JP2015202583A - 造形材料、造形装置、及び造形材料供給機構 - Google Patents

造形材料、造形装置、及び造形材料供給機構 Download PDF

Info

Publication number
JP2015202583A
JP2015202583A JP2014081710A JP2014081710A JP2015202583A JP 2015202583 A JP2015202583 A JP 2015202583A JP 2014081710 A JP2014081710 A JP 2014081710A JP 2014081710 A JP2014081710 A JP 2014081710A JP 2015202583 A JP2015202583 A JP 2015202583A
Authority
JP
Japan
Prior art keywords
modeling
modeling material
tape
uneven surface
heating medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014081710A
Other languages
English (en)
Inventor
古賀 欣郎
Yoshiro Koga
欣郎 古賀
宮下 武
Takeshi Miyashita
武 宮下
知之 鎌倉
Tomoyuki Kamakura
知之 鎌倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2014081710A priority Critical patent/JP2015202583A/ja
Publication of JP2015202583A publication Critical patent/JP2015202583A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】エネルギーの利用効率を向上可能な造形材料、造形装置、及び造形材料供給機構を提供する。【解決手段】造形材料10は、当該造形材料10を造形位置に搬送するテープ搬送機構(送り機構)と、造形位置に搬送された造形材料10を加熱媒質により加熱溶融させる溶融機構と、を備える造形装置に用いられ、断面視矩形状のテープ状材料であり、テープ厚み方向に直交する一対の面のうち、加熱媒質により加熱溶融されるテープ表面10Aは凹凸面である。【選択図】図2

