JP2015202445A - Reduced-pressure boiling-type seawater desalination apparatus with power generating function - Google Patents

Reduced-pressure boiling-type seawater desalination apparatus with power generating function Download PDF

Info

Publication number
JP2015202445A
JP2015202445A JP2014082396A JP2014082396A JP2015202445A JP 2015202445 A JP2015202445 A JP 2015202445A JP 2014082396 A JP2014082396 A JP 2014082396A JP 2014082396 A JP2014082396 A JP 2014082396A JP 2015202445 A JP2015202445 A JP 2015202445A
Authority
JP
Japan
Prior art keywords
seawater
tower
turbine
power generation
fresh water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014082396A
Other languages
Japanese (ja)
Inventor
敏彦 社河内
Toshihiko Shiyakouchi
敏彦 社河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2014082396A priority Critical patent/JP2015202445A/en
Publication of JP2015202445A publication Critical patent/JP2015202445A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an energy-efficient seawater desalination apparatus effective in reducing running costs.SOLUTION: A reduced-pressure boiling-type seawater desalination apparatus includes a seawater tower 11 to be erected in seawater, a freshwater tower 12 to be erected in freshwater, a communication pipe 13 for communicating with the towers, means 19 for heating seawater, cooling means 14, and an open-type radial turbine generator using steam as working fluid. The upper space of the seawater tower 11 and the upper space of the freshwater tower 12 are maintained in vacuum. Using Torricelli vacuum, the seawater is boiled at a temperature close to room temperature, and the steam generated is used to drive the turbine for power generation. After power generation, the steam is cooled and condensed to obtain freshwater. The seawater and the freshwater are autonomously transported due to the difference in gravity. Different from conventional reduced-pressure distillation apparatuses, the desalination apparatus can thereby have a nearly zero operation cost.

Description

本発明は真空を利用し、省エネルギーで海水を淡水化する減圧蒸留法による海水淡水化方法であって、更に詳しくは、減圧蒸留に伴い生成される水蒸気で小型のラジアルタービンを駆動させて発電させ、この電力を海水の蒸留に必要な加熱エネルギーとして使用する省エネタイプの海水淡水化方法及び、海水の淡水化装置に係る。 The present invention relates to a seawater desalination method using a vacuum and a vacuum distillation method that desalinates seawater with energy saving, and more specifically, a small radial turbine is driven by water vapor generated by vacuum distillation to generate electric power. The present invention relates to an energy-saving seawater desalination method and a seawater desalination apparatus that use this electric power as heating energy necessary for distillation of seawater.

近年、水(清水)の欠乏が世界的に言われ、その解決策の一つに海水の淡水化がある。海水の淡水化には、蒸留法、逆浸透法、電気透析法、凍結法など種々の方法が提案されているが、現在、その約60%が蒸発法で、約30%が逆浸透法で実現されている。しかし、実際には、それぞれ装置の建設コストが高い、運転コストが高いなど種々の問題があり、これら課題を解決できる省エネルギーで、運転コストが安く、しかも構造が簡単で、新規な海水淡水化装置の実用化が望まれている。 In recent years, there has been a worldwide shortage of water (fresh water), and one solution is seawater desalination. Various methods such as distillation, reverse osmosis, electrodialysis, and freezing methods have been proposed for desalination of seawater. Currently, about 60% are evaporation methods and about 30% are reverse osmosis methods. It has been realized. However, in reality, there are various problems such as high construction cost and high operation cost of each device, a new seawater desalination device that can save these problems with energy saving, low operating cost and simple structure. The practical application of this is desired.

特許文献1には本発明の基礎となる図3に示す減圧蒸留原理に基づく発明が開示されている。図3の減圧沸騰形海水淡水化装置の運転方法は次になる。
海水槽16に収容される海水34中に立設される海水塔11と、淡水槽17に収容される淡水51中に立設される淡水塔12と、これら、海水塔11と淡水塔12とを気密に連結する連通管13から構成される。海水塔11の上部には海水温度を一定に維持するための加熱手段19が設置され、またその上部空間27には、冷却手段14が配置される。
Patent Document 1 discloses an invention based on the vacuum distillation principle shown in FIG. 3 which is the basis of the present invention. The operation method of the reduced-pressure boiling seawater desalination apparatus of FIG. 3 is as follows.
The seawater tower 11 standing in the seawater 34 accommodated in the seawater tank 16, the freshwater tower 12 standing in the freshwater 51 accommodated in the freshwater tank 17, the seawater tower 11 and the freshwater tower 12, Are constituted by a communication pipe 13 for hermetically connecting them. A heating means 19 for maintaining a constant seawater temperature is installed at the upper part of the seawater tower 11, and a cooling means 14 is arranged in the upper space 27.

海水塔11内部の液面高さH1が約10mになるまで海中より海水を汲み上げ投入し、次いで淡水塔12淡内部の液面42の高さHが約10mになるまで淡水塔12に淡水を投入する。
次いで、海水塔11の頂部空間27、淡水塔12の頂部空間44及び連通パイプ13内に残留する空気を排気し、トリチェリ真空(水銀でなく海水を用いるので厳密にはトリチェリ真空とは言えないが、以下、便宜的にこう呼ぶ)とする。
Seawater is pumped up from the sea until the liquid level height H 1 inside the sea water tower 11 reaches about 10 m, and then the fresh water tower 12 enters the fresh water tower 12 until the height H 2 of the liquid level 42 inside the fresh water tower 12 reaches about 10 m. Add fresh water.
Next, the air remaining in the top space 27 of the seawater tower 11, the top space 44 of the fresh water tower 12 and the communication pipe 13 is exhausted, and a Trichelli vacuum (which is not strictly a Trichelli vacuum because seawater is used instead of mercury). Hereinafter, this is called for convenience).

次いで、海中から汲み上げた海水をフィンチューブ形熱交換器(冷却手段)14のチューブ62内を通過させ、海水塔11上部の液面近傍に通水させる。温度センサ20で検出される温度が設定温度より低い場合は、加熱手段19で加熱する。この結果、液面付近では安定した沸騰状態が維持され、海水塔11の上部空間27は常に飽和水蒸気圧で満たされ、水蒸気はもっぱらフィンチューブ形熱交換器14のフィン61表面で凝縮する。凝縮水は淡水として連通管13を経由して淡水塔12に流入し、回収槽55内に回収される。
しかし、この特許文献1では、水蒸気の凝縮熱は効率よく回収されてはいるが、水蒸気に内在する運動エネルギーを回収するとの技術思想はない。
Next, the seawater pumped from the sea is passed through the tube 62 of the finned tube heat exchanger (cooling means) 14 and passed near the liquid surface at the top of the seawater tower 11. When the temperature detected by the temperature sensor 20 is lower than the set temperature, the heating means 19 heats. As a result, a stable boiling state is maintained near the liquid level, the upper space 27 of the seawater tower 11 is always filled with saturated water vapor pressure, and the water vapor is condensed exclusively on the surface of the fins 61 of the fin tube heat exchanger 14. The condensed water flows as fresh water into the fresh water tower 12 via the communication pipe 13 and is collected in the collection tank 55.
However, in this patent document 1, although the heat of condensation of water vapor is efficiently recovered, there is no technical idea of recovering the kinetic energy inherent in the water vapor.

海水を減圧蒸留し、発生する水蒸気でタービンを回して発電し、発電後の水蒸気を凝縮して淡水を得る発明として、非特許文献1には、例えば図4に示す発明が開示されている。図4の発電機能付き減圧沸騰形海水淡水化装置の運転原理は次とされる。
発電機能付き減圧沸騰形海水淡水化装置80は、フラッシュ蒸発器81、凝縮器82、タービン83、発電機84で構成される。このシステムでは、フラッシュ蒸発器81、タービン83、凝縮器82内をあらかじめ真空ポンプ85で真空にしておく。
Non-patent document 1 discloses, for example, the invention shown in FIG. 4 as an invention for obtaining fresh water by distilling seawater under reduced pressure, rotating a turbine with generated steam to generate power, and condensing steam after power generation. The operation principle of the reduced-pressure boiling seawater desalination apparatus with power generation function of FIG. 4 is as follows.
The reduced-pressure boiling seawater desalination apparatus 80 with a power generation function includes a flash evaporator 81, a condenser 82, a turbine 83, and a generator 84. In this system, the flash evaporator 81, the turbine 83, and the condenser 82 are evacuated in advance by the vacuum pump 85.

次に、温海水を温海水用ポンプ85でフラッシュ蒸発器81内に導入して蒸発させて水蒸気を得る。この水蒸気を作動流体として、タービン83に送り、タービン83を回して発電を行う。タービン83から排出される膨張した水蒸気は凝縮器82に入り、冷海水用ポンプ87により深海より汲み上げられる冷海水によって冷却され淡水になる。
この引例2の発明では、真空は利用するものの、トリチェリの真空は使用されておらず、また、フラッシュ蒸発器81や、凝縮器82など、装置についての具体的開示もない。
Next, warm seawater is introduced into the flash evaporator 81 by the warm seawater pump 85 and evaporated to obtain water vapor. This steam is sent to the turbine 83 as a working fluid, and the turbine 83 is rotated to generate power. The expanded water vapor discharged from the turbine 83 enters the condenser 82 and is cooled by the cold seawater pumped from the deep sea by the cold seawater pump 87 to become fresh water.
In the invention of Reference 2, although the vacuum is used, the Trichelle's vacuum is not used, and there is no specific disclosure about the devices such as the flash evaporator 81 and the condenser 82.

