超電導線材11の端部を挟持して、電極12は、超電導線材11に接合されている。これにより、第1分割体122、第2分割体124の間の超電導線材11の端部は、第1分割体122、第2分割体124に対して安定した状態で、均一に接合される。これにより、電極12間における半田13も極めて薄く、均一になり、この半田13とともに第1分割体122、第2分割体124に均一に接合される。よって、所望の接続抵抗を安定的に得ることができるとともに、接続抵抗を低減できる。   According to the superconducting current lead 10 configured as described above, the electrode 12 joined at both ends of the superconducting wire 11 has a first divided body 122 and a second divided body 124 which are divided into a plurality of parts. The electrode 12 is joined to the superconducting wire 11 with the end portion of the superconducting wire 11 sandwiched between the divided body 122 and the second divided body 124. As a result, the end portion of the superconducting wire 11 between the first divided body 122 and the second divided body 124 is uniformly bonded to the first divided body 122 and the second divided body 124 in a stable state. Thereby, the solder 13 between the electrodes 12 is also extremely thin and uniform, and is joined to the first divided body 122 and the second divided body 124 together with the solder 13. Therefore, a desired connection resistance can be stably obtained, and the connection resistance can be reduced.

次に、図10を参照して超電導電流リード10の製造方法について説明する。図10は、超電導電流リードの製造方法を模式的に示す図である。   Next, a method for manufacturing the superconducting current lead 10 will be described with reference to FIG. FIG. 10 is a diagram schematically showing a method of manufacturing a superconducting current lead.

先ず、図10Aに示すように、電極12において、第1分割体122の接合部1221の接合面122aと、第2分割体124の接合面124aとの間に超電導線材11を配置する。なお、図10では、超電導線材11、接合面122a、124aのそれぞれに半田メッキ131を施しているが、これに限らず、接合時に接合面122a、124aの間に充填するようにしてもよい。   First, as illustrated in FIG. 10A, in the electrode 12, the superconducting wire 11 is disposed between the bonding surface 122 a of the bonding portion 1221 of the first divided body 122 and the bonding surface 124 a of the second divided body 124. In FIG. 10, solder plating 131 is applied to each of the superconducting wire 11 and the joining surfaces 122a and 124a. However, the present invention is not limited to this, and the joining surfaces 122a and 124a may be filled during joining.

そして、図10Bに示すように、第1分割体122の接合部1221と、第2分割体124との間に超電導線材11を配置する。このとき超電導線材11は、安定化層114(図3参照)側の第1面11aを接合面122a側に向けて、接合面122aと対向させた状態で配置する。   Then, as illustrated in FIG. 10B, the superconducting wire 11 is disposed between the joint portion 1221 of the first divided body 122 and the second divided body 124. At this time, the superconducting wire 11 is arranged with the first surface 11a on the stabilization layer 114 (see FIG. 3) side facing the joining surface 122a and facing the joining surface 122a.

そして、図示しない加熱装置等を用いて、図10Cに示すように、接合面122a、124aを加熱、詳細には、接合面122a、124aを加熱間の半田メッキ131を加熱して若干溶融する。ここでは、195[℃]〜197[℃]で加熱する。このとき、第1分割体122と第2分割体124とは、互いの接合面122a、124a間に超電導線材11を配置した状態で仮止めしている。よって、第2分割体124の自重などによって接合面122a、124a間が狭くなる。   Then, as shown in FIG. 10C, the bonding surfaces 122a and 124a are heated using a heating device (not shown) or the like, specifically, the bonding surfaces 122a and 124a are heated to slightly melt the solder plating 131. Here, heating is performed at 195 [° C.] to 197 [° C.]. At this time, the first divided body 122 and the second divided body 124 are temporarily fixed in a state where the superconducting wire 11 is disposed between the joint surfaces 122a and 124a. Therefore, the space between the joint surfaces 122a and 124a becomes narrow due to the weight of the second divided body 124 and the like.

