JP2015202592A - 造形装置 - Google Patents

造形装置 Download PDF

Info

Publication number
JP2015202592A
JP2015202592A JP2014081876A JP2014081876A JP2015202592A JP 2015202592 A JP2015202592 A JP 2015202592A JP 2014081876 A JP2014081876 A JP 2014081876A JP 2014081876 A JP2014081876 A JP 2014081876A JP 2015202592 A JP2015202592 A JP 2015202592A
Authority
JP
Japan
Prior art keywords
modeling
modeling material
duct
heated gas
hot air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014081876A
Other languages
English (en)
Inventor
古賀 欣郎
Yoshiro Koga
欣郎 古賀
宮下 武
Takeshi Miyashita
武 宮下
知之 鎌倉
Tomoyuki Kamakura
知之 鎌倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2014081876A priority Critical patent/JP2015202592A/ja
Publication of JP2015202592A publication Critical patent/JP2015202592A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】熱エネルギー効率性が良好で、かつ小型化が可能な造形装置、及び造形方法を提供する。【解決手段】造形装置1は、可撓性を有する造形材料10をステージ上の造形位置に搬送するテープ搬送機構6と、造形位置に搬送された造形材料10の例えば先端部に加熱気体を吹き付ける熱風吹付機構7と、造形位置をステージに対して相対的に移動させる移動機構4と、熱風吹付機構により造形材料に吹き付けられた加熱気体を回収するダクト8と、を備えた。【選択図】図1