特許文献2には、トリチェリ真空を形成させて海水を蒸溜し淡水を得る過程で、タービン発電機で発電させる図5の発明が開示されている。図5において、符号92,94は海水で、符号93,95は淡水である。減圧容器90内では、蒸発部90aにおいて水蒸気を発生させ、凝縮部90bでその水蒸気を凝縮させるので、蒸発部90aから凝縮部90bに水蒸気が流れる。この水蒸気の流れを利用して、これらの間にタービン発電機89を設置して発電と共に、海水の蒸留を行う。
この特許文献2のタービン発電機を用いる発明は、発電システムの具体的構成や、運転稼働方法についての具体的記載がなく発明は極めて不明確である。
Patent Document 2 discloses the invention of FIG. 5 in which power is generated by a turbine generator in the process of forming a Triceri vacuum to distill seawater to obtain fresh water. In FIG. 5, reference numerals 92 and 94 are seawater, and reference numerals 93 and 95 are fresh water. In the decompression vessel 90, water vapor is generated in the evaporation unit 90a, and the water vapor is condensed in the condensing unit 90b. Therefore, the water vapor flows from the evaporation unit 90a to the condensing unit 90b. Utilizing this water vapor flow, a turbine generator 89 is installed between them to generate power and distill seawater.
The invention using the turbine generator disclosed in Patent Document 2 is very unclear because there is no specific description of the specific configuration of the power generation system and the operation method.

特開2013−413124JP2013-413124A WO2010/087042WO2010 / 087042

佐賀大学海洋エネルギー研究センターホームページ・NELHA(ハワイ州立自然エネルギー研究所)ハワイ島コナ海岸に建設したハワイ210kwオープンサイクル実験装置OTEC(1993)・佐賀大学OTEC実験装置−不知火1号(1974年4月)Saga University Ocean Energy Research Center Home Page ・ NELHA (Hawaii State Renewable Energy Laboratory) Hawaii 210 kW open cycle experimental equipment OTEC (1993) constructed on the Kona coast of Hawaii Island ・ Saga University OTEC experimental equipment-Shiranui No. 1 (April 1974)

トリチェリ真空を利用する減圧沸騰形海水淡水化装置では、トリチェリ真空を利用して海水の沸騰点を下げ、しかも冷却用に汲み上げる海水を、熱交換により温度上昇させた後に蒸発用海水として利用するので、省エネタイプの淡水化装置になっている。しかし、これだけでは、エネルギー回収は十分とは言えない。前述した非特許文献1と特許文献2には、海水の蒸発により生成される水蒸気圧の運動エネルギーをタービン発電機で発電させることで、電気エネルギーとして回収する発明が開示されている。しかし、タービン発電を用いての効率のよいエネルギー回収方法は容易でないところ、これら2件の先行技術にはタービン発電機部について具体的開示がない。 In the reduced-pressure boiling seawater desalination system that uses the Torrichelli vacuum, the boiling point of the seawater is lowered using the Torrichelli vacuum, and the seawater pumped up for cooling is used as evaporation seawater after the temperature has been raised by heat exchange. It is an energy-saving type desalination device. However, this alone is not sufficient for energy recovery. Non-Patent Document 1 and Patent Document 2 described above disclose an invention in which kinetic energy of water vapor pressure generated by evaporation of seawater is generated by a turbine generator to be recovered as electric energy. However, an efficient energy recovery method using turbine power generation is not easy, but these two prior arts do not specifically disclose the turbine generator section.

本発明では、減圧沸騰形海水淡水化装置に組み込むタービン発電機には、次の技術課題があるものと認識している。
(1) 発電機には低圧用ラジアルタービン発電機を用いるが、効率確保には流動損失を押えて圧力回復させる必要がある。
(2) 熱交換器での良好な熱交換を確保するため、タービンから排出される水蒸気流をフィンチューブ形熱交換器の全体に一様に衝突させる必要がある。
In the present invention, it is recognized that the turbine generator incorporated in the reduced-pressure boiling seawater desalination apparatus has the following technical problems.
(1) Although a low-pressure radial turbine generator is used as the generator, it is necessary to restore pressure by suppressing flow loss to ensure efficiency.
(2) In order to ensure good heat exchange in the heat exchanger, the steam flow discharged from the turbine needs to collide uniformly with the entire finned tube heat exchanger.

本願発明の減圧沸騰形海水淡水化装置では、トリチェリ真空を利用することで、室温に近い温度で海水を沸騰させ、発生する水蒸気を利用してタービン発電機を駆動させ発電し、発電後の水蒸気を冷却凝縮させて淡水を得る。また、海水や淡水の輸送には可能な限り重力差を利用する。 In the reduced-pressure boiling seawater desalination apparatus of the present invention, by using the Triceri vacuum, the seawater is boiled at a temperature close to room temperature, and the generated steam is used to drive the turbine generator to generate power. Is cooled and condensed to obtain fresh water. In addition, the gravity difference is used as much as possible for the transportation of seawater and fresh water.

請求項1に記載の本願発明の発電機能付き減圧沸騰形海水淡水化装置には、海水中に立設される海水塔と、淡水中に立設される淡水塔と、これら二つの密閉容器の上部を連通させて設けられる連通管と、海水を減圧沸騰させる加熱手段が海水塔の上部に備えられる。また、海水塔上部の海水の蒸発部にはタービン発電システムが配置され、発電後の水蒸気を冷却する冷却手段(フィンチューブ形熱交換器(凝縮器)と、凝縮水を集める凝縮水受け皿)が備えられる。 The reduced-pressure boiling seawater desalination apparatus with power generation function according to claim 1 of the present invention includes a seawater tower standing in seawater, a freshwater tower standing in freshwater, and these two sealed containers. A communication pipe provided in communication with the upper part and a heating means for boiling the seawater under reduced pressure are provided at the upper part of the seawater tower. In addition, a turbine power generation system is arranged in the seawater evaporation section at the top of the seawater tower, and cooling means (fin tube heat exchanger (condenser) and condensate tray for collecting condensed water) for cooling the steam after power generation are provided. Provided.

このうち、海水塔は、海水の満たされた海水槽中に大気と遮断されて立設される長尺の気密容器であって、上方端が封止され、下方端が海水中に解放された気密容器であり、海水塔内の液面高さは、海水塔と連通管との連通位置より低く維持される。
容器内は上部を除き海水で満たされており、海水の存在しない上部空間は、トリチェリ真空が形成されて、空気は殆ど存在せず、海水の飽和蒸気で満たされている。海水塔内部液面の海水槽液面からの高さは、大気圧と釣合っており、約10mである。
Of these, the seawater tower is a long airtight container that is installed in a seawater tank filled with seawater, shut off from the atmosphere, with its upper end sealed and its lower end released into seawater. It is an airtight container, and the liquid level in the seawater tower is maintained lower than the communication position between the seawater tower and the communication pipe.
The inside of the container is filled with seawater except for the upper part, and the upper space where seawater does not exist is formed with a Trichelli vacuum, and almost no air is present and is filled with saturated steam of seawater. The height of the liquid level inside the seawater tower from the level of the seawater tank is balanced with the atmospheric pressure and is about 10 m.

また、淡水塔は、淡水の満たされた淡水槽中に立設される長尺の気密容器であって、上方端が封止され、下方端が淡水中に解放される。容器内は上部を除き淡水で満たされる。淡水が存在しない上部空間は、トリチェリ真空が形成されて、空気は殆ど存在せず、淡水の飽和蒸気で満たされている。淡水塔内部液面の淡水槽水面からの高さは、大気圧と釣合っており、約10mである。 The fresh water tower is a long airtight container standing in a fresh water tank filled with fresh water. The upper end is sealed and the lower end is released into fresh water. The container is filled with fresh water except at the top. In the upper space where there is no fresh water, a Trichelli vacuum is formed, and there is almost no air, and it is filled with saturated steam of fresh water. The height of the liquid level inside the fresh water tower from the surface of the fresh water tank is balanced with the atmospheric pressure and is about 10 m.

一方、連通管は海水塔の上部と、淡水塔の上部とを連通させるパイプであり、連通管と海水塔との接続部は気密構造を採り、連通管と淡水塔との接続部も気密に接続される。
また、海水塔の上部空間には、一部が連通管に侵入する冷却手段が設置される。冷却手段は海水を冷却媒体として、海水塔の上部空間に蒸発する水蒸気を冷却し、連通管内に流下させる。
冷却手段はスリットまたは、撹乱素子が付与されたフィンチューブ形熱交換器(凝縮器)と、凝縮水受け皿とで構成され、冷却用海水を通水して効率よく冷却する。
また、冷却手段を流れる冷却用海水は海水塔の上部位置に放出される。
On the other hand, the communication pipe is a pipe that connects the upper part of the seawater tower and the upper part of the freshwater tower. The connection part between the communication pipe and the seawater tower has an airtight structure, and the connection part between the communication pipe and the freshwater tower is also airtight. Connected.
In addition, a cooling means that partially enters the communication pipe is installed in the upper space of the seawater tower. The cooling means uses seawater as a cooling medium to cool the water vapor evaporated in the upper space of the seawater tower and let it flow down into the communication pipe.
The cooling means is composed of a slit or a fin tube heat exchanger (condenser) provided with a disturbing element and a condensate tray, and efficiently cools by passing seawater for cooling.
Further, the cooling seawater flowing through the cooling means is discharged to the upper position of the seawater tower.

この冷却用海水の放出部付近には海水加熱手段が設置される。この海水加熱手段は、海水温度を計測する温度センサと、海水を加熱するヒータと、温度センサで計測される海水温度が所定温度より低いときヒータ加熱を行い、海水温が所定温度以上のときヒータ電源を切る制御を行う温度コントローラとで構成されている。
なお、加熱手段はヒータに限定されることなく、太陽熱を吸収する太陽熱吸収装置などであってよく、或いはまた、これらを組み合わせであっても良い。ただし太陽熱吸収装置の設置位置は、海水塔の断熱材が設置されない箇所に限られる。
Seawater heating means is installed in the vicinity of the cooling seawater discharge part. The seawater heating means includes a temperature sensor that measures seawater temperature, a heater that heats seawater, and heater heating when the seawater temperature measured by the temperature sensor is lower than a predetermined temperature, and a heater when the seawater temperature is equal to or higher than the predetermined temperature. It consists of a temperature controller that controls to turn off the power.
The heating means is not limited to a heater, and may be a solar heat absorption device that absorbs solar heat, or a combination thereof. However, the installation position of the solar heat absorption device is limited to the place where the heat insulating material of the seawater tower is not installed.

