JP2015200330A - Toroidal type continuously variable transmission - Google Patents

Toroidal type continuously variable transmission Download PDF

Info

Publication number
JP2015200330A
JP2015200330A JP2014077593A JP2014077593A JP2015200330A JP 2015200330 A JP2015200330 A JP 2015200330A JP 2014077593 A JP2014077593 A JP 2014077593A JP 2014077593 A JP2014077593 A JP 2014077593A JP 2015200330 A JP2015200330 A JP 2015200330A
Authority
JP
Japan
Prior art keywords
continuously variable
variable transmission
toroidal
support plate
disks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014077593A
Other languages
Japanese (ja)
Other versions
JP2015200330A5 (en
JP6277834B2 (en
Inventor
寛孝 岸田
Hirotaka Kishida
寛孝 岸田
井上 英司
Eiji Inoue
英司 井上
豊田 俊郎
Toshiro Toyoda
俊郎 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2014077593A priority Critical patent/JP6277834B2/en
Publication of JP2015200330A publication Critical patent/JP2015200330A/en
Publication of JP2015200330A5 publication Critical patent/JP2015200330A5/ja
Application granted granted Critical
Publication of JP6277834B2 publication Critical patent/JP6277834B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Friction Gearing (AREA)
  • Control Of Transmission Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a structure in which gross slip can be effectively prevented from occurring at each traction part even when a support plate is inclined with change operation of a transmission ratio between respective disks.SOLUTION: A toroidal type continuously variable transmission includes gross slip prevention means. When in opposite parts of the side surface of a support plate and the shoulder part of a trunnion, at least one distance D between the opposite parts is a predetermined value α or less, the gross slip prevention means prevents occurrence of excessive slip at a traction part to be a rolling contact part between an axial one-side surface of each disk and the peripheral surface of each power roller.

Description

この発明は、自動車用変速装置として、又はポンプ等の各種産業用機械の運転速度を調節する為の変速装置として利用する、トロイダル型無段変速機の改良に関する。   The present invention relates to an improvement in a toroidal continuously variable transmission that is used as a transmission for an automobile or as a transmission for adjusting the operating speed of various industrial machines such as a pump.

自動車用変速装置としてトロイダル型無段変速機を使用する事が、一部で実施され、周知である。図9〜10は、従来構造のトロイダル型無段変速機の基本構成を示している。このトロイダル型無段変速機は、回転軸1の両端寄り部分の周囲に1対の外側ディスク2、2を、それぞれがトロイド曲面である内側面同士を互いに対向させた状態で、前記回転軸1と同期した回転を可能に支持している。又、この回転軸1の中間部周囲に筒状部材3を、この回転軸1に対する回転を可能に支持している。又、この筒状部材3の外周面には、軸方向中央部に歯車4を固設すると共に、軸方向両端部に1対の内側ディスク5、5を、スプライン係合により、前記筒状部材3と同期した回転を可能に支持している。又、この状態で、それぞれがトロイド曲面である、前記両内側ディスク5、5の内側面を、前記両外側ディスク2、2の内側面に対向させている。   The use of a toroidal type continuously variable transmission as a transmission for an automobile is partly implemented and well known. 9 to 10 show the basic configuration of a toroidal continuously variable transmission having a conventional structure. This toroidal-type continuously variable transmission has a pair of outer disks 2 and 2 around the portions near both ends of the rotating shaft 1 and the rotating shaft 1 with the inner side surfaces each being a toroidal curved surface facing each other. Supports the rotation synchronized with. A cylindrical member 3 is supported around the intermediate portion of the rotary shaft 1 so as to be rotatable with respect to the rotary shaft 1. Further, on the outer peripheral surface of the cylindrical member 3, a gear 4 is fixed at the center in the axial direction, and a pair of inner disks 5 and 5 are attached to both ends in the axial direction by spline engagement. The rotation synchronized with 3 is supported. In this state, the inner side surfaces of the inner disks 5 and 5, each of which is a toroidal curved surface, are opposed to the inner surfaces of the outer disks 2 and 2.

又、これら両外側ディスク2、2と前記両内側ディスク5、5との間に、それぞれの周面を球状凸面とした複数個のパワーローラ6、6を挟持している。これら各パワーローラ6、6は、それぞれトラニオン7、7に回転自在に支持されており、これら各トラニオン7、7は、それぞれ前記各ディスク2、5の中心軸に対し捩れの位置にある傾転軸8、8を中心とする揺動変位自在に支持されている。即ち、これら各トラニオン7、7は、それぞれの軸方向両端部に互いに同心に設けられた1対の傾転軸8、8と、これら各傾転軸8、8同士の間に存在する支持梁部9、9とを備えており、これら各傾転軸8、8が、前記トロイダル型無段変速機を収納したケーシングに対して支持された支持板10、10に対し、ラジアルニードル軸受11、11を介して、揺動及び軸方向の変位を可能に支持されている。この為に、前記両支持板10、10の四隅部分に、それぞれ円形の保持孔12、12を、これら両支持板10、10を貫通する状態で形成している。そして、これら各保持孔12、12の内周面と前記各傾転軸8、8の外周面との間に、それぞれ前記各ラジアルニードル軸受11、11を設けている。これら各ラジアルニードル軸受11、11は、外周面が部分球面状の凸曲面である外輪13、13を備え、これら各外輪13、13を前記各保持孔12、12にがたつきなく、且つ、これら各保持孔12、12の軸方向に関する変位及び若干の揺動変位を可能に内嵌している。前記各ラジアルニードル軸受11、11を構成するニードル14、14は、前記各傾転軸8、8の外周面に設けた内輪軌道と前記各外輪13、13の内周面に設けた外輪軌道との間に、転動自在に設けている。   Further, a plurality of power rollers 6 and 6 each having a spherical convex surface are sandwiched between the outer disks 2 and 2 and the inner disks 5 and 5. The power rollers 6 and 6 are rotatably supported by trunnions 7 and 7, respectively. The trunnions 7 and 7 are tilted with respect to the central axes of the disks 2 and 5, respectively. The shafts 8 and 8 are supported so as to be swingable and displaceable. That is, each of the trunnions 7 and 7 includes a pair of tilting shafts 8 and 8 provided concentrically with each other at both axial ends, and a supporting beam existing between the tilting shafts 8 and 8. Portions 9 and 9, and these tilting shafts 8 and 8 are supported by radial needle bearings 11 and 10 with respect to support plates 10 and 10 supported by a casing housing the toroidal-type continuously variable transmission. 11 is supported so as to be swingable and axially displaceable. For this purpose, circular holding holes 12 and 12 are formed at the four corners of the support plates 10 and 10 so as to penetrate the support plates 10 and 10, respectively. The radial needle bearings 11 and 11 are provided between the inner peripheral surfaces of the holding holes 12 and 12 and the outer peripheral surfaces of the tilt shafts 8 and 8, respectively. Each of these radial needle bearings 11, 11 includes outer rings 13, 13 whose outer peripheral surfaces are convex curved surfaces that are partially spherical, and these outer rings 13, 13 do not rattle the holding holes 12, 12, and The holding holes 12 and 12 are fitted so as to be capable of displacement in the axial direction and slight swing displacement. The needles 14, 14 constituting each of the radial needle bearings 11, 11 are an inner ring raceway provided on the outer peripheral surface of each tilt shaft 8, 8 and an outer ring raceway provided on the inner peripheral surface of each outer ring 13, 13. It is provided so that it can roll freely.

又、前記各パワーローラ6、6は、前記各トラニオン7、7を構成する支持梁部9、9の内側面に、基半部と先半部とが互いに偏心した支持軸15、15と、複数の転がり軸受とを介して、これら各支持軸15、15の先半部回りの回転、及び、これら各支持軸15、15の基半部を中心とする若干の揺動変位可能に支持されている。   Each of the power rollers 6, 6 includes support shafts 15, 15 having base half portions and tip half portions eccentric from each other on the inner side surfaces of the support beam portions 9, 9 constituting the trunnions 7, 7, respectively. Via a plurality of rolling bearings, the support shafts 15 and 15 are supported so as to be able to rotate around the front half of each of the support shafts 15 and 15 and to be slightly oscillating and displaced about the base half of each of the support shafts 15 and 15. ing.

上述の様なトロイダル型無段変速機の運転時には、駆動軸16により一方(図9の左方)の外側ディスク2を、ローディングカム式の押圧装置17を介して回転駆動する。この結果、前記回転軸1の両端部に支持された1対の外側ディスク2、2が、互いに近付く方向に押圧されつつ同期して回転する。そして、この回転が、前記各パワーローラ6、6を介して前記両内側ディスク5、5に伝わり、前記歯車4から取り出される。前記回転軸1とこの歯車4との間の変速比を変える場合は、油圧式のアクチュエータ28、28により前記各トラニオン7、7を前記各傾転軸8、8の軸方向に変位させる。この結果、前記各パワーローラ6、6の周面と前記各ディスク2、5の内側面との転がり接触部(トラクション部)に作用する、接線方向の力の向きが変化する(転がり接触部にサイドスリップが発生する)。そして、この力の向きの変化に伴って前記各トラニオン7、7が、自身の傾転軸8、8を中心に揺動し、前記各パワーローラ6、6の周面と前記各ディスク2、5の内側面との接触位置が変化する。これら各パワーローラ6、6の周面を、前記両外側ディスク2、2の内側面の径方向外寄り部分と、前記両内側ディスク5、5の内側面の径方向内寄り部分とに転がり接触させれば、前記回転軸1と前記歯車4との間の変速比が増速側になる。これに対して、前記各パワーローラ6、6の周面を、前記両外側ディスク2、2の内側面の径方向内寄り部分と、前記両内側ディスク5、5の内側面の径方向外寄り部分とに転がり接触させれば、前記回転軸1と前記歯車4との間の変速比が減速側になる。   During the operation of the toroidal-type continuously variable transmission as described above, one of the outer disks 2 (left side in FIG. 9) is rotationally driven by the drive shaft 16 via a loading cam type pressing device 17. As a result, the pair of outer disks 2 and 2 supported at both ends of the rotating shaft 1 rotate in synchronization while being pressed in a direction approaching each other. The rotation is transmitted to the inner disks 5 and 5 through the power rollers 6 and 6 and is taken out from the gear 4. When changing the gear ratio between the rotary shaft 1 and the gear 4, the trunnions 7, 7 are displaced in the axial direction of the tilt shafts 8, 8 by hydraulic actuators 28, 28. As a result, the direction of the tangential force acting on the rolling contact portion (traction portion) between the peripheral surface of each of the power rollers 6 and 6 and the inner surface of each of the disks 2 and 5 changes (in the rolling contact portion). Side slip occurs). As the direction of the force changes, the trunnions 7 and 7 swing around their tilting shafts 8 and 8, and the peripheral surfaces of the power rollers 6 and 6 and the disks 2 and 8. The contact position with the inner surface of 5 changes. The peripheral surfaces of these power rollers 6 and 6 are in rolling contact with the radially outer portions of the inner surfaces of the outer disks 2 and 2 and the radially inner portions of the inner surfaces of the inner disks 5 and 5. If it does so, the gear ratio between the said rotating shaft 1 and the said gearwheel 4 will become a speed-up side. On the other hand, the peripheral surfaces of the power rollers 6 and 6 are arranged radially inwardly on the inner side surfaces of the outer disks 2 and 2 and radially outward of the inner surfaces of the inner disks 5 and 5. If it is brought into rolling contact with the portion, the transmission gear ratio between the rotary shaft 1 and the gear 4 is reduced.