Description

本発明は、造形材料、造形装置、及び造形材料供給機構に関する。
従来、入力データに基づいて三次元造形物を生成する造形装置(いわゆる、3Dプリンター)が知られている(例えば特許文献1参照)。
特許文献1に記載の装置は、基板及び小出しヘッドを備え、これらの基板及び小出しヘッドが相対的に移動可能に設けられている。小出しヘッドには、造形材料である固体ロッドが供給され、当該固体ロッドが小出しヘッド内で溶融点まで加熱され、流動状態で小出しヘッドのノズルから小出しされる。
特開平3−158228号公報
ところで、特許文献1に記載のような装置では、造形材料として用いる固体ロッドを小出しヘッド内に供給し、当該ヘッド内で溶融し、溶融状態の材料を所定位置に小出しすることで、三次元造形物を造形する。このような構成では、造形材料を確実に溶融させた状態を維持するために加熱し続ける必要がある。この際、造形材料に与えた熱エネルギーの一部が熱拡散により、エネルギーの利用効率の向上が困難という問題があった。
本発明は、エネルギーの利用効率を向上可能な造形材料、造形装置、及び造形材料供給機構を提供することを目的とする。
本発明の造形材料は、造形材料を造形位置に搬送する送り機構と、前記造形位置に搬送された前記造形材料を加熱媒質により加熱溶融させる溶融機構と、を備える造形装置に用いられる造形材料であって、断面視矩形状のテープ状材料であり、テープ厚み方向に直交する一対の面のうち前記加熱媒質により加熱溶融される面は凹凸面であることを特徴とする。
本発明では、造形装置に用いられる造形材料のテープ厚み方向に直交する一対の面のうち、溶融機構の加熱媒質により加熱される面が凹凸面(粗面)である。すなわち、造形材料の一対の面のうち加熱媒質が当たる側の面が凹凸面となる。これにより、例えば粗面化されていない面に対して加熱媒質を当てる場合と比べて、造形材料における加熱媒質が当たる領域の表面積を増大させることができる。したがって、溶融機構による加熱効率を向上させることができ、エネルギーの利用効率を向上させることができる。
本発明の造形材料において、前記造形材料が搬送方向に送り出される際に、前記送り機構の駆動部に当接する前記造形材料における面は、前記凹凸面であることが好ましい。
本発明では、造形材料の一対の面のうち、送り機構の駆動部に当接する面が凹凸面となる。これにより、送り機構の駆動部と造形材料との間の滑りを抑制できる。したがって、送り機構における造形材料の滑りを抑制でき、安定的な搬送を可能とする造形材料を提供することができる。
本発明の造形材料において、前記造形材料の前記一対の面のうち、前記加熱媒質により加熱される側の面とは反対側の面は、前記凹凸面よりも平滑であることが好ましい。
本発明では、造形材料の一対の面のうち、溶融機構により加熱溶融される面(以下、加熱面とも称する)とは反対側の面(以下、反対面とも称する)を、加熱面よりも平滑な面とする。これにより、造形材料を加熱面側から加熱溶融させることで造形材料を積層させる際に、既に積層されている積層物と、裏面との接触面積を増大させることができ、当該積層物との接合面積を増大させることができる。また、接触面積が増大することにより、上記積層物と、造形材料との間での熱伝達性を向上させることができ、上記積層物の造形材料に接触した部分を溶融させることができる。したがって、積層物と造形材料との密着性を向上させることができる。
本発明の造形材料において、前記凹凸面を構成する凹部における底部から、前記凹凸面を構成する凸部の頂部までの寸法の最大値は、前記テープ厚み寸法の10%以下であることが好ましい。
本発明では、凹部の底部から凸部の頂部までの最大寸法が、テープ厚み寸法の10%以下となる。このような構成では、造形材料の表面積を増大させつつ、造形材料の強度を、例えば搬送時等の取り扱い時に断裂しない程度に維持することができる。これにより、エネルギーの利用効率の向上を図りながらも、安定的に造形材料を供給することができる。
本発明の造形材料において、前記造形材料は、可撓性を有し、断面視におけるテープ厚み寸法とテープ幅寸法とのアスペクト比が10以上であることが好ましい。
本発明では、アスペクト比(テープ幅寸法/テープ厚み寸法)が10以上である。ここで、アスペクト比が10未満である場合は、テープ幅寸法に対してテープ厚み寸法が大きすぎる場合と、テープ厚み寸法に対してテープ幅寸法が小さすぎる場合とが考えられる。前者の場合、造形材料の可撓性が不十分であり、送り機構による造形材料の搬送ハンドリング性が悪化する。また、後者では、捩れ等が生じ、搬送ハンドリング性が悪化する。これに対して、上記のようにアスペクト比を10以上にすることで、可撓性を有する造形材料の搬送効率を向上させることができ、所望の造形位置に造形材料を効率的に搬送することができる。
本発明の造形材料において、前記造形材料は、金属により構成されていることが好ましい。
本発明では、造形材料として金属素材を用いることができる。ここで、金属素材の造形材料を用いることで、高強度な造形物を造形することができる。一方で、金属素材は、樹脂素材に比べて融点が高いため、樹脂素材を用いる場合よりも多くの熱エネルギーを付与する必要があり、熱拡散によるエネルギーの損失が大きくなるおそれがある。これに対して、本発明では、上述のように、エネルギーの利用効率を向上させることができるので、金属素材を用いた場合でも、熱拡散によるエネルギーの損失の増大を抑制することができる。
本発明の造形装置は、造形材料をステージ上の造形位置に搬送する送り機構と、前記造形位置に搬送された前記造形材料を、加熱媒質により加熱溶融させる溶融機構と、前記造形位置を前記ステージに対して相対的に移動させる移動機構と、を備え、前記造形材料は、断面視矩形状のテープ状材料であり、テープ厚み方向に直交する一対の面のうち少なくとも一方の面が凹凸面であり、前記溶融機構は、前記造形材料の前記凹凸面を前記加熱媒質により加熱溶融させることを特徴とする。
本発明では、造形装置は、ステージ上の造形位置まで造形材料を搬送し、搬送された造形材料の凹凸面を造形位置で加熱媒質により加熱して溶融させる。これにより、溶融された造形材料が造形位置に積層される。そして、移動機構によりステージに対する造形位置を移動させて、順次造形材料の積層位置を変化させて、上記の造形処理を繰り返すことで、所望の形状の造形物を造形することができる。
なお、本発明におけるステージ上の造形位置とは、ステージの所定位置が造形位置となるものに加え、ステージに造形された造形物における所定位置が造形位置となるものも含む。
このような本発明では、造形位置において、造形材料を局所的に加熱すればよく、造形材料の全部を溶融させたり、溶融させた状態を維持し続ける必要がない。したがって、例えば溶融状態の造形材料を押し出す構成に比べて、必要となる熱エネルギーが少なくでき、エネルギー効率性を向上させることができる。
また、造形材料の凹凸面に対して加熱媒質を当てて加熱するので、凹凸面が形成されていない面を加熱する場合と比べて、加熱媒質が当たる造形材料の表面積を増大させることができる。このため、加熱効率を向上させることができ、エネルギーの利用効率をさらに向上させることができる。
本発明の造形装置において、前記送り機構は、前記凹凸面に当接して搬送方向に送り出す駆動部を有することが好ましい。
本発明では、送り機構は、造形材料の凹凸面を駆動部により搬送方向に送り出す。これにより、駆動部と造形材料との滑りを抑制でき、安定的に造形材料を搬送することができる。
本発明の造形材料供給機構は、造形材料を造形位置に搬送する送り機構と、前記造形位置に搬送された前記造形材料を加熱媒質により加熱溶融させる溶融機構と、を備える造形装置に前記造形材料を供給する造形材料供給機構であって、断面視矩形状のテープ状材料であり、テープ厚み方向に直交する一対の面のうち少なくとも一方の面が凹凸面である前記造形材料を格納する格納部を備え、前記格納部は、当該格納部から供給され、当該送り機構によって前記造形位置に搬送された前記造形材料の前記一対の面のうち、前記加熱媒質によって加熱される側の面が前記凹凸面となるように、前記造形材料を格納していることを特徴とする。
本発明では、格納部から供給され、送り機構によってステージ上の造形位置に搬送された造形材料の凹凸面が加熱媒質で加熱される。すなわち、送り機構によって搬送される造形材料の凹凸面が、造形位置で加熱媒質によって加熱される側に向くように、造形材料をお送り機構に搬送させることができる。したがって、本発明の造形材料供給機構を用いて造形材料を供給することにより、造形材料の凹凸面が溶融機構によって加熱されるように造形材料を供給でき、上述のように、造形装置における加熱効率を向上させることができる。
本実施形態の造形装置の概略構成を示す図。 本実施形態の造形材料の概略構成を示す斜視図。 本実施形態の造形材料の概略構成を示す断面図。 本実施形態のカセットの概略構成を示す断面図。 本実施形態の気体供給部の概略構成を示す断面図。 耐熱シリンジにおけるノズルの先端形状を示す図。 気体供給部をテープ幅方向に走査するための揺動部の構成例を示す図。 本実施形態の造形装置を用いた造形物の造形方法(造形処理)を示すフローチャート。 本実施形態において、造形処理により造形物が形成される過程を示す斜視図。 他の実施形態における造形材料の概略構成を示す断面図。 他の実施形態における、造形材料の保管構成を示す斜視図。
以下、本発明に係る一実施形態の造形装置について、図面に基づいて説明する。
[造形装置の概略構成]
図1は、本実施形態の造形装置の概略構成を示す図である。
図1に示すように、造形装置1(積層造形装置)は、ステージ2と、造形ヘッド3と、移動機構4と、コントローラー5とを備えている。
この造形装置1は、例えばパーソナルコンピューター等のデータ出力装置からコントローラー5に入力された造形用データの断面形状に応じて、ステージ2上に造形材料を積層して三次元造形物を造形する装置である。具体的には、コントローラー5は、造形用データに基づいて移動機構4を制御して、造形ヘッド3を所定の造形位置Pに移動させる。そして、コントローラー5は、造形ヘッド3を制御して、ステージ2上の造形位置Pに造形材料10を溶融積層させる。
以下、各構成について、詳細に説明する。
[ステージ2の構成]
ステージ2は、造形物を造形するための台座であり、例えば、造形物を載置する平面を備えている。
[造形ヘッド3の構成]
造形ヘッド3は、ステージ2に対して移動機構4により移動可能に設けられており、図1に示すように、テープ搬送機構6と、本発明の溶融機構に相当する熱風吹付機構7とを備えている。
[テープ搬送機構6の構成]
テープ搬送機構6は、本発明の送り機構を構成し、造形材料10をステージ2上の造形位置Pに搬送する。このテープ搬送機構6は、造形材料10を格納するカセット61と、カセット61から供給される造形材料10をステージ2上の所定の造形位置Pに搬送する送出部62とを備えている。
(造形材料10の構成)
ここで、カセット61に格納される造形材料10について、説明する。
図2は、本実施形態で用いられる造形材料10の概略構成を示す斜視図である。
図2に示すように、造形材料10は、短辺(テープ厚み寸法)a、長辺(テープ幅寸法)bの扁平断面を有し、アスペクト比(b/a)が10以上の薄肉状(テープ状)に構成されている。ここで、アスペクト比が10未満である場合、造形材料10の搬送ハンドリング性が低下する。つまり、テープ幅寸法bに対してテープ厚み寸法aを大きくすると、造形材料10の可撓性が低下により、後述する送出ローラー対621や駆動ローラー対622における搬送効率が低下し、搬送時にハンドリング性(搬送のしやすさ)が低下する。また、本実施形態では、造形材料10の可撓性を利用して、造形材料10のステージ2側の面(テープ裏面)と、造形位置Pにおける造形物の上面(又はステージ2の面)とを当接させる。したがって、十分な可撓性を有さない場合、造形位置Pにおいて、造形物の上面(又はステージ2の面)と、造形材料10のテープ裏面との間に隙間が生じ、造形材料10を溶融して積層させた際の密着性が低下してしまう。また、テープ厚み寸法aが十分に小さい場合でも、テープ幅寸法bが小さいと、搬送時に造形材料10に捩れが発生するおそれがあり、搬送ハンドリング性が低下する。
これに対して、上記のようにアスペクト比を10以上にすることで、可撓性を有する造形材料10の搬送効率を向上させることができ、所望の造形位置に造形材料を効率的に搬送することができる。
このような造形材料10としては、金属や樹脂等が例示できる。
造形材料10として金属を用いる場合、樹脂よりも造形により得られる造形物の強度が高くなる。一方、造形材料10では、ステージ2上の造形位置Pまで搬送する必要があり、可撓性が求められる。金属製の造形材料10では、上記可撓性を確保するためにテープ厚み寸法がa≦0.1mmとすることが好ましい。テープ厚み寸法がa>0.1mmである場合、造形材料10が撓みにくく、搬送時において所望の造形位置Pに造形材料10を搬送することが困難となる。
そして、上記のように搬送ハンドリング性を考慮してテープ幅寸法bが設定されており、テープ厚み寸法aが0.1mmの場合では、テープ幅寸法として、1mm以上とすることが好ましい。なお、テープ厚み寸法aの設定値にもよるが、テープ幅寸法bの設定値としては、5mm≦b≦15mmとすることがより好ましい。以上のような寸法a,bに形成されたテープ状の造形材料10では、十分な可撓性を維持でき、かつ捩れ等によるハンドリング性の低下を抑制できる。
金属製の造形材料10を用いる場合、Mgを用いることがより好ましい。Mgは例えばAl等に比べて、比重が小さく(Mg比重が1.7に対してAl比重が2.7)、造形材料10の軽量化を図れる。
さらに、金属製の造形材料10では、融点近傍まで熱せられた際に酸化が発生しないように、難燃化処理又は不燃化処理を施されていることが好ましい。難燃化処理や不燃化処理としては、公知の技術を用いることができる。
上述のような金属製の造形材料10は、例えば、圧延や押し出し等により成型されたものをカットすることで、大量かつ安価に製造することが可能となる。
一方、造形材料10として、樹脂を用いる場合、金属に比べて融点が低く、後述する熱風吹付機構7における気体の加熱温度を低く設定でき、加熱機構の更なる簡略化を図れる。このような樹脂製の造形材料10を用いる場合では、テープ厚み寸法がa≦1mm、テープ幅寸法が5mm≦bとすることが好ましい。樹脂性の造形材料10は、金属に比べて可撓性を確保しやすく厚み寸法を大きくできるが、テープ厚み寸法がa>1mmの場合では、可撓性が不足し、ハンドリング性が低下する。また、テープ幅寸法が5mm>bである場合は、捩れが生じやすく、ハンドリング性が低下する。以上から、上記のような寸法a,bの範囲でアスペクト比が10以上となるように、造形材料10を構成することが好ましい。
図3は、造形材料10のテープ表面(ステージ2上に搬送された際に、ステージ2に対して反対側の面)近傍の断面の一例を模式的に示す断面図である。
造形材料10は、テープ表面10Aに凹凸101が形成されている。すなわち、造形材料10のテープ表面10Aは凹凸面(粗面)となる。後述するように本実施形態では、造形材料10のテープ表面10Aに対して加熱気体(加熱媒質)を吹き付けることで造形材料10を加熱溶融するので、造形材料10の加熱媒質により加熱溶融される面が凹凸面(粗面)である、ということができる。
また、造形材料10の凹凸101の形成領域は、テープ厚み方向においてテープ厚み寸法a(最大寸法)の10%以下の寸法の領域となることが好ましい。つまり、凹凸101における凹部の底部101A(谷となる部分)と、凸部の頂部101B(山となる部分)とのテープ厚み方向における寸法差の最大値aが、テープ厚み寸法aの10%以下となる。
ここで、最大値aをテープ厚み寸法aの10%より大きくすると、造形材料10が局所的に薄くなる薄肉部が形成され、当該薄肉部の強度が低下する。この場合、例えば、当該薄肉部において造形材料10が僅かな負荷で断裂するおそれがある。これに対して、上記のように、最大値aを設定することで、造形材料10の強度を確保することができる。
このような凹凸101は、例えば、テープ表面10Aにサンドブラスト処理や、エッチング処理等の処理(粗面化処理)を施すことで形成してもよく、表面に凹凸が形成されたローラーで金属材料を押圧することで、当該テープ表面10Aにローラー表面の凹凸を転写することで形成してもよい。ローラーの押圧による形成では、造形材料10を圧延や押し出し等により成型する際に同時に形成することができる。
ところで、本実施形態では、造形材料10のテープ表面10Aに対して、熱風吹付機構7によって加熱気体(加熱媒質)を吹き付けることで、造形位置Pに搬送された造形材料10を加熱溶融する。この際、上述のように、テープ表面10Aに凹凸101が設けられているため、加熱気体が吹き付けられるテープ表面10Aの表面積が、例えば凹凸101が設けられていない場合に比べて増大する。したがって、広い面積に加熱気体が吹き付けられることになり、加熱効率を向上させることができる。
また、本実施形態では、造形材料10のテープ裏面10Bが、加熱されるテープ表面10Aよりも平滑な面となっている。例えば、本実施形態ではテープ裏面10Bを鏡面としている。このようなテープ裏面10Bは、造形材料10を圧延や押し出し等により成型する際に、テープ裏面10Bに鏡面を有する部材を当接させ、当該鏡面を転写させることで形成することができる。テープ裏面10Bを平滑面とすることにより、造形材料10をテープ表面10A側から加熱し、溶融させることで造形材料10を積層させる際に、既に積層されている積層物と、テープ裏面10Bとの接触面積を増大させることができ、当該積層物との接合面積を増大させることができる。また、接触面積が増大することにより、上記積層物と、造形材料10との間での熱伝達性を向上させることができ、上記積層物の造形材料10に接触した部分をより確実に溶融させることができる。したがって、積層物と造形材料10との密着性を向上させることができる。特に、テープ裏面10Bを鏡面とすることにより、上記密着性を一層向上させることができる。
(カセット61の構成)
次に、テープ搬送機構6のカセット61について具体的に説明する。
図4は、本実施形態のカセット61の概略構成を示す断面図である。
図4に示すように、カセット61は、本発明の造形材料供給機構に相当し、ケース611と、ボビン612と、ピンチローラー613と、を備えている。
ケース611は、本発明の格納部に相当し、例えば、内部空間を有する直方体形状であり、内部にボビン612、ボビン612に巻装された造形材料10、及びピンチローラー613が格納されている。
また、ケース611の一部(本実施形態では、直方体の角部)に、送出口611Aが設けられており、内部に収納された造形材料10は、この送出口611Aから外部に取り出される。
ボビン612は、軸状部材であり、ケース611における互いに対向する面に回転可能に支持されている。このボビン612には、上述した造形材料10の一端部が固定され、当該造形材料10がボビン612の周面に沿って巻装されている。より具体的には、テープ状の造形材料10は、テープ裏面10B(ステージ2上に搬送された際に、ステージ2に対向する面)が、ボビン612に巻装された造形材料10のテープ表面10Aに密着するように、テープ裏面10Bをボビン612側に向けて、ボビン612に同心円状に巻装され、ロール状で収納されている。