最初、海水は冷却用として海中より採水され、本減圧沸騰形海水淡水化装置に冷却用海水として投入されるが、熱交換器を通過する過程で水蒸気の凝縮熱を吸収し沸点温度にまで加熱され、排出部では沸騰温度に到達する。海水は冷却水として活用された後に水蒸気発生用の原料海水として活用されるが、熱交換器排出部では沸騰温度まで加熱されているので、海水加熱手段は、蒸発熱から上記で回収した凝縮熱を差し引いた分のみを供給するだけで容易に海水を蒸発させることができる。 At first, seawater is sampled from the sea for cooling, and is put into the reduced-pressure boiling seawater desalination device as seawater for cooling. It is heated and reaches the boiling temperature at the discharge. Seawater is used as raw water for steam generation after being used as cooling water, but since it is heated to the boiling temperature at the heat exchanger discharge, the seawater heating means uses the condensation heat recovered above from the heat of evaporation. Seawater can be easily evaporated by supplying only the amount obtained by subtracting.

海水塔上部には水蒸気を作動流体とするオープン発電システム、或いはアンモニアを作動流体とするクローズド発電システムが設置され、作動流体の運動エネルギーや凝縮エネルギーを電気エネルギーに変換する。 An open power generation system using water vapor as a working fluid or a closed power generation system using ammonia as a working fluid is installed at the upper part of the seawater tower, and converts the kinetic energy and condensation energy of the working fluid into electrical energy.

また、海水塔内部の液面高さ位置と、淡水塔内部の液面高さ位置の相対位置関係は、必ずしも一致させる必要はなく、何れが高位置にあってもよい。しかし、海水塔液面高さを淡水塔液面より高い位置とすれば、淡水を流下させて回収するのに好都合である。これにより、水蒸気を冷却させて得られる淡水が、淡水塔中に自然に流下する。淡水塔内の液面高さは、淡水塔内の淡水温度で決まる水蒸気圧力が一定であるので、大気圧と釣り合いながら一定高さに保たれる。従って水蒸気の凝縮により新たに作られる淡水と同量の淡水塔内の淡水が、下部の解放端部から淡水槽内に押し出される。このとき押し出される淡水量が、本発電機能付き減圧沸騰形海水淡水化装置により作られる淡水量になる。 Further, the relative positional relationship between the liquid level height position inside the seawater tower and the liquid level height position inside the fresh water tower does not necessarily need to be matched, and any of them may be at a high position. However, if the seawater tower liquid level is higher than the fresh water tower liquid level, it is convenient for the fresh water to flow down and to be recovered. As a result, the fresh water obtained by cooling the water vapor naturally flows down into the fresh water tower. The liquid level in the fresh water tower is maintained at a constant height while being balanced with the atmospheric pressure because the water vapor pressure determined by the fresh water temperature in the fresh water tower is constant. Therefore, the same amount of fresh water in the fresh water tower as fresh water newly produced by condensation of water vapor is pushed out into the fresh water tank from the lower open end. The amount of fresh water pushed out at this time is the amount of fresh water produced by the vacuum boiling seawater desalination apparatus with the power generation function.

請求項2に記載の発明は、オープン発電システムを組込む発電機能付き減圧沸騰形海水淡水化装置である。
加熱手段により作成される水蒸気が誘導されるタービン室と、タービン室内に設置され水蒸気を作動流体として回転駆動されるラジアルタービンと、このラジアルタービンの回転軸に接続される同期発電機を備える。タービン室は更に、曲がりデフュザーに接続され、曲がりデフュザーは水蒸気をフィンチューブ形熱交換器のフィン全体に所定の角度範囲で衝突するよう誘導する。
The invention described in claim 2 is a reduced-pressure boiling seawater desalination apparatus with a power generation function incorporating an open power generation system.
A turbine chamber in which steam generated by the heating means is induced, a radial turbine installed in the turbine chamber and driven to rotate using steam as a working fluid, and a synchronous generator connected to the rotating shaft of the radial turbine are provided. The turbine chamber is further connected to a bent diffuser, which induces steam to impinge on the entire fin tube heat exchanger fins within a predetermined angular range.

これにより、海水加熱手段で加熱沸騰した海水から蒸発する水蒸気は、蒸発室を満たしてタービン室に続く水蒸気導入口に誘導され、タービン室の吹き出し口から噴出し、タービンを回転させる。タービンの回転軸には発電機が直結されており、水蒸気の運動エネルギーは電気エネルギーに変換される。 Thereby, the water vapor evaporating from the seawater heated and boiled by the seawater heating means is guided to the water vapor inlet port that fills the evaporation chamber and continues to the turbine chamber, and is ejected from the outlet port of the turbine chamber to rotate the turbine. A generator is directly connected to the rotating shaft of the turbine, and the kinetic energy of water vapor is converted into electrical energy.

タービン室は海水塔上部の蒸発室に隣接して設けられるので、水蒸気流の流動損失は極小に抑えられ、タービン室から排出される水蒸気は曲がりデフュザーにより流動損失を押さえて圧力を回復させる。また、水蒸気流は凝縮室内に設置されるフィンチューブ形熱交換器のフィン全体に入射角度20°〜40°で一様に衝突するよう誘導され、フィンチューブに衝突後は、乱流を伴いフィン表面に接触しながらフィン間を移動し、水蒸気を水滴としてフィン表面に凝縮する。 Since the turbine chamber is provided adjacent to the evaporation chamber in the upper part of the seawater tower, the flow loss of the water vapor flow is suppressed to a minimum, and the water vapor discharged from the turbine chamber is bent and the flow loss is suppressed by the diffuser to restore the pressure. In addition, the water vapor flow is induced to uniformly collide with the entire fin tube heat exchanger fin installed in the condensing chamber at an incident angle of 20 ° to 40 °. It moves between the fins while contacting the surface, and water vapor is condensed on the fin surface as water droplets.

請求項3に記載の発明は、クローズド発電システムを組込む発電機能付き減圧沸騰形海水淡水化装置である。
クローズド発電システムは、蒸発器、凝縮器、ラジアルタービンと、これらを接続するポンプと配管及び、発電機で構成される。蒸発器は加熱手段の設置される海水中に設置され、水蒸気の凝縮熱で加熱される海水から受ける熱でアンモニアが気化される。気体となったアンモニアはラジアルタービンの翼に噴出されるので、ラジアルタービは回転させられ、これと接続する同期発電機が発電を行う。同期発電機はラジアルタービンの回転軸に直結されるので、発電機の小形化が容易であるが、場合により、ラジアルタービンの回転軸と発電機回転軸間にギヤを挿入し、回転速度の変換を行ってもよい。
The invention described in claim 3 is a reduced-pressure boiling seawater desalination apparatus with a power generation function incorporating a closed power generation system.
The closed power generation system includes an evaporator, a condenser, a radial turbine, a pump and piping connecting these, and a generator. The evaporator is installed in the seawater where the heating means is installed, and ammonia is vaporized by the heat received from the seawater heated by the heat of condensation of water vapor. Since ammonia turned into gas is ejected to the blades of the radial turbine, the radial turbine is rotated, and a synchronous generator connected thereto generates power. Since the synchronous generator is directly connected to the rotating shaft of the radial turbine, it is easy to reduce the size of the generator, but in some cases, a gear is inserted between the rotating shaft of the radial turbine and the rotating shaft of the generator to convert the rotational speed. May be performed.

ラジアルタービンを通過したアンモニア蒸気は凝縮器に至り、ここで海水により冷却され気体から液体に戻る。液化したアンモニアはポンプで再び蒸発器に輸送され、前述の行程を繰り返す。
本発明のクローズド発電システムは、アンモニアを気化させる熱源が加熱される海水であるので、フィンチューブ形熱交換器で行われる水蒸気の凝縮潜熱の回収が理想的に進行する場合、特に有効な発明となる。
The ammonia vapor that has passed through the radial turbine reaches a condenser where it is cooled by seawater and returns from gas to liquid. The liquefied ammonia is again transported to the evaporator by a pump, and the above process is repeated.
Since the closed power generation system of the present invention is seawater in which the heat source for vaporizing ammonia is heated, the invention is particularly effective when the recovery of latent heat of condensation of water vapor performed in a finned tube heat exchanger is ideally advanced. Become.

請求項4に記載の発明は、クローズド発電システムを組込む発電機能付き減圧沸騰形海水淡水化装置である。
クローズド発電システムは、蒸発器、凝縮器、ラジアルタービンと、これらを接続するポンプと配管及び、発電機で構成される。蒸発器は海水塔の上部空間(凝縮室)で、フィンチューブ形熱交換器の上流に設置され、水蒸気の凝縮熱でアンモニアが気化される。気体となったアンモニアはラジアルタービンの翼に噴出し、ラジアルタービに接続する同期発電機に発電させる。同期発電機はラジアルタービンの回転軸に直結されるので、発電機の小形化が容易である。
The invention described in claim 4 is a reduced-pressure boiling seawater desalination apparatus with a power generation function incorporating a closed power generation system.
The closed power generation system includes an evaporator, a condenser, a radial turbine, a pump and piping connecting these, and a generator. The evaporator is an upper space (condensing chamber) of the seawater tower and is installed upstream of the finned tube heat exchanger, and ammonia is vaporized by the heat of condensation of water vapor. The gaseous ammonia is jetted to the blades of the radial turbine and generated by a synchronous generator connected to the radial turbine. Since the synchronous generator is directly connected to the rotary shaft of the radial turbine, it is easy to reduce the size of the generator.