上述の様なトロイダル型無段変速機の運転時には、動力の伝達に供される各部材、即ち、前記各ディスク2、5と前記各パワーローラ6、6とが、前記押圧装置17が発生する押圧力に基づいて弾性変形する。そして、この弾性変形に伴って、前記各ディスク2、5が軸方向に変位する。又、前記押圧装置17が発生する押圧力は、前記トロイダル型無段変速機により伝達するトルクが大きくなる程大きくなり、それに伴って前記各部材2、5、6の弾性変形量も多くなる。従って、前記トルクの変動に拘らず、前記各ディスク2、5の内側面と前記各パワーローラ6、6の周面との接触状態を適正に維持する為に、前記各トラニオン7、7に対してこれら各パワーローラ6、6を、前記各ディスク2、5の軸方向に変位させる機構が必要になる。上述した従来構造の第1例の場合には、前記各パワーローラ6、6を支持した前記各支持軸15、15の先半部を、同じく基半部を中心として揺動変位させる事により、前記各パワーローラ6、6を前記軸方向に変位させる様にしている。   During operation of the toroidal type continuously variable transmission as described above, the members used for power transmission, that is, the disks 2 and 5 and the power rollers 6 and 6 are generated by the pressing device 17. Elastically deforms based on the pressing force. Then, with the elastic deformation, the disks 2 and 5 are displaced in the axial direction. Further, the pressing force generated by the pressing device 17 increases as the torque transmitted by the toroidal continuously variable transmission increases, and the elastic deformation amount of the members 2, 5, 6 increases accordingly. Therefore, in order to properly maintain the contact state between the inner surface of each of the disks 2 and 5 and the peripheral surface of each of the power rollers 6 and 6 regardless of the fluctuation of the torque, Therefore, a mechanism for displacing the power rollers 6 and 6 in the axial direction of the disks 2 and 5 is required. In the case of the above-described first example of the conventional structure, the tip half of each of the support shafts 15 and 15 that support the power rollers 6 and 6 is similarly oscillated and displaced about the base half. The power rollers 6 and 6 are displaced in the axial direction.

上述の様な従来構造の第1例の場合、前記各パワーローラ6、6を前記軸方向に変位させる為の構造が複雑で、部品製作、部品管理、組立作業が何れも面倒になり、コストが嵩む事が避けられない。この様な問題を解決する為の技術として特許文献1には、図11〜16に示す様な構造が記載されている。尚、この従来構造の第2例の特徴は、トラニオン7aに対してパワーローラ6aを、各ディスク2、5(図9参照)の軸方向の変位を可能に支持する部分の構造にあり、トロイダル型無段変速機全体としての基本的構造及び作用は、前述の図7〜8に示した従来構造の第1例と同様である。   In the case of the first example of the conventional structure as described above, the structure for displacing each of the power rollers 6 and 6 in the axial direction is complicated, and parts manufacturing, parts management, and assembly work are all troublesome and costly. It is inevitable that the volume increases. As a technique for solving such a problem, Patent Document 1 describes a structure as shown in FIGS. The second example of this conventional structure is characterized by the structure of the portion that supports the trunnion 7a so that the power roller 6a can be displaced in the axial direction of each disk 2, 5 (see FIG. 9). The basic structure and operation of the type continuously variable transmission as a whole are the same as those of the first example of the conventional structure shown in FIGS.

前記従来構造の第2例を構成するトラニオン7aは、両端部に互いに同心に設けられた1対の傾転軸8a、8bと、これら両傾転軸8a、8b同士の間に存在し、少なくとも各ディスク2、5の径方向(図12、15、16の上下方向)に関する内側(図12、15、16の上側)の側面を円筒状凸面18とした、支持梁部9aとを備える。前記両傾転軸8a、8bは、それぞれラジアルニードル軸受11a、11aを介して、支持板10、10(図10参照)に、揺動及び軸方向の変位を可能に支持する。   The trunnion 7a constituting the second example of the conventional structure exists between a pair of tilting shafts 8a and 8b concentrically provided at both ends, and between these tilting shafts 8a and 8b, and at least And a support beam portion 9a having a cylindrical convex surface 18 on the inner side (upper side in FIGS. 12, 15, 16) in the radial direction of each disk 2, 5 (the vertical direction in FIGS. 12, 15, 16). The two tilting shafts 8a and 8b are supported on the support plates 10 and 10 (see FIG. 10) through radial needle bearings 11a and 11a, respectively, so as to be swingable and axially displaceable.

又、前記円筒状凸面18の中心軸イは、図12、15に示す様に、前記両傾転軸8a、8bの中心軸ロと平行で、これら両傾転軸8a、8bの中心軸ロよりも、前記各ディスク2、5の径方向に関して外側(図12、15、16の下側)に存在する。又、前記支持梁部9aとパワーローラ6aの外側面との間に設けるスラスト玉軸受19を構成する外輪20の外側面に、部分円筒面状の凹部21を、この外側面を径方向に横切る状態で設けている。そして、この凹部21と、前記支持梁部9aの円筒状凸面18とを係合させ、前記トラニオン7aに対して前記外輪20を、前記各ディスク2、5の軸方向に関する揺動変位を可能に支持している。   Further, as shown in FIGS. 12 and 15, the center axis A of the cylindrical convex surface 18 is parallel to the center axis B of the both tilt axes 8a and 8b, and the center axis B of the both tilt axes 8a and 8b. Rather than the outer side (the lower side of FIGS. 12, 15, 16) in the radial direction of the disks 2, 5. Further, a concave portion 21 having a partially cylindrical surface is radially crossed on the outer surface of the outer ring 20 constituting the thrust ball bearing 19 provided between the support beam portion 9a and the outer surface of the power roller 6a. It is provided in the state. Then, the concave portion 21 is engaged with the cylindrical convex surface 18 of the support beam portion 9a so that the outer ring 20 can be oscillated and displaced in the axial direction of the disks 2 and 5 with respect to the trunnion 7a. I support it.

又、前記外輪20の内側面中央部に支持軸15aを、この外輪20と一体に固設して、前記パワーローラ6aをこの支持軸15aの周囲に、ラジアルニードル軸受22を介して、回転自在に支持している。更に、前記トラニオン7aの内側面のうち、前記支持梁部9aの両端部と1対の傾転軸8a、8bとの連続部に、互いに対向する1対の段差面23、23を設けている。そして、これら両段差面23、23と、前記スラスト玉軸受19を構成する外輪20の外周面とを、当接若しくは近接対向させて、前記パワーローラ6aからこの外輪20に加わるトラクション力を、何れかの段差面23、23で支承可能としている。   Further, a support shaft 15a is fixed to the center of the inner surface of the outer ring 20, and the power roller 6a is freely rotatable around the support shaft 15a via a radial needle bearing 22. I support it. Further, a pair of stepped surfaces 23 and 23 facing each other are provided on the inner surface of the trunnion 7a at a continuous portion between both ends of the support beam portion 9a and the pair of tilting shafts 8a and 8b. . Then, these stepped surfaces 23, 23 and the outer peripheral surface of the outer ring 20 constituting the thrust ball bearing 19 are brought into contact with or in close proximity to each other, and the traction force applied from the power roller 6a to the outer ring 20 is It can be supported by the stepped surfaces 23, 23.

上述の様に構成する従来構造の第2例のトロイダル型無段変速機によれば、前記パワーローラ6aを前記各ディスク2、5の軸方向に変位させて、構成各部材の弾性変形量の変化に拘らず、このパワーローラ6aの周面と前記各ディスク2、5との接触状態を適正に維持できる構造を、簡単で低コストに構成できる。
即ち、トロイダル型無段変速機の運転時に、各ディスク2、5、各パワーローラ6a等の弾性変形に基づき、これら各パワーローラ6aをこれら各ディスク2、5の軸方向に変位させる必要が生じると、これら各パワーローラ6aを回転自在に支持している前記スラスト玉軸受19の外輪20が、外側面に設けた部分円筒面状の凹部21と支持梁部9aの円筒状凸面18との当接面を滑らせつつ、この円筒状凸面18の中心軸イを中心として揺動変位する。この揺動変位に基づき、前記各パワーローラ6aの周面のうちで、前記各ディスク2、5の軸方向片側面と転がり接触する部分が、これら各ディスク2、5の軸方向に変位し、前記接触状態を適正に維持する。
According to the toroidal type continuously variable transmission of the second example of the conventional structure configured as described above, the power roller 6a is displaced in the axial direction of each of the disks 2 and 5, and the amount of elastic deformation of each constituent member is increased. Regardless of the change, a structure capable of appropriately maintaining the contact state between the peripheral surface of the power roller 6a and the disks 2 and 5 can be configured simply and at low cost.
That is, when the toroidal continuously variable transmission is operated, it is necessary to displace the power rollers 6a in the axial direction of the disks 2 and 5 based on elastic deformation of the disks 2 and 5 and the power rollers 6a. And the outer ring 20 of the thrust ball bearing 19 that rotatably supports each of the power rollers 6a is in contact with a concave portion 21 having a partial cylindrical surface provided on the outer surface and a cylindrical convex surface 18 of the support beam portion 9a. While sliding the contact surface, the cylindrical convex surface 18 is oscillated and displaced about the central axis A. Based on this oscillating displacement, a portion of the peripheral surface of each power roller 6a that is in rolling contact with one axial side surface of each disk 2, 5 is displaced in the axial direction of each disk 2, 5; The contact state is properly maintained.