このような構成では、例えば糸状等の断面円形状や断面楕円形状の造形材料をボビン612に巻装させた場合に比べて、体積占有率が高くなる。したがって、断面円形状や断面楕円形状の造形材料と、本実施形態のテープ状の造形材料10とを、同量分だけボビンに巻装する場合、本実施形態の造形材料10を用いる場合では、断面円形状や断面楕円形状の造形材料を用いる場合に比べて、体積を小さくでき、カセット61の小型化を図ることができ、さらに、ボビン612への巻数も少なくなるので、製造効率性も良好となる。また、カセット61のサイズが規定されている場合では、本実施形態のテープ状の造形材料10を用いる場合では、体積占有率が大きいため、断面円形状や断面楕円形状の造形材料を用いる場合に比べて、カセット61内により多くの造形材料10を収納することが可能となる。また、テープ表面10Aに凹凸101が形成されているために、ロール状に積層された造形材料10間の剥離性を向上させることができ、造形材料10が互いに貼り付くことによる搬送不良を抑制できる。
ピンチローラー613は、送出口611Aの近傍に設けられ、造形材料10が搬送方向をガイドする。ピンチローラー613は、一対設けられており、これらの一対のピンチローラー613により造形材料10を挟み込んで送出口611Aに案内する。また、ピンチローラー613により造形材料10が挟み込まれることで、巻装された造形材料10の弛みを抑制でき、送出口611Aから送り出される造形材料10の走行性(搬送性)が向上する。
また、カセット61は、例えばケース611の外装部に図示略の係止ピンやガイド突起等による位置決め部が設けられており、これらの位置決め部を造形ヘッド3における所定位置に位置決めすることで、カセット61を造形ヘッド3に装着することが可能となる。
このカセット61は、テープ搬送機構6によって搬送される造形材料10の搬送経路の上流側に取り付けられる。カセット61は、搬送経路に沿って搬送された造形材料10の格子状の溝が形成されたテープ表面10Aが、造形位置Pにおいて加熱気体で加熱される側に向くように、造形ヘッド3に取り付けられている。すなわち、カセット61は、搬送経路の最下流の造形位置において、テープ裏面10Bがステージ2側に対向し、テープ表面10Aがステージ2と反対側(加熱される側)を向くように、搬送経路の上流側(送出部62の上流側)に取り付けられている。これにより、造形材料10のテープ表面10Aが加熱されるように造形材料10を供給できる。
(送出部62の構成)
送出部62は、図1に示すように、カセット61から提供された造形材料10のテープ裏面10Bをステージ2側に向け、凹凸101が形成されたテープ表面10Aをステージ2とは反対側に向けて、ステージ2上の造形位置Pに送り出す。
この送出部62は、一対の送出ローラー621A,621Bにより構成された送出ローラー対621と、駆動ローラー622A及び従動ローラー622Bにより構成された駆動ローラー対622と、ガイド部623とを備えている。なお、本実施形態では、送出ローラー対621が1つ設けられる例を示すが、2つ以上設けられていてもよく、送出ローラー対621が設けられず、駆動ローラー対622のみが設けられる構成などとしてもよい。さらに、駆動ローラー対622が1つのみ設けられる例を示すが、2つ以上設けられる構成などとしてもよい。
送出ローラー対621は、送出ローラー621A,621Bにより造形材料10を挟み込み、造形材料10の搬送をガイドする。ここで、送出ローラー対621は、カセット61から送出された造形材料10の巻癖(ボビン612への巻装方向)とは反対側に造形材料10を湾曲させつつ、当該造形材料10を搬送する。これにより、造形材料10の巻癖を矯正することが可能となる。
駆動ローラー対622は、造形材料10を引き込み、造形位置Pに向かって送出する。具体的には、駆動ローラー対622は、モーター等の駆動量により回転駆動される駆動ローラー622A(本発明における駆動部)と、駆動ローラー622Aの駆動に追従する(モーター駆動力が伝達されない)従動ローラー622Bとを備える。このように構成された駆動ローラー対622は、凹凸101が形成され粗面化されたテープ表面10Aに駆動ローラー622Aを当接させ、テープ裏面側に従動ローラー622Bを当接させることで、造形材料10を挟持し、搬送する。この際、駆動ローラー622Aに当接するテープ表面10Aは、表面に凹凸101が設けられるため、摩擦係数が大きく、駆動ローラー622Aとの間に滑りが発生しにくい。したがって、造形材料10を適切な速度で安定して搬送することができる。
ここで、駆動ローラー対622を構成する一対のローラーの双方を駆動ローラーとして駆動させる構成としてもよい。つまり、第1駆動ローラーによりテープ表面10Aを送り出し、第2駆動ローラーによりテープ裏面を送り出す。この場合、造形材料10のテープ裏面は、造形材料10の巻癖により第2駆動ローラーに付勢されるので、搬送時の滑り等をより確実に抑制できる。
また、上記例のように、一対のローラーの双方を駆動ローラーとした場合、さらに、テープ裏面に接する第2駆動ローラーを、テープ表面10Aに接する第1駆動ローラーに対して回転速度を僅かに上げてもよい。この場合、テープ裏面側にテープ表面10A側よりも大きい引張応力が作用するので造形材料10の巻癖を矯正することができる。この際、テープ表面10Aに凹凸101が形成されているため、テープ裏面と第2駆動ローラーとの間に滑りが発生したとしても、テープ表面10Aと第1駆動ローラーとの間には滑りの発生が生じにくい。したがって、上記と同様、適切な搬送速度で、安定した造形材料10の搬送が可能となる。
ガイド部623は、例えば、表面が耐摩耗処理された、耐久性の高い金属材により板バネ状に構成され、搬送方向に沿う両端にガイド壁(図示略)を備えている。
このガイド部623は、造形材料10の弛みを取るとともに造形材料10の搬送方向を矯正してステージ2上の造形位置Pへの搬送を案内する。
ガイド部623により案内された造形材料10は、撓みにより先端部が造形位置Pに付勢当接され、後述の熱風吹付機構7により熱された部分が溶融して造形位置Pに積層される。
[熱風吹付機構7の構成]
熱風吹付機構7は、図1に示すように、コンプレッサー71と、気体供給部72と、ダクト73と、を備え、造形材料10の凹凸101が形成されたテープ表面10Aに対して、ステージ2とは反対側から加熱気体を吹き付けることで、当該造形材料10を加熱し、溶融させる。
[コンプレッサー71の構成]
コンプレッサー71は、気体を高圧に圧縮する圧縮スペース(図示略)を有し、その圧力により気体供給部72に当該気体を供給する装置である。気体としては、不活性ガスを用いることが好ましい。不活性ガスを用いることで、造形材料10を加熱した際の造形材料10の変質を防止できる。
また、コンプレッサー71内部には、気体中の水分を除去する除湿剤が設けられており、コンプレッサー71から供給される気体は除湿されている。したがって、気体として空気を用いる場合でも、除湿された加熱空気が造形材料10に吹き付けられることになり、造形材料10と水との反応を抑制できる。
なお、コンプレッサー71は、ダクト73と接続されており、ダクト73により吸引された空気は、前記圧縮スペースに導入される。
このような本実施形態では、気体として不活性ガスを用いる場合、ステージ2上を不活性ガス雰囲気下に維持することが好ましい。具体的には、少なくとも、造形装置1のステージ2、造形ヘッド3、及び移動機構4を密閉された造形室内に格納し、造形室内を不活性ガス雰囲気下に維持する。これにより、ダクト73により不活性ガスが吸引されることになり、常に造形材料10に不活性ガスを吹き付けることが可能となる。
なお、気体として空気を用いる場合は、不活性ガス雰囲気下に維持する必要がなく、造形室が設けられなくてもよい。
(気体供給部72の構成)
気体供給部72は、コンプレッサー71から供給された気体を加熱して造形位置Pに対して吹き付ける。ここで、この気体供給部72は、当該気体供給部72から吹き付けられた加熱気体が搬送方向に沿って搬送される造形材料10の上流側から下流側に向かうように、搬送方向D及び法線方向Dを含む面内で、ステージ2の法線方向Dに対して所定の角度θで傾斜して配置されている。この傾斜角度θとしては、例えば0°<θ≦45°であることが好適である。これにより、加熱気体が造形材料10の上流側に向かわず、造形位置P以外の造形材料10が溶融される不都合を回避することができる。
図5は、気体供給部72の概略構成を示す断面図である。
図5に示すように、気体供給部72は、耐熱シリンジ721、巻芯722、ヒーターコイル723、及び温度センサー724等を備えている。
耐熱シリンジ721は、例えば円筒形等の筒状に形成されている。耐熱シリンジ721としては、例えば、耐熱ガラスや耐熱金属を用いて構成されることが好ましい。なお、熱の拡散の低減や火傷防止等のために、耐熱シリンジ721の外周面を断熱材で覆う構成とすることが好ましい。
耐熱シリンジ721の基端部は、コンプレッサー71に接続され、コンプレッサー71から供給される気体は、当該基端部から耐熱シリンジ721の内部に導入される。また、耐熱シリンジ721の先端部(ステージ2に対向する端部)は、円筒径寸法が先端に向かう程小さくなる形状に形成されたノズルを構成し、ノズルの先端に加熱された気体が放出されるノズル開口部721Aが設けられる。
耐熱シリンジ721の中心軸上には、例えばセラミック製の巻芯722が配置され、当該巻芯722にヒーターコイル723が巻装されている。このヒーターコイル723は、コントローラー5の制御の下、電流を流すことにより加熱され、耐熱シリンジ721内に導入された気体を加熱する。ヒーターコイル723としては、例えばニッケルクロムや鉄クロムアルミの電熱線を用いることができ、1000℃以上の高温加熱が可能となる。したがって、造形材料10として金属材料を用いる場合でも、溶融積層させることが可能となる。