ラジアルタービンを通過したアンモニア蒸気は凝縮器に至り、ここで海水により冷却され気体から液体に戻る。液化したアンモニアはポンプで再び蒸発器に輸送され、前述の行程を繰り返す。
本発明のクローズド発電システムは、蒸発器がフィンチューブ型熱交換機の上流に設置されるので、水蒸気からの凝縮エネルギー回収を確実に実施できるメリットがある。
The ammonia vapor that has passed through the radial turbine reaches a condenser where it is cooled by seawater and returns from gas to liquid. The liquefied ammonia is again transported to the evaporator by a pump, and the above process is repeated.
The closed power generation system of the present invention has an advantage that the condenser energy can be reliably recovered from the water vapor because the evaporator is installed upstream of the finned tube heat exchanger.

請求項5に記載の発電機能付き減圧沸騰形海水淡水化方法は、海中より汲み上げた海水を、海中温度以上に加熱して、真空中で水分を蒸発させて水蒸気流を作成し、水蒸気流でタービン発電機を駆動させて発電させた後に、水蒸気を冷却して淡水として回収する発電機能付き減圧沸騰形海水淡水化方法である。
装置の主たる構成要素は次になる。
The depressurized boiling type seawater desalination method with a power generation function according to claim 5 is configured to heat seawater pumped from the sea to a temperature higher than the sea temperature, evaporate water in a vacuum, create a steam stream, This is a vacuum boiling type seawater desalination method with a power generation function in which steam is cooled and recovered as fresh water after a turbine generator is driven to generate power.
The main components of the device are as follows.

(1)大気と遮断されて海水槽内の海水中に立設され、底部が海水中に開放される海水塔。
(2)大気と遮断されて淡水槽内の淡水中に立設され、底部が淡水中に開放される淡水塔。
(3)一方が海水塔の上部に気密を維持して連通し、他方が淡水塔に気密を維持して連通する連通管。
(4)海水を蒸発させる加熱手段。
(5)加熱手段で作られる水蒸気が導入されるタービン室。
(6)タービン室に設置され水蒸気により回転駆動されて発電するタービン発電機。
(7)タービン室より排出される水蒸気をガイドする曲がりデフュザー。
(8)水蒸気を凝縮させて淡水にするフィンチューブ形熱交換器(凝縮器)。
(9)淡水を集め連通管内に流下させる凝縮水受け皿。
(1) A seawater tower that is cut off from the atmosphere and is erected in seawater in a seawater tank, with the bottom open to seawater.
(2) A fresh water tower that is cut off from the atmosphere, is erected in fresh water in a fresh water tank, and has a bottom open to fresh water.
(3) A communication pipe in which one side communicates with the upper part of the seawater tower while maintaining airtightness, and the other communicates with the freshwater tower while maintaining airtightness.
(4) A heating means for evaporating seawater.
(5) A turbine chamber into which steam produced by heating means is introduced.
(6) A turbine generator that is installed in the turbine chamber and is driven to rotate by steam to generate electric power.
(7) A curved diffuser that guides water vapor discharged from the turbine chamber.
(8) A fin-tube heat exchanger (condenser) that condenses water vapor into fresh water.
(9) A condensate tray that collects fresh water and flows it down into the communication pipe.

また、本発明では、まず、減圧下、加熱手段で海中温度以上に加熱して水蒸気流を作る。次いで、水蒸気流をタービン室に誘導し、タービン室出口から噴出させ、このエネルギーでタービンを回転させてタービン発電機に発電させる。
その後、水蒸気は曲がりデフュザーでタービン室から、フィンチューブ形熱交換器までガイドされ、フィンチューブ形熱交換器のフィン表面で冷却、凝縮されて淡水となる。本発明は、トリチェリー真空と、タービン発電機と、フィンチューブ形熱交換器を1つの装置に組み込むことで、淡水製造に必要とされる消費エネルギーを最小にした海水の淡水化方法である。
In the present invention, first, a water vapor stream is created by heating to a temperature above the sea temperature with a heating means under reduced pressure. Next, the steam flow is guided to the turbine chamber, ejected from the outlet of the turbine chamber, and the turbine is rotated by this energy to cause the turbine generator to generate electric power.
After that, the water vapor is bent and guided by the diffuser from the turbine chamber to the finned tube heat exchanger, cooled and condensed on the fin surface of the finned tube heat exchanger to become fresh water. The present invention is a seawater desalination method in which a Tricherry vacuum, a turbine generator, and a finned tube heat exchanger are incorporated into one apparatus, thereby minimizing the energy consumption required for freshwater production.

本発明は、蒸留法で海水を淡水化する場合の最大の課題である、淡水化に要するエネルギー(外部より本装置に投入される電気エネルギー)を極小化する方法である。
本発明では次の方法で極小化を達成している。
The present invention is a method for minimizing the energy required for desalination (electrical energy input to the apparatus from the outside), which is the greatest problem when desalinating seawater by a distillation method.
In the present invention, minimization is achieved by the following method.

(1) トリチェリー真空を利用することで、海水温に近い温度で沸騰させ、海水を加熱に要するエネルギーを極小にした。
(2) オープン発電システムでは、蒸発室とタービン室を直結し、タービン室と凝縮室とを曲がりデフュザーで接続することで、水蒸気流の流動損失を極小にした。
(3) クローズド発電システムでは、作動流体の作動圧を大きくすることで、ラジアルタービンを小型化できる。
(4) フィンチューブ形熱交換器のフィンに水蒸気流を入射角度20°〜40°で衝突させ、熱交換効率の極大化を図った。
(5) 熱交換により温められた冷却水を原料海水として加熱するので、沸騰温度にまで加熱する熱エネルギーを極小化した。
(6) タービン発電機で発電された電力を、海水を沸騰させる熱源として使用するので、外部から調達する電力を極小化した。
以上によって、本発明による発電機能付き減圧沸騰形海水淡水化装置により、省エネルギーで、且つ、安定的に淡水を製造することができる。
(1) By using the Tricherry vacuum, the water was boiled at a temperature close to the seawater temperature, and the energy required for heating the seawater was minimized.
(2) In the open power generation system, the evaporation chamber and the turbine chamber are directly connected, and the turbine chamber and the condensing chamber are bent and connected by a diffuser to minimize the flow loss of the water vapor flow.
(3) In the closed power generation system, the radial turbine can be downsized by increasing the working pressure of the working fluid.
(4) The steam flow was made to collide with the fins of the fin-tube heat exchanger at an incident angle of 20 ° to 40 ° to maximize the heat exchange efficiency.
(5) Since the cooling water heated by heat exchange is heated as raw seawater, the heat energy for heating to the boiling temperature is minimized.
(6) Since the electric power generated by the turbine generator is used as a heat source for boiling seawater, the electric power procured from the outside was minimized.
As described above, the reduced-pressure boiling seawater desalination apparatus with a power generation function according to the present invention can produce fresh water with energy saving and stably.

本発明の発電機能付き減圧沸騰形海水淡水化装置の構成説明図(第1実施例)Configuration explanatory diagram of the reduced-pressure boiling seawater desalination apparatus with power generation function of the present invention (first embodiment) 本発明におけるエネルギー回収の原理説明図Illustration of the principle of energy recovery in the present invention 減圧沸騰形海水淡水化装置の構成説明図Configuration diagram of the vacuum boiling seawater desalination system 非特許文献1の発電機能付き減圧沸騰形海水淡水化装置の原理図Principle diagram of non-patent document 1 vacuum boiling seawater desalination equipment with power generation function 特許文献2の発電機能付き減圧沸騰形海水淡水化装置の概念図Conceptual diagram of the vacuum boiling seawater desalination device with power generation function of Patent Document 2 クローズドタイプの減圧沸騰形海水淡水化装置(第2実施例)Closed-type vacuum boiling seawater desalination system (second embodiment) クローズドタイプの減圧沸騰形海水淡水化装置(第3実施例)Closed type vacuum boiling seawater desalination system (third embodiment)

本発明の発電機能付き減圧沸騰形海水淡水化装置の第1実施例の全体構成について、図1を用いて説明する。
発電機能付き減圧沸騰形海水淡水化装置10は、海水槽16に収容される海水34中に立設される海水塔11と、淡水槽17に収容される淡水51中に立設される淡水塔12と、これら、海水塔11と淡水塔12とを気密に連結する連通管13から構成される。海水塔11の上部には海水温度を一定に維持するための加熱手段19が設置され、また海水塔11の凝縮室73には、冷却手段14が配置される。更に、海水塔11の上部外壁部と、連通管13の外壁と、淡水塔12の外壁には、これら外壁を包囲して断熱する断熱材18が取付けられる。
The overall configuration of the first embodiment of the reduced pressure boiling seawater desalination apparatus with power generation function of the present invention will be described with reference to FIG.
The reduced-pressure boiling seawater desalination apparatus 10 with a power generation function includes a seawater tower 11 erected in the seawater 34 accommodated in the seawater tank 16 and a freshwater tower erected in the freshwater 51 accommodated in the freshwater tank 17. 12 and a communication pipe 13 that connects the seawater tower 11 and the freshwater tower 12 in an airtight manner. A heating means 19 for maintaining a constant seawater temperature is installed in the upper part of the seawater tower 11, and a cooling means 14 is arranged in the condensing chamber 73 of the seawater tower 11. Furthermore, a heat insulating material 18 that surrounds and insulates the outer walls is attached to the upper outer wall portion of the seawater tower 11, the outer wall of the communication pipe 13, and the outer wall of the fresh water tower 12.