次いで、押圧治具を用いて、第1分割体122の接合面122aと、第2分割体124の接合面124aとを所定の圧力で互いに押し付け合わせる。押圧治具は、第1分割体122と第2分割体124とを、超電導線材11の挟持方向と同方向で挟むように配置された一対の金属板と、第1分割体122と第2分割体124を囲むように金属板間に架設される複数(例えば4つ)のボルトとを有する。つまり、所定のトルク(例えば、0.1[N・m])で管理してボルト(例えば、直径4[mm])を締め付けることで、第1分割体122と第2分割体124を挟む方向に圧力をかける。これにより、第1分割体122の接合面122aと第2分割体124の接合面124aとが互いに全面的に均一に押圧し合う。すると、接合面122a、124a間で、余剰の半田は外部に流れて、接合面122a、124a同士が、超電導線材11を介して全面的に均一に押圧されながら加熱されて(つまり、半田13を介して)接合される。これにより、接続強度が高くなり、超電導線材11が外れにくくなるとともに、接触抵抗を小さくできる。   Next, the bonding surface 122a of the first divided body 122 and the bonding surface 124a of the second divided body 124 are pressed against each other with a predetermined pressure using a pressing jig. The pressing jig includes a pair of metal plates arranged so as to sandwich the first divided body 122 and the second divided body 124 in the same direction as the sandwiching direction of the superconducting wire 11, the first divided body 122, and the second divided body. A plurality of (for example, four) bolts are provided between the metal plates so as to surround the body 124. That is, the direction which pinches | interposes the 1st division body 122 and the 2nd division body 124 by tightening a volt | bolt (for example, diameter 4 [mm]) managed by predetermined torque (for example, 0.1 [N * m]). Pressure. Thereby, the joint surface 122a of the 1st division body 122 and the joint surface 124a of the 2nd division body 124 mutually press uniformly on the whole surface. Then, excess solder flows between the joint surfaces 122a and 124a, and the joint surfaces 122a and 124a are heated while being uniformly pressed through the superconducting wire 11 (that is, the solder 13 is removed). Via). As a result, the connection strength is increased, the superconducting wire 11 is hardly detached, and the contact resistance can be reduced.

このように、電極12−1、12−2と超電導線材11の接合は、第1分割体122、第2分割体124の間に超電導線材11の端部を配置し(配置工程)、次いで、第1分割体122、第2分割体124によって超電導線材を押圧した状態で、第1分割体122、第2分割体124の接合面122a、124aと超電導線材11とを半田13にて接続する(接続工程)。次いで、超電導線材11に接合した電極12は、筒状補強部材14に、所定間隔を開けて収容するとともに、固定ピン15を介して固定されることによって超電導電流リードを製造する。   Thus, in joining the electrodes 12-1, 12-2 and the superconducting wire 11, the end of the superconducting wire 11 is disposed between the first divided body 122 and the second divided body 124 (arranging step), and then In a state where the superconducting wire is pressed by the first divided body 122 and the second divided body 124, the joining surfaces 122a and 124a of the first divided body 122 and the second divided body 124 and the superconducting wire 11 are connected by the solder 13 ( Connection process). Next, the electrode 12 joined to the superconducting wire 11 is accommodated in the cylindrical reinforcing member 14 at a predetermined interval, and is fixed via a fixing pin 15 to produce a superconducting current lead.

なお、超電導電流リード10において、電極12は、複数に分割される分割体(ここでは、第1分割体122、第2分割体124)からなる構成としたが、これに限らず、3つ以上の分割体で構成してもよい。すなわち、超電導電流リードにおいて、複数の分割体の接合面によって超電導線材11の端部をそれぞれ挟持すれば、電極12はどのように構成されてもよい。   In the superconducting current lead 10, the electrode 12 is composed of a plurality of divided bodies (here, the first divided body 122 and the second divided body 124). You may comprise by the division body of. That is, in the superconducting current lead, the electrode 12 may be configured in any way as long as the ends of the superconducting wire 11 are sandwiched between the joint surfaces of the plurality of divided bodies.

このような電極の変形例を図11及び図12を参照して説明する。図11は、本発明の一実施の形態の超電導電流リードの変形例1の要部構成を示す斜視図であり、図12は、本発明の一実施の形態の超電導電流リードの変形例1の要部構成を示す断面図である。   A modification of such an electrode will be described with reference to FIGS. FIG. 11 is a perspective view showing a configuration of a main part of Modification 1 of the superconducting current lead according to the embodiment of the present invention, and FIG. 12 shows Modification 1 of the superconducting current lead according to the embodiment of the present invention. It is sectional drawing which shows the principal part structure.

図11及び図12に示す電極12Aは、2本の超電導線材11を、互いの基板側の面、つまり、第2面11bで張り合わせた線材対110の端部が接続されている。   The electrodes 12A shown in FIGS. 11 and 12 are connected to the ends of a pair of wires 110 in which two superconducting wires 11 are bonded to each other on the substrate side surface, that is, the second surface 11b.

電極12Aは、線材対110の端部を互いの接合面1221a、1241aで挟持する第1分割体122Aと、第2分割体124Aとを有する。   The electrode 12A includes a first divided body 122A and a second divided body 124A that sandwich the end portions of the wire pair 110 between the bonding surfaces 1221a and 1241a.

第1分割体122A及び第2分割体124Aは、長手方向に延在する超電導電流リードの中心線に対して対称に形成されている。具体的には、第1分割体122A及び第2分割体124Aは、同形状に形成されており、接合面1221a、1241aは、それぞれ底面の一部を構成し、底面を合わせた際に、合わせた底面を中心に上下で対称形状になるように形成されている。   The first divided body 122A and the second divided body 124A are formed symmetrically with respect to the center line of the superconducting current lead extending in the longitudinal direction. Specifically, the first divided body 122A and the second divided body 124A are formed in the same shape, and the joining surfaces 1221a and 1241a each constitute a part of the bottom surface. It is formed so as to be symmetrical in the vertical direction around the bottom surface.

第1分割体122A及び第2分割体124Aの接合面1221a、1241aは、互いに対向配置されている。接合面1221a、1241aは、線材対110における超電導線材11のそれぞれを挟持する。第1分割体122A及び第2分割体124Aは、互いを接合した際に、接合面1221a、1241aを含む長手方向に延びる部分で、線材対1120(超電導線材11)を挟持する接合部1221Aを構成する。また、接合部1221Aに連続して、図示しない補強部材に固定される固定部1222Aと、端子接続部1223Aとを構成している。なお、接合部1221A及び固定部1222Aの外形を、ここでは、角柱状(具体的には、直方体状)として図示しているが、これに限らず、円柱状に形成してもよい。この場合、接合部1221A及び固定部1222Aを構成する第1分割体122A、第2分割体124Aの部位は、断面半円状に形成される。   The joining surfaces 1221a and 1241a of the first divided body 122A and the second divided body 124A are disposed to face each other. The joining surfaces 1221a and 1241a sandwich each of the superconducting wires 11 in the wire pair 110. When the first divided body 122A and the second divided body 124A are bonded to each other, the first divided body 122A and the second divided body 124A are portions extending in the longitudinal direction including the bonding surfaces 1221a and 1241a, and constitute a bonding portion 1221A that sandwiches the wire pair 1120 (superconducting wire 11). To do. Further, a fixing portion 1222A fixed to a reinforcing member (not shown) and a terminal connection portion 1223A are formed continuously with the joining portion 1221A. In addition, although the external shape of the junction part 1221A and the fixing | fixed part 1222A is illustrated here as prismatic shape (specifically rectangular parallelepiped shape), you may form not only in this but in a column shape. In this case, the portions of the first divided body 122A and the second divided body 124A that constitute the joining portion 1221A and the fixing portion 1222A are formed in a semicircular cross section.

電極12Aの接合部1221Aにおいて、線材対110において上下に配置された超電導線材11、11のそれぞれの第1面11aが、第1分割体122A及び第2分割体124Aの接合面1221a、1241aのそれぞれに半田13Aを用いて接合されている。   In the joining portion 1221A of the electrode 12A, the first surfaces 11a of the superconducting wires 11 and 11 disposed above and below the wire pair 110 are respectively connected to the joining surfaces 1221a and 1241a of the first divided body 122A and the second divided body 124A. Are joined using solder 13A.

このように線材対110の端部が接合された一対の電極12Aは、図4で示す超電導電流リード10と同様に、所定間隔を開けて、電極12Aに対応した外径を有し、筒状補強部材14と同様の材料からなる角筒状の補強部材により、支持された状態で収容される。これにより、電極12Aを用いた超電導電流リードが形成される。   The pair of electrodes 12A to which the ends of the wire pair 110 are bonded in this way have an outer diameter corresponding to the electrode 12A with a predetermined interval, like the superconducting current lead 10 shown in FIG. It is accommodated in a supported state by a rectangular tube-shaped reinforcing member made of the same material as that of the reinforcing member 14. Thereby, a superconducting current lead using the electrode 12A is formed.

また、この電極12Aの第1分割体122A及び第2分割体124Aは、電極12の第1分割体122及び第2分割体124と同様に、接合面122a、124aで、線材対110の超電導線材11を挟み、互いを押圧しつつ、超電導線材11に接合されている。例えば、接合面122a、124a間に線材対110を配置して、上述した押圧治具を、電極12の製造と同様に設置する。すなわち、線材対110を間に配置した第1分割体122A、第2分割体124Aを挟むように、上下に一対の金属板を配置して、ボルトを所定のトルク(0.1[N・m])で管理して締め付ける。すると、第1分割体122A、第2分割体124Aに対し超電導線材11を挟持する方向に圧力がかかり、接合面122a、124aは、線材対110に押し付けられる。これにより、接合面122a、124aは、超電導線材11に対して、接続強度が高くなり、且つ、接続抵抗値が下がった状態で接合されることになる。   Also, the first divided body 122A and the second divided body 124A of the electrode 12A are joined to the superconducting wires of the wire pair 110 at the joint surfaces 122a and 124a, similarly to the first divided body 122 and the second divided body 124 of the electrode 12. 11 are joined to the superconducting wire 11 while pressing each other. For example, the wire pair 110 is disposed between the joining surfaces 122a and 124a, and the above-described pressing jig is disposed in the same manner as in the manufacture of the electrode 12. In other words, a pair of metal plates are arranged above and below so as to sandwich the first divided body 122A and the second divided body 124A with the wire rod pair 110 interposed therebetween, and the bolt is set to a predetermined torque (0.1 [N · m ]) And tighten. Then, pressure is applied to the first divided body 122A and the second divided body 124A in the direction in which the superconducting wire 11 is sandwiched, and the joining surfaces 122a and 124a are pressed against the wire pair 110. As a result, the joining surfaces 122a and 124a are joined to the superconducting wire 11 in a state where the connection strength is high and the connection resistance value is lowered.

このように構成されているため、電極12Aを用いた超電導電流リードは、超電導電流リード10と同様の作用効果を奏する。   Because of this configuration, the superconducting current lead using the electrode 12 </ b> A has the same effects as the superconducting current lead 10.

なお、電極12Aの構成によれば、図11及び図12で示したように、超電導線材11を、第2面11b側を張り合わせて線材対110とした場合、第1面11aは、線材対110の表裏側でそれぞれ露出し、それぞれに対向配置される接合面122a、124aに接合される。   According to the configuration of the electrode 12A, as shown in FIGS. 11 and 12, when the superconducting wire 11 is bonded to the second surface 11b side to form the wire pair 110, the first surface 11a is formed of the wire pair 110. Are exposed on the front and back sides, and are bonded to the bonding surfaces 122a and 124a arranged to face each other.

ここでは、接合面122a、124aを有する分割体は、端子接続部に相当する部位を含めて上下で対称、つまり、同形状に形成されている。これにより、線材対110と電極12Aとに通電しても、偏流が生じることがない。   Here, the divided body having the joint surfaces 122a and 124a is symmetrical in the vertical direction including the portion corresponding to the terminal connection portion, that is, is formed in the same shape. Thereby, even if it supplies with electricity to wire pair 110 and electrode 12A, a drift does not arise.

実施例1として、図4〜図10で示す実施の形態における超電導電流リード10を制作した。具体的には、電極12に2本の超電導線材を並列に配置し、これら超電導線材の端部を接合した。そして、複数のサンプルについて、超電導線材と電極との接続部の評価を行った。具体的には、超電導電流リードを液体窒素中(77K)に配置し、超電導線材と低温側電極との接続部の接続抵抗の測定を行い、接続抵抗値は0.8[μΩ]であった。   As Example 1, a superconducting current lead 10 according to the embodiment shown in FIGS. 4 to 10 was produced. Specifically, two superconducting wires were arranged in parallel on the electrode 12, and the ends of these superconducting wires were joined. And about the some sample, the connection part of a superconducting wire and an electrode was evaluated. Specifically, the superconducting current lead was placed in liquid nitrogen (77 K), and the connection resistance of the connection part between the superconducting wire and the low temperature side electrode was measured, and the connection resistance value was 0.8 [μΩ]. .

実施例2として、実施例1で用いた超電導線材と、実施例1と同様の材料からなる補強部材と、図11及び図12に示す電極とを用いて、超電導電流リードを製作した。   As Example 2, a superconducting current lead was manufactured using the superconducting wire used in Example 1, a reinforcing member made of the same material as in Example 1, and the electrodes shown in FIGS.

実施例2では、図11及び図12に示す構成において、電極12Aに、2本の超電導線材11、11を対にして構成した接続対11を2つ並列に接合した。すなわち、実施例2の超電導電流リードでは、図11及び図12に示す電極12Aに、並列配置された2つの線材対110(超電導線材11は合計4本)の端部をそれぞれ接合した。そして、実施例1と同様に、超電導線材11と電極との接続部の評価を行った。超電導線材と低温側電極との接続部の接続抵抗値は、0.4[μΩ]であった。   In Example 2, in the configuration shown in FIGS. 11 and 12, two connection pairs 11 formed by pairing two superconducting wires 11 and 11 were joined in parallel to the electrode 12A. That is, in the superconducting current lead of Example 2, the ends of two wire pairs 110 arranged in parallel (a total of four superconducting wires 11) were joined to the electrode 12A shown in FIGS. And similarly to Example 1, the connection part of the superconducting wire 11 and an electrode was evaluated. The connection resistance value of the connection portion between the superconducting wire and the low temperature side electrode was 0.4 [μΩ].

また、比較例1として、実施例1の超電導線材と同様の超電導線材を2本用いて、図1で示す従来の超電導電流リードを製作した。このとき、電極の外径は、実施例1における電極の外径と同様にした。更に、比較例2として、実施例1の超電導線材と同様の超電導線材を4本用いて、図1で示す従来の超電導電流リードを製作した。そして、これら比較例1、比較例2においても、実施例1、実施例2と同様の評価を行った。比較例1における超電導線材と低温側電極との接続部の接続抵抗値は、2.5[μΩ]であった。また、比較例2における超電導線材と低温側電極との接続部の接続抵抗値は、1.2[μΩ]であった。   As Comparative Example 1, a conventional superconducting current lead shown in FIG. 1 was manufactured using two superconducting wires similar to those of Example 1. At this time, the outer diameter of the electrode was the same as the outer diameter of the electrode in Example 1. Furthermore, as Comparative Example 2, the conventional superconducting current lead shown in FIG. 1 was manufactured using four superconducting wires similar to those of Example 1. In Comparative Example 1 and Comparative Example 2, the same evaluation as in Example 1 and Example 2 was performed. The connection resistance value of the connection portion between the superconducting wire and the low temperature side electrode in Comparative Example 1 was 2.5 [μΩ]. Moreover, the connection resistance value of the connection part between the superconducting wire and the low temperature side electrode in Comparative Example 2 was 1.2 [μΩ].

この結果、超電導線材11を2本用いた実施例1と比較例1とを比べると、実施例1の接続抵抗値は、比較例1の接続抵抗値よりも低いことが判った。また、分割した電極である分割体122、124で超電導線材11を押圧しながら接続した実施例1は、押圧せずに両者を接続した比較例1よりも接続強度は大きかった。また、超電導線材を4本用いた実施例2と比較例2とを比べると、実施例2の接続抵抗値は、比較例2の接続抵抗値よりも低いことが判った。また、分割した電極である分割体122A、124A、126で超電導線材11を押圧しながら接続した実施例2は、押圧せずに両者を接続した比較例2よりも接続強度は大きかった。   As a result, when Example 1 using two superconducting wires 11 was compared with Comparative Example 1, it was found that the connection resistance value of Example 1 was lower than the connection resistance value of Comparative Example 1. In addition, the connection strength of Example 1 in which the superconducting wire 11 was connected while being pressed with the divided bodies 122 and 124 that were divided electrodes was higher than that of Comparative Example 1 in which both were connected without being pressed. Moreover, when Example 2 using four superconducting wires was compared with Comparative Example 2, it was found that the connection resistance value of Example 2 was lower than the connection resistance value of Comparative Example 2. In addition, the connection strength of Example 2 in which the superconducting wire 11 was connected while being pressed by the divided bodies 122A, 124A, and 126 that were divided electrodes was higher than that of Comparative Example 2 in which both were connected without being pressed.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

以上、本発明の実施の形態について説明した。なお、以上の説明は本発明の好適な実施の形態の例証であり、本発明の範囲はこれに限定されない。つまり、上記装置の構成や各部分の形状についての説明は一例であり、本発明の範囲においてこれらの例に対する様々な変更や追加が可能であることは明らかである。   The embodiment of the present invention has been described above. The above description is an illustration of a preferred embodiment of the present invention, and the scope of the present invention is not limited to this. That is, the description of the configuration of the apparatus and the shape of each part is an example, and it is obvious that various modifications and additions to these examples are possible within the scope of the present invention.

本発明に係る超電導電流リード及び超電導電流リードの製造方法は、接続抵抗を低減して安定的に得ることができるとともに、接続強度が高く、安定した超電導特性を有する超電導電流リードを提供するものとして有用である。   The superconducting current lead and the method for manufacturing a superconducting current lead according to the present invention provide a superconducting current lead having a high connection strength and stable superconducting characteristics, which can be stably obtained by reducing connection resistance. Useful.

1 超電導磁石装置
10 超電導電流リード
11 超電導線材
11a 第1面
11b 第2面
12、12A 電極
12−1 第1の電極(常温側電極)
12−2 第2の電極(低温側電極)
13、13A 半田
14 筒状補強部材
15 固定ピン
20 超電導コイル
21 コイル電極
30 電源
40 低温容器
110 線材対
111 金属基板
112 中間層
113 超電導層
114 安定化層
122、122A 第1分割体
122a、124a、1221a、1241a 接合面
124、124A 第2分割体
131 半田メッキ
1221、1221A 接合部
1222、1222A 固定部
1223、1223A 端子接続部
DESCRIPTION OF SYMBOLS 1 Superconducting magnet apparatus 10 Superconducting current lead 11 Superconducting wire 11a First surface 11b Second surface 12, 12A Electrode 12-1 First electrode (room temperature side electrode)
12-2 Second electrode (low temperature side electrode)
13, 13A Solder 14 Cylindrical reinforcing member 15 Fixing pin 20 Superconducting coil 21 Coil electrode 30 Power supply 40 Low temperature container 110 Wire pair 111 Metal substrate 112 Intermediate layer 113 Superconducting layer 114 Stabilization layer 122, 122A First divided bodies 122a, 124a, 1221a, 1241a Joint surface 124, 124A Second divided body 131 Solder plating 1221, 1221A Joint portion 1222, 1222A Fixing portion 1223, 1223A Terminal connection portion

Claims (5)

金属基板上に中間層、超電導層、安定化層が順に積層されたテープ状の超電導線材と、 前記超電導線材の両端部に接合する金属電極と、
前記超電導線材と前記金属電極とを含むリード本体を、所定の電極間距離となるように収容する補強部材と、
を備え、
前記金属電極は、複数の分割体からなり、且つ、前記複数の分割体の接合面にて前記超電導線材の端部を挟持して前記超電導線材と接合している、
ことを特徴とする超電導電流リード。
A tape-shaped superconducting wire in which an intermediate layer, a superconducting layer, and a stabilization layer are laminated in order on a metal substrate; and metal electrodes that are bonded to both ends of the superconducting wire;
A reinforcing member that accommodates a lead body including the superconducting wire and the metal electrode so as to have a predetermined inter-electrode distance;
With
The metal electrode is composed of a plurality of divided bodies, and is joined to the superconducting wire by sandwiching an end portion of the superconducting wire at a joining surface of the plurality of divided bodies.
A superconducting current lead.
複数の前記超電導線材を有し、
前記複数の前記超電導線材が、各々の前記分割体の接合面に接続されてなることを特徴とする請求項1に記載の超電導電流リード。
A plurality of the superconducting wires;
The superconducting current lead according to claim 1, wherein the plurality of superconducting wires are connected to a joint surface of each of the divided bodies.
前記複数の分割体は、前記超電導線材の端部を互いの接合面で挟持する第1分割体と第2分割体とを有し、
前記第1分割体及び前記第2分割体は、同形状に形成されている、
ことを特徴とする請求項1または2記載の超電導電流リード。
The plurality of divided bodies include a first divided body and a second divided body that sandwich an end portion of the superconducting wire with each other's joint surface,
The first divided body and the second divided body are formed in the same shape,
The superconducting current lead according to claim 1 or 2.
前記超電導層がTFA−MOD法により形成され、
前記超電導層中に、Y、Zr、Sn、Ti、Ceのうち少なくとも1つを含む50μm以下の酸化物粒子が磁束ピンニング点として分散していることを特徴とする請求項1又は2のいずれか一項に記載の超電導電流リード。
The superconducting layer is formed by a TFA-MOD method,
3. The oxide particle of 50 μm or less containing at least one of Y, Zr, Sn, Ti, and Ce is dispersed in the superconducting layer as a magnetic flux pinning point. The superconducting current lead according to one item.
金属基板上に中間層、超電導層、安定化層が順に積層されたテープ状の超電導線材と、前記超電導線材の両端部に接合される金属電極と、前記超電導線材と前記金属電極とを含むリード本体を、所定の電極間距離となるように補強部材に収容して超電導電流リードを製造する超電導電流リードの製造方法において、
前記金属電極は複数の分割体から構成されており、
前記複数の分割体の間に前記超電導線材の端部を配置する配置工程と、
前記複数の分割体によって前記超電導線材を押圧した状態で、前記複数の分割体の接合面にて前記超電導線材を半田にて接続する接続工程と、
を有する、
ことを特徴とする超電導電流リードの製造方法。
A tape-shaped superconducting wire in which an intermediate layer, a superconducting layer, and a stabilizing layer are sequentially laminated on a metal substrate, a metal electrode joined to both ends of the superconducting wire, and a lead including the superconducting wire and the metal electrode In the method of manufacturing a superconducting current lead, the main body is accommodated in the reinforcing member so as to have a predetermined inter-electrode distance, and the superconducting current lead is manufactured.
The metal electrode is composed of a plurality of divided bodies,
An arrangement step of arranging an end of the superconducting wire between the plurality of divided bodies;
In the state where the superconducting wire is pressed by the plurality of divided bodies, a connecting step of connecting the superconducting wires with solder at the joint surfaces of the plurality of divided bodies,
Having
A method of manufacturing a superconducting current lead.
JP2014082242A 2014-04-11 2014-04-11 Superconducting current lead and method of manufacturing superconducting current lead Active JP6314022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014082242A JP6314022B2 (en) 2014-04-11 2014-04-11 Superconducting current lead and method of manufacturing superconducting current lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014082242A JP6314022B2 (en) 2014-04-11 2014-04-11 Superconducting current lead and method of manufacturing superconducting current lead

Publications (2)

Publication Number Publication Date
JP2015204338A true JP2015204338A (en) 2015-11-16
JP6314022B2 JP6314022B2 (en) 2018-04-18

Family

ID=54597635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014082242A Active JP6314022B2 (en) 2014-04-11 2014-04-11 Superconducting current lead and method of manufacturing superconducting current lead

Country Status (1)

Country Link
JP (1) JP6314022B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019012815A (en) * 2017-05-12 2019-01-24 ゼネラル・エレクトリック・カンパニイ Flexible super-conduction lead wire assembly
CN110415911A (en) * 2019-08-26 2019-11-05 西南交通大学 A kind of pluggable binary current lead device and its cooling container

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0449808A (en) * 1990-06-15 1992-02-19 Sumitomo Electric Ind Ltd Connection system of power cable in manhole
JPH08153618A (en) * 1994-11-29 1996-06-11 Toshiba Corp Current lead for superconducting device
JP2012064323A (en) * 2010-09-14 2012-03-29 Swcc Showa Cable Systems Co Ltd Superconductive current lead
WO2012108427A1 (en) * 2011-02-08 2012-08-16 古河電気工業株式会社 Superconducting cable line
JP2013229520A (en) * 2012-04-26 2013-11-07 Sumitomo Heavy Ind Ltd Manufacturing method of superconduction current lead, superconduction current lead, and superconduction magnet device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0449808A (en) * 1990-06-15 1992-02-19 Sumitomo Electric Ind Ltd Connection system of power cable in manhole
JPH08153618A (en) * 1994-11-29 1996-06-11 Toshiba Corp Current lead for superconducting device
JP2012064323A (en) * 2010-09-14 2012-03-29 Swcc Showa Cable Systems Co Ltd Superconductive current lead
WO2012108427A1 (en) * 2011-02-08 2012-08-16 古河電気工業株式会社 Superconducting cable line
JP2013229520A (en) * 2012-04-26 2013-11-07 Sumitomo Heavy Ind Ltd Manufacturing method of superconduction current lead, superconduction current lead, and superconduction magnet device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019012815A (en) * 2017-05-12 2019-01-24 ゼネラル・エレクトリック・カンパニイ Flexible super-conduction lead wire assembly
US10804017B2 (en) 2017-05-12 2020-10-13 GE Precision Healthcare LLC Flexibile superconducting lead assembly
CN110415911A (en) * 2019-08-26 2019-11-05 西南交通大学 A kind of pluggable binary current lead device and its cooling container
CN110415911B (en) * 2019-08-26 2024-03-22 西南交通大学 Pluggable binary current lead device and cooling container thereof

Also Published As

Publication number Publication date
JP6314022B2 (en) 2018-04-18

Similar Documents

Publication Publication Date Title
JP4810268B2 (en) Superconducting wire connection method and superconducting wire
US7138581B2 (en) Low resistance conductor, processes of production thereof, and electrical members using same
JP4391403B2 (en) Magnesium diboride superconducting wire connection structure and connection method thereof
US10062488B2 (en) Superconducting current lead, superconducting current lead device, and superconducting magnet device
JP6314022B2 (en) Superconducting current lead and method of manufacturing superconducting current lead
JP5022279B2 (en) Oxide superconducting current lead
JP5266852B2 (en) Superconducting current lead
JP5789696B1 (en) Superconducting current lead and method of manufacturing superconducting current lead
JP6678509B2 (en) Superconducting tape wire, superconducting current lead using superconducting tape, permanent current switch and superconducting coil
JP5675232B2 (en) Superconducting current lead
JP5011181B2 (en) Oxide superconducting current lead
JP2018055990A (en) Superconductive current lead and oxide superconducting wire material
JP5925827B2 (en) Superconducting current lead
JP6238623B2 (en) Superconducting current lead
JP2012064323A (en) Superconductive current lead
JP6353334B2 (en) Superconducting current lead
JP5882402B2 (en) Superconducting current lead
JP6125350B2 (en) Superconducting wire connection and superconducting current lead
JP6913570B2 (en) Superconducting tape wire, superconducting current lead using this superconducting tape wire, permanent current switch and superconducting coil
JP2018092941A (en) Superconductive current reed
JP2007115635A (en) High temperature superconducting coil and its manufacturing method
JP2015162427A (en) Superconductive current lead
JP3766448B2 (en) Superconducting current lead
JP2014179526A (en) Current lead
JP2021166126A (en) Superconductive current lead

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180326

R150 Certificate of patent or registration of utility model

Ref document number: 6314022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350