Description

本発明は、造形材料を積層して三次元造形物を造形する造形装置に関する。
従来、入力データに基づいて三次元造形物を生成する造形装置(いわゆる、3Dプリンター)が知られている(例えば特許文献1参照)。
特許文献1に記載の装置は、基板及び小出しヘッドを備え、これらの基板及び小出しヘッドが相対的に移動可能に設けられている。小出しヘッドには、造形材料である固体ロッドが供給され、当該固体ロッドが小出しヘッド内で溶融点まで加熱され、流動状態で小出しヘッドのノズルから小出しされる。
特開平3−158228号公報
ところで、特許文献1に記載のような装置では、小出しヘッド内に供給された固体ロッド(造形材料)を溶融し、溶融状態の材料を所定位置に小出しすることで、三次元造形物を造形する。このような構成では、造形材料を確実に溶融させる必要があり、加熱部の構成が大型化するとの課題があり、さらに、溶融に必要な熱量も大きくなるので、エネルギー効率性も悪化するとの課題がある。また、造形材料を溶融状態で押し出す必要があるので、完全溶融させるための加熱時間も長くなるとの課題もあり、ノズルに溶融した加工材料が残留するとクリーニング等のメンテナンスも煩雑となる。
本発明は、熱エネルギー効率性が良好で、かつ小型化が可能な造形装置を提供することを目的とする。
本発明の造形装置は、可撓性を有する造形材料をステージ上の造形位置に搬送する送り機構と、前記造形位置に搬送された前記造形材料に加熱気体を吹き付ける熱風吹付機構と、前記造形位置を前記ステージに対して相対的に移動させる移動機構と、前記熱風吹付機構により前記造形材料に吹き付けられた加熱気体を回収するダクトと、を備えたことを特徴とする。
本発明では、ステージ上の造形位置まで造形材料を搬送し、搬送された造形材料の例えば先端部を熱風吹付機構から供給される加熱気体により溶融させる。これにより、造形材料の必要な部分のみを溶融させることができ、溶融された造形材料を造形位置に積層することができる。そして、移動機構によりステージに対する造形位置を移動させて、順次造形材料の積層位置を変化させて、上記の造形処理を繰り返すことで、所望の形状の造形物を造形することができる。なお、本発明におけるステージ上の造形位置とは、ステージの所定位置が造形位置となるものに加え、ステージに造形された造形物における所定位置が造形位置となるものも含む。また、本発明では、ダクトが設けられ、熱風吹付機構により吹き付けられた加熱気体は、ダクトにより回収される。
このような本発明では、造形材料の先端部の造形位置に局所的に加熱気体を吹き付ければよく、造形材料の全部を溶融させる必要がない。したがって、例えば溶融状態の造形材料を押し出す構成に比べて、必要となる熱エネルギーが少なく、かつ、気体を加熱するための時間も短縮でき、エネルギー効率性が良い。造形材料を溶融するための大型の加熱機構を必要とせず、装置の小型化を図ることができる。さらに、溶融した造形材料が造形装置に残留することもないので、当該残留材料を取り除くクリーニング等が不要であり、メンテナンスも容易となる。
そして、本発明では、ダクトにより加熱気体が回収されるため、加熱気体により造形位置以外の造形材料が溶融されることがなく、精度よく造形物を造形することができる。
本発明の造形装置において、前記ダクトは、前記熱風吹付機構に接続されていることが好ましい。
本発明では、ダクトが熱風吹付機構に接続されている。これにより、ダクトで回収された加熱気体を、再び熱風吹付機構に戻すことができる。すなわち、熱風吹付機構から吹き付けられた加熱気体は、ダクトを介して熱風吹付機構に戻り、再利用されて熱風吹付機構から再び造形材料に吹き付けられる。
このため、熱風吹付機構に回収された加熱気体が導入されることで、加熱量を抑制でき、熱効率性を向上させることができる。これにより、気体を加熱するためのヒーター等の加熱部の構成をより簡略化でき、更なる装置の小型化を図ることができる。
本発明の造形装置において、前記熱風吹付機構は、前記加熱気体を前記造形材料に吹き付けるノズル開口部を備え、前記ダクトは、前記加熱気体を回収するダクト開口部を備え、前記ダクト開口部の開口面積は、前記ノズル開口部の開口面積よりも大きいことが好ましい。
本発明では、ダクト開口部がノズル開口部よりも大きいので、ノズル開口部からの加熱気体の吹き付け量以上の気体をダクトにより回収することができる。つまり、造形材料に吹き付けられた加熱気体を効率的に回収することができ、熱効率性の更なる向上を図ることができる。
本発明の造形装置において、前記熱風吹付機構は、前記ステージの法線方向に沿って前記造形材料に前記加熱気体を吹き付け、前記ダクトは、前記ステージの法線方向に沿って前記加熱気体を吸引することが好ましい。
本発明では、ステージの法線方向に沿って、熱風吹付機構から造形材料への加熱気体の吹き付け、及びダクトによる吸引を行う。造形材料の法線方向に沿って加熱気体を吹き付けると、当該法線方向に沿って加熱気体が跳ね返るが、本発明では法線方向にダクトが設けられているので、跳ね返った加熱気体を効率的に回収することができる。
本発明の造形装置において、前記熱風吹付機構は、前記加熱気体を前記造形材料に吹き付けるノズル開口部を備え、前記ダクトは、前記加熱気体を回収するダクト開口部を備え、前記ノズル開口部は、前記ダクト開口部の開口部内に設けられていることが好ましい。
本発明では、ダクト開口部の内側に熱風吹付機構のノズル開口部が設けられている。このような構成では、ダクトは、熱風吹付機構により造形位置より外側に吹き付けられた加熱気体を効率的に回収することができる。また、ノズル開口部から造形位置とは異なる方向に向かって吹き出された加熱気体をダクトにより回収することができる。さらには、造形位置に吹き付けられ、周囲に広がった加熱気体も効率的に回収することができる。
以上により、造形位置以外の造形材料が溶融される不都合をより確実に抑制できる。
本発明の造形装置において、前記熱風吹付機構は、前記ステージの法線方向に対して傾斜する方向から前記加熱気体を吹き付け、前記ダクトは、前記熱風吹付機構により吹き付けられた前記加熱気体の下流側に配置されることが好ましい。
本発明では、加熱気体は、ステージの法線方向に対して斜めから吹き付けられる。これにより、造形位置に吹き付けられた加熱気体を造形材料から離れる方向に流すことができ、必要な溶融箇所以外の造形材料が溶融される不都合を抑制でき、高精度な造形材料を造形できる。また、吹き付けられた加熱気体の下流側にダクトが設けられている。すなわち、ダクトは、熱風吹付機構により吹き付けられる加熱気体の吹付方向の下流側であり、造形位置の法線方向に対して、熱風吹付機構が設けられる側とは反対側に設けられている。このため、造形位置において造形材料を加熱し、下流側に流れた気体を効率的に回収することができる。
本発明の造形装置において、前記熱風吹付機構は、前記造形材料の搬送方向の上流側から下流側に向かって前記加熱気体を吹き付け、前記ダクトは、前記造形材料の前記造形位置に対して、搬送方向の下流側に配置されることが好ましい。
本発明では、造形材料の搬送方向における上流から下流に向かって加熱気体を吹き付ける。つまり、造形材料を搬送する搬送方向と、熱風吹付機構により吹き付ける加熱気体の吹付方向とを略同じ方向にする。このような構成では、加熱気体が搬送方向上流側の造形材料を溶融させることがなく、所望の造形位置の造形材料のみを精度よく溶融させることが可能となる。
また、造形材料の搬送方向下流側にダクトを配置するので、造形材料の搬送方向上流側に送り機構を配置することが可能となり、造形装置全体の配置構成が最適化される。したがって、造形装置の更なる小型化を図ることができる。
本発明の造形装置において、前記造形材料は、断面矩形状を有するテープ状材料であることが好ましい。
本発明では、テープ状の造形材料を用いる。断面円形や断面楕円形状の造形材料では、位置によって厚み寸法が異なり、造形位置に積層される造形材料の厚みが変動する。これに対して、断面矩形状のテープ状材料では、厚み寸法が均一であるため、造形位置に積層した際の厚み寸法も均一となり、精度の高い造形物を造形することができる。
また、順次送り出される造形材料は、通常、円筒状の巻芯(ボビン)に巻装して保管されるが、断面円形や断面楕円形状の造形材料をボビンに巻装する場合、上記のように、断面円形や断面楕円形状の造形材料は位置によって断面厚み寸法が異なるので、造形材料が互いに隣接するようにボビンに巻装した場合でも隙間が生じる。これに対して、テープ状の造形材料をボビンに巻装する場合では、テープ表面とテープ裏面とを密着させてボビンに巻装させることが可能となるので、断面円形や断面楕円形状の造形材料を用いる場合に比べて体積占有率を向上させることができる。すなわち、断面円形や断面楕円形状の造形材料を用いる場合に比べて、造形材料の巻装保管スペースを小さくでき、装置のさらなる小型化を図ることができる。
本発明の造形材料において、前記造形材料は、断面視におけるテープ厚み寸法とテープ幅寸法とのアスペクト比が10以上であることが好ましい。
本発明では、アスペクト比(テープ幅寸法/テープ厚み寸法)が10以上である。ここで、アスペクト比が10未満である場合は、テープ幅寸法に対してテープ厚み寸法が大き過ぎる場合と、テープ厚み寸法に対してテープ幅寸法が小さ過ぎる場合とが考えられる。前者の場合、造形材料の可撓性が不十分であり、送り機構による造形材料の搬送ハンドリング性が悪化する。また、後者では、捩れ等が生じ、搬送ハンドリング性が悪化する。これに対して、上記のようにアスペクト比を10以上にすることで、可撓性を有する造形材料の搬送効率を向上させることができ、所望の造形位置に造形材料を効率的に搬送することができる。
本発明の造形装置において、前記造形材料は、金属により構成されていることが好ましい。
本発明は、造形材料として金属素材を用いているので、高強度な造形物を造形することができる。
本発明の造形装置において、前記造形材料は、難燃化又は不燃化処理されていることが好ましい。
本発明では、金属造形材料が難燃化処理又は不燃化処理されている。したがって、加熱気体を吹き付けた際に、金属材料が燃焼による化学反応を起こしにくく、高品質な造形物を造形することができる。