次に、本装置の立ち上げから定常運転に至るまでのプロセスについて図1を用い説明する。
海水塔11の上下及び側方に配置されたバルブ21、22、29、31を開にし、バルブ32を閉じ、ポンプ24を作動させ、配管33を通して海中より海水を汲み上げ、海水塔11内部に海水を投入する。海水槽16が海水で満たされた時点でポンプ24を停止させ、バルブ21を閉じる。ポンプ24を再稼働させ海水塔内に海水を注入し、液面26の高さH1が約10mになった時バルブ31を閉じ、ポンプ24を停止させる。
Next, the process from the start-up of this apparatus to the steady operation will be described with reference to FIG.
The valves 21, 22, 29, 31 arranged at the top and bottom and the side of the seawater tower 11 are opened, the valve 32 is closed, the pump 24 is operated, the seawater is pumped from the sea through the pipe 33, and the seawater tower 11 is filled with seawater. . When the seawater tank 16 is filled with seawater, the pump 24 is stopped and the valve 21 is closed. The pump 24 is restarted to inject seawater into the seawater tower. When the height H 1 of the liquid level 26 reaches about 10 m, the valve 31 is closed and the pump 24 is stopped.

淡水塔12の上下に配置されたバルブ43、45、47を開にし、流量計52で流量を確認しながらポンプ46を作動させ、配管58を通して淡水の給水を行い、淡水塔12内部に淡水を投入する。淡水槽17が淡水で満たされた時点でポンプ46を停止させ、バルブ45を閉じる。ポンプ46を再稼働させ淡水塔内に淡水を注入し、液面42の高さHが約10mになった時バルブ52を閉じ、ポンプ46を停止させる。 The valves 43, 45, 47 arranged above and below the fresh water tower 12 are opened, the pump 46 is operated while checking the flow rate with the flow meter 52, fresh water is supplied through the pipe 58, and fresh water is supplied into the fresh water tower 12. throw into. When the fresh water tank 17 is filled with fresh water, the pump 46 is stopped and the valve 45 is closed. Fresh water is injected into the fresh water tower is re-activated pump 46, closing the valve 52 when the height H 2 of the liquid surface 42 was about 10 m, to stop the pump 46.

バルブ22,43を閉じバルブ21,51を開にすると海水塔11の頂部空間27、淡水塔12の頂部空間44及び連通パイプ13内の圧力は水頭H、Hに依存して低下し、真空に近いものとなる。
次いで、海水塔11の凝縮室73、淡水塔12の頂部空間44及び連通パイプ13内に残留する空気を排除するため、バルブ39を開にし真空ポンプ15を作動させ、海水塔11、淡水塔12、連通管13内部を真空にする。この時の真空度は真空計28で確認することができる。これにより海水塔内部、淡水塔内部にトリチェリ真空が形成される。なお、海水塔内部、淡水塔内部はトリチェリ真空に達する手前から、海水及び、淡水に沸騰が起こる。
When the valves 22 and 43 are closed and the valves 21 and 51 are opened, the pressure in the top space 27 of the seawater tower 11, the top space 44 of the fresh water tower 12 and the communication pipe 13 decreases depending on the water heads H 1 and H 2 . Close to vacuum.
Next, in order to remove the air remaining in the condensing chamber 73 of the seawater tower 11, the top space 44 of the freshwater tower 12 and the communication pipe 13, the valve 39 is opened and the vacuum pump 15 is operated. The inside of the communication tube 13 is evacuated. The degree of vacuum at this time can be confirmed with the vacuum gauge 28. Thereby, a Trichelli vacuum is formed inside the seawater tower and inside the fresh water tower. It should be noted that the seawater and freshwater towers boil in the seawater and freshwater just before reaching the Torrichelli vacuum.

トリチェリ真空が形成されるに至った時点で、バルブ39を閉じ、真空ポンプ15を停止させる。この時、海水塔11内の液面26の高さは、海水槽16の液面35からHの高さとなり、Hは約10mになる。また淡水塔12内の液面42の高さは、淡水槽17の液面53からHの高さとなり、Hは約10mになる。 When the Trichelli vacuum is formed, the valve 39 is closed and the vacuum pump 15 is stopped. At this time, the liquid level 26 in the seawater column 11 is made from the liquid surface 35 of the sea water tank 16 and the height of the H 1, H 1 is about 10 m. Moreover, the height of the liquid level 42 in the fresh water tower 12 becomes the height of H 2 from the liquid level 53 of the fresh water tank 17, and H 2 becomes about 10 m.

次いでバルブ31を閉じたまま、バルブ29,32を開にし、流量計36で流量を計測しながら海中から汲み上げた海水をフィンチューブ形熱交換器(冷却手段)14のチューブ62内を通水させ、海水塔11上部の液面近傍に放出させる。また、この液面近傍には温度センサ20が設置されており、この温度センサ20で検出される温度が加熱手段19に設定されている制御温度より低い場合は、加熱手段19がPID制御でヒータ23を作動させ海水塔11の液面近傍の海水25を加熱する。この結果、液面付近では安定した沸騰状態が維持され、蒸発室27は常に飽和水蒸気圧で満たされる。 Next, with the valve 31 closed, the valves 29 and 32 are opened, and the seawater pumped from the sea while measuring the flow rate with the flow meter 36 is passed through the tube 62 of the finned tube heat exchanger (cooling means) 14. , And discharged near the liquid surface at the top of the seawater tower 11. Further, a temperature sensor 20 is installed in the vicinity of the liquid surface, and when the temperature detected by the temperature sensor 20 is lower than the control temperature set in the heating means 19, the heating means 19 is heated by PID control. 23 is operated to heat the seawater 25 near the liquid surface of the seawater tower 11. As a result, a stable boiling state is maintained near the liquid level, and the evaporation chamber 27 is always filled with saturated water vapor pressure.

蒸発室27に満たされた水蒸気は、水蒸気導入口76からタービン室71に流入し、ラジアルタービン72を勢いよく回転させる。ラジアルタービン72の回転軸78には発電機74が直結されておりラジアルタービン72の回転により発電する。これにより、水蒸気の運動エネルギーは電気エネルギーに変換される。ここで発電される電力は加熱手段19の補助電力源として使用する。 The water vapor filled in the evaporation chamber 27 flows into the turbine chamber 71 from the water vapor introduction port 76 and causes the radial turbine 72 to rotate vigorously. A generator 74 is directly connected to the rotary shaft 78 of the radial turbine 72, and power is generated by the rotation of the radial turbine 72. Thereby, the kinetic energy of water vapor | steam is converted into an electrical energy. The electric power generated here is used as an auxiliary power source for the heating means 19.

タービン室71で発電を終了した水蒸気は、水蒸気導出口75から曲りデフュザー30に排出され。曲りデフュザー30は流動損失を押さえて圧力を回復すると同時に水蒸気流を凝縮室73に設置されるフィンチューブ形熱交換器14に導く。曲りデフュザー30の主たる機能は、フィンチューブ形熱交換器14のフィン61に入射角度20°〜40°の範囲で水蒸気流を衝突させることである。これにより、水蒸気流は乱流を伴い、フィンチューブ形熱交換器14の各フィン61間に一様に分配されて流動しながら効率よくフィン61の表面に水蒸気を凝縮させる。 The steam that has finished generating electricity in the turbine chamber 71 is bent from the steam outlet 75 and discharged to the diffuser 30. The bending diffuser 30 suppresses the flow loss and recovers the pressure, and at the same time guides the water vapor flow to the finned tube heat exchanger 14 installed in the condensing chamber 73. The main function of the bending diffuser 30 is to make the water vapor flow collide with the fins 61 of the finned tube heat exchanger 14 in the range of incident angles of 20 ° to 40 °. Accordingly, the water vapor flow is accompanied by turbulent flow, and is uniformly distributed between the fins 61 of the fin tube heat exchanger 14 and efficiently condenses the water vapor on the surfaces of the fins 61 while flowing.

海水塔11の上部は外壁面が断熱材で包囲されているので、水蒸気が壁面で凝縮することはなく、水蒸気はもっぱらフィンチューブ形熱交換器14のフィン61表面で凝縮する。また、フィンチューブ形熱交換器14にはポンプ24により、絶えず冷却水が供給されるので、凝縮能力が維持される。
連通管13の液面を覆うフロート部材60は、連通管13の上部より吊下げる方法で保持されており、淡水が凝縮室73に再蒸発するのを抑制する。
Since the outer wall surface of the upper part of the seawater tower 11 is surrounded by a heat insulating material, the water vapor is not condensed on the wall surface, and the water vapor is condensed exclusively on the surface of the fin 61 of the fin tube heat exchanger 14. Further, since the cooling water is continuously supplied to the finned tube heat exchanger 14 by the pump 24, the condensing capacity is maintained.
The float member 60 that covers the liquid surface of the communication pipe 13 is held by a method of hanging from the upper part of the communication pipe 13, and suppresses fresh water from re-evaporating into the condensation chamber 73.

これら一連の動作において、蒸発室27と凝縮室73では海水の沸騰・蒸発と、発生する水蒸気の冷却・凝縮が同時に進行するため、蒸発室27と凝縮室73の容積、圧力はほぼ一定に保たれる。また、これら一連の動作は、人為的な制御が不要で全て自律的に進行する。
フィン61表面に凝結する水分は、直下の受け皿63に滴下して、淡水になり連通管内13内部に流下する。連通管内の液面高さは一定に保持されるので、流下する淡水は逐次淡水塔12内を下方に押し出され、淡水槽17に至り、淡水槽17の堰54を乗り越え、回収槽55に至る。
In these series of operations, boiling and evaporation of seawater and cooling and condensation of the generated water vapor proceed simultaneously in the evaporation chamber 27 and the condensation chamber 73, so that the volume and pressure of the evaporation chamber 27 and the condensation chamber 73 are kept substantially constant. Be drunk. In addition, these series of operations do not require artificial control and all proceed autonomously.
Moisture condensed on the surface of the fin 61 is dropped on the receiving tray 63 immediately below to become fresh water and flows down into the communication pipe 13. Since the liquid level in the communication pipe is kept constant, the fresh water that flows down is sequentially pushed downward in the fresh water tower 12, reaches the fresh water tank 17, gets over the weir 54 of the fresh water tank 17, and reaches the recovery tank 55. .

回収槽55内の淡水はバルブ57を開にし、流量計56で流量を計測しながら外部に取り出す。
なお、ポンプ24から供給される海水量は流量計36で確認可能であるが、海水塔11の蒸発室27で蒸発する海水量より多い場合、過剰分の海水は、海水塔11を逐次下方に押しやられて海水槽16に至り、堰40を乗り越えてサブ貯留槽37から外部に排出される。
Fresh water in the collection tank 55 is taken out while the valve 57 is opened and the flow rate is measured by the flow meter 56.
The amount of seawater supplied from the pump 24 can be confirmed with the flow meter 36. However, when the amount of seawater evaporated in the evaporation chamber 27 of the seawater tower 11 is larger than the amount of seawater, It is pushed away to reach the seawater tank 16, gets over the weir 40 and is discharged from the sub-storage tank 37 to the outside.

図1に示す本発明の第1の実施例について、装置全体のエネルギー収支の概略試算を次のステップ1〜4に述べる。
ステップ1:海水を気化させるに要するエネルギー
図2は本発明におけるエネルギー回収の原理説明図で、蒸発槽64で海水が蒸発され、蒸発により作られる水蒸気流がタービン室71に流入し発電した後、凝縮槽65に流入する。
ここに、蒸発槽64の直径はD=5[m]、蒸発室27の高さH=0.2[m]である。
海水25の温度は25[℃]でこれを30[℃]に加熱して水蒸気にする。
タービン室71の断面の直径D=0.5[m]
For the first embodiment of the present invention shown in FIG. 1, a rough estimation of the energy balance of the entire apparatus will be described in the following steps 1 to 4.
Step 1: Energy required for vaporizing seawater FIG. 2 is an explanatory diagram of the principle of energy recovery in the present invention. After seawater is evaporated in the evaporation tank 64, a steam flow created by evaporation flows into the turbine chamber 71 and generates electricity. It flows into the condensing tank 65.
Here, the diameter of the evaporation tank 64 is D 1 = 5 [m], and the height H of the evaporation chamber 27 is 0.2 [m].
The temperature of the seawater 25 is 25 [° C.], and this is heated to 30 [° C.] to be steam.
Diameter D 2 of cross section of turbine chamber 71 = 0.5 [m]

蒸発室内27の温度は30[℃]、蒸気圧は約30[mmHg]であり、海水25の表面は30[℃]に加熱維持されている。また、この状況下では、毎分31.4[kg/m2・min]の海水が蒸発室に蒸発し続ける(文献:Encyclopedia[塩百科]38,2004橋本壽夫)。
この平衡状態を持続するに必要とされる海水の加熱蒸発エネルギーは、蒸発量に相当する海水を25[℃]から30[℃]に昇温させる加熱エネルギーと、蒸発(気化)熱の和になる。このうち、加熱エネルギーは216[kWh/φ5m・h]と計算できる。また、蒸発熱についてはステップ3に述べる。
The temperature in the evaporation chamber 27 is 30 [° C.], the vapor pressure is about 30 [mmHg], and the surface of the seawater 25 is maintained at 30 [° C.]. Also, under this situation, 31.4 [kg / m 2 · min] of seawater continues to evaporate into the evaporation chamber (reference: Encyclopedia 38, 2004 Ikuo Hashimoto).
The heating and evaporation energy of seawater required to maintain this equilibrium state is the sum of the heating energy for raising the temperature of seawater corresponding to the amount of evaporation from 25 [° C] to 30 [° C] and the evaporation (vaporization) heat. Become. Of these, the heating energy can be calculated as 216 [kWh / φ5 m · h]. The heat of evaporation will be described in step 3.

ステップ2:発電エネルギー
蒸発室27で作られる水蒸気量は30[℃]、30[mmHg]の条件下で31.4[kg/m2・min]であるので、本装置で作成される水蒸気量は約10.3[kgf/φ5m・s]となる。
一方、30[℃]、30[mmHg]の条件下で飽和水の比体積は0.001[m3/kg]であるが、同一条件下での水蒸気とすると、飽和蒸気の比体積は23.7[m3/kg]となる(伝熱工学資料改定第5版 日本機械学会、丸善2009/05)。
蒸発室27内の総水蒸気量は約10.3[kgf/φ5m・s]であるので、体積に換算すると25[m3/s]になり、これが毎秒生成される水蒸気の体積となる。
Step 2: Since the amount of water vapor produced in the power generation energy evaporation chamber 27 is 31.4 [kg / m 2 · min] under the conditions of 30 [° C.] and 30 [mmHg], the amount of water vapor produced by this apparatus Is about 10.3 [kgf / φ5 m · s].
On the other hand, the specific volume of saturated water is 0.001 [m 3 / kg] under the conditions of 30 [° C.] and 30 [mmHg]. 7 [m 3 / kg] (heat transfer engineering data revision 5th Japan Society of Mechanical Engineers, Maruzen 2009/05).
Since the total amount of water vapor in the evaporation chamber 27 is about 10.3 [kgf / φ5 m · s], when converted to volume, it becomes 25 [m 3 / s], which is the volume of water vapor generated every second.

また、タービン室の内径は0.5[m]であるので、タービン室を流れる水蒸気流の流速は50[m/s]となる。この水蒸気流の有する運動エネルギーは、水蒸気密度が0.412[kgf/m3]であるので1.310[kw/s]と計算される。
ここにラジアルタービン発電機の変換効率について、まず2[%]とした場合について述べる(変換効率を2.7[%]とした場合については、段落[0047]に後述する)。先の1.310[kw/s]の2[%]がラジアルタービン発電機により電気エネルギーとして回収されるものとすると、回収電力量は約94[kWh]となる。
Further, since the inner diameter of the turbine chamber is 0.5 [m], the flow velocity of the water vapor flow flowing through the turbine chamber is 50 [m / s]. The kinetic energy of the water vapor flow is calculated as 1.310 [kw / s] because the water vapor density is 0.412 [kgf / m 3 ].
Here, the case where the conversion efficiency of the radial turbine generator is set to 2 [%] will be described first (the case where the conversion efficiency is set to 2.7 [%] will be described later in paragraph [0047]). When 2% of the previous 1.310 [kw / s] is recovered as electric energy by the radial turbine generator, the recovered power amount is about 94 [kWh].

ステップ3:フィンチューブ形熱交換器による熱エネルギーの回収
フィンチューブ形熱交換器では、30[℃]の水蒸気が25[℃]に冷却・凝縮されて潜熱が放出される。ここで回収される熱エネルギーはステップ1で吸収される蒸発熱との差として把握できる。
水の気化熱は580.2[kcal/kg]であり、凝縮熱は583.1[kcal/kg]である。水蒸気が凝縮する際凝縮熱が冷却水に全て吸収されるとすれば、両者の差に相当する2.9[kcal/kg]だけ熱量が回収される。
単位時間当たりの水蒸気の発生量は31.4×60[kg/m2・h]であるので、潜熱と蒸発熱との差による回収エネルギーは+91[kWh/φ5m・h]となる。
Step 3: Recovery of heat energy by fin tube heat exchanger In the fin tube heat exchanger, 30 [° C.] water vapor is cooled and condensed to 25 [° C.] and latent heat is released. The thermal energy recovered here can be grasped as the difference from the heat of evaporation absorbed in step 1.
The heat of vaporization of water is 580.2 [kcal / kg], and the heat of condensation is 583.1 [kcal / kg]. If all the heat of condensation is absorbed by the cooling water when water vapor condenses, the amount of heat is recovered by 2.9 [kcal / kg] corresponding to the difference between the two.
Since the amount of water vapor generated per unit time is 31.4 × 60 [kg / m 2 · h], the recovered energy due to the difference between the latent heat and the evaporation heat is +91 [kWh / φ5 m · h].

ステップ4:全体のエネルギー収支
(1)海水の加熱エネルギー:−216[kWh/φ5m・h]
(2)発電エネルギー:+94[kWh]
(3)凝縮熱で回数されるエネルギー:+91[kWh/φ5m・h]
上記(1)〜(3)の合計は−31[kWh]なる。
従って、本システムでは毎時電力消費電力31[kWh]で、約1,884[kg]の淡水が製造できる。
Step 4: Overall energy balance (1) Heating energy of seawater: -216 [kWh / φ5m · h]
(2) Power generation energy: +94 [kWh]
(3) Energy counted by condensation heat: +91 [kWh / φ5m · h]
The sum of the above (1) to (3) is −31 [kWh].
Therefore, in this system, fresh water of about 1,884 [kg] can be produced with the power consumption of 31 [kWh] per hour.

なお、ラジアルタービン発電機の変換効率を2.7[%]として改めて計算すると、回収電力量は約127[kWh]となり、前述の全体のエネルギー収支は次になる。
(1)海水の加熱エネルギー:−216[kWh/φ5m・h]
(2)発電エネルギー:+127[kWh]
(3)凝縮熱で回数されるエネルギー:+91[kWh/φ5m・h]
上記(1)〜(3)の合計は+2[kWh]となり、外部からの電力供給なしに毎時、約1,884[kg]の淡水を製造することができる。
If the conversion efficiency of the radial turbine generator is calculated again as 2.7 [%], the recovered power amount is about 127 [kWh], and the overall energy balance is as follows.
(1) Heating energy of seawater: -216 [kWh / φ5m · h]
(2) Power generation energy: +127 [kWh]
(3) Energy counted by condensation heat: +91 [kWh / φ5m · h]
The sum of (1) to (3) is +2 [kWh], and approximately 1,884 [kg] of fresh water can be produced every hour without external power supply.