前述した通り、前記円筒状凸面18の中心軸イは、変速動作の際に各トラニオン7aの揺動中心となる傾転軸8a、8bの中心軸ロよりも、前記各ディスク2、5の径方向に関して外側に存在する。従って、前記円筒状凸面18の中心軸イを中心とする揺動変位の半径は、前記変速動作の際の揺動半径よりも大きく、前記両外側ディスク2、2と前記両内側ディスク5、5との間の変速比の変動に及ぼす影響は少ない(無視できるか、容易に修正できる範囲に留まる)。   As described above, the central axis A of the cylindrical convex surface 18 is larger in diameter than the central axes B of the tilting shafts 8a and 8b, which are the swing centers of the trunnions 7a during the shifting operation. Exists with respect to the direction. Therefore, the radius of the rocking displacement about the central axis A of the cylindrical convex surface 18 is larger than the rocking radius at the time of the speed change operation, and the both outer disks 2, 2 and the both inner disks 5, 5. Has little effect on the change in the transmission ratio between (and can be neglected or remain within an easily modifiable range).

各ディスク2、5の軸方向に関する各パワーローラ6、6aの変位を許容する構造の如何に拘わらず、トロイダル型無段変速機の変速比を変更する際には、上下1対の支持板10、10が水平方向(図9の左右方向)に対し傾斜する傾向になる。即ち、前記トロイダル型無段変速機の変速比を変更する際には、各アクチュエータ26、26により各トラニオン7、7aを、それぞれの両端部に設けられた傾転軸8、8a、8bの軸方向に変位させる。この時、前記両支持板10、10の保持孔12、12の内周面と、ラジアルニードル軸受11、11を構成する外輪13、13の外周面との摩擦により前記両支持板10、10に、前記各傾転軸8、8a、8bの軸方向の力が加わる。この力の作用方向は、図10の左右両側で上下逆方向になる為、前記両支持板10、10が傾斜する傾向になる。そして、前記トロイダル型無段変速機の変速比を、減速側又は増速側にのみ繰り返し変化させると、前記両支持板10、10の傾斜角度は大きくなる。これら両支持板11、11の傾斜角度が大きくなると、これら両支持板10、10の側面と、前記各トラニオン7、7aの端面のうち、前記各傾転軸8、8a、8bからそれぞれ支持梁部9、9aの側に外れた肩部24、24とが当接(接触)する。この状態では、前記各トラニオン7、7aに回転自在に支持された各パワーローラ6、6aによって伝達する動力(トルク)の大きさも、これら各パワーローラ6、6a毎に不一致になる可能性がある。この結果、一部のパワーローラ6、6aが、他のパワーローラ6、6aよりも大きなトルクを伝達する事になる(トラクション部に加わる接線力が大きくなる)。そして、大きなトルクを伝達するパワーローラ6、6aは、他のパワーローラ6、6aに比べて大きなトラクション係数(=接線力/法線力)で運転される事になる為、実際の運転状態を表す運転トラクション係数(各パワーローラ6、6aが伝達するトルクに応じた接線力/法線力)と、グロススリップを生じる事なく動力伝達を行える値の限界値を表す限界トラクション係数との差(余裕代、安全マージン)が減少し、グロススリップを発生させ易くなる。   Regardless of the structure that allows displacement of the power rollers 6 and 6a in the axial direction of the disks 2 and 5, when changing the gear ratio of the toroidal type continuously variable transmission, a pair of upper and lower support plates 10 10 tends to be inclined with respect to the horizontal direction (left-right direction in FIG. 9). That is, when changing the gear ratio of the toroidal-type continuously variable transmission, the trunnions 7 and 7a are moved by the actuators 26 and 26 to the shafts of the tilt shafts 8, 8a and 8b provided at both ends. Displace in the direction. At this time, due to friction between the inner peripheral surfaces of the holding holes 12 and 12 of the support plates 10 and 10 and the outer peripheral surfaces of the outer rings 13 and 13 constituting the radial needle bearings 11 and 11, A force in the axial direction of each of the tilting shafts 8, 8a, 8b is applied. The direction in which this force is applied is opposite in the vertical direction on both the left and right sides in FIG. 10, and therefore, the support plates 10 and 10 tend to be inclined. When the gear ratio of the toroidal continuously variable transmission is repeatedly changed only to the deceleration side or the acceleration side, the inclination angles of the support plates 10 and 10 are increased. When the inclination angles of both the support plates 11 and 11 are increased, the support beams from the inclined shafts 8, 8 a, and 8 b of the side surfaces of the both support plates 10 and 10 and the end surfaces of the trunnions 7 and 7 a, respectively. The shoulders 24 and 24 that have come off to the side of the parts 9 and 9a come into contact (contact). In this state, the magnitude of the power (torque) transmitted by the power rollers 6 and 6a rotatably supported by the trunnions 7 and 7a may be inconsistent for the power rollers 6 and 6a. . As a result, some of the power rollers 6 and 6a transmit a larger torque than the other power rollers 6 and 6a (the tangential force applied to the traction portion increases). The power rollers 6 and 6a that transmit a large torque are operated with a larger traction coefficient (= tangential force / normal force) than the other power rollers 6 and 6a. The difference between the driving traction coefficient (the tangential force / normal force according to the torque transmitted by each power roller 6 and 6a) and the limit traction coefficient that represents the limit value of power transmission without causing gross slip ( The margin (safety margin) is reduced, and gloss slip is likely to occur.

運転トラクション係数が限界トラクション係数を上回る事態は、トラクション部でのグロススリップの発生防止の為に避けなければならない。この為に、例えば、ローディングカム式の押圧装置17が発生する押圧力を十分に大きくする{トロイダル型無段変速機の運転時に要求される押圧力の最大値に規制して、前記各トラクション部に付与される押し付け力(法線力)を大きくする}事が考えられる。但し、この場合には、運転状況によっては、前記各トラクション部の面圧が過大になり、トロイダル型無段変速機の伝達効率及び耐久性の低下が問題になる。そこで、押圧装置として、例えば特許文献2に記載されている様に、トラクション部の面圧(押圧力)を細かに調節できる、油圧式の押圧装置を使用する事が考えられる。但し、トラクション部のトラクション係数を低く抑えるべく、導入する油圧をむやみに高くしただけでは、やはり伝達効率及び耐久性の低下を招く。   The situation where the driving traction coefficient exceeds the limit traction coefficient must be avoided to prevent the occurrence of gross slip in the traction section. For this purpose, for example, the pressing force generated by the loading cam type pressing device 17 is made sufficiently large {restricted to the maximum value of the pressing force required when the toroidal type continuously variable transmission is operated, It is conceivable to increase the pressing force (normal force) applied to. However, in this case, depending on the driving situation, the surface pressure of each traction section becomes excessive, and the transmission efficiency and durability of the toroidal continuously variable transmission are problematic. Therefore, as a pressing device, for example, as described in Patent Document 2, it is conceivable to use a hydraulic pressing device that can finely adjust the surface pressure (pressing force) of the traction portion. However, if the hydraulic pressure to be introduced is increased excessively in order to keep the traction coefficient of the traction section low, the transmission efficiency and durability are also lowered.

特許文献3には、トラニオン(摩擦車支持部材)の傾転軸を支持板(リンク)に対し揺動可能に支持する為のラジアルニードル軸受(軸受)を構成する外輪(継手)の外周面を、母線形状が部分円弧状(部分球面状)の凸曲面(又は凹曲面)とすると共に、この外輪を内嵌する前記支持板の保持孔(継手嵌合孔)の内周面を、母線形状が部分円弧状の凹曲面(又は凸曲面)とした構造が記載されている。この様な特許文献3に記載された構造の場合、前記支持板が傾斜する傾向となると、この支持板に元の位置に戻る(傾斜角度を小さくする)方向のモーメントが作用する。又、特許文献4には、トラニオンの肩部と、支持板の側面との間の隙間の大きさを適切に規制する事で、各パワーローラの伝達トルクにばらつきが生じるのを防止する技術が記載されている。但し、前記特許文献3、4に記載された何れの発明の場合も、トロイダル型無段変速機の変速比を、減速側又は増速側にのみ繰り返し変化させると、支持板の傾斜角度が大きくなって、この支持板の側面とトラニオンの肩部とが当接する可能性がある。   Patent Document 3 discloses an outer peripheral surface of an outer ring (joint) constituting a radial needle bearing (bearing) for supporting a tilt shaft of a trunnion (friction vehicle support member) so as to be swingable with respect to a support plate (link). The bus bar shape is a convex surface (or concave surface) with a partial arc shape (partial spherical shape), and the inner peripheral surface of the holding hole (joint fitting hole) of the support plate that fits the outer ring is a bus bar shape. Describes a structure with a partially arcuate concave curved surface (or convex curved surface). In the case of such a structure described in Patent Document 3, when the support plate tends to tilt, a moment in a direction returning to the original position (decreasing the tilt angle) acts on the support plate. Patent Document 4 discloses a technique for preventing variation in the transmission torque of each power roller by appropriately regulating the size of the gap between the shoulder portion of the trunnion and the side surface of the support plate. Are listed. However, in any of the inventions described in Patent Documents 3 and 4, if the gear ratio of the toroidal type continuously variable transmission is repeatedly changed only to the deceleration side or the acceleration side, the inclination angle of the support plate becomes large. Thus, there is a possibility that the side surface of the support plate and the shoulder portion of the trunnion come into contact with each other.

又、特許文献5には、上下1対の支持板(アッパリンク及びロアリンク)同士を補強部材(上下連結リンク)により互いに連結する事で、トラニオン(パワーローラ支持部材)の肩部と前記支持板の側面とが当接する際に、総てのトラニオンの肩部とこの支持板の側面とを同時に当接させる事ができる構造が記載されている。但し、前記特許文献5に記載された発明の場合、トロイダル型無段変速機を構成する各部材の製造誤差や組立誤差等の蓄積により、総てのトラニオンの肩部と前記支持板の側面とを同時に当接させ難くなる可能性がある。又、前記補強部材を設ける事で、前記トロイダル型無段変速機の製造コストが増大したり、このトロイダル型無段変速機全体が大型・重量化する可能性がある。
一方、特許文献6には、上下1対の支持板同士の間に弾性部材を設け、これら両支持板に互いに離れる方向の弾力を付与する事で、トロイダル型無段変速機の変速時に、これら両支持板の側面とトラニオンの肩部とが当接するのを防止する技術が記載されている。但し、この様な特許文献6に記載された発明の場合も、前記弾性部材を設ける事で、前記トロイダル型無段変速機の製造コストが増大したり、このトロイダル型無段変速機全体が大型・重量化する可能性がある。
In Patent Document 5, a pair of upper and lower support plates (upper link and lower link) are connected to each other by a reinforcing member (upper and lower connection link), so that the shoulder of the trunnion (power roller support member) and the support A structure is described in which the shoulders of all trunnions and the side surfaces of the support plate can be in contact with each other simultaneously when the side surfaces of the plate come into contact with each other. However, in the case of the invention described in Patent Document 5, all trunnion shoulders and side surfaces of the support plate are caused by accumulation of manufacturing errors, assembly errors, etc. of each member constituting the toroidal-type continuously variable transmission. May be difficult to contact at the same time. In addition, the provision of the reinforcing member may increase the manufacturing cost of the toroidal continuously variable transmission, and may increase the size and weight of the entire toroidal continuously variable transmission.
On the other hand, in Patent Document 6, an elastic member is provided between a pair of upper and lower support plates, and elastic force in a direction away from each other is applied to both the support plates, so that these can be changed during the shifting of the toroidal type continuously variable transmission. A technique for preventing the side surfaces of both support plates from contacting the shoulders of the trunnion is described. However, in the case of the invention described in Patent Document 6 as well, the provision of the elastic member increases the manufacturing cost of the toroidal continuously variable transmission, or the entire toroidal continuously variable transmission is large.・ There is a possibility of weight.

特開2008−25821号公報JP 2008-25821 A 特開2003−130159号公報JP 2003-130159 A 特開2000−274504号公報JP 2000-274504 A 特開2002−213552号公報JP 2002-213552 A 特開2003−35349号公報JP 2003-35349 A 特開2006−308036号公報JP 2006-308036 A

本発明は、上述の様な事情に鑑み、各ディスク同士の間の変速比の変更に伴って、支持板が傾斜した場合にも、各トラクション部でグロススリップが発生する事を有効に防止できる、トロイダル型無段変速機の構造を実現すべく発明したものである。   In view of the circumstances as described above, the present invention can effectively prevent the occurrence of gross slip in each traction portion even when the support plate is inclined in accordance with the change in the gear ratio between the disks. Invented to realize the structure of the toroidal-type continuously variable transmission.

本発明のトロイダル型無段変速機は、少なくとも1対のディスクと、複数の支持部材と、支持板と、これら各支持部材と同数のパワーローラとを備える。
このうちの各ディスクは、それぞれが断面円弧形のトロイド曲面である互いの軸方向片側面同士を対向させた状態で、互いに同心に、且つ、相対回転を自在に支持されている。
又、前記各支持部材は、軸方向に関して前記各ディスクの軸方向片側面同士の間位置にそれぞれ複数個ずつ、これら各ディスクの中心軸に対し捩れの位置にある傾転軸を中心とする揺動変位を自在に設けられている。
又、前記支持板は、前記各支持部材の両端部に設けられた前記各傾転軸を揺動及び軸方向の変位を許容する状態で支持する為のものである。
又、前記各パワーローラは、前記各支持部材に回転自在に支持され、球状凸面としたそれぞれの周面を、前記各ディスクの軸方向片側面にそれぞれ転がり接触させている。
The toroidal continuously variable transmission of the present invention includes at least a pair of disks, a plurality of support members, a support plate, and the same number of power rollers as the support members.
Each of these disks is supported concentrically and freely rotating relative to each other in a state in which the respective one side surfaces in the axial direction, each of which is a toroidal curved surface having an arc cross section, are opposed to each other.
In addition, each of the support members has a plurality of swings with respect to the axial direction, and each of the support members is pivoted about a tilt shaft that is twisted with respect to the central axis of each disk. Dynamic displacement is provided freely.
The support plate is for supporting the tilt shafts provided at both ends of the support members in a state in which the tilt shafts are allowed to swing and to be displaced in the axial direction.
The power rollers are rotatably supported by the support members, and the circumferential surfaces of the spherical convex surfaces are in rolling contact with one axial side surface of the disks.

特に、本発明のトロイダル型無段変速機に於いては、前記支持板の側面と、前記各支持部材の端面との対向部のうち、少なくとも1箇所の対向部の間隔が所定値以下である(この間隔が0、即ち、支持板の側面と支持部材の端面とが当接している状態を含む)場合に作動して、前記各ディスクの軸方向片側面と前記各パワーローラの周面との転がり接触部であるトラクション部での過大な滑りの発生を防止する、グロススリップ防止手段を備えている。   In particular, in the toroidal type continuously variable transmission according to the present invention, at least one of the facing portions between the side surface of the support plate and the end surface of each of the support members has a predetermined interval or less. (This interval is 0, that is, including a state in which the side surface of the support plate and the end surface of the support member are in contact), and the axial side surface of each disk and the peripheral surface of each power roller There is provided gloss slip prevention means for preventing the occurrence of excessive slipping at the traction portion which is the rolling contact portion.

上述の様な本発明のトロイダル型無段変速機を実施する場合に、例えば請求項2に記載した発明の様に、油圧室への油圧の導入に伴って前記各ディスクを互いに近付く方向に押圧する油圧式の押圧装置を備えるものとする。又、前記グロススリップ防止手段を、走行状態を切り換える為のシフトレバーを走行状態(Dレンジ又はRレンジ)に切り換えた状態で、前記押圧装置の発生する押圧力の大きさを決定する為の計算に用いられる、前記トラクション部のトラクション係数の値を、前記支持板の側面と、前記各支持部材の端面との対向部のうちの総ての対向部の間隔が前記所定値よりも大きい場合と比較して、小さい値に設定するものとする。
又、例えば請求項3に記載した発明の様に、前記グロススリップ防止手段を、走行状態を切り換える為のシフトレバーを非走行状態(Pレンジ又はNレンジ)に切り換えた状態で、前記少なくとも1箇所の対向部の間隔を拡げる方向に前記各ディスク同士の間の変速比を変更するものとする。
When implementing the toroidal type continuously variable transmission of the present invention as described above, for example, as in the invention described in claim 2, the respective disks are pressed toward each other as the hydraulic pressure is introduced into the hydraulic chamber. A hydraulic pressing device is provided. Further, the gloss slip prevention means is calculated for determining the magnitude of the pressing force generated by the pressing device while the shift lever for switching the traveling state is switched to the traveling state (D range or R range). The value of the traction coefficient of the traction portion used in the case where the distance between all the facing portions of the facing portions of the side surface of the support plate and the end surface of each support member is larger than the predetermined value. In comparison, a small value is set.
Further, for example, as in the invention described in claim 3, the gloss slip prevention means is configured such that the shift lever for switching the running state is switched to the non-running state (P range or N range), and the at least one location. It is assumed that the gear ratio between the disks is changed in a direction in which the distance between the opposing portions is increased.

或いは、前記グロススリップ防止手段を、前記トロイダル型無段変速機への入力トルクの上限値若しくは変化速度を、支持板の側面と支持部材の端面とが当接した状態であっても、前記各トラクション部でグロススリップが発生しない大きさに制限するものとする。
又、前記グロススリップ防止手段を、前記トロイダル型無段変速機の変速速度の上限値を、通常状態(前記支持板の側面と、前記各支持部材の端面との対向部のうちの総ての対向部の間隔が前記所定値よりも大きい状態)と比較して小さくしたり、前記各トラクション部を潤滑する潤滑油量を増大させるものとする事もできる。
Alternatively, even if the gloss slip prevention means is in a state in which the upper limit value or change speed of the input torque to the toroidal-type continuously variable transmission is in a state where the side surface of the support plate and the end surface of the support member are in contact with each other, It shall be limited to a size that does not cause gross slip in the traction section.
Further, the gloss slip prevention means may be configured such that the upper limit value of the speed change speed of the toroidal-type continuously variable transmission is in a normal state (all of the facing portions between the side surfaces of the support plate and the end surfaces of the support members). It is also possible to reduce the distance between the opposing portions) or to increase the amount of lubricating oil for lubricating the traction portions.

上述の様に構成する本発明のトロイダル型無段変速機の場合には、支持板の側面と、各支持部材の端面との対向部のうち、少なくとも1箇所の対向部の間隔が所定値以下である場合に、各トラクション部での過大な滑り(グロススリップ)の発生を防止する、グロススリップ防止手段を備えている為、各ディスク同士の間の変速比の変更に伴って、前記支持板が傾斜した場合にも、前記各トラクション部でグロススリップが発生する事を有効に防止できる。又、前記支持板の側面と、前記各支持部材の端面との対向部のうちの総ての対向部の間隔が前記所定値より大きい場合には、前記グロススリップ防止手段は作動しないので、前記トロイダル型無段変速機の伝達効率や耐久性が徒に低下する事もない。   In the case of the toroidal type continuously variable transmission of the present invention configured as described above, at least one of the facing portions between the side surface of the support plate and the end surface of each support member has a predetermined interval or less. In this case, the supporting plate is provided with a gloss slip prevention means for preventing the occurrence of excessive slip (gross slip) in each traction portion. Even when the vehicle is inclined, it is possible to effectively prevent the occurrence of gross slip in each of the traction portions. Further, when the distance between all the facing portions of the facing portion between the side surface of the supporting plate and the end surface of each supporting member is larger than the predetermined value, the gloss slip prevention means does not operate, The transmission efficiency and durability of the toroidal-type continuously variable transmission will not be reduced.

本発明の実施の形態の第1例を示す断面図。Sectional drawing which shows the 1st example of embodiment of this invention. 同じく特徴となる動作を示すフローチャート。The flowchart which similarly shows the operation | movement which becomes the characteristic. 支持板の側面とトラニオンの肩部との間隔を測定する方法の2例を示す、図1のA部拡大図に相当する図。The figure equivalent to the A section enlarged view of FIG. 1 which shows two examples of the method of measuring the space | interval of the side surface of a support plate, and the shoulder part of a trunnion. 同じく別の2例を説明する為のグラフ。A graph for explaining another two examples. 本発明の実施の形態の第2例を示す、図2と同様の図。The figure similar to FIG. 2 which shows the 2nd example of embodiment of this invention. 同第3例を示す、図2と同様の図。The figure similar to FIG. 2 which shows the 3rd example. 同第4例を示す、図2と同様の図。The figure similar to FIG. 2 which shows the 4th example. 同第5例を示す、図2と同様の図。The figure similar to FIG. 2 which shows the 5th example. 従来構造のトロイダル型無段変速機の第1例を示す断面図。Sectional drawing which shows the 1st example of the toroidal type continuously variable transmission of conventional structure. 図9のB−B断面図。BB sectional drawing of FIG. トロイダル型無段変速機の従来構造の第2例を示す、スラスト玉軸受を介してパワーローラを支持したトラニオンを、ディスクの径方向外側から見た斜視図。The perspective view which looked at the trunnion which supported the power roller via the thrust ball bearing which showed the 2nd example of the conventional structure of a toroidal type continuously variable transmission from the radial direction outer side of the disk. 同じく、ディスクの周方向から見た状態で示す正面図。Similarly, the front view shown in the state seen from the circumferential direction of the disk. 図12の上方から見た平面図。The top view seen from the upper part of FIG. 図12の右方から見た側面図。The side view seen from the right side of FIG. 図13のC−C断面図。CC sectional drawing of FIG. 図12のD−D断面図。DD sectional drawing of FIG.

[実施の形態の第1例]
図1〜4は、総ての請求項に対応する、本発明の実施の形態の第1例を示している。尚、本例を含めて、本発明のトロイダル型無段変速機の特徴は、各ディスク2、5(図9参照)同士の間の変速比の変更動作に伴って支持板10a、10bが傾斜した場合にも、各トラクション部でグロススリップが発生する事を有効に防止する為のグロススリップ防止手段を設けた点にある。その他の部分の構造及び作用は、前述の図9〜16に示した構造を含め、従来から知られているトロイダル型無段変速機と同様であるから、同等部分に関する図示並びに説明は省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。
[First example of embodiment]
1 to 4 show a first example of an embodiment of the present invention corresponding to all the claims. The feature of the toroidal type continuously variable transmission of the present invention including this example is that the support plates 10a and 10b are inclined in accordance with the operation of changing the gear ratio between the disks 2, 5 (see FIG. 9). In this case, gloss slip prevention means for effectively preventing the occurrence of gloss slip in each traction section is provided. Since the structure and operation of the other parts are the same as those of conventionally known toroidal-type continuously variable transmissions, including the structures shown in FIGS. 9 to 16 described above, illustrations and explanations of equivalent parts are omitted or simplified. In the following, the characteristic part of this example will be mainly described.

本例の場合も、前述した従来構造の場合と同様に、トラニオン7b、7bの軸方向両端に設けられた1対の傾転軸8c、8cを、前記両支持板10a、10bに対し、ラジアルニードル軸受11、11を介して、揺動及び軸方向の変位を可能に支持している。尚、図示の例の場合には、前記両支持板10a、10bの側面のうちで、前記各ラジアルニードル軸受11、11を構成する外輪13、13を内嵌保持する保持孔12、12の周囲に、凸部25、25を形成している。そして、これら各凸部25、25を、前記各トラニオン7b、7bの軸方向両端面のうち、前記各傾転軸8c、8cからそれぞれ支持梁部9b、9bの側に外れた部分である肩部24、24に対向させている。これにより、前記両支持板10a、10bと前記各トラニオン7b、7bとの位置関係が不適切になる事を防止している。   Also in the case of this example, as in the case of the conventional structure described above, a pair of tilting shafts 8c, 8c provided at both ends in the axial direction of the trunnions 7b, 7b are arranged radially with respect to the both support plates 10a, 10b. The needle bearings 11 and 11 are supported so as to be swingable and axially displaceable. In the case of the illustrated example, among the side surfaces of the both support plates 10a and 10b, the periphery of the holding holes 12 and 12 for internally fitting and holding the outer rings 13 and 13 constituting the radial needle bearings 11 and 11, respectively. In addition, convex portions 25 and 25 are formed. And these each convex part 25 and 25 is the shoulder which is the part which remove | deviated from the said each tilting axis 8c and 8c to the support beam part 9b and 9b side among the axial direction both end surfaces of each said trunnion 7b and 7b, respectively. It is made to oppose the parts 24 and 24. This prevents the positional relationship between the support plates 10a and 10b and the trunnions 7b and 7b from becoming inappropriate.

特に本例のトロイダル型無段変速機に於いては、このトロイダル型無段変速機の変速比の変更動作に伴って、前記両支持板10a、10bが傾斜した場合にも、各ディスク2、5(図9参照)の内側面と各パワーローラ6b、6bの周面との転がり接触部であるトラクション部でグロススリップが発生する事を防止する為のグロススリップ防止手段を備える。本例の場合、このグロススリップ防止手段は、前記各トラニオン7b、7bの肩部24、24と、前記両支持板10a、10bの側面のうちでこれら各肩部24、24と対向する側面との間隔を測定する為の間隔測定手段と、前記各ディスク2、5同士の間の(前記トロイダル型無段変速機の)変速比を算出する制御器、及び、油圧室への油圧の送り込みに伴って1対の外側ディスク2、2のうちの一方の外側ディスク2を他方の外側ディスク2に向けて押圧する押圧装置とから構成される。このうちの制御器は、センサにより測定した前記各ディスク2、5の回転速度やポジションスイッチの位置信号{運転席に設けられたシフトレバー(操作レバー)の操作位置(選択位置)を表す信号}、エンジンコントローラの信号、アクセルペダルの開度等の各種信号に基づいて、前記トロイダル型無段変速機の目標とする変速比を算出する。   In particular, in the toroidal type continuously variable transmission of this example, each of the discs 2, even when both the support plates 10 a and 10 b are inclined in accordance with the operation of changing the gear ratio of the toroidal type continuously variable transmission. 5 (see FIG. 9) and gloss slip prevention means for preventing the occurrence of gloss slip at the traction portion which is a rolling contact portion between the inner surface of the power rollers 6b and 6b. In the case of this example, the gloss slip prevention means includes shoulder portions 24, 24 of the trunnions 7b, 7b, and side surfaces of the support plates 10a, 10b facing the shoulder portions 24, 24. An interval measuring means for measuring the interval of the controller, a controller for calculating a gear ratio (of the toroidal type continuously variable transmission) between the disks 2 and 5, and a hydraulic pressure feed to the hydraulic chamber Along with this, a pressing device that presses one of the pair of outer disks 2 and 2 toward the other outer disk 2 is configured. Among these, the controller measures the rotational speed of each of the disks 2 and 5 measured by the sensor and the position signal of the position switch {signal indicating the operation position (selection position) of the shift lever (operation lever) provided in the driver's seat}. The target gear ratio of the toroidal type continuously variable transmission is calculated based on various signals such as an engine controller signal and an accelerator pedal opening.

本例の場合には、前記間隔測定手段により測定された、前記各トラニオン7b、7bの肩部24、24と前記両支持板10a、10bの側面との対向部のうちで、少なくとも1箇所の対向部の間隔Dが所定値α以下である(D≦α)場合に、前記トロイダル型無段変速機の変速状態を調節して、前記各トラクション部でグロススリップが発生する事を防止する様にしている。この点に就いて図2のフローチャートを参照しつつ説明する。尚、このフローチャートに示した処理は、イグニッションスイッチがONされてからOFFされるまでの間、繰り返し(自動的に)行われる。   In the case of this example, at least one of the opposed portions of the shoulder portions 24, 24 of the trunnions 7b, 7b and the side surfaces of the support plates 10a, 10b, measured by the distance measuring means. When the distance D between the facing portions is less than or equal to a predetermined value α (D ≦ α), the shift state of the toroidal continuously variable transmission is adjusted to prevent the occurrence of gross slip in each traction portion. I have to. This point will be described with reference to the flowchart of FIG. Note that the processing shown in this flowchart is repeatedly (automatically) performed from when the ignition switch is turned on until it is turned off.

先ず、ステップ1で、前記間隔Dが、予め定められた所定値α以下であるか否かを判定する。この間隔Dは、例えば図3の(A)に示す様に、前記両支持板10a、10bの側面のうち、前記各トラニオン7bの肩部24、24と対向する側面と反対側の側面{図3の(A)の上側の支持板10aの上面、及び、下側の支持板10bの下面}に、その先端部を対向させた変位センサ26a、26bの出力信号の値に基づいて算出する事ができる。又、前記所定値αを0とした場合、即ち、前記少なくとも1箇所の対向部で、前記トラニオン7bの肩部24と前記支持板10a(10b)の側面とが当接(接触)したか否かを判定する場合には、図3の(B)に示す様に、前記各肩部24、24に設置した荷重センサ(圧力センサ)27、27により、トラニオン7bの肩部24と前記支持板10a(10b)の側面とが当接したか否かを判定する様にしても良い。図示の例の場合、前記各荷重センサ27、27を潤滑油流路31の開口部に設け、これら各荷重センサ27、27に盲栓としての機能を持たせている。尚、前記図3の(B)に示したトラニオン7bの場合には、支持梁部9bの軸方向両端部に、前記各ディスク2、5の径方向内側に向け突出する状態で設けられた1対の壁部29、29同士の間に補強梁30を、これら両壁部29、29同士の間で突っ張れる状態で設けている。但し、この部分の構造及び作用に就いては、本発明の要旨とは関係しない為、詳しい説明は省略する。   First, in step 1, it is determined whether or not the interval D is equal to or less than a predetermined value α. For example, as shown in FIG. 3A, this distance D is the side surface opposite to the side surface facing the shoulder portions 24, 24 of each trunnion 7b among the side surfaces of the support plates 10a, 10b. 3A based on the output signal values of the displacement sensors 26a and 26b with the tip portions thereof opposed to the upper surface of the upper support plate 10a and the lower surface of the lower support plate 10b. Can do. When the predetermined value α is 0, that is, whether or not the shoulder portion 24 of the trunnion 7b and the side surface of the support plate 10a (10b) are in contact (contact) at the at least one facing portion. 3B, as shown in FIG. 3 (B), the shoulder 24 of the trunnion 7b and the support plate are loaded by load sensors (pressure sensors) 27, 27 installed on the shoulders 24, 24, respectively. You may make it determine whether 10a (10b) side surface contact | abutted. In the case of the illustrated example, the load sensors 27, 27 are provided in the opening of the lubricating oil flow path 31, and each load sensor 27, 27 has a function as a blind plug. In the case of the trunnion 7b shown in FIG. 3B, the trunnion 7b is provided at both ends in the axial direction of the support beam portion 9b so as to protrude inward in the radial direction of the respective disks 2 and 5. A reinforcing beam 30 is provided between the pair of wall portions 29 and 29 so as to be stretched between the wall portions 29 and 29. However, since the structure and operation of this portion are not related to the gist of the present invention, detailed description thereof is omitted.

或いは、前記トロイダル型無段変速機の実変速比と指令値との相違に基づいて、前記肩部24と前記支持板10a(10b)の側面とが当接したか否かを判定する事もできる。即ち、図4の(A)に示す様に、前記制御器が前記トロイダル型無段変速機の変速比を変化させるべき旨の指示を出してから、アクチュエータ28、28の油圧室に油圧を導入し前記各トラニオン7b、7bを前記各傾転軸8c、8cの軸方向に変位させ、前記各パワーローラ6b、6bが揺動を開始するまでには遅れが生じる。前記トラニオン7bの肩部24と前記支持板10a(10b)の側面とが当接した状態では、このトラニオン7bを前記各傾転軸8c、8cの軸方向に十分変位させる事ができず、前記遅れが大きくなる。又、前記トラニオン7bの肩部24と前記支持板10a(10b)の側面とが当接した状態では、前記各トラクション部同士の間で伝達トルクにばらつきが発生し、一部のトラクション部で限界トラクション係数が低下する可能性がある。そこで、指令値に対する、前記パワーローラ6bの揺動開始遅れ{或いは、前記トラニオン7bの、前記各傾転軸8c、8cの軸方向に関する中立位置に向けての移動(戻り)開始遅れ}の大きさを測定する事で、前記トラニオン7bの肩部24と前記支持板10a(10b)の側面とが当接したか否かを検出しても良い。或いは、前記トロイダル型無段変速機の運転状況から前記支持板10a(10b)の水平方向に対する傾斜角度を推定する事で、前記肩部24とこの支持板10a(10b)の側面との間隔Dが所定値α以下であるか否かを判定する事もできる。即ち、例えば図4の(B)に示す様に、前記トロイダル型無段変速機の変速比を等速状態から片側(図示の例では減速側)にだけ繰り返し変化させると、前記支持板10a(10b)が水平方向に対し傾斜して、前記トラニオン7bの肩部24とこの支持板10a(10b)の側面との間隔Dが小さくなる。そこで、前記トロイダル型無段変速機の運転状況(変速パターン)に基づき前記支持板10a(10b)の水平方向に対する傾斜角度を推定する事で、前記トラニオン7bの肩部24とこの支持板10a(10b)の側面との間隔Dを推定できる。   Alternatively, it may be determined whether or not the shoulder 24 and the side surface of the support plate 10a (10b) are in contact with each other based on the difference between the actual transmission ratio of the toroidal-type continuously variable transmission and the command value. it can. That is, as shown in FIG. 4A, after the controller gives an instruction to change the gear ratio of the toroidal continuously variable transmission, the hydraulic pressure is introduced into the hydraulic chambers of the actuators 28 and 28. There is a delay until the trunnions 7b, 7b are displaced in the axial direction of the tilt shafts 8c, 8c and the power rollers 6b, 6b start to swing. When the shoulder 24 of the trunnion 7b and the side surface of the support plate 10a (10b) are in contact with each other, the trunnion 7b cannot be sufficiently displaced in the axial direction of the tilt shafts 8c, 8c, The delay increases. In addition, when the shoulder portion 24 of the trunnion 7b and the side surface of the support plate 10a (10b) are in contact with each other, the transmission torque varies between the traction portions, and some traction portions are limited. The traction coefficient may be reduced. Therefore, the swing start delay of the power roller 6b with respect to the command value {or the movement (return) start delay of the trunnion 7b toward the neutral position in the axial direction of the tilt shafts 8c, 8c} is large. By measuring the length, it may be detected whether the shoulder 24 of the trunnion 7b is in contact with the side surface of the support plate 10a (10b). Alternatively, the distance D between the shoulder 24 and the side surface of the support plate 10a (10b) is estimated by estimating the inclination angle of the support plate 10a (10b) with respect to the horizontal direction from the operating state of the toroidal type continuously variable transmission. It is also possible to determine whether is equal to or less than a predetermined value α. That is, for example, as shown in FIG. 4B, when the speed ratio of the toroidal continuously variable transmission is repeatedly changed from a constant speed state to only one side (deceleration side in the illustrated example), the support plate 10a ( 10b) is inclined with respect to the horizontal direction, and the distance D between the shoulder 24 of the trunnion 7b and the side surface of the support plate 10a (10b) is reduced. Therefore, by estimating the inclination angle of the support plate 10a (10b) with respect to the horizontal direction based on the operating state (shift pattern) of the toroidal continuously variable transmission, the shoulder 24 of the trunnion 7b and the support plate 10a ( The distance D from the side surface 10b) can be estimated.

何れにしても、前記ステップ1で、前記少なくとも1箇所の対向部の間隔Dが前記所定値α以下である(D≦α)と判定された場合、次のステップ2で、シフトレバーが非走行状態(Pレンジ又はNレンジ)に選択されているか否かを判定する。このシフトレバーが非走行状態に選択されていると判定された場合、次のステップ3に進む。このステップ3では、前記両支持板10a、10bの傾きを元の位置に戻す方向に、前記トロイダル型無段変速機の変速比を変化させる。即ち、前記両支持板10a、10bが、このトロイダル型無段変速機の変速比を等速状態から減速側に繰り返し変化させた事により傾斜している場合には、このトロイダル型無段変速機の変速比を増速側に変化させる。一方、前記両支持板10a、10bが、このトロイダル型無段変速機の変速比を等速状態から増速側に繰り返し変化させた事により傾斜している場合には、このトロイダル型無段変速機の変速比を減速側に変化させる。何れにしろ、前記両支持板10a、10bの傾きを元の位置(水平な状態)に戻した後、終了する(開始に戻る)。   In any case, if it is determined in step 1 that the distance D between the at least one facing portion is not more than the predetermined value α (D ≦ α), in the next step 2, the shift lever is not driven. It is determined whether or not the state (P range or N range) is selected. When it is determined that the shift lever is selected in the non-running state, the process proceeds to the next step 3. In step 3, the gear ratio of the toroidal continuously variable transmission is changed in a direction to return the inclinations of the support plates 10a and 10b to their original positions. That is, when the both support plates 10a and 10b are inclined by repeatedly changing the transmission ratio of the toroidal continuously variable transmission from the constant speed state to the deceleration side, the toroidal continuously variable transmission. Is changed to the speed increasing side. On the other hand, when both the support plates 10a and 10b are inclined by repeatedly changing the transmission ratio of the toroidal type continuously variable transmission from the constant speed state to the speed increasing side, the toroidal type continuously variable transmission. Change the gear ratio of the machine to the deceleration side. In any case, after the inclinations of the two support plates 10a and 10b are returned to their original positions (horizontal state), the process ends (returns to the start).

これに対し、前記ステップ2で、前記シフトレバーが走行状態(Dレンジ又はRレンジ)に選択されていると判定された場合には、ステップ4に進み、押圧装置の発生する押圧力の大きさを決定する為の計算に用いられるトラクション係数μとして、通常状態(前記間隔Dが所定値αよりも大きい、即ち、前記両支持板10a、10bが水平な状態乃至その近傍の状態)での計算に用いられる値μよりも小さな値μ(<μ)を設定して変速比制御を実行し、その後、終了する(開始に戻る)。 On the other hand, if it is determined in step 2 that the shift lever is selected to be in the traveling state (D range or R range), the process proceeds to step 4 and the magnitude of the pressing force generated by the pressing device. As a traction coefficient μ used for calculation to determine the calculation in a normal state (the distance D is larger than a predetermined value α, that is, the support plates 10a and 10b are horizontal or in the vicinity thereof). Is set to a value μ L (<μ 0 ) that is smaller than the value μ 0 used for the control, and then the gear ratio control is executed.

一方、前記ステップ1で、前記各トラニオン7b、7bの肩部24、24と前記両支持板10a、10bの側面との対向部のうち、総ての対向部の間隔Dが前記所定値αよりも大きい(D>α)と判定された場合には、ステップ5に進み、前記トラクション係数μとして前記通常状態で用いられる値(従来の変速比制御で用いられるトラクション係数と同じ値)μを設定し変速比制御を実行した後、終了する(開始に戻る)。 On the other hand, in the step 1, among the facing portions between the shoulder portions 24, 24 of the trunnions 7b, 7b and the side surfaces of the support plates 10a, 10b, the distance D between all the facing portions is greater than the predetermined value α. Is determined to be larger (D> α), the process proceeds to step 5 and the value used in the normal state as the traction coefficient μ (the same value as the traction coefficient used in the conventional gear ratio control) μ 0 is set. After setting and executing the gear ratio control, the process ends (returns to the start).

上述の様な本例のトロイダル型無段変速機によれば、各ディスク2、5同士の間の変速比の変更動作に伴って、1対の支持板10a、10bが傾斜した場合であっても、前記各ディスク2、5の内側面と各パワーローラ6b、6bの周面との転がり接触部(トラクション部)で過大な滑り(グロススリップ)が発生する事を防止できる。即ち、本例のトロイダル型無段変速機の場合、前記支持板10a(10b)が傾斜し、トラニオン7b、7bの肩部24、24とこれら両支持板10a、10bの側面との対向部のうち、少なくとも1箇所の対向部の間隔Dが所定値α以下となった場合で、シフトレバーが非走行状態に選択されている場合には、前記両支持板10a、10bの傾きを元の位置(水平な状態)に戻す方向に前記トロイダル型無段変速機の変速比を制御する。又、前記間隔Dが前記所定値α以下で、前記シフトレバーが走行状態に選択されている場合には、前記押圧装置の発生する押圧力の大きさを決定する為の計算に用いられるトラクション係数μとして、通常状態で用いられる値μよりも小さな値μを設定する。これにより、油圧式の押圧装置が発生する押圧力を十分に大きくできて、前記各トラクション部でのグロススリップの発生を防止できる。これに対し、前記各トラニオン7b、7bの肩部24、24と前記両支持板10a、10bの側面との対向部のうち、総ての対向部の間隔Dが前記所定値αよりも大きい場合には、前記トラクション係数μとして、前記通常状態で用いられる値μを設定し変速比制御を実行する為、前記各トラクション部の面圧が過大になるのを抑えられ、前記トロイダル型無段変速機の伝達効率が徒に低下する事を防止できる。 According to the toroidal type continuously variable transmission of this example as described above, the pair of support plates 10a and 10b is inclined in accordance with the operation of changing the gear ratio between the disks 2 and 5. In addition, it is possible to prevent an excessive slip (gross slip) from occurring at the rolling contact portion (traction portion) between the inner surface of each of the disks 2 and 5 and the peripheral surface of each of the power rollers 6b and 6b. That is, in the case of the toroidal type continuously variable transmission of the present example, the support plate 10a (10b) is inclined, and the shoulder portions 24, 24 of the trunnions 7b, 7b and the opposing portions of the side surfaces of the support plates 10a, 10b Among them, when the distance D between at least one facing portion is equal to or less than the predetermined value α and the shift lever is selected to be in the non-running state, the inclination of the both support plates 10a and 10b is changed to the original position. The gear ratio of the toroidal continuously variable transmission is controlled in the direction to return to the (horizontal state). Further, when the distance D is equal to or less than the predetermined value α and the shift lever is selected to be in a traveling state, a traction coefficient used for calculation for determining the magnitude of the pressing force generated by the pressing device. as mu, than the value mu 0 used in the normal state to set a smaller value mu L. As a result, the pressing force generated by the hydraulic pressing device can be sufficiently increased, and the occurrence of gross slip at each of the traction portions can be prevented. On the other hand, among the facing portions between the shoulder portions 24, 24 of the trunnions 7b, 7b and the side surfaces of the support plates 10a, 10b, the distance D between all the facing portions is larger than the predetermined value α. Since the traction coefficient μ is set to the value μ 0 used in the normal state and gear ratio control is executed, it is possible to suppress the surface pressure of each traction portion from being excessive, and the toroidal type continuously variable It is possible to prevent the transmission efficiency of the transmission from dropping.