また、温度センサー724は、巻芯722のノズル側の先端に設けられ、ノズル開口部721Aから放出される加熱気体の温度を計測する。温度センサー724は、コントローラー5に電気的に接続されており、計測温度に応じた検出信号をコントローラー5に出力する。これにより、コントローラー5は、計測温度に基づいて、ヒーターコイル723への印加電圧を制御して、ノズル開口部721Aから所望温度の加熱気体を放出させることが可能となる。
図6は、耐熱シリンジ721におけるノズル開口部721Aの先端形状を示す図である。
ノズル開口部721Aの先端形状は、放出される加熱気体に乱流等が発生しにくく、所望の造形位置Pに適切に加熱気体を吹き付ける形状とすることが好ましい。
このようなノズル開口部721Aの開口形状としては、例えば図6(A)に示すような円形状、又は図6(B)に示すような楕円形状が例示できる。
図6(A)に示すようなノズル形状では、テープ状の造形材料10のテープ幅方向における一部に、局所的に加熱気体を吹き付けることができ、高い精度で造形物を形成することが可能となる。この場合、開口径寸法Aを、例えば0.05mm≦A≦2mmにすることが好ましい。
一方、図6(B)に示すようなノズル形状の場合、例えば、造形材料10の広範囲に亘って加熱気体を吹き付けることが可能となるため、高速で造形物を造形する場合に好適である。この場合、ノズル開口の短径寸法をB、長径寸法をCとすると、例えば0.1mm≦B≦1mm、C≦10Bと設定することが好ましい。
ところで、本実施形態では、テープ状の造形材料10に対して、テープ幅寸法の一部に加熱気体を吹き付けることで、テープ幅方向における一部を溶融させて造形物を造形する。この場合、気体供給部72をテープ幅方向に対して走査可能な構成とすることで、テープ状の造形材料10を無駄なく消費することができる。
図7に、気体供給部72をテープ幅方向に走査するための揺動部の構成例を示す。
図7の例では、気体供給部72の基端部に揺動部725が設けられる。この揺動部725は、ステージ2の法線方向Dから見た平面視において、造形位置Pにおけるテープ搬送方向Dに平行で、かつテープ幅方向から見た平面視においてステージ2の法線方向Dに対して傾斜する揺動軸726を備えている(図1参照)。そして、当該揺動軸726は、耐熱シリンジ721がテープ搬送方向に直交するテープ幅方向に沿って揺動自在となるように、造形ヘッド3の本体部(図示略)に軸支される。また、揺動部725による気体供給部72の揺動動作としては、例えば、揺動軸726にステッピングモーター等の動力源からの動力を伝達させて揺動させる。コントローラー5により動力源の動作を制御することで、テープ幅方向における所定位置に加熱気体を吹き付けることができる。
なお、気体供給部72を揺動させる揺動部としては、上記に限定されず、その他、いかなる構成を用いてもよい。例えば、造形ヘッド3において気体供給部72がテープ幅方向に平行移動可能な構成とし、別途設けられた移動機構によりテープ幅方向に進退移動させる構成などとしてもよい。
(ダクト73の構成)
ダクト73は、造形位置P近傍に気体吸入口が設けられ、気体供給部72から放出され、造形材料10に吹き付けられた後の加熱気体を回収する。
本実施形態では、気体供給部72は、搬送方向の上流側から下流側に向かって加熱気体を吹き付けるため、ダクト73は、気体供給部72の下流側に配置されていることが好ましい。
また、ダクト73は、コンプレッサー71に接続されており、コンプレッサー71による気体吸引力により、基体を吸引する。このような構成では、コンプレッサー71、気体供給部72、及びダクト73により加熱気体が循環活用されることになり、エネルギー効率性が向上する。
ここで、ダクト73の吸引口の流路断面積は、気体供給部72のノズル開口部721Aの開口面積よりも大きいことが好ましい。このような構成では、吹き付けられた加熱気体よりも多くの気体をダクト73にて回収することができ、加熱気体の回収効率を向上させることができる。
[移動機構4の構成]
移動機構4は、造形ヘッド3をステージ2に対してX軸、Y軸、及びZ軸の各軸方向に移動させて、造形ヘッド3におけるテープ搬送機構6の造形材料10の搬送先(造形位置P)、及び熱風吹付機構7の加熱気体の吹付位置を所望の位置に移動させる。すなわち、移動機構4は、造形位置Pをステージ2に対して移動させる。
具体的な構成としては、例えばY軸方向に沿って敷設されたYガイド上で移動可能なコラム、コラム上に設けられてX軸方向に延びるXガイドを備えたスライダ、Xガイドに沿って移動可能でZ方向に沿ったZガイドを備えたラムを備え、ラムのZガイドに沿って移動可能に造形ヘッド3が設けられる構成等が例示できる。また、複数のアーム部材を連結し、アームの連結角度を制御することで、造形ヘッド3を3次元空間で移動可能な構成などとしてもよい。
また、本実施形態では、移動機構4により造形ヘッド3をステージ2に対して移動させる構成を例示するがこれに限定されず、例えば、ステージ2を造形ヘッド3に対して移動させる構成などとしてもよい。さらには、ステージ2をZ方向に沿って移動させ、造形ヘッド3をXY軸に沿って移動させる構成などとしてもよい。
[コントローラー5の構成]
コントローラー5は、例えばメモリー等の記憶部、CPUとの演算回路等により構成され、造形装置1の全体動作を制御する。記憶回路には、造形装置1を制御するための各種プログラムや各種データが記録される。また、コントローラー5の演算回路は、記憶部に記憶されたプログラムを読み込み実行することで、図1に示すように、データ取得手段51、移動制御手段52、及び造形制御手段53として機能する。なお、本実施形態では、各機能構成は、ハードウェアである演算回路と、プログラム(ソフトウェア)との協働により実現される例を示すが、例えば各機能を有する集積回路(ハードウェア)を組み合わせることで実現される構成などとしてもよい。
データ取得手段51は、例えば、コントローラー5に通信可能に接続されるパーソナルコンピューター等の外部機器から造形用データを取得する。なお、コントローラー5が記録媒体を読み込むドライブ装置を備え、当該ドライブ装置に装着された記録媒体から直接造形用データを取得する構成などとしてもよい。
移動制御手段52は、造形用データに基づいて、移動機構4を制御し、造形ヘッド3を移動させる。
造形制御手段53は、造形ヘッド3を制御する。具体的には、造形制御手段53は、送出部62の駆動ローラー対622、コンプレッサー71、気体供給部72、ダクト73の動作を制御し、造形位置Pに造形材料10を溶融積層させて造形物を造形する。
[造形装置1による造形物の製造方法]
次に、上述のような造形装置1を用いた造形物の造形方法について図面に基づいて説明する。
図8は、本実施形態の造形装置1を用いた造形物の造形方法(造形処理)を示すフローチャートである。図9は、造形処理により造形物が形成される過程を示す斜視図である。
造形装置1により、造形物を造形するには、まず、コントローラー5のデータ取得手段51は、造形用データを取得する(ステップS1)。具体的には、データ取得手段51は、操作者の操作に基づいて、例えばコントローラー5に接続されたパーソナルコンピューター等の外部機器から入力される造形用データ、CD−ROM等の記録媒体に記録された造形用データ、インターネット等の通信回線を介して取得された造形用データ等を取得する。
次に、移動制御手段52は、造形用データから造形物の断面形状を解析し、図9に示すように、造形ヘッド3を造形物断面に相当する造形位置Pに移動させる(ステップS2)。
具体的には、テープ搬送機構6により搬送される造形材料10の先端部が造形用データに基づいて示される造形位置Pに位置するように、移動機構4及び気体供給部72の揺動部725を制御する。
この後、造形制御手段53は、造形ヘッド3等を制御し、造形位置Pに対して造形材料10を溶融して積層させ、図9に示すように、造形物を形成する(ステップS3)。
具体的には、造形制御手段53は、コンプレッサー71を制御して、予め設定された流量となるように、コンプレッサー71から気体供給部72に気体を導入する。
また、造形制御手段53は、温度センサー724により検出された温度を参照し、当該検出温度が造形材料10の融点近傍の温度となるように、ヒーターコイル723に電圧を印加する。これにより、ノズル開口部721Aから造形材料10の先端部におけるテープ幅方向の一部に、凹凸101が形成されたテープ表面10A側から造形材料10の融点前後となる温度の加熱気体が吹き付けられ、造形材料10が溶融して造形位置Pに積層される。
この後、造形制御手段53は、造形用データに基づいた造形物の造形処理が完了したか否かを判定する(ステップS4)。
ステップS4で「No」と判定された場合は、ステップS2及びステップS3に戻り、造形ヘッド3の移動及び造形材料の溶融積層を繰り返す。
この際、移動制御手段52は、気体供給部72の揺動部725を制御して気体供給部72の加熱気体の吹付位置をテープ幅方向に沿って移動させ、かつ移動機構4を移動させて、加熱気体の吹付位置が造形用データに基づいた造形位置Pとなるように、造形ヘッド3の位置を制御する。
また、造形制御手段53は、揺動部725により加熱気体の吹付位置が走査され、テープ幅方向に沿った造形材料10が溶融及び積層された場合は、テープ搬送機構6の駆動ローラー622Aを駆動させることで、造形材料10を造形位置Pに送り出す。また、造形制御手段53は、送出部62を制御して、駆動ローラー対622を駆動させ、造形材料10を所定量送り出す。送出部62により送り出された造形材料10は、可撓性を有するため自重により撓み、造形位置Pに付勢当接される。この際、造形材料10は、鏡面状のテープ裏面10B側をステージ2側に向けて送り出されるため、ステージ2上の造形位置Pに既に積層されている積層物が存在する場合、当該積層物にテープ裏面10Bが接触した状態となる。この後、ステップS3と同様に、造形位置Pに対して造形材料10を溶融させて積層させる。