図1に示す本発明に使用する発電システムは、タービンを回す作動流体が海水を蒸発して得られる水蒸気であり、作動流体はタービン室外に排出されるので、一般にはオープンタイプと呼ばれる発電システムに分類される。しかし、本発明では作動流体にアンモニアを用いるクローズドタイプの発電システムとすることができる。図6にクローズドタイプの減圧沸騰形海水淡水化装置の第2の実施例を示す。 The power generation system used in the present invention shown in FIG. 1 is water vapor obtained by evaporating seawater as the working fluid that rotates the turbine. Since the working fluid is discharged outside the turbine chamber, the power generation system generally called an open type is used. being classified. However, in this invention, it can be set as the closed type electric power generation system which uses ammonia for a working fluid. FIG. 6 shows a second embodiment of the closed-type reduced-pressure boiling seawater desalination apparatus.

図1との相違点は、クローズド発電システム100である。本クローズドタイプの発電システムには作動流体にアンモニアを用いる。アンモニアは蒸発器103で気化し、ラジアルタービン101を回転させる。これによりラジアルタービン101に直結された発電機102が発電を行う。次いでアンモニアガスは凝縮器104で液化され、ポンプ105でアンモニアガス配管109内を矢示方向に輸送され、ここで再び蒸発器103に至って過熱されて気化する。凝縮器104の冷却は、海水用配管33からバルブ107で分岐させた海水配管108で行い、冷却用に使用された海水は水蒸気発生用の海水25として使用される。 A difference from FIG. 1 is a closed power generation system 100. In this closed type power generation system, ammonia is used as a working fluid. Ammonia is vaporized by the evaporator 103 and rotates the radial turbine 101. Thereby, the generator 102 directly connected to the radial turbine 101 generates power. Next, the ammonia gas is liquefied by the condenser 104, and is transported in the ammonia gas pipe 109 by the pump 105 in the direction of the arrow, where it reaches the evaporator 103 again and is superheated and vaporized. The condenser 104 is cooled by a seawater pipe 108 branched from the seawater pipe 33 by a valve 107, and the seawater used for cooling is used as the seawater 25 for generating steam.

アンモニアは有害物質ではあるが、系内にクローズドして使用されるので安全性に問題はない。また、本発電システムに於いて、アンモニアの蒸気圧は25℃において1.00[MPa]であり、30℃で1.17[MPa]である。従って25℃と30℃の差圧は0.17[MPa]となり、この差圧でラジアルタービン発電機101を駆動させることができる。
本第2の実施例では、スリット又は撹乱素子付フィンチューブ熱交換機14での熱エネルギー回収が十分機能し、加熱手段19での海水25の加熱が必ずしも必要でない状況に至る場合、特に有効なシステムであり、発電エネルギーは海水25の加熱以外に使用することができる。
Ammonia is a harmful substance, but there is no problem in safety because it is used closed in the system. In this power generation system, the vapor pressure of ammonia is 1.00 [MPa] at 25 ° C. and 1.17 [MPa] at 30 ° C. Therefore, the differential pressure between 25 ° C. and 30 ° C. is 0.17 [MPa], and the radial turbine generator 101 can be driven with this differential pressure.
In the second embodiment, a system that is particularly effective when the heat energy recovery in the fin tube heat exchanger 14 with slits or disturbance elements functions sufficiently and heating of the seawater 25 by the heating means 19 is not necessarily required. The power generation energy can be used in addition to heating the seawater 25.

第3の実施例となるクローズドタイプの減圧沸騰形海水淡水化装置を図7に示す。
図7は図6の変形例で、蒸発器103が凝縮室73に配置される。従って、凝縮室には蒸発器103と、スリット又は撹乱素子付フィンチューブ熱交換機14の2つが配置される。この結果、海水25が加熱されて発生する水蒸気の凝縮エネルギーは、蒸発器103とスリット又は撹乱素子付フィンチューブ熱交換機14の2段で回収される。
FIG. 7 shows a closed-type reduced-pressure boiling seawater desalination apparatus according to the third embodiment.
FIG. 7 is a modification of FIG. 6, and the evaporator 103 is disposed in the condensation chamber 73. Therefore, the evaporator 103 and two of the fin tube heat exchanger 14 with a slit or a disturbance element are arrange | positioned in a condensing chamber. As a result, the condensation energy of water vapor generated by heating the seawater 25 is recovered in two stages of the evaporator 103 and the slit or finned tube heat exchanger 14 with a disturbing element.

本実施例では、水蒸気の凝縮熱の回収が確実に行われるので、海水25の加熱温度を上昇させることが、比較的容易に実施できる。例えば、海水温を35℃とすると、35℃に於けるアンモニアの蒸気圧は1.35[MPa]となる。アンモニアの蒸気圧の25℃と35℃に於ける差圧は0.35[MPa]となりラジアルタービン発電機101の駆動は、海水温30℃と比較し、一層容易になる。 In this embodiment, the heat of condensation of the water vapor is reliably recovered, so that the heating temperature of the seawater 25 can be raised relatively easily. For example, when the seawater temperature is 35 ° C., the vapor pressure of ammonia at 35 ° C. is 1.35 [MPa]. The differential pressure between the vapor pressure of ammonia at 25 ° C. and 35 ° C. is 0.35 [MPa], and the driving of the radial turbine generator 101 is further facilitated as compared with the seawater temperature of 30 ° C.

10 減圧沸騰形海水淡水化装置
11 海水塔
12 淡水塔
13 連通管
14 スリット又は撹乱素子付フィンチューブ形熱交換器
15 真空ポンプ
16 海水槽
17 淡水槽
18 断熱材
19 加熱手段
23 ヒータ
25 海水
27 蒸発室
41 淡水
64 蒸発槽
65 凝縮槽
71 タービン室
72 ラジアルタービン
73 凝縮室


DESCRIPTION OF SYMBOLS 10 Vacuum boiling type seawater desalination apparatus 11 Seawater tower 12 Freshwater tower 13 Communication pipe 14 Fin tube type heat exchanger with a slit or a disturbance element 15 Vacuum pump 16 Seawater tank 17 Freshwater tank 18 Heat insulating material 19 Heating means
DESCRIPTION OF SYMBOLS 23 Heater 25 Seawater 27 Evaporating chamber 41 Fresh water 64 Evaporating tank 65 Condensing tank 71 Turbine chamber 72 Radial turbine 73 Condensing chamber


Claims (5)

海中より汲み上げた海水を、前記海中温度以上に加熱して、真空中で水分を蒸発させ、該蒸発させて作られる水蒸気や加熱海水を利用してタービン発電機を駆動させて発電させ、発電後に前記水蒸気を冷却して淡水として回収する発電機能付き減圧沸騰形海水淡水化装置であって、
大気と遮断されて海水中に立設され、底部が海水の収容される海水槽の海水中に開放される海水塔と、
大気と遮断されて淡水槽内の淡水に立設され、底部が前記淡水中に開放される淡水塔と、
一方が、前記海水塔の上部に機密を維持して連通し、他方が前記淡水塔に機密を維持して連通する連通管と、
前記海水を蒸発させる加熱手段と、
前記海水塔上部の海水の蒸発部に配置されて発電するタービン発電システムと、
前記水蒸気を冷却して淡水に凝縮させ、前記連通管内に流下させる冷却手段と、で構成され、
前記冷却手段がフィンチューブ形熱交換器(凝縮器)と、凝縮水受け皿とで構成されて、前記海水塔の上部空間に配置されており、
前記海水塔内の液面高さが、前記海水塔と前記連通管との連通位置より低いことを特徴とする発電機能付き減圧沸騰形海水淡水化装置。
Seawater pumped up from the sea is heated to above the sea temperature, the water is evaporated in a vacuum, and the turbine generator is driven using the water vapor and heated seawater produced by the evaporation. A reduced-pressure boiling seawater desalination apparatus with a power generation function for cooling the water vapor and collecting it as fresh water,
A seawater tower that is cut off from the atmosphere and standing in seawater, the bottom of which is opened in the seawater of the seawater tank in which seawater is stored;
A fresh water tower that is cut off from the atmosphere and is erected in fresh water in a fresh water tank, and whose bottom is opened into the fresh water;
One communicating with the upper part of the seawater tower while maintaining confidentiality, and the other communicating with the freshwater tower while maintaining confidentiality;
Heating means for evaporating the seawater;
A turbine power generation system that generates power by being disposed in the seawater evaporation section at the top of the seawater tower;
Cooling means for cooling the water vapor, condensing it into fresh water, and flowing down into the communication pipe,
The cooling means is composed of a fin tube heat exchanger (condenser) and a condensate tray, and is disposed in the upper space of the seawater tower,
A reduced-pressure boiling seawater desalination apparatus with a power generation function, wherein a liquid level in the seawater tower is lower than a communication position between the seawater tower and the communication pipe.
前記タービン発電システムがオープン発電システムであって、
前記海水塔上部から蒸発する水蒸気を導入するタービン室と、
前記タービン室に設置されるラジアルタービンと、
前記ラジアルタービンの回転軸に直結され回転駆動する同期発電機と、
前記水蒸気を前記タービン室から冷却手段にガイドする曲がりデフュザーとで構成され、
前記タービン室から排出される前記水蒸気が曲がりデフュザーにより、前記フィンチューブ形熱交換器のフィン全体に一様に誘導され、前記フィンチューブ形熱交換器のフィンに所定の角度範囲で衝突することを特徴とする請求項1に記載の発電機能付き減圧沸騰形海水淡水化装置。
The turbine power generation system is an open power generation system,
A turbine chamber for introducing water vapor evaporating from the upper part of the seawater tower;
A radial turbine installed in the turbine chamber;
A synchronous generator that is directly connected to the rotary shaft of the radial turbine and is rotationally driven;
A bent diffuser for guiding the water vapor from the turbine chamber to a cooling means;
The water vapor discharged from the turbine chamber is uniformly guided to the entire fins of the finned tube heat exchanger by a bent diffuser and collides with the fins of the finned tube heat exchanger in a predetermined angle range. The reduced-pressure boiling seawater desalination apparatus with a power generation function according to claim 1.
前記タービン発電システムがクローズド発電システムであって、
前記加熱手段の設置される海水中に設置される蒸発器と、
前記フィンチューブ形熱交換器に使用する冷却用海水の一部を分流させ冷却する凝縮器と、
アンモニアを作動流体とするラジアルタービンと、
該ラジアルタービンの回転軸に直結され回転駆動する同期発電機とで構成されることを特徴とする請求項1に記載の発電機能付き減圧沸騰形海水淡水化装置。
The turbine power generation system is a closed power generation system,
An evaporator installed in seawater in which the heating means is installed;
A condenser that diverts and cools part of the cooling seawater used in the finned tube heat exchanger;
A radial turbine using ammonia as a working fluid;
The reduced-pressure boiling seawater desalination apparatus with a power generation function according to claim 1, comprising a synchronous generator directly connected to a rotary shaft of the radial turbine and driven to rotate.
前記タービン発電システムがクローズド発電システムであって、
前記海水塔の上部空間に設置される蒸発器と、
前記フィンチューブ形熱交換器に使用する冷却用海水の一部を分流させ冷却する凝縮器と、
アンモニアを作動流体とするラジアルタービンと、
該ラジアルタービンの回転軸に直結され回転駆動する同期発電機とで構成されることを特徴とする請求項1に記載の発電機能付き減圧沸騰形海水淡水化装置。
The turbine power generation system is a closed power generation system,
An evaporator installed in an upper space of the seawater tower;
A condenser that diverts and cools part of the cooling seawater used in the finned tube heat exchanger;
A radial turbine using ammonia as a working fluid;
The reduced-pressure boiling seawater desalination apparatus with a power generation function according to claim 1, comprising a synchronous generator directly connected to a rotary shaft of the radial turbine and driven to rotate.
海中より汲み上げた海水を、前記海中温度以上に加熱して、真空中で水分を蒸発させ、蒸発させて作られる水蒸気でタービン発電機を駆動させて発電させ、発電後に前記水蒸気を冷却して淡水として回収する減圧沸騰形海水淡水化方法であって、
大気と遮断されて海水槽内の海水中に立設され、底部が前記海水中に開放される海水塔と、
大気と遮断されて淡水槽内の淡水中に立設され、底部が前記淡水中に開放される淡水塔と、
一方が、前記海水塔の上部に気密を維持して連通し、他方が前記淡水塔に気密を維持して連通する連通管と、
前記海水を蒸発させる加熱手段と、
前記加熱手段で作られる水蒸気が導入されるタービン室と、
前記タービン室に設置され前記水蒸気により回転駆動されて発電するタービン発電機と、
前記タービン室より排出される前記水蒸気をガイドする曲がりデフュザーと、
前記水蒸気を凝縮させて淡水にするフィンチューブ形熱交換器(凝縮器)と、
前記淡水を集め前記連通管内に流下させる凝縮水受け皿と、で構成されており、
前記加熱手段で蒸発させた水蒸気を前記タービン室に導入し、
前記タービンを回して前記タービン発電機に発電させ、
次いで、前記曲がりデフュザーで前記水蒸気を前記タービン室から、前記フィンチューブ形熱交換器にガイドし、
前記フィンチューブ形熱交換器で凝縮させて淡水を作成する発電機能付き減圧沸騰形海水淡水化方法。
Seawater pumped from the sea is heated to above the sea temperature to evaporate water in a vacuum, and a turbine generator is driven by steam generated by evaporation to generate power. A vacuum boiling type seawater desalination method to be recovered as
A sea water tower that is cut off from the atmosphere and is erected in seawater in a seawater tank, and whose bottom is open to the seawater;
A fresh water tower that is cut off from the atmosphere and is erected in fresh water in a fresh water tank, and whose bottom is open to the fresh water;
One communicating with the upper part of the seawater tower while maintaining airtightness, and the other communicating with the freshwater tower while maintaining airtightness;
Heating means for evaporating the seawater;
A turbine chamber into which steam produced by the heating means is introduced;
A turbine generator that is installed in the turbine chamber and is rotationally driven by the steam to generate electricity;
A curved diffuser for guiding the water vapor discharged from the turbine chamber;
A finned tube heat exchanger (condenser) that condenses the water vapor into fresh water;
A condensate tray that collects the fresh water and causes it to flow down into the communication pipe, and
Introducing water vapor evaporated by the heating means into the turbine chamber;
Turn the turbine to cause the turbine generator to generate power,
Next, the water vapor is guided from the turbine chamber to the finned tube heat exchanger by the bent diffuser,
A reduced-pressure boiling seawater desalination method with a power generation function for producing fresh water by condensing in the finned tube heat exchanger.
JP2014082396A 2014-04-13 2014-04-13 Reduced-pressure boiling-type seawater desalination apparatus with power generating function Pending JP2015202445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014082396A JP2015202445A (en) 2014-04-13 2014-04-13 Reduced-pressure boiling-type seawater desalination apparatus with power generating function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014082396A JP2015202445A (en) 2014-04-13 2014-04-13 Reduced-pressure boiling-type seawater desalination apparatus with power generating function

Publications (1)

Publication Number Publication Date
JP2015202445A true JP2015202445A (en) 2015-11-16

Family

ID=54596261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014082396A Pending JP2015202445A (en) 2014-04-13 2014-04-13 Reduced-pressure boiling-type seawater desalination apparatus with power generating function

Country Status (1)

Country Link
JP (1) JP2015202445A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062399A1 (en) * 2016-09-28 2018-04-05 株式会社大成化研 Powdered seasoning composition, food product using same, and method for producing powdered seasoning composition
KR101848683B1 (en) * 2017-10-31 2018-04-16 김승일 Sea to fresh water using solar energy
CN115013271A (en) * 2022-04-22 2022-09-06 东南大学 Multifunctional utilization device for ocean temperature difference energy
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
US11855324B1 (en) 2022-11-15 2023-12-26 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell with heat pump
US12040517B2 (en) 2023-05-09 2024-07-16 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell and methods of use thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062399A1 (en) * 2016-09-28 2018-04-05 株式会社大成化研 Powdered seasoning composition, food product using same, and method for producing powdered seasoning composition
KR101848683B1 (en) * 2017-10-31 2018-04-16 김승일 Sea to fresh water using solar energy
CN115013271A (en) * 2022-04-22 2022-09-06 东南大学 Multifunctional utilization device for ocean temperature difference energy
CN115013271B (en) * 2022-04-22 2023-08-04 东南大学 Multifunctional utilization device for ocean temperature difference energy
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
US11563229B1 (en) 2022-05-09 2023-01-24 Rahul S Nana Reverse electrodialysis cell with heat pump
US11611099B1 (en) 2022-05-09 2023-03-21 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11699803B1 (en) 2022-05-09 2023-07-11 Rahul S Nana Reverse electrodialysis cell with heat pump
US11855324B1 (en) 2022-11-15 2023-12-26 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell with heat pump
US12040517B2 (en) 2023-05-09 2024-07-16 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell and methods of use thereof

Similar Documents

Publication Publication Date Title
JP2015202445A (en) Reduced-pressure boiling-type seawater desalination apparatus with power generating function
US4302297A (en) Desalination apparatus with power generation
CN101481154B (en) Method and apparatus for seawater desalination by comprehensive utilization of solar energy
KR101109536B1 (en) Evaporative Desalination Apparatus of Sea Water Using Phase Changing Fluids
JP5398046B2 (en) Vacuum boiling desalination apparatus and method
KR20130122828A (en) Electrical power generation and seawater desalination system using solar energy for off-shore facilities
KR20130143219A (en) Electrical power generation and seawater desalination system using solar energy
CN201338952Y (en) Device capable of comprehensively utilizing solar energy to desalinize seawater
US8893496B2 (en) Sea water desalination and thermal energy conversion
CN111656123B (en) Mechanical vapor compression device with low compression ratio
RU2412909C1 (en) Desalination installation
CN103359800B (en) Stirling heat pump seawater desalination device
KR101323160B1 (en) Marine vertical multistage desalinator
CN105236504B (en) Single vacuum chamber hypergravity normal-temp multi-stage flash evaporation seawater desalting system
KR20110080215A (en) Water furification plant adopting vacuum evaporation method
WO1981002154A1 (en) A desalination apparatus with power generation
WO2017100243A1 (en) Dry cooling system using thermally induced vapor polymerization
CN102363531A (en) Heat circulating energy-saving low-cost seawater desalting method
JP2016128746A (en) Superheated steam generator
RU2359917C1 (en) Method of sea water desalination by utilising low-potential heat
US20160107097A1 (en) Distallation System with Heat Recovery
KR20130122829A (en) Seawater desalination system using solar energy for off-shore facilities
CN202493304U (en) Low-pressure low-temperature steam turbine set
KR101974014B1 (en) Evaporative Desalination Apparatus, Desalination Method and System therewith
KR101642842B1 (en) System for seawater concentrating and scale crystallizing