尚、本例の場合、上述の様な構造を、前述した特許文献5に記載された補強部材(上下連結リンク)や、特許文献6に記載された弾性部材を設ける事なく実現できる。従って、前記トロイダル型無段変速機の製造コストが徒に増大したり、このトロイダル型無段変速機が徒に大型・重量化する事を防止できる。   In the case of this example, the above-described structure can be realized without providing the reinforcing member (upper and lower connecting link) described in Patent Document 5 and the elastic member described in Patent Document 6. Therefore, it is possible to prevent the manufacturing cost of the toroidal type continuously variable transmission from increasing and the toroidal type continuously variable transmission from being increased in size and weight.

[実施の形態の第2例]
図5は、請求項1に対応する、本発明の実施の形態の第2例を示している。本例の場合、ステップ1aで、トラニオン7b、7bの肩部24、24と、支持板10a、10b(図1参照)の側面との対向部のうち、少なくとも1箇所の対向部の間隔Dが所定値α以下である(D≦α)と判定された場合、次のステップ2aで、入力側ディスクである外側ディスク2、2(図9参照)への入力トルクの上限値を、前記トラニオン7bの肩部24と前記支持板10a(10b)の側面とが当接(接触)した状態であっても、各トラクション部でグロススリップが発生しない大きさ(例えば前記両支持板10a、10bが水平状態にある場合の50%程度)に制限する。この為に具体的には、アクセル開度を表す信号を補正した上で、トロイダル型無段変速機の変速比を算出する制御器に入力する。或いは、前記外側ディスク2、2を回転駆動する駆動軸14(図9参照)と、エンジンの出力軸との間に設けたクラッチの締結圧を小さくして、このクラッチの締結部に滑りを生じさせる事もできる。即ち、このクラッチの締結圧を制御する制御弁(ソレノイドバルブ)への通電量を一定値以下に制限して、この締結圧を抑える。
[Second Example of Embodiment]
FIG. 5 shows a second example of an embodiment of the present invention corresponding to claim 1. In the case of this example, in step 1a, the distance D between at least one facing portion among the facing portions between the shoulder portions 24, 24 of the trunnions 7b, 7b and the side surfaces of the support plates 10a, 10b (see FIG. 1) is set. When it is determined that it is equal to or less than the predetermined value α (D ≦ α), in the next step 2a, the upper limit value of the input torque to the outer disks 2, 2 (see FIG. 9) as the input side disk is set to the trunnion 7b. Even when the shoulder portion 24 and the side surface of the support plate 10a (10b) are in contact (contact) with each other, the size is such that gross slip does not occur in each traction portion (for example, the support plates 10a and 10b are horizontal). Limited to about 50% of the situation. For this purpose, specifically, the signal representing the accelerator opening is corrected and then input to a controller for calculating the gear ratio of the toroidal-type continuously variable transmission. Alternatively, the engagement pressure of the clutch provided between the drive shaft 14 (see FIG. 9) for rotationally driving the outer disks 2 and 2 and the output shaft of the engine is reduced to cause slippage at the engagement portion of the clutch. You can also make it. That is, the energizing amount to a control valve (solenoid valve) that controls the engagement pressure of the clutch is limited to a predetermined value or less to suppress the engagement pressure.

上述の様な本例の場合、前記トラニオン7bの肩部24と前記支持板10a(10b)の側面とが当接した状態であっても、押圧装置の発生する押圧力が大きくなる事を抑えつつ、各トラクション部でグロススリップが発生する事を防止できる。
その他の部分の構成及び作用は、前述した実施の形態の第1例と同様である。
In the case of this example as described above, even if the shoulder portion 24 of the trunnion 7b and the side surface of the support plate 10a (10b) are in contact with each other, an increase in the pressing force generated by the pressing device is suppressed. However, it is possible to prevent gross slip from occurring in each traction section.
The configuration and operation of the other parts are the same as in the first example of the embodiment described above.

[実施の形態の第3例]
図6も、請求項1に対応する、本発明の実施の形態の第3例を示している。本例のトロイダル型無段変速機の場合には、ステップ1bで、トラニオン7b、7bの肩部24、24と、支持板10a、10b(図1参照)の側面との対向部のうち、少なくとも1箇所の対向部の間隔Dが所定値α以下である(D≦α)と判定された場合、次のステップ2bで、前記トロイダル型無段変速機の変速速度の上限値を、通常状態(1対の支持板10a、10bが水平な状態乃至その近傍の状態)に於ける変速速度の上限値よりも小さくする。即ち、前記トロイダル型無段変速機の変速速度が大きくなると、各トラクション部に於けるサイドスリップに基づく発熱量が増大し、これら各トラクション部に於ける潤滑油の油温が上昇する。この結果、これら各トラクション部に於けるトラクション係数が小さくなり、これら各トラクション部でグロススリップが発生し易くなる。そこで、本例の場合、前記変速速度の上限値を小さく抑える事により、このトラクション係数が小さくなるのを抑える。
その他の部分の構成及び作用は、前述した実施の形態の第1例と同様である。
[Third example of embodiment]
FIG. 6 also shows a third example of the embodiment of the invention corresponding to claim 1. In the case of the toroidal-type continuously variable transmission of this example, at step 1b, at least of the facing portions between the shoulder portions 24, 24 of the trunnions 7b, 7b and the side surfaces of the support plates 10a, 10b (see FIG. 1). When it is determined that the distance D between the one opposing portion is equal to or less than the predetermined value α (D ≦ α), in the next step 2b, the upper limit value of the transmission speed of the toroidal continuously variable transmission is set to the normal state ( It is made smaller than the upper limit value of the shift speed when the pair of support plates 10a, 10b is in a horizontal state or a state in the vicinity thereof. That is, when the transmission speed of the toroidal-type continuously variable transmission increases, the amount of heat generated due to side slip in each traction portion increases, and the oil temperature of the lubricating oil in each traction portion increases. As a result, the traction coefficient in each of these traction parts becomes small, and gloss slip is likely to occur in each of these traction parts. Therefore, in the case of this example, the traction coefficient is prevented from being reduced by reducing the upper limit value of the shift speed.
The configuration and operation of the other parts are the same as in the first example of the embodiment described above.

[実施の形態の第4例]
図7も、請求項1に対応する、本発明の実施の形態の第4例を示している。本例のトロイダル型無段変速機の場合には、ステップ1cで、トラニオン7b、7bの肩部24、24と、支持板10a、10b(図1参照)の側面との対向部のうち、少なくとも1箇所の対向部の間隔Dが所定値α以下である(D≦α)と判定された場合、次のステップ2cで、各トラクション部を潤滑する潤滑油量を増大させる。潤滑油量を増大させる事で、これら各トラクション部に於ける潤滑油の油温の上昇を抑え、これら各トラクション部に於けるトラクション係数の低下を抑えられる。前記潤滑油の油量を増大させる方法は特に問わない。この潤滑油の油圧を制御できる場合には、この油圧を上昇したり、流量制御弁を設け、この流量制御弁を制御する事により前記油量を調整しても良い。
その他の部分の構成及び作用は、上述した実施の形態の第3例と同様である。
[Fourth Example of Embodiment]
FIG. 7 also shows a fourth example of the embodiment of the invention corresponding to claim 1. In the case of the toroidal-type continuously variable transmission of this example, in step 1c, at least of the facing portions between the shoulder portions 24, 24 of the trunnions 7b, 7b and the side surfaces of the support plates 10a, 10b (see FIG. 1). When it is determined that the distance D between the one opposing portions is equal to or less than the predetermined value α (D ≦ α), the amount of lubricating oil for lubricating each traction portion is increased in the next step 2c. By increasing the amount of lubricating oil, it is possible to suppress an increase in the oil temperature of the lubricating oil in each of these traction portions and to suppress a decrease in the traction coefficient in each of these traction portions. The method for increasing the amount of the lubricating oil is not particularly limited. When the oil pressure of the lubricating oil can be controlled, the oil amount may be adjusted by increasing the oil pressure or providing a flow control valve and controlling the flow control valve.
The configuration and operation of the other parts are the same as in the third example of the embodiment described above.

[実施の形態の第5例]
図8も、請求項1に対応する、本発明の実施の形態の第5例を示している。本例のトロイダル型無段変速機の場合には、ステップ1dで、トラニオン7b、7bの肩部24、24と、支持板10a、10b(図1参照)の側面との対向部のうち、少なくとも1箇所の対向部の間隔Dが所定値α以下である(D≦α)と判定された場合には、次のステップ2dで、入力側ディスクである外側ディスク2、2(図9参照)への入力トルクの変化速度を、トラニオン7b(図1参照)の肩部24と支持板10a(10b)の側面とが当接(接触)した状態であっても、各トラクション部でグロススリップが発生しない大きさに制限する。即ち、前記入力トルクが急激に変化した場合、油圧式の押圧装置が目標とする押圧力を発生させるまでの油圧応答遅れが大きくなって、この押圧装置が発生する押圧力が不足し、前記各トラクション部でグロススリップが発生する可能性がある。本例の場合には、前記入力トルクの変化速度を制限する事で、前記油圧応答遅れが大きくなる事を防止して、前記各トラクション部でのグロススリップの発生を防止する。前記入力トルクの変化速度を制限する方法に就いては特に問わないが、例えば、アクセル開度を表す信号を補正した上で、前記トロイダル型無段変速機の変速比を算出する制御器に入力する事ができる。
その他の部分の構成及び作用は、前述した実施の形態の第2例と同様である。
[Fifth Example of Embodiment]
FIG. 8 also shows a fifth example of the embodiment of the invention corresponding to claim 1. In the case of the toroidal-type continuously variable transmission of this example, in step 1d, at least of the facing portions between the shoulder portions 24, 24 of the trunnions 7b, 7b and the side surfaces of the support plates 10a, 10b (see FIG. 1). If it is determined that the distance D between the facing portions at one location is less than or equal to the predetermined value α (D ≦ α), the next step 2d is to the outer disks 2 and 2 (see FIG. 9), which are the input side disks. Even when the shoulder 24 of the trunnion 7b (see FIG. 1) and the side surface of the support plate 10a (10b) are in contact with each other, the gross slip occurs at each traction portion. Limit the size to not. That is, when the input torque changes abruptly, the hydraulic response delay until the hydraulic pressing device generates the target pressing force increases, and the pressing force generated by the pressing device becomes insufficient. There is a possibility that gross slip occurs in the traction area. In the case of this example, by restricting the speed of change of the input torque, it is possible to prevent the hydraulic response delay from becoming large, and to prevent the occurrence of gross slip in each traction section. The method for limiting the speed of change of the input torque is not particularly limited. For example, after correcting the signal representing the accelerator opening, the signal is input to a controller that calculates the gear ratio of the toroidal continuously variable transmission. I can do it.
The configuration and operation of the other parts are the same as in the second example of the embodiment described above.

本発明を実施する場合に、上述した実施の形態の各例を組み合わせて実施する事もできる。   When practicing the present invention, the above-described embodiments can be combined.

1 回転軸
2 外側ディスク
3 筒状部材
4 歯車
5 内側ディスク
6、6a パワーローラ
7、7a、7b トラニオン
8、8a〜8c 傾転軸
9、9a、9b 支持梁部
10、10a、10b 支持板
11 ラジアルニードル軸受
12 保持孔
13 外輪
14 ニードル
15、15a 支持軸
16 駆動軸
17 押圧装置
18 円筒状凸面
19 スラスト玉軸受
20 外輪
21 凹部
22 ラジアルニードル軸受
23 段差面
24 肩部
25 凸部
26a、26b 変位センサ
27 荷重センサ
28 アクチュエータ
29 壁部
30 補強梁
31 潤滑油流路
DESCRIPTION OF SYMBOLS 1 Rotating shaft 2 Outer disk 3 Cylindrical member 4 Gear 5 Inner disk 6, 6a Power roller 7, 7a, 7b Trunnion 8, 8a-8c Tilt axis 9, 9a, 9b Support beam part 10, 10a, 10b Support plate 11 Radial needle bearing 12 Holding hole 13 Outer ring 14 Needle 15, 15a Support shaft 16 Drive shaft 17 Press device 18 Cylindrical convex surface 19 Thrust ball bearing 20 Outer ring 21 Concave portion 22 Radial needle bearing 23 Stepped surface 24 Shoulder portion 25 Convex portions 26a, 26b Displacement Sensor 27 Load sensor 28 Actuator 29 Wall 30 Reinforcement beam 31 Lubricating oil flow path

Claims (3)

それぞれが断面円弧形のトロイド曲面である互いの軸方向片側面同士を対向させた状態で、互いに同心に、且つ、相対回転を自在に支持された少なくとも1対のディスクと、
軸方向に関してこれら各ディスクの軸方向片側面同士の間位置にそれぞれ複数個ずつ、これら各ディスクの中心軸に対し捩れの位置にある傾転軸を中心とする揺動変位を自在に設けられた支持部材と、
これら各支持部材の両端部に設けられた前記各傾転軸を揺動及び軸方向の変位を許容する状態で支持する為の支持板と、
前記各支持部材に回転自在に支持され、球状凸面としたそれぞれの周面を、前記各ディスクの軸方向片側面にそれぞれ転がり接触させたパワーローラと
を備えるトロイダル型無段変速機に於いて、
前記支持板の側面と、前記各支持部材の端面との対向部のうち、少なくとも1箇所の対向部の間隔が所定値以下である場合に作動して、前記各ディスクの軸方向片側面と前記各パワーローラの周面との転がり接触部であるトラクション部での過大な滑りの発生を防止する、グロススリップ防止手段を備える事を特徴とするトロイダル型無段変速機。
At least one pair of discs that are concentric with each other and supported to freely rotate relative to each other in a state in which each side surface in the axial direction is a toroidal curved surface having an arc-shaped cross section,
With respect to the axial direction, a plurality of discs are provided at positions between the axial side surfaces of the respective discs, and swinging displacements centering on the tilting shaft located at a twisted position with respect to the central axis of each disc are freely provided. A support member;
A support plate for supporting the tilt shafts provided at both ends of each of the support members in a state of allowing swinging and axial displacement;
In a toroidal continuously variable transmission comprising a power roller that is rotatably supported by each support member and has a spherical convex surface that is in rolling contact with one axial side surface of each disk.
Among the facing portions between the side surface of the support plate and the end surface of each support member, the operation is performed when the interval between at least one facing portion is equal to or less than a predetermined value, A toroidal continuously variable transmission, characterized by comprising gloss slip prevention means for preventing excessive slippage at a traction portion which is a rolling contact portion with the peripheral surface of each power roller.
油圧室への油圧の導入に伴って前記各ディスク同士を互いに近付く方向に押圧する、油圧式の押圧装置を備え、
前記グロススリップ防止手段は、走行状態を切り換える為のシフトレバーを走行状態に切り換えた状態で、前記押圧装置の発生する押圧力の大きさを決定する為の計算に用いられる、前記トラクション部のトラクション係数の値を、前記支持板の側面と、前記各支持部材の端面との対向部のうちの総ての対向部の間隔が前記所定値よりも大きい場合と比較して、小さい値に設定する、請求項1に記載したトロイダル型無段変速機。
A hydraulic pressing device that presses the disks in a direction approaching each other with the introduction of hydraulic pressure into the hydraulic chamber,
The gross slip prevention means is used for calculation for determining the magnitude of the pressing force generated by the pressing device with the shift lever for switching the traveling state switched to the traveling state. The value of the coefficient is set to a small value compared to the case where the distance between all the facing portions of the facing portions of the side surface of the support plate and the end surface of each support member is larger than the predetermined value. A toroidal continuously variable transmission according to claim 1.
前記グロススリップ防止手段は、走行状態を切り換える為のシフトレバーを非走行状態に切り換えた状態で、前記少なくとも1箇所の対向部の間隔を拡げる方向に前記各ディスク同士の間の変速比を変更する、請求項1〜2のうちの何れか1項に記載したトロイダル型無段変速機。   The gloss slip prevention means changes a gear ratio between the disks in a direction in which a gap between the at least one facing portions is increased in a state in which a shift lever for switching a running state is switched to a non-running state. A toroidal continuously variable transmission according to any one of claims 1 and 2.
JP2014077593A 2014-04-04 2014-04-04 Toroidal continuously variable transmission Active JP6277834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014077593A JP6277834B2 (en) 2014-04-04 2014-04-04 Toroidal continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014077593A JP6277834B2 (en) 2014-04-04 2014-04-04 Toroidal continuously variable transmission

Publications (3)

Publication Number Publication Date
JP2015200330A true JP2015200330A (en) 2015-11-12
JP2015200330A5 JP2015200330A5 (en) 2017-05-18
JP6277834B2 JP6277834B2 (en) 2018-02-14

Family

ID=54551779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014077593A Active JP6277834B2 (en) 2014-04-04 2014-04-04 Toroidal continuously variable transmission

Country Status (1)

Country Link
JP (1) JP6277834B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003035348A (en) * 2001-07-23 2003-02-07 Nissan Motor Co Ltd Power roller supporting structure for toroidal-type continuously variable transmission
JP2007298098A (en) * 2006-04-28 2007-11-15 Nsk Ltd Toroidal type continuously variable transmission

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003035348A (en) * 2001-07-23 2003-02-07 Nissan Motor Co Ltd Power roller supporting structure for toroidal-type continuously variable transmission
JP2007298098A (en) * 2006-04-28 2007-11-15 Nsk Ltd Toroidal type continuously variable transmission

Also Published As

Publication number Publication date
JP6277834B2 (en) 2018-02-14

Similar Documents

Publication Publication Date Title
JP6277834B2 (en) Toroidal continuously variable transmission
JP3726758B2 (en) Toroidal continuously variable transmission
JP5990921B2 (en) Toroidal continuously variable transmission
JP6515693B2 (en) Toroidal type continuously variable transmission
JP6413377B2 (en) Toroidal continuously variable transmission
JP6221827B2 (en) Toroidal continuously variable transmission
JP4496800B2 (en) Toroidal continuously variable transmission
JP4774694B2 (en) Toroidal continuously variable transmission
JP3852173B2 (en) Toroidal continuously variable transmission
JP6163790B2 (en) Toroidal continuously variable transmission
JP5195785B2 (en) Continuously variable transmission
JP5857473B2 (en) Toroidal continuously variable transmission
JP5803126B2 (en) Toroidal continuously variable transmission
JP5862335B2 (en) Toroidal continuously variable transmission
JP4432483B2 (en) Toroidal continuously variable transmission
JP4222178B2 (en) Speed change control device for variably limiting roller displacement of disk / roller type continuously variable transmission
JP6311451B2 (en) Power roller unit for toroidal type continuously variable transmission
JP6729074B2 (en) Toroidal type continuously variable transmission
JP4491729B2 (en) Toroidal continuously variable transmission
JP5673205B2 (en) Toroidal continuously variable transmission
JP2013024309A (en) Continuously variable transmission
JP4561126B2 (en) Toroidal continuously variable transmission
JP2004092748A (en) Toroidal-type continuously variable transmission
JP5177576B2 (en) Toroidal continuously variable transmission
JP4774759B2 (en) Shift control device for suppressing excessive displacement of rollers in disc / roller type continuously variable transmission

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170328

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180101

R150 Certificate of patent or registration of utility model

Ref document number: 6277834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150