本発明の造形装置において、前記造形材料は、樹脂により構成されていることが好ましい。
本発明では、造形材料として樹脂素材を用いている。樹脂素材は、金属素材に比べて融点が低く、加熱気体の温度も下げることができる。したがって、熱風吹付機構の構成をより簡素な構成にでき、装置の小型化をより促進できる。
第一実施形態の造形装置の概略構成を示す図。 第一実施形態で用いられる造形材料の概略構成を示す斜視図。 第一実施形態のカセットの概略構成を示す断面図。 第一実施形態の気体供給部の概略構成を示す断面図。 第一実施形態の耐熱シリンジにおけるノズルの先端形状を示す図。 第一実施形態において気体供給部をテープ幅方向に走査するための揺動部の構成例を示す図。 第一実施形態の熱風吹付機構の気体供給部と、ダクトとの位置関係を示す図。 第一実施形態の造形装置を用いた造形物の造形方法(造形処理)を示すフローチャート。 第一実施形態において、造形処理により造形物が形成される過程を示す斜視図。 第二実施形態の熱風吹付機構の気体供給部と、ダクトとの位置関係を示す図。 他の実施形態における、造形材料の保管構成を示す斜視図。 他の実施形態における糸状造形材料を用いた場合の送出ローラーの構成を示す断面図。
[第一実施形態]
以下、本発明に係る第一実施形態の造形装置について、図面に基づいて説明する。
[造形装置の概略構成]
図1は、本実施形態の造形装置の概略構成を示す図である。
図1に示すように、造形装置1(積層造形装置)は、ステージ2と、造形ヘッド3と、移動機構4と、コントローラー5とを備えている。
この造形装置1は、例えばパーソナルコンピューター等のデータ出力装置からコントローラー5に入力された造形用データの断面形状に応じて、ステージ2上に造形材料を積層して三次元造形物を造形する装置である。具体的には、コントローラー5は、造形用データに基づいて移動機構4を制御して、造形ヘッド3を所定の造形位置Pに移動させる。そして、コントローラー5は、造形ヘッド3を制御して、ステージ2上の造形位置Pに造形材料10を溶融積層させる。
以下、各構成について、詳細に説明する。
[ステージ2の構成]
ステージ2は、造形物を造形するための台座であり、例えば、造形物を載置する平面を備えている。
[造形ヘッド3の構成]
造形ヘッド3は、ステージ2に対して移動機構4により移動可能に設けられており、図1に示すように、テープ搬送機構6と、熱風吹付機構7と、ダクト8と、を備えている。
[テープ搬送機構6の構成]
テープ搬送機構6は、本発明の送り機構を構成し、造形材料10をステージ2上の造形位置Pに搬送する。このテープ搬送機構6は、造形材料10を格納するカセット61と、カセット61から供給される造形材料10をステージ2上の所定の造形位置Pに搬送する送出部62とを備えている。
(造形材料10の構成)
ここで、カセット61に格納される造形材料10について、説明する。
図2は、本実施形態で用いられる造形材料10の概略構成を示す斜視図である。
図2に示すように、造形材料10は、短辺(テープ厚み寸法)a、長辺(テープ幅寸法)bの扁平断面を有し、アスペクト比(b/a)が10以上の薄肉状(テープ状)に構成されている。ここで、アスペクト比が10未満である場合、造形材料10の搬送ハンドリング性が低下する。つまり、テープ幅寸法bに対してテープ厚み寸法aを大きくすると、造形材料10の可撓性が低下により、後述する送出ローラー対621や駆動ローラー対622における搬送効率が低下し、搬送時にハンドリング性(搬送のしやすさ)が低下する。また、本実施形態では、造形材料10の可撓性を利用して、造形材料10のステージ2側の面(テープ裏面)と、造形位置Pにおける造形物の上面(又はステージ2の面)とを当接させる。したがって、十分な可撓性を有さない場合、造形位置Pにおいて、造形物の上面(又はステージ2の面)と、造形材料10のテープ裏面との間に隙間が生じ、造形材料10を溶融して積層させた際の密着性が低下してしまう。また、テープ厚み寸法aが十分に小さい場合でも、テープ幅寸法bが小さいと、搬送時に造形材料10に捩れが発生するおそれがあり、搬送ハンドリング性が低下する。
これに対して、上記のようにアスペクト比を10以上にすることで、可撓性を有する造形材料10の搬送効率を向上させることができ、所望の造形位置に造形材料を効率的に搬送することができる。
このような造形材料10としては、金属や樹脂等が例示できる。
造形材料10として金属を用いる場合、樹脂よりも造形により得られる造形物の強度が高くなる。一方、造形材料10では、ステージ2上の造形位置Pまで搬送する必要があり、可撓性が求められる。金属製の造形材料10では、上記可撓性を確保するためにテープ厚み寸法がa≦0.1mmとすることが好ましい。テープ厚み寸法がa>0.1mmである場合、造形材料10が撓みにくく、搬送時において所望の造形位置Pに造形材料10を搬送することが困難となる。
そして、上記のように搬送ハンドリング性を考慮してテープ幅寸法bが設定されており、テープ厚み寸法aが0.1mmの場合では、テープ幅寸法として、1mm以上とすることが好ましい。なお、テープ厚み寸法aの設定値にもよるが、テープ幅寸法bの設定値としては、5mm≦b≦15mmとすることがより好ましい。以上のような寸法a,bに形成されたテープ状の造形材料10では、十分な可撓性を維持でき、かつ捩れ等によるハンドリング性の低下を抑制できる。
金属製の造形材料10を用いる場合、より好ましくはMgを用いることが好ましい。Mgは例えばAl等に比べて、比重が小さく(Mg比重が1.7に対してAl比重が2.7)、造形材料10の軽量化を図れる。
さらに、金属製の造形材料10では、融点近傍まで熱せられた際に酸化が発生しないように、難燃化処理又は不燃化処理を施されていることが好ましい。難燃化処理や不燃化処理としては、公知の技術を用いることができる。
上述のような金属製の造形材料10は、例えば、圧延や押し出し等により成型されたものをカットすることで、大量かつ安価に製造することが可能となる。
一方、造形材料10として、樹脂を用いる場合、金属に比べて融点が低く、後述する熱風吹付機構7における気体の加熱温度を低く設定でき、加熱機構の更なる簡略化を図れる。このような樹脂性の造形材料10を用いる場合では、テープ厚み寸法がa≦1mm、テープ幅寸法が5mm≦bとすることが好ましい。樹脂性の造形材料10は、金属に比べて可撓性を確保しやすく厚み寸法を大きくできるが、テープ厚み寸法がa>1mmの場合では、可撓性が不足し、ハンドリング性が低下する。また、テープ幅寸法が5mm>bである場合は、捩れが生じやすく、ハンドリング性が低下する。以上から、上記のような寸法に形成しアスペクト比を10以上に設定することが好ましい。
(カセット61の構成)
次に、テープ搬送機構6のカセット61について具体的に説明する。
図3は、本実施形態のカセット61の概略構成を示す断面図である。
図3に示すように、カセット61は、ケース611と、ボビン612と、ピンチローラー613と、を備えている。
ケース611は、例えば、内部空間を有する直方体形状であり、内部にボビン612、ボビン612に巻装された造形材料10、及びピンチローラー613が格納されている。
また、ケース611の一部(本実施形態では、直方体の角部)に、送出口611Aが設けられており、内部に収納された造形材料10は、この送出口611Aから外部に取り出される。
ボビン612は、軸状部材であり、ケース611における互いに対向する面に回転可能に支持されている。このボビン612には、上述した造形材料10の一端部が固定され、当該造形材料10がボビン612の周面に沿って巻装されている。より具体的には、テープ状の造形材料10は、テープ裏面(ステージ2上に搬送された際に、ステージ2に対向する面)が、ボビン612に巻装された造形材料10のテープ表面(テープ裏面とは反対側の面)に密着するように、同心円状に巻装され、ロール状で収納されている。
このような構成では、例えば断面円形状の造形材料をボビン612に巻装させた場合に比べて、体積占有率が高くなる。したがって、断面円形状の造形材料と、本実施形態のテープ状の造形材料10とを、同量分だけボビンに巻装する場合、本実施形態の造形材料10を用いる場合では、断面円形状の造形材料を用いる場合に比べて、体積を小さくでき、カセット61の小型化を図ることができ、さらに、ボビン612への巻数も少なくなるので、製造効率性も良好となる。また、カセット61のサイズが規定されている場合では、本実施形態のテープ状の造形材料10を用いる場合では、体積占有率が大きいため、断面円形状の造形材料を用いる場合に比べて、カセット61内により多くの造形材料10を収納することが可能となる。
ピンチローラー613は、送出口611Aの近傍に設けられ、造形材料10が搬送方向をガイドする。ピンチローラー613は、一対設けられており、これらの一対のピンチローラー613により造形材料10を挟み込んで送出口611Aに案内する。また、ピンチローラー613により造形材料10が挟み込まれることで、巻装された造形材料10の弛みを抑制でき、送出口611Aから送り出される造形材料10の走行性(搬送性)が向上する。
また、カセット61は、例えばケース611の外装部に図示略の係止ピンやガイド突起等による位置決め部が設けられており、これらの位置決め部を造形ヘッド3における所定位置に位置決めすることで、カセット61を造形ヘッド3に装着することが可能となる。
(送出部62の構成)
送出部62は、図1に示すように、カセット61から提供された造形材料10をステージ2上の造形位置Pまで送り出す。
この送出部62は、一対の送出ローラー621A,621Bにより構成された送出ローラー対621と、駆動ローラー622A及び従動ローラー622Bにより構成された駆動ローラー対622と、ガイド部623とを備えている。なお、本実施形態では、送出ローラー対621が1つ設けられる例を示すが、2つ以上設けられていてもよく、送出ローラー対621が設けられず、駆動ローラー対622のみが設けられる構成などとしてもよい。さらに、駆動ローラー対622が1つのみ設けられる例を示すが、2つ以上設けられる構成などとしてもよい。
送出ローラー対621は、送出ローラー621A,621Bにより造形材料10を挟み込み、造形材料10の搬送をガイドする。ここで、送出ローラー対621は、カセット61から送出された造形材料10の巻癖(ボビン612への巻装方向)とは反対側に造形材料10を湾曲させつつ、当該造形材料10を搬送する。これにより、造形材料10の巻癖を矯正することが可能となる。
駆動ローラー対622は、造形材料10を引き込み、造形位置Pに向かって送出する。具体的には、駆動ローラー対622は、モーター等の駆動量により回転駆動される駆動ローラー622Aと、駆動ローラー622Aの駆動に追従する(モーター駆動力が伝達されない)従動ローラー622Bとを備えている。駆動ローラー622A及び従動ローラー622Bにより、造形材料10の定速度での搬送が可能となる。
ここで、駆動ローラー622Aは、造形材料10のテープ裏面に接することが好ましい。これにより、造形材料10の巻癖により当該造形材料10が駆動ローラー622Aに付勢され、搬送時の滑り等を抑制でき、搬送効率性を向上できる。
なお、駆動ローラー622Aがテープ表面に接する構成としてもよい。
また、駆動ローラー対622を構成する一対のローラーの双方を駆動ローラーとして駆動させる構成としてもよい。この場合、さらに、テープ裏面に接する駆動ローラーを、テープ表面に接する駆動ローラーに対して回転速度を僅かに上げることで、造形材料10の巻癖をより確実に矯正することができる。
ガイド部623は、例えば、表面が耐摩耗処理された、耐久性の高い金属材により板バネ状に構成され、搬送方向に沿う両端にガイド壁(図示略)を備えている。
このガイド部623は、造形材料10の弛みを取るとともに造形材料10の搬送方向を矯正してステージ2上の造形位置Pへの搬送を案内する。
ガイド部623により案内された造形材料10は、撓みにより先端部が造形位置Pに付勢当接され、後述の熱風吹付機構7により熱された部分が溶融して造形位置Pに積層される。
[熱風吹付機構7の構成]
熱風吹付機構7は、図1に示すように、コンプレッサー71と、気体供給部72と、ダクト8と、を備えている。
[コンプレッサー71の構成]
コンプレッサー71は、気体を高圧に圧縮する圧縮スペース(図示略)を有し、その圧力により気体供給部72に当該気体を供給する装置である。気体としては、不活性ガスを用いることが好ましい。不活性ガスを用いることで、造形材料10を加熱した際の造形材料10の変質を防止できる。
また、コンプレッサー71内部には、気体中の水分を除去する除湿剤が設けられており、コンプレッサー71から供給される気体は除湿されている。したがって、気体として空気を用いる場合でも、除湿された加熱空気が造形材料10に吹き付けられることになり、造形材料10と水との反応を抑制できる。
なお、コンプレッサー71は、ダクト8と接続されており、ダクト8により吸引された気体は、前記圧縮スペースに導入される。
このような本実施形態では、気体として不活性ガスを用いる場合、ステージ2上を不活性ガス雰囲気下に維持することが好ましい。具体的には、少なくとも、造形装置1のステージ2、造形ヘッド3、及び移動機構4を密閉された造形室内に格納し、造形室内を不活性ガス雰囲気下に維持する。これにより、ダクト8により不活性ガスが吸引されることになり、常に造形材料10に不活性ガスを吹き付けることが可能となる。
なお、気体として除湿空気を用いる場合は、不活性ガス雰囲気下に維持する必要がなく、造形室が設けられなくてもよい。
(気体供給部72の構成)
気体供給部72は、コンプレッサー71から供給された気体を加熱して造形位置Pに対して吹き付ける。ここで、この気体供給部72は、当該気体供給部72から吹き付けられた加熱気体が搬送方向に沿って搬送される造形材料10の上流側から下流側に向かうように、搬送方向D及び法線方向Dを含む面内で、ステージ2の法線方向Dに対して所定の角度θで傾斜して配置されている。この傾斜角度θとしては、例えば0°<θ≦45°であることが好適である。これにより、加熱気体が造形材料10の上流側に向かわず、造形位置P以外の造形材料10が溶融される不都合を回避することができる。
図4は、気体供給部72の概略構成を示す断面図である。
図4に示すように、気体供給部72は、耐熱シリンジ721、巻芯722、ヒーターコイル723、及び温度センサー724等を備えている。
耐熱シリンジ721は、例えば円筒形等の筒状に形成されている。耐熱シリンジ721としては、例えば、耐熱ガラスや耐熱金属を用いて構成されることが好ましい。なお、熱の拡散の低減や火傷防止等のために、耐熱シリンジ721の外周面を断熱材で覆う構成とすることが好ましい。
耐熱シリンジ721の基端部は、コンプレッサー71に接続され、コンプレッサー71から供給される気体は、当該基端部から耐熱シリンジ721の内部に導入される。また、耐熱シリンジ721の先端部(ステージ2に対向する端部)は、円筒径寸法が先端に向かう程小さくなる形状に形成されたノズルを構成し、ノズルの先端に加熱された気体が放出されるノズル開口部721Aが設けられる。
耐熱シリンジ721の中心軸上には、例えばセラミック製の巻芯722が配置され、当該巻芯722にヒーターコイル723が巻装されている。このヒーターコイル723は、コントローラー5の制御の下、電流を流すことにより加熱され、耐熱シリンジ721内に導入された気体を加熱する。ヒーターコイル723としては、例えばニッケルクロムや鉄クロムアルミの電熱線を用いることができ、1000℃以上の高温加熱が可能となる。したがって、造形材料10として金属材料を用いる場合でも、溶融積層させることが可能となる。
また、温度センサー724は、巻芯722のノズル側の先端に設けられ、ノズル開口部721Aから放出される加熱気体の温度を計測する。温度センサー724は、コントローラー5に電気的に接続されており、計測温度に応じた検出信号をコントローラー5に出力する。これにより、コントローラー5は、計測温度に基づいて、ヒーターコイル723への印加電圧を制御して、ノズル開口部721Aから所望温度の加熱気体を放出させることが可能となる。
図5は、耐熱シリンジ721におけるノズル開口部721Aの形状を示す図である。
ノズル開口部721Aの先端形状は、放出される加熱気体に乱流等が発生しにくく、所望の造形位置P上の造形材料10に適切に加熱気体を吹き付ける形状とすることが好ましい。
このようなノズル開口部721Aの開口形状としては、例えば図5(A)に示すような円形状、又は図5(B)に示すような楕円形状が例示できる。
図5(A)に示すような形状では、テープ状の造形材料10のテープ幅方向における一部に、局所的に加熱気体を吹き付けることができ、高い精度で造形物を形成することが可能となる。この場合、開口径寸法Aを、例えば0.05mm≦A≦2mmにすることが好ましい。
一方、図5(B)に示すような形状の場合、例えば、造形材料10の広範囲に亘って加熱気体を吹き付けることが可能となるため、高速で造形物を造形する場合に好適である。この場合、ノズル開口部721Aの短径寸法をB、長径寸法をCとすると、例えば0.1mm≦B≦1mm、C≦10Bと設定することが好ましい。
ところで、本実施形態では、テープ状の造形材料10に対して、テープ幅寸法の一部に加熱気体を吹き付けることで、テープ幅方向における一部を溶融させて造形物を造形する。この場合、気体供給部72をテープ幅方向に対して走査可能な構成とすることで、テープ状の造形材料10を無駄なく消費することができる。
図6に、気体供給部72をテープ幅方向に走査するための揺動部の構成例を示す。
図6の例では、気体供給部72の基端部に揺動部725が設けられる。この揺動部725は、ステージ2の法線方向Dから見た平面視において、造形位置Pにおけるテープ搬送方向Dに平行で、かつテープ幅方向から見た平面視においてステージ2の法線方向Dに対して傾斜する揺動軸726を備えている。そして、当該揺動軸726は、耐熱シリンジ721がテープ搬送方向に直交するテープ幅方向に沿って揺動自在となるように、造形ヘッド3の本体部(図示略)に軸支される。また、揺動部725による気体供給部72の揺動動作としては、例えば、揺動軸726にステッピングモーター等の動力源からの動力を伝達させて揺動させる。コントローラー5により動力源の動作を制御することで、テープ幅方向における所定位置に加熱気体を吹き付けることができる。
なお、気体供給部72を揺動させる揺動部としては、上記に限定されず、その他、いかなる構成を用いてもよい。例えば、造形ヘッド3において気体供給部72がテープ幅方向に平行移動可能な構成とし、別途設けられた移動機構によりテープ幅方向に進退移動させる構成などとしてもよい。
[ダクト8の構成]
ダクト8は、造形位置P近傍に気体吸入口が設けられ、気体供給部72から放出され、造形材料10に吹き付けられた後の加熱気体を回収する。
図7は、熱風吹付機構7の気体供給部72と、ダクト8との位置関係を示す図である。
ダクト8は、気体供給部72により吹き付けられる加熱気体の吹付方向下流側に配置されている。ここで、本実施形態では、気体供給部72が造形材料10の搬送方向の上流側から下流側に向かって加熱気体を吹き付けるため、ダクト8は、気体供給部72よりも、造形材料10の搬送方向の下流側に配置されることになる。
また、図7に示すように、ステージ2の法線方向Dに対するダクト8の傾斜角度は、ステージ2の法線方向Dに対する気体供給部72の傾斜角度θと同一角度とすることが好ましい。このような構成では、気体供給部72から吹き付けられた加熱気体は、造形材料10の造形位置Pにて角度θを中心に跳ね返る。したがって、法線方向Dに対して傾斜角度θでダクト8を設けることで、当該跳ね返った加熱気体を効率的に回収することができる。
また、ダクト8は、コンプレッサー71に接続されており、コンプレッサー71による気体吸引力により、気体を吸引する。したがって、ダクト8から吸引された加熱気体は、そのままコンプレッサー71に送られる。なお、本実施形態では、コンプレッサー71による吸引力を利用する例を示すが、例えば、ダクト8がポンプ等の気体吸引源を備える構成としてもよい。この場合、ダクトに設けられた気体吸引源により気体を吸引して、吸引した気体をコンプレッサー71に送り出す。
以上のような構成では、コンプレッサー71、気体供給部72、及びダクト8により加熱気体が循環活用されることになり、エネルギー効率性が向上する。
ここで、ダクト8の吸引口(ダクト開口部81)の流路断面積は、気体供給部72のノズル開口部721Aの開口断面積よりも大きい。このような構成では、吹き付けられた加熱気体よりも多くの気体をダクト8にて回収することができ、加熱気体の回収効率を向上させることができる。
[移動機構4の構成]
移動機構4は、造形ヘッド3をステージ2に対してX軸、Y軸、及びZ軸の各軸方向に移動させて、造形ヘッド3におけるテープ搬送機構6の造形材料10の搬送先(造形位置P)、及び熱風吹付機構7の加熱気体の吹付位置を所望の位置に移動させる。すなわち、移動機構4は、造形位置Pをステージに対して移動させる。
具体的な構成としては、例えばY軸方向に沿って敷設されたYガイド上で移動可能なコラム、コラム上に設けられてX軸方向に延びるXガイドを備えたスライダ、Xガイドに沿って移動可能でZ方向に沿ったZガイドを備えたラムを備え、ラムのZガイドに沿って移動可能に造形ヘッド3が設けられる構成等が例示できる。また、複数のアーム部材を連結し、アームの連結角度を制御することで、造形ヘッド3を3次元空間で移動可能な構成などとしてもよい。
また、本実施形態では、移動機構4により造形ヘッド3をステージ2に対して移動させる構成を例示するがこれに限定されず、例えば、ステージ2を造形ヘッド3に対して移動させる構成などとしてもよい。さらには、ステージ2をZ方向に沿って移動させ、造形ヘッド3をXY軸に沿って移動させる構成などとしてもよい。
[コントローラー5の構成]
コントローラー5は、例えばメモリー等の記憶部、CPUとの演算回路等により構成され、造形装置1の全体動作を制御する。記憶回路には、造形装置1を制御するための各種プログラムや各種データが記録される。また、コントローラー5の演算回路は、記憶部に記憶されたプログラムを読み込み実行することで、図1に示すように、データ取得手段51、移動制御手段52、及び造形制御手段53として機能する。なお、本実施形態では、各機能構成は、ハードウェアである演算回路と、プログラム(ソフトウェア)との協働により実現される例を示すが、例えば各機能を有する集積回路(ハードウェア)を組み合わせることで実現される構成などとしてもよい。
データ取得手段51は、例えば、コントローラー5に通信可能に接続されるパーソナルコンピューター等の外部機器から造形用データを取得する。なお、コントローラー5が記録媒体を読み込むドライブ装置を備え、当該ドライブ装置に装着された記録媒体から直接造形用データを取得する構成などとしてもよい。
移動制御手段52は、造形用データに基づいて、移動機構4を制御し、造形ヘッド3を移動させる。
造形制御手段53は、造形ヘッド3を制御する。具体的には、造形制御手段53は、送出部62の駆動ローラー対622、コンプレッサー71、気体供給部72、ダクト73の動作を制御し、造形位置Pに造形材料10を溶融積層させて造形物を造形する。
[造形装置1による造形物の製造方法]
次に、上述のような造形装置1を用いた造形物の造形方法について図面に基づいて説明する。
図8は、本実施形態の造形装置1を用いた造形物の造形方法(造形処理)を示すフローチャートである。図9は、造形処理により造形物が形成される過程を示す斜視図である。
造形装置1により、造形物を造形するには、まず、コントローラー5のデータ取得手段51は、造形用データを取得する(ステップS1)。具体的には、データ取得手段51は、操作者の操作に基づいて、例えばコントローラー5に接続されたパーソナルコンピューター等の外部機器から入力される造形用データ、CD−ROM等の記録媒体に記録された造形用データ、インターネット等の通信回線を介して取得された造形用データ等を取得する。
次に、移動制御手段52は、造形用データから造形物の断面形状を解析し、図9に示すように、造形ヘッド3を造形物断面に相当する造形位置Pに移動させる(ステップS2)。
具体的には、テープ搬送機構6により搬送される造形材料10の先端部が造形用データに基づいて示される造形位置Pに位置するように、移動機構4を制御して造形ヘッド3の位置を設定し、かつ、揺動部725を制御して、造形材料10のテープ幅方向における気体吹付位置を設定する。
この後、造形制御手段53は、造形ヘッド3等を制御し、造形位置Pに対して造形材料10を溶融して積層させ、図9に示すように、造形物を形成する(ステップS3)。
具体的には、造形制御手段53は、コンプレッサー71を制御して、予め設定された流量となるように、コンプレッサー71から気体供給部72に気体を導入する。
また、造形制御手段53は、温度センサー724により検出された温度を参照し、当該検出温度が造形材料10の融点近傍の温度となるように、ヒーターコイル723に電圧を印加する。これにより、ノズル開口部721Aから造形材料10の先端部におけるテープ幅方向の一部に、造形材料10の融点前後となる温度の加熱気体が吹き付けられ、造形材料10が溶融して造形位置Pに積層される。
この後、造形制御手段53は、造形用データに基づいた造形物の造形処理が完了したか否かを判定する(ステップS4)。
ステップS4で「No」と判定された場合は、ステップS2及びステップS3に戻り、造形ヘッド3の移動及び造形材料の溶融積層を繰り返す。
この際、移動制御手段52は、気体供給部72の揺動部725を制御して気体供給部72の加熱気体の吹付位置をテープ幅方向に沿って移動させ、かつ移動機構4を移動させて、加熱気体の吹付位置が造形用データに基づいた造形位置Pとなるように、造形ヘッド3の位置を制御する。
また、造形制御手段53は、テープ幅方向に沿った造形材料10が溶融及び積層された場合は、送出部62の駆動ローラー622Aを駆動させることで、造形材料10を所定量送り出し、先端部を造形位置Pに移動させる。送出部62により送り出された造形材料10は、可撓性を有するため自重により撓み、造形位置Pに付勢当接される。この後、ステップS3と同様に、造形位置Pに対して造形材料10を溶融させて積層させる。
そして、ステップS4において、「Yes」と判定されると、造形処理を終了させる。
[本実施形態の作用効果]
本実施形態の造形装置1は、造形物が造形されるステージ2と、可撓性を有する造形材料10をステージ2上の所定の造形位置Pに搬送するテープ搬送機構6と、造形位置Pに搬送された造形材料10に対して加熱気体を吹き付けて溶融させる熱風吹付機構7と、熱風吹付機構7が組み込まれる造形ヘッド3を造形位置Pが造形用データに基づく所望位置に位置するように移動させる移動機構4と、吹き付けられた加熱気体を回収するダクト8を備えている。
このような構成では、造形材料10の搬送供給と加熱気体の供給とを別機構により実施し、造形材料10の必要な個所のみを局所的に加熱気体で溶融する。したがって、例えば溶融された造形材料10を押し出して造形位置Pに積層する場合に比べて、造形材料10の溶融量及び溶融面積(体積)が小さく、熱エネルギーも少なくてよい。よって、気体供給部72における加熱機構(ヒーターコイル723)の構成を小型化でき、造形装置1の小型化、製造コストの低コスト化を図ることができる。
また、テープ搬送機構6により搬送された造形材料10は、造形位置Pに付勢当接されて、その位置で溶融されるので、テープ搬送機構6や熱風吹付機構7に溶融した造形材料10が付着したり残留したりすることがない。したがって、造形装置1のメンテナンスも容易となる。
そして、熱風吹付機構7により吹き付けられた加熱気体は、ダクト8により回収されるため、加熱気体により造形位置P以外の造形材料が溶融されることがなく、高精度な造形物を造形することができる。
本実施形態では、ダクト8とコンプレッサー71とが接続され、ダクト8により回収された加熱気体が、コンプレッサー71に循環され、再び気体供給部72に導入される。
このため、熱風吹付機構7により加熱された気体が循環されることになり、例えば常温の気体を加熱する場合に比べて、加熱量を抑制でき、熱効率性を向上させることができる。よって、ヒーターコイル723への印加電圧の低減、ヒーターコイル723の構成の簡略化による装置小型化を図れる。
本実施形態では、ダクト開口部81の開口面積が、ノズル開口部721Aより大きい。つまり、ダクト8により回収される気体の流路断面積が、気体供給部72により吹き付けられる加熱気体の流路断面積より大きく、加熱気体の吹付量よりも多くの気体を回収することができる。よって、加熱気体の回収効率が高く、熱エネルギー効率の更なる向上を図れる。
また、気体供給部72を揺動部725によりテープ幅方向に揺動させた場合でも、ダクト8を移動(揺動)させることなく、加熱気体を回収することができる。
本実施形態では、気体供給部72は、造形材料10の搬送方向(ステージ2の法線方向)に対して傾斜して設けられている。このような構成では、吹き付けられた加熱気体により、造形位置P以外の造形材料10が溶融される不都合を防止でき、精度の高い造形物を製造できる。この際、本実施形態では、造形材料10の搬送方向における上流側から下流側に向かって加熱気体を吹き付ける。このため、加熱気体により、搬送されてきた造形材料10が造形位置Pに達する前に溶融してしまう不都合を回避できる。
また、造形材料10の搬送方向下流側のステージ2上に既に造形された造形物の表面を加熱気体により加熱することができる。このため、造形物表面を溶融(軟化)させることができ、新たに積層する造形材料10と造形物との密着性を向上させることができる。
そして、ダクト8は、気体供給部72の気体吹付方向の下流側、かつ搬送方向の下流側に設けられている。このため、吹き付けられた加熱気体は、ダクト8側に流れるので、効率よく加熱気体を回収することができる。また、ダクト8は、搬送方向の上流側に加熱気体が流れることを防ぐことができ、造形位置P以外の造形材料10が溶融される不都合をより確実に防止できる。
本実施形態では、造形材料10は、断面矩形状を有するテープ状に形成されている。このようなテープ状の造形材料10は、厚み寸法が均一であるため、造形位置Pに積層された造形材料10の厚みが変動することなく、高精度な造形物を造形することができる。
また、造形材料10をボビン612が同心円状に巻装する場合に、テープ裏面とテープ表面とを密着させることで、隙間をなくすことができ、例えば、糸状の造形材料を用いる場合に比べて、体積占有率が高くなる。つまり、同量の造形材料をカセット61内に収納する場合に、糸状の造形材料に比べて、カセット61の小型化を図ることができる。カセット61のサイズが固定である場合は、糸状の造形材料を用いる場合に比べて、より多くの造形材料10をボビンに巻装させることができる。
また、造形材料として粉体を用いる構成もあるが、このような粉体は球状となるため、断面円形状の造形材料と同様、カセット61に格納した際に体積占有率が小さくなり、また、カセットの送出口611Aを閉塞する蓋部等を設ける必要も生じる。これに対して、本実施形態の造形材料10では、粉体の造形材料よりも体積占有率を大きくでき、かつ送出口611Aに蓋部を設ける必要もなく、取扱いが容易となる。
本実施形態では、テープ状の造形材料10のテープ厚み寸法aとテープ幅寸法bとの比であるアスペクト比(a/b)が10以上である。このため、十分に造形材料10の可撓性を確保することができ、かつ捩れや撓み等により造形材料10の搬送ハンドリング性の悪化も抑制できる。
ここで、本実施形態の造形材料10としては、金属製及び樹脂性のいずれかを選択することができる。
金属製の造形材料10を用いる場合は、樹脂性の造形材料10に比べて耐久性が高い品質の造形物を造形でき、樹脂性の造形材料10を用いる場合では、金属製の造形材料10に比べて、加熱温度が低く、より気体供給部72の構成の簡略化を図れ、更なる小型化が可能となる。
また、金属製の造形材料10を用いる場合では、比重の小さいMgを用いることで造形材料10の軽量化を図れ、造形される造形物も軽量のものとなる。また、このような金属を用いる場合では、加熱による酸化反応を抑制するために、難燃化処理又は不燃化処理が施される。これにより、加熱気体を吹き付けた際の金属酸化を効果的に抑制でき、変質による造形物の品質低下を防止できる。
本実施形態では、熱風吹付機構7の気体供給部72は、揺動部725を備え、造形材料10のテープ幅方向に沿って揺動させることができる。このような構成では、テープ幅方向の一部に局所的に加熱気体を吹き付けて高精度の造形物を製造する際に、テープの幅方向に対して加熱気体の吹付位置を走査させることができる。したがって、テープ状の造形材料10を無駄なく使用することができる。
[第二実施形態]
次に、本発明の第二実施形態について、図面に基づいて説明する。
上記第一実施形態では、熱風吹付機構7の気体供給部72は、ステージ2の法線方向Dに対して傾斜し、ダクト8は加熱気体の吹付方向における下流側に配置される例を示した。これに対して、第二実施形態では、熱風吹付機構の気体供給部及びダクトが、ステージ2の法線方向Dに沿って配置される点で、上記第一実施形態と相違する。
図10は、本発明の第二実施形態に係る造形装置における熱風吹付部及びダクトの位置関係を示す図である。なお、以降の説明に当たり、既に説明した構成については、同符号を付し、その説明を省略又は簡略化する。
本実施形態では、図10に示すように、熱風吹付機構7の気体供給部72は、ステージ2の法線方向Dに沿って配置される。
一方、本実施形態のダクト8Aは、気体供給部72の耐熱シリンジ721と同軸となる筒状本体82を有し、当該筒状本体82のステージ2側の先端部にダクト開口部81が設けられる。つまり、本実施形態では、耐熱シリンジ721は、外周面の断面径寸法が、筒状本体82の内部に筒内周の断面径寸法よりも径小に形成され、筒状本体82の内部に挿通される。そして、ダクト8から吸引された加熱気体は、耐熱シリンジ721の外周面と筒状本体82の筒内周の間を通って回収され、コンプレッサー71に送られる。
また、第一実施形態と同様、ダクト開口部81の開口面積は、ノズル開口部721Aの開口面積よりも大きく、ダクト8Aの回収気体の流路断面積は、気体供給部72から吹き付けられる加熱気体の流路断面積よりも大きい。
このような構成では、ノズル開口部721Aから供給される加熱気体は、造形材料10における造形位置Pに吹き付けられた後、造形位置P近傍で滞留したり、造形材料10の造形位置P以外の領域に流れたりすることなく、ダクト8Aにより吸引されて回収される。また、造形材料10に吹き付けられた加熱気体の周囲への広がりを抑制できる。したがって、本実施形態において、造形材料10における造形位置P以外の領域が溶融されることがなく、高精度な造形物を造形することができる。
また、ノズル開口部721Aから造形位置P以外の領域に吹き出された加熱気体は、ダクト8Aにより直接回収されることになり、造形位置P以外の領域への加熱気体の吹き付けを抑制できる。したがって、所望の造形位置Pに対して局所的に加熱気体を吹き付けることができ、高精度な造形物を造形できる。
[その他の実施形態]
なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
上記第一実施形態において、ステージ2の法線方向Dに対する気体供給部72の傾斜角度とダクト8の傾斜角度とを同一にする例を示したが、これに限定されない。
例えば、ダクト8の法線方向Dに対する傾斜角度を、気体供給部72の法線方向Dに対する傾斜角度よりも大きくしてもよい。この場合、気体供給部72から吹き付けられる加熱気体のうち、造形位置Pよりも搬送方向下流側に吹き付けられた加熱気体をより効率よく回収できる。
上記第二実施形態において、ダクト8Aの筒状本体82の筒内周に気体供給部72の耐熱シリンジ721が挿通される構成としたがこれに限定されない。
例えば、ノズル開口部721Aの周方向に亘って複数のダクト開口部が設けられ、ノズル開口部721Aから吹き出された加熱気体を回収する構成としてもよい。また、この際、1つのダクトの先端部を複数に分岐させることで、上記複数のダクト開口部を設ける構成としてもよく、複数のダクトを設ける構成としてもよい。
また、第一実施形態において、第二実施形態に示したようなダクト8Aを設ける構成としてもよい。この場合、加熱気体の回収効率は低下するが、吹き付けられた加熱気体によりステージ2上に既に積層された造形物の表面を加熱することで、溶融又は軟化状態にすることができ、溶融積層される造形材料10との密着性をより向上させることができる。
上記実施形態において、気体供給部72を、加熱気体が造形材料10の搬送上流側から下流側に向かうように所定角度θで傾斜させる構成を例示したが、これに限定されない。
例えば、造形材料10のテープ幅方向の一方側から他方側に加熱気体が向かうように、気体供給部72を傾斜させる構成などとしてもよい。この場合でも、加熱気体が造形位置Pに搬送される前の造形材料10を溶融する不都合を防止できる。また、この場合、ダクトをテープ幅方向の他方側に設けることで、加熱気体を効率良く回収することができる。
上記実施形態では、気体供給部72が揺動部725を有し、造形材料10のテープ幅方向に対して加熱気体の吹付位置を走査させることが可能な構成としたが、これに限定されない。例えば、加熱気体の吹付範囲が、造形材料10のテープ幅全体に亘る場合や、糸状の造形材料を用いる場合では、揺動部725を設けなくてもよい。
また、例えばテープ搬送機構6として、例えば送出部62をテープ幅方向に移動させる移動機構を備える構成としてもよい。この場合でも、テープ搬送機構6により、造形材料10をテープ幅方向に移動させることができるため、揺動部725が設けられない構成としてもよい。
上記実施形態では、ダクト8により加熱気体を回収してコンプレッサー71に戻す例を示したがこれに限定されない。
例えばダクト8により回収された加熱気体はコンプレッサー71に循環されず、外部に放出される構成としてもよい。
造形材料10として、アスペクト比が10以上となる断面矩形状のテープ状材料を例示したが、これに限定されない。例えば、造形材料10の材質等によって、十分な可撓性を有し、かつテープ搬送機構6における造形材料10の搬送ハンドリング性が良好であれば、アスペクト比が10未満となるテープ状材料を用いてもよい。
上記実施形態では、造形材料10は、カセット61に収納される構成としたが、これに限定されない。例えば、図11に示すように、軸芯614に造形材料10を巻装することで、造形材料10をロール状に保持してもよい。この場合、軸芯614の中心軸に沿って装着孔615を設け、例えば造形ヘッド3に設けられた係止ピンを装着孔615に挿通することで、造形材料10が巻装された軸芯614を造形ヘッド3に装着できる。また、軸芯614の軸方向の両端部に、造形材料10のテープ幅方向の両端縁を保持するフランジ部616を設ける構成とすることで、造形材料10の弛み等を防止できる。
上記実施形態では、造形材料10がテープ状材料である例を示したが、例えば糸状に構成されていてもよい。この場合でも、図3に示すようなカセット61のボビン612や図11に示す軸芯614に糸状造形材料を巻装させることで、造形材料を保持することができる。一方、このような糸状造形材料を用いる場合、搬送時の捩れ等が発生しやすく、搬送ハンドリング性が悪化する場合がある。
この場合、送出部62の駆動ローラー対622として、図12に示すような断面形状のローラー624A,624Bを用いることが好ましい。駆動ローラー624Aの表面を例えばゴムやエラストマー等の孔摩擦係数を有する弾性部材により構成されたローラーである。また、従動ローラー624Bは、糸状造形材料10Aに対して2点で接し、糸状造形材料10Aの半分以上が入り込む断面三角形状の溝624B1が周方向に沿って形成されたローラーである。このような構成では、溝624B1に対して糸状造形材料10Aを弾性力で付勢しつつ、搬送方向に送り出すことで、安定した定量搬送が可能となる。
その他、本発明の実施の際の具体的な構造は、本発明の目的を達成できる範囲で他の構造等に適宜変更できる。
1…造形装置、2…ステージ、3…造形ヘッド、4…移動機構、5…コントローラー、6…テープ搬送機構(送り機構)、7…熱風吹付機構、8,8A…ダクト、10…造形材料、10A…糸状造形材料、71…コンプレッサー、72…気体供給部、81…ダクト開口部、82…筒状本体、721…耐熱シリンジ、721A…ノズル開口部、722…巻芯、723…ヒーターコイル、724…温度センサー、725…揺動部、726…揺動軸。

Claims (12)

  1. 可撓性を有する造形材料をステージ上の造形位置に搬送する送り機構と、
    前記造形位置に搬送された前記造形材料に加熱気体を吹き付ける熱風吹付機構と、
    前記造形位置を前記ステージに対して相対的に移動させる移動機構と、
    前記熱風吹付機構により前記造形材料に吹き付けられた加熱気体を回収するダクトと、
    を備えたことを特徴とする造形装置。
  2. 請求項1に記載の造形装置において、
    前記ダクトは、前記熱風吹付機構に接続されている
    ことを特徴とする造形装置。
  3. 請求項1又は請求項2に記載の造形装置において、
    前記熱風吹付機構は、前記加熱気体を前記造形材料に吹き付けるノズル開口部を備え、
    前記ダクトは、前記加熱気体を回収するダクト開口部を備え、
    前記ダクト開口部の開口面積は、前記ノズル開口部の開口面積よりも大きい
    ことを特徴とする造形装置。
  4. 請求項1から請求項3のいずれか1項に記載の造形装置において、
    前記熱風吹付機構は、前記ステージの法線方向に沿って前記造形材料に前記加熱気体を吹き付け、
    前記ダクトは、前記ステージの法線方向に沿って前記加熱気体を吸引する
    ことを特徴とする造形装置。
  5. 請求項4に記載の造形装置において、
    前記熱風吹付機構は、前記加熱気体を前記造形材料に吹き付けるノズル開口部を備え、
    前記ダクトは、前記加熱気体を回収するダクト開口部を備え、
    前記ノズル開口部は、前記ダクト開口部の開口部内に設けられた
    ことを特徴とする造形装置。
  6. 請求項1から請求項3のいずれか1項に記載の造形装置において、
    前記熱風吹付機構は、前記ステージの法線方向に対して傾斜する方向から前記加熱気体を吹き付け、
    前記ダクトは、前記熱風吹付機構により吹き付けられた前記加熱気体の下流側に配置される
    ことを特徴とする造形装置。
  7. 請求項6に記載の造形装置において、
    前記熱風吹付機構は、前記造形材料の搬送方向の上流側から下流側に向かって前記加熱気体を吹き付け、
    前記ダクトは、前記造形材料の前記造形位置に対して、搬送方向の下流側に配置される
    ことを特徴とする造形装置。
  8. 請求項1から請求項7のいずれか1項に記載の造形装置において、
    前記造形材料は、断面矩形状を有するテープ状材料である
    ことを特徴とする造形装置。
  9. 請求項8に記載の造形装置において、
    前記造形材料は、断面視におけるテープ厚み寸法とテープ幅寸法とのアスペクト比が10以上である
    ことを特徴とする造形装置。
  10. 請求項1から請求項9のいずれか1項に記載の造形装置において、
    前記造形材料は、金属により構成されている
    ことを特徴とする造形装置。
  11. 請求項10に記載の造形装置において、
    前記造形材料は、難燃化又は不燃化処理されている
    ことを特徴とする造形装置。
  12. 請求項1から請求項9のいずれか1項に記載の造形装置において、
    前記造形材料は、樹脂により構成されている
    ことを特徴とする造形装置。
JP2014081876A 2014-04-11 2014-04-11 造形装置 Pending JP2015202592A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014081876A JP2015202592A (ja) 2014-04-11 2014-04-11 造形装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014081876A JP2015202592A (ja) 2014-04-11 2014-04-11 造形装置

Publications (1)

Publication Number Publication Date
JP2015202592A true JP2015202592A (ja) 2015-11-16

Family

ID=54596365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014081876A Pending JP2015202592A (ja) 2014-04-11 2014-04-11 造形装置

Country Status (1)

Country Link
JP (1) JP2015202592A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017226084A (ja) * 2016-06-20 2017-12-28 株式会社オメガ 三次元造形方法
CN109571935A (zh) * 2017-06-06 2019-04-05 顾小燕 一种智能三维打印机

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017226084A (ja) * 2016-06-20 2017-12-28 株式会社オメガ 三次元造形方法
CN109571935A (zh) * 2017-06-06 2019-04-05 顾小燕 一种智能三维打印机
CN109571935B (zh) * 2017-06-06 2020-10-27 广州趣科信息科技有限公司 一种智能三维打印机

Similar Documents

Publication Publication Date Title
WO2015156002A1 (ja) 造形装置、造形方法
WO2015156001A1 (ja) 造形材料供給機構、及び造形装置
JP6969753B2 (ja) 3次元プリンティング装置
US10703042B2 (en) Systems for additive manufacturing using feedstock shaping
US9902588B2 (en) Consumable assembly with payout tube for additive manufacturing system
JP6423303B2 (ja) 繊維強化熱可塑性樹脂テープの製造装置及び製造方法
JP2015202592A (ja) 造形装置
KR102428736B1 (ko) 복합 부품에 길이 방향 곡률을 적용하는 인발 성형 시스템
JP2015202595A (ja) 造形装置、造形方法
JP2015202591A (ja) 造形装置、及び造形方法
JP2022113757A (ja) 造形装置
JP2015202596A (ja) 造形材料、造形装置、及び造形材料供給機構
JP5282724B2 (ja) 紡機の繊維束集束装置における吸引パイプ及びその製造方法
TW202120305A (zh) 帶材貼付裝置、帶材貼付方法及複合成形品的製造方法
JP2020044772A (ja) 造形装置
CN113399201B (zh) 粘接剂的涂布方法及涂布装置
JP7392397B2 (ja) 造形装置
JP6630238B2 (ja) ワイヤ収容装置、ワイヤ送給装置およびアークシステム
US11518108B2 (en) Manufacturing apparatus
JP2015202597A (ja) 造形装置、及び造形方法
US20200041948A1 (en) Forming apparatus
US10906239B2 (en) Resin material plasticizing device and resin material plasticizing method
CN110815810A (zh) 一种基于3d打印的汽车用零件的制备方法
TWM360238U (en) Tension control structure for winding wire
JP2016175734A (ja) 解撚パイプ部材及びこれを備えた糸継装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160617

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160628