そして、ステップS4において、「Yes」と判定されると、造形処理を終了させる。
[本実施形態の作用効果]
本実施形態では、造形材料10は、加熱気体が吹き付けられる側の面であるテープ表面10Aに、凹凸101が形成された凹凸面(粗面)である。これにより、例えば、凹凸101が形成されていない(粗面化されていない)面に加熱気体を吹き付ける場合と比べて、造形材料10における加熱気体が当たる領域の表面積を増大させることができる。したがって、溶融機構としての熱風吹付機構7による加熱効率を向上させることができ、エネルギーの利用効率を向上させることができる。
本実施形態では、造形材料10のテープ裏面10Bが、加熱されるテープ表面10Aよりも平滑な鏡面としている。これにより、造形材料10をテープ表面10A側から加熱し、溶融させることで造形材料10を積層させる際に、既に積層されている積層物と、テープ裏面10Bとの接触面積を増大させることができ、当該積層物との接合面積を増大させることができる。また、接触面積が増大することにより、上記積層物と、造形材料10との間での熱伝達性を向上させることができ、上記積層物の造形材料10に接触した部分をより確実に溶融させることができる。したがって、積層物と造形材料10との密着性を向上させることができる。
本実施形態では、造形材料10の一対の面のうち、駆動部として駆動ローラー対622の駆動ローラー622Aに当接するテープ表面10Aが、凹凸面(粗面)となる。これにより、駆動ローラー622Aと造形材料10との間の滑りを抑制でき、安定的に付与することができる。したがって、送り機構における造形材料の滑りを抑制でき、造形材料10を適切な速度で安定して搬送することができる。
本実施形態では、造形材料10の凹凸101の形成領域は、テープ厚み方向における最大値aが、テープ厚み寸法aに対して所定の閾値である10%以下である。このような構成では、凹部の底部101Aから凸部の頂部101Bまでの最大寸法(最大値a)が、テープ厚み寸法aの10%以下となる。このような構成では、造形材料10の表面積を増大させつつ、造形材料10の強度を、例えば搬送時等の取り扱い時に断裂しない程度に維持することができる。これにより、エネルギーの利用効率の向上を図りながらも、安定的に造形材料10を供給することができる。
本実施形態では、テープ状の造形材料10は、可撓性を有し、テープ厚み寸法aとテープ幅寸法bとの比であるアスペクト比(a/b)が10以上である。ここで、アスペクト比が10未満である場合は、テープ幅寸法に対してテープ厚み寸法が大きすぎる場合と、テープ厚み寸法に対してテープ幅寸法が小さすぎる場合とが考えられる。前者の場合、造形材料10の可撓性が不十分であり、造形材料10の搬送ハンドリング性が悪化する。また、後者では、捩れ等が生じ、搬送ハンドリング性が悪化する。これに対して、上記のようにアスペクト比を10以上にすることで、可撓性を有する造形材料10の搬送効率を向上させることができ、所望の造形位置に造形材料10を効率的に搬送することができる。
ここで、造形材料10として金属素材を用いることができる。このように金属素材の造形材料10を用いることで、高強度な造形物を造形することができる。一方で、金属素材は、樹脂素材に比べて融点が高いため、樹脂素材を用いる場合よりも多くの熱エネルギーを付与する必要があり、熱拡散によるエネルギーの損失が大きくなるおそれがある。
これに対して、本実施形態では、造形材料10を用いることにより、上述のように、エネルギーの利用効率を向上させることができる。したがって、金属素材を用いた場合でも、熱拡散によるエネルギーの損失の増大を抑制することができる。
本実施形態の造形装置1は、造形物が造形されるステージ2と、造形材料10をステージ2上の所定の造形位置Pに搬送するテープ搬送機構6と、造形位置Pに搬送された造形材料10のテープ表面10Aに対して加熱気体を吹き付けて溶融させる熱風吹付機構7と、熱風吹付機構7が組み込まれる造形ヘッド3を、造形位置Pが造形用データに基づく所望位置に位置するように移動させる移動機構4と、を備えている。
このような構成では、造形位置Pにおいて、造形材料10を局所的に加熱すればよく、造形材料10の全部を溶融させたり、溶融させた状態を維持し続ける必要がない。したがって、例えば溶融状態の造形材料を押し出す構成に比べて、必要となる熱エネルギーが少なくでき、エネルギー効率性を向上させることができる。
また、造形材料10の凹凸101が形成されたテープ表面10Aを加熱する。これにより、凹凸101が形成されていない面を加熱する場合と比べて、上述のように、加熱効率を向上させることができ、エネルギーの利用効率を向上させることができる。
本実施形態では、ケース611の送出口611Aから供給され、ステージ上の造形位置に搬送された造形材料10の凹凸101が形成されたテープ表面10Aが加熱気体で加熱される。すなわち、テープ搬送機構6の送出部62によって搬送される造形材料10のテープ表面10Aが、造形位置Pで加熱気体によって加熱される側に向くように、造形材料10をテープ搬送機構6に搬送させることができる。したがって、上述のように造形装置1における加熱効率を向上させることができる。
[その他の実施形態]
なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
上記実施形態では、造形材料10に形成される凹凸101としてランダムな表面を有する構成を例示したが、本発明はこれに限定されない。
図10は、本発明の造形材料の変形例に係る造形材料11のテープ表面11Aの断面を模式的に示す断面図である。図10に示すように、造形材料11のテープ表面11Aには、格子状の凹部111Aと、凹部111Aに囲まれた概略直方体状の凸部111Bとを有する凹凸111が形成されている。この造形材料11でも、上記実施形態と同様に、凹凸111の最大値a(テープ厚み方向における凸部111Bの寸法に略一致する)が、所定の閾値以下に設定されている。このように構成された造形材料11でも、テープ表面11Aの表面積を増大させることができる。
また、上記実施形態では、造形材料10のテープ表面10A側のみに凹凸101が形成されている構成を例示したが、本発明はこれに限定されず、両面に凹凸101が形成されている構成としてもよい。このような構成では、造形材料10の両面に凹凸101が設けられているため、駆動ローラー対によって造形材料10を搬送する際に、造形材料10の両面とも駆動ローラーとの間の摩擦係数を大きくでき、搬送時の滑りを抑制できる。したがって、駆動ローラー対の一方を駆動ローラーとする場合に、駆動ローラーを配置する位置をテープ表面10A側とテープ裏面10B側のいずれに配置してもよいため、テープ搬送機構6の設計の自由度を向上させることができる。
上記実施形態では、駆動部として駆動ローラー対622を例示したが、本発明はこれに限定されない。例えば、テープ裏面側に設けられたガイドと、テープ表面側から当接して搬送方向の摩擦力を付与するベルトとを備え、当該ベルトを搬送方向に移動させることで、造形材料10をガイドに沿って移動させる構成としてもよい。このように、搬送方向の摩擦力を、造形材料10の凹凸101が形成された側の面に付与することで、造形材料10を搬送するように構成された各種搬送機構を採用することができる。
上記実施形態では、造形材料10を溶融させる溶融機構として加熱気体を加熱媒質とした熱風吹付機構7を例示したが、本発明はこれに限定されない。例えば、レーザー光を照射するレーザー照射機構や、放電を発生させる放電機構等により造形材料10を溶融させる機構を採用してもよい。また、高温のワイヤーを当接させて、当接部分を加熱溶融させる機構を採用してもよい。すなわち、加熱気体、加熱された固体(ワイヤー等)、光(電磁波)、及び荷電粒子(電子やプラズマ)等の加熱媒質を介して局所的に造形材料10を加熱し溶融可能な各種の溶融機構を使用可能である。
造形材料10として、アスペクト比が10以上となる断面矩形状のテープ状材料を例示したが、これに限定されない。例えば、造形材料10の材質等によって、十分な可撓性を有し、かつテープ搬送機構6における造形材料10の搬送ハンドリング性が良好であれば、アスペクト比が10未満となるテープ状材料を用いてもよい。
上記実施形態では、造形材料10は、造形ヘッド3に対して着脱可能なカセット61に収納される構成としたが、これに限定されず、造形ヘッド3の筐体の一部をケース611の代りに用いて、造形材料10を供給する造形材料供給機構を造形ヘッド3と一体的に構成してもよい。例えば、図11に示すように、軸芯614に造形材料10を巻装することで、造形材料10をロール状に保持してもよい。この場合、軸芯614の中心軸に沿って装着孔615を設け、例えば造形ヘッド3に設けられた係止ピンを装着孔615に挿通することで、造形材料10が巻装された軸芯614を造形ヘッド3に装着できる。また、軸芯614の軸方向の両端部に、造形材料10のテープ幅方向の両端縁を保持するフランジ部616を設ける構成とすることで、造形材料10の弛み等を防止できる。
その他、本発明の実施の際の具体的な構造は、本発明の目的を達成できる範囲で他の構造等に適宜変更できる。
1…造形装置、2…ステージ、3…造形ヘッド、4…移動機構、6…テープ搬送機構(送り機構)、7…熱風吹付機構(溶融機構)、10,11…造形材料、10A,11A…テープ表面(凹凸面)、10B…テープ裏面(反対側の面)、61…カセット(造形材料供給機構)、101,111…凹凸、101A…底部、101B…頂部、611…ケース(格納部)、622…駆動ローラー対(駆動部)。

Claims (9)

  1. 造形材料を造形位置に搬送する送り機構と、前記造形位置に搬送された前記造形材料を加熱媒質により加熱溶融させる溶融機構と、を備える造形装置に用いられる造形材料であって、
    断面視矩形状のテープ状材料であり、テープ厚み方向に直交する一対の面のうち前記加熱媒質により加熱溶融される面は凹凸面である
    ことを特徴とする造形材料。
  2. 請求項1に記載の造形材料において、
    前記造形材料が搬送方向に送り出される際に、前記送り機構の駆動部に当接する前記造形材料における面は、前記凹凸面である
    ことを特徴とする造形材料。
  3. 請求項1又は請求項2に記載の造形材料において、
    前記造形材料の前記一対の面のうち、前記加熱媒質により加熱される側の面とは反対側の面は、前記凹凸面よりも平滑である
    ことを特徴とする造形材料。
  4. 請求項1から請求項3のいずれか1項に記載の造形材料において、
    前記凹凸面を構成する凹部における底部から、前記凹凸面を構成する凸部の頂部までの寸法の最大値は、前記テープ厚み寸法の10%以下である
    ことを特徴とする造形材料。
  5. 請求項1から請求項4のいずれか1項に記載の造形材料において、
    前記造形材料は、可撓性を有し、断面視におけるテープ厚み寸法とテープ幅寸法とのアスペクト比が10以上である
    ことを特徴とする造形材料。
  6. 請求項1から請求項5のいずれか1項に記載の造形材料において、
    前記造形材料は、金属により構成されている
    ことを特徴とする造形材料。
  7. 造形材料をステージ上の造形位置に搬送する送り機構と、
    前記造形位置に搬送された前記造形材料を、加熱媒質により加熱溶融させる溶融機構と、
    前記造形位置を前記ステージに対して相対的に移動させる移動機構と、を備え、
    前記造形材料は、断面視矩形状のテープ状材料であり、テープ厚み方向に直交する一対の面のうち少なくとも一方の面が凹凸面であり、
    前記溶融機構は、前記造形材料の前記凹凸面を前記加熱媒質により加熱溶融させる
    ことを特徴とする造形装置。
  8. 請求項7に記載の造形装置において、
    前記送り機構は、前記凹凸面に当接して搬送方向に送り出す駆動部を有する
    ことを特徴とする造形装置。
  9. 造形材料を造形位置に搬送する送り機構と、前記造形位置に搬送された前記造形材料を加熱媒質により加熱溶融させる溶融機構と、を備える造形装置に前記造形材料を供給する造形材料供給機構であって、
    断面視矩形状のテープ状材料であり、テープ厚み方向に直交する一対の面のうち少なくとも一方の面が凹凸面である前記造形材料を格納する格納部を備え、
    前記格納部は、当該格納部から供給され、当該送り機構によって前記造形位置に搬送された前記造形材料の前記一対の面のうち、前記加熱媒質によって加熱される側の面が前記凹凸面となるように、前記造形材料を格納している
    ことを特徴とする造形材料供給機構。
JP2014081710A 2014-04-11 2014-04-11 造形材料、造形装置、及び造形材料供給機構 Pending JP2015202583A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014081710A JP2015202583A (ja) 2014-04-11 2014-04-11 造形材料、造形装置、及び造形材料供給機構

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014081710A JP2015202583A (ja) 2014-04-11 2014-04-11 造形材料、造形装置、及び造形材料供給機構

Publications (1)

Publication Number Publication Date
JP2015202583A true JP2015202583A (ja) 2015-11-16

Family

ID=54596358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014081710A Pending JP2015202583A (ja) 2014-04-11 2014-04-11 造形材料、造形装置、及び造形材料供給機構

Country Status (1)

Country Link
JP (1) JP2015202583A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020070952A1 (ja) * 2018-10-03 2020-04-09 コニカミノルタ株式会社 装具、装具製造装置、装具表面処理装置、および装具製造システム
JP2020082628A (ja) * 2018-11-29 2020-06-04 株式会社リコー 造形装置、造形方法、及び造形プログラム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020070952A1 (ja) * 2018-10-03 2020-04-09 コニカミノルタ株式会社 装具、装具製造装置、装具表面処理装置、および装具製造システム
JPWO2020070952A1 (ja) * 2018-10-03 2021-09-24 コニカミノルタ株式会社 装具、装具製造装置、装具表面処理装置、および装具製造システム
JP2020082628A (ja) * 2018-11-29 2020-06-04 株式会社リコー 造形装置、造形方法、及び造形プログラム
JP7154117B2 (ja) 2018-11-29 2022-10-17 エス.ラボ株式会社 造形装置、造形方法、及び造形プログラム

Similar Documents

Publication Publication Date Title
WO2015156002A1 (ja) 造形装置、造形方法
WO2015156001A1 (ja) 造形材料供給機構、及び造形装置
US7690326B2 (en) System and method for controlling coating width of electrode plate
JP6969753B2 (ja) 3次元プリンティング装置
JP5173533B2 (ja) ロールプレス装置
JP2015202583A (ja) 造形材料、造形装置、及び造形材料供給機構
KR102428736B1 (ko) 복합 부품에 길이 방향 곡률을 적용하는 인발 성형 시스템
WO2013168563A1 (ja) 電池用電極シートの製造装置及び製造方法
JP7376320B2 (ja) 造形装置、造形方法および造形システム
US20200298484A1 (en) Molding apparatus
JP2018149729A (ja) 繊維束貼付装置
JP2015202595A (ja) 造形装置、造形方法
JP2015202596A (ja) 造形材料、造形装置、及び造形材料供給機構
JP2022113757A (ja) 造形装置
JP2015202592A (ja) 造形装置
JP2008028049A (ja) 平角線折り曲げ装置、平角線折り曲げ機および平角線折り曲げ方法
JP4972434B2 (ja) 平ベルトの融着用治具および融着プレス装置
JP2015202591A (ja) 造形装置、及び造形方法
WO2021010318A1 (ja) テープ貼付装置、テープ貼付方法、及び複合成形品の製造方法
KR20160142617A (ko) 금속 필라멘트 공급장치 및 그를 포함하는 3d 프린터
JP6870343B2 (ja) 熱風ヒーター
JP5057890B2 (ja) 熱可塑性樹脂帯状物のカール矯正方法
US20200041948A1 (en) Forming apparatus
US20240109339A1 (en) Printing apparatus
JP2006137512A (ja) 金属線供給装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160617

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160628