JP2007298098A - Toroidal type continuously variable transmission - Google Patents

Toroidal type continuously variable transmission Download PDF

Info

Publication number
JP2007298098A
JP2007298098A JP2006126007A JP2006126007A JP2007298098A JP 2007298098 A JP2007298098 A JP 2007298098A JP 2006126007 A JP2006126007 A JP 2006126007A JP 2006126007 A JP2006126007 A JP 2006126007A JP 2007298098 A JP2007298098 A JP 2007298098A
Authority
JP
Japan
Prior art keywords
continuously variable
toroidal
variable transmission
power
power rollers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006126007A
Other languages
Japanese (ja)
Inventor
Takashi Imanishi
尚 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006126007A priority Critical patent/JP2007298098A/en
Publication of JP2007298098A publication Critical patent/JP2007298098A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Friction Gearing (AREA)
  • Control Of Transmission Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To materialize a structure capable of quickly (accurately) detecting an excessive slip (exceeding a slip based on power transmission), when the slip is generated in a plurality of power rollers 13, 13 composing a toroidal type continuously variable transmission. <P>SOLUTION: The tilting angles of respective trunnions supporting the respective power rollers 13, 13 and at least one of the rotation speeds of the respective power rollers 13, 13 are measured. The tilting angles and the rotation speeds are compared by a comparison means, and when either one of the tilting angles of the trunnions or either one of the rotation speeds of the power rollers 13 exceeds the tilting angles and the threshold value of the other trunnions or the rotation speeds and the threshold value of the other power rollers 13 and differs from them, it is determined that the excessive slip is generated in the contact parts of the respective inside faces 3, 12 of both input and output side discs 2a, 2b, 11 which hold the peripheral surface 14 of the power roller 13 and the power roller 13 between them. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明に係るトロイダル型無段変速機は、例えば自動車用自動変速装置を構成する変速ユニットとして、或はポンプ等の各種産業機械の運転速度を調節する為の変速装置として利用する。   The toroidal continuously variable transmission according to the present invention is used, for example, as a transmission unit constituting an automatic transmission for automobiles or as a transmission for adjusting the operating speed of various industrial machines such as pumps.

例えば特許文献1〜3等に記載されている様に、自動車用自動変速装置の変速ユニットとして、図3〜5に示す様なトロイダル型無段変速機を使用する事が研究され、一部で実施されている。この図3〜5に示したトロイダル型無段変速機は、ダブルキャビティ型と呼ばれるもので、入力回転軸1の両端部に1対の入力側ディスク2a、2bを支持している。これら両入力側ディスク2a、2bは上記入力回転軸1に対し、それぞれがトロイド曲面(断面円弧形の凹面)であって特許請求の範囲に記載した軸方向片側面に相当する入力側内側面3、3同士を互いに対向させた状態で、それぞれボールスプライン4、4を介して支持している。従って上記両入力側ディスク2a、2bは、互いに同心に、且つ、同期した回転を自在に支持されている。   For example, as described in Patent Documents 1 to 3, etc., it has been studied to use a toroidal continuously variable transmission as shown in FIGS. 3 to 5 as a transmission unit of an automatic transmission for an automobile. It has been implemented. The toroidal type continuously variable transmission shown in FIGS. 3 to 5 is called a double cavity type, and supports a pair of input side disks 2 a and 2 b at both ends of the input rotating shaft 1. These input side disks 2a and 2b are each a toroidal curved surface (concave arc-shaped concave surface) with respect to the input rotation shaft 1, and the input side inner surface corresponding to one axial side surface recited in the claims. 3 and 3 are supported via ball splines 4 and 4 in a state of being opposed to each other. Therefore, both the input side disks 2a and 2b are supported concentrically and freely in a synchronized manner.

又、上記入力回転軸1の中間部は、トロイダル型無段変速機を収納したケーシング5内に設置した隔壁部6に設けた通孔7を挿通している。この通孔7の内径側には、円筒状の出力筒8を、1対の転がり軸受9、9により回転自在に支持しており、この出力筒8の中間部外周面に出力歯車10を固設している。又、この出力筒8の両端部で上記隔壁部6の両外側面から突出した部分に1対の出力側ディスク11、11を、スプライン係合により、上記出力筒8と同期した回転自在に支持している。この状態で、それぞれがトロイド曲面であって特許請求の範囲に記載した軸方向片側面に相当する、上記両出力側ディスク11、11の出力側内側面12、12が、上記両入力側内側面3、3に対向する。   Further, the intermediate portion of the input rotary shaft 1 is inserted through a through hole 7 provided in a partition wall portion 6 installed in a casing 5 housing a toroidal type continuously variable transmission. A cylindrical output cylinder 8 is rotatably supported by a pair of rolling bearings 9 and 9 on the inner diameter side of the through hole 7, and an output gear 10 is fixed to the outer peripheral surface of the intermediate portion of the output cylinder 8. Has been established. In addition, a pair of output side disks 11 and 11 are supported at both ends of the output cylinder 8 at portions projecting from both outer side surfaces of the partition wall 6 so as to be rotatable in synchronization with the output cylinder 8 by spline engagement. is doing. In this state, the output side inner surfaces 12 and 12 of the both output side disks 11 and 11, each of which is a toroidal curved surface and corresponding to one axial side surface recited in the claims, are both input side inner side surfaces. 3 and 3 are opposed.

又、上記入力回転軸1の周囲で上記入力側、出力側両内側面3、12同士の間部分(キャビティ)に、それぞれ複数個(一般的には2個又は3個)ずつのパワーローラ13、13を配置している。これら各パワーローラ13、13はそれぞれ、上記入力側、出力側両内側面3、12に当接する周面14、14を球状凸面としたもので、特許請求の範囲に記載した支持部材に相当するトラニオン15、15の内側面に、支持軸16、16と、ラジアルニードル軸受17、17と、スラスト玉軸受18、18と、スラストニードル軸受19、19とにより、回転及び若干の揺動変位自在に支持されている。   In addition, a plurality (generally two or three) of power rollers 13 are provided in the portion (cavity) between the input side and output side inner side surfaces 3 and 12 around the input rotary shaft 1. , 13 are arranged. Each of the power rollers 13 and 13 has a spherical convex surface on the peripheral surfaces 14 and 14 contacting the input side and output side inner side surfaces 3 and 12, and corresponds to the support member described in the claims. Support shafts 16 and 16, radial needle bearings 17 and 17, thrust ball bearings 18 and 18 and thrust needle bearings 19 and 19 can be rotated and slightly oscillated and displaced on the inner side surfaces of the trunnions 15 and 15. It is supported.

即ち、上記各支持軸16、16は基半部と先半部とが互いに偏心した偏心軸であり、このうちの基半部を上記各トラニオン15、15の中間部に、別のラジアルニードル軸受20、20により、揺動変位自在に支持している。上記各パワーローラ13、13は、この様な支持軸16、16の先半部に、上記ラジアルニードル軸受17、17と上記スラスト玉軸受18、18とにより、回転自在に支持している。又、構成各部材の弾性変形に基づく、上記入力回転軸1の軸方向に関する上記各パワーローラ13、13の変位を、上記別のラジアルニードル軸受20、20と上記各スラストニードル軸受19、19とにより、自在としている。   That is, each of the support shafts 16 and 16 is an eccentric shaft in which the base half portion and the tip half portion are eccentric from each other, and the base half portion of the support shafts 16 and 16 is provided in the middle portion of the trunnions 15 and 15 as another radial needle bearing. 20 and 20 are supported so as to be swingable and displaceable. The power rollers 13 and 13 are rotatably supported on the front half portions of the support shafts 16 and 16 by the radial needle bearings 17 and 17 and the thrust ball bearings 18 and 18, respectively. Further, the displacement of each of the power rollers 13 and 13 with respect to the axial direction of the input rotary shaft 1 based on the elastic deformation of each constituent member is changed to the other radial needle bearings 20 and 20 and the thrust needle bearings 19 and 19. Because of this, it is free.

又、上記各トラニオン15、15は、それぞれの長さ方向(図4の表裏方向、図3、5の上下方向)両端部にこれら各トラニオン15、15毎に互いに同心に設けられた枢軸21、21を中心として揺動変位自在である。これら各トラニオン15、15を揺動(傾斜)させる動作は、油圧式のアクチュエータ22、22によりこれら各トラニオン15、15を上記各枢軸21、21の軸方向に変位させる事により行なう。変速時には、上記各アクチュエータ22、22への圧油の給排により、上記各トラニオン15、15を上記各枢軸21、21の軸方向に変位させる。この結果、上記各パワーローラ13、13の周面14、14と上記入力側、出力側各ディスク2a、2b、11の入力側、出力側各内側面3、12との接触部(トラクション部)の接線方向に作用する力の方向が変化するので、上記各トラニオン15、15が上記各枢軸21、21を中心として揺動変位する。   Each trunnion 15, 15 has a pivot 21 provided concentrically with each other for each trunnion 15, 15 at both ends in the length direction (front and back direction in FIG. 4, vertical direction in FIGS. 3, 5). 21 can be oscillated and displaced freely. The operation of swinging (tilting) the trunnions 15 and 15 is performed by displacing the trunnions 15 and 15 in the axial direction of the pivots 21 and 21 by hydraulic actuators 22 and 22. At the time of shifting, the trunnions 15 and 15 are displaced in the axial direction of the pivots 21 and 21 by supplying and discharging pressure oil to and from the actuators 22 and 22, respectively. As a result, contact portions (traction portions) between the peripheral surfaces 14 and 14 of the power rollers 13 and 13 and the input and output inner surfaces 3 and 12 of the input and output disks 2a, 2b and 11 respectively. Since the direction of the force acting in the tangential direction changes, the trunnions 15 and 15 are oscillated and displaced about the pivots 21 and 21, respectively.

上述の様なトロイダル型無段変速機の運転時には、エンジン等の動力源に繋がる駆動軸23により一方(図3〜4の左方)の入力側ディスク2aを、ローディングカム式の押圧装置24を介して回転駆動する。この結果、前記入力回転軸1の両端部に支持された1対の入力側ディスク2a、2bが、互いに近づく方向に押圧されつつ同期して回転する。そして、この回転が、上記各パワーローラ13、13を介して上記両出力側ディスク11、11に伝わり、前記出力歯車10から取り出される。尚、特許文献2には、油圧式の押圧装置を組み込んだトロイダル型無段変速機が記載されている。ローディングカムの如き機械式の押圧装置の場合、押圧装置が発生する押圧力は、トロイダル型無段変速機が伝達するトルクに比例する。これに対して油圧式の押圧装置の場合には、発生する押圧力を、このトルクとは独立して調節できる。   During the operation of the toroidal type continuously variable transmission as described above, the drive shaft 23 connected to the power source of the engine or the like is used to connect one input side disk 2a (to the left in FIGS. 3 to 4) with the loading cam type pressing device 24. To rotate through. As a result, the pair of input-side disks 2a and 2b supported at both ends of the input rotation shaft 1 rotate synchronously while being pressed in a direction approaching each other. Then, this rotation is transmitted to the output side disks 11 and 11 through the power rollers 13 and 13 and is taken out from the output gear 10. Patent Document 2 describes a toroidal continuously variable transmission incorporating a hydraulic pressing device. In the case of a mechanical pressing device such as a loading cam, the pressing force generated by the pressing device is proportional to the torque transmitted by the toroidal continuously variable transmission. On the other hand, in the case of a hydraulic pressing device, the generated pressing force can be adjusted independently of this torque.

上記入力回転軸1と出力歯車10との回転速度の比を変える場合で、先ず入力回転軸1と出力歯車10との間で減速を行なう場合には、上記各トラニオン15、15を図4に示す位置に揺動させ、上記各パワーローラ13、13の周面14、14をこの図4に示す様に、上記各入力側ディスク2a、2bの入力側内側面3、3の中心寄り部分と上記両出力側ディスク11、11の出力側内側面12、12の外周寄り部分とにそれぞれ当接させる。反対に、増速を行なう場合には、上記各トラニオン15、15を図4と反対方向に揺動させ、上記各パワーローラ13、13の周面14、14を、図4に示した状態とは逆に、上記両入力側ディスク2a、2bの入力側内側面3、3の外周寄り部分と上記両出力側ディスク11、11の出力側内側面12、12の中心寄り部分とにそれぞれ当接させる。上記各トラニオン15、15の揺動角度を中間にすれば、上記入力回転軸1と出力歯車10との間で、中間の速度比(変速比)を得られる。   When the ratio of the rotational speeds of the input rotary shaft 1 and the output gear 10 is changed, and when the deceleration is first performed between the input rotary shaft 1 and the output gear 10, the trunnions 15 and 15 are shown in FIG. As shown in FIG. 4, the peripheral surfaces 14, 14 of the power rollers 13, 13 are swung to the positions shown in FIG. 4, and the input side inner surfaces 3, 3 of the input side disks 2a, 2b The two output side disks 11 and 11 are brought into contact with the outer peripheral portions of the output side inner surfaces 12 and 12 respectively. On the contrary, when the speed is increased, the trunnions 15 and 15 are swung in the direction opposite to that shown in FIG. 4, and the peripheral surfaces 14 and 14 of the power rollers 13 and 13 are changed to the state shown in FIG. Conversely, the outer peripheral portions of the input side inner surfaces 3 and 3 of the two input side disks 2a and 2b and the central portions of the output side inner surfaces 12 and 12 of the two output side disks 11 and 11 are in contact respectively. Let An intermediate speed ratio (transmission ratio) can be obtained between the input rotary shaft 1 and the output gear 10 by setting the swing angles of the trunnions 15 and 15 to an intermediate position.

上述の様に構成され作用するトロイダル型無段変速機の伝達効率及び耐久性を確保する為には、上記各パワーローラ13、13の周面14、14と上記両入力側ディスク2a、2bの入力側内側面3、3及び上記両出力側ディスク11、11の出力側内側面12、12との転がり接触部(トラクション部)に過大な滑りが発生しない様にする必要がある。即ち、これら各転がり接触部には、トロイダル型無段変速機の技術分野で広く知られている様に、接触楕円が存在し、この接触楕円の長径方向は、上記両入力側ディスク2a、2b及び上記両出力側ディスク11、11の回転に伴って変化する(接触楕円がスピンする)。但し、上記各転がり接触部で、この様な、不可避的な滑りであるスピンを越えた滑りが発生すると、伝達効率が悪化する。   In order to ensure the transmission efficiency and durability of the toroidal-type continuously variable transmission constructed and operated as described above, the peripheral surfaces 14, 14 of the power rollers 13, 13 and the input side disks 2a, 2b It is necessary to prevent excessive slippage from occurring at the rolling contact portion (traction portion) between the input side inner surfaces 3 and 3 and the output side inner surfaces 12 and 12 of the output side disks 11 and 11. That is, each rolling contact portion has a contact ellipse, as is widely known in the technical field of toroidal-type continuously variable transmissions. The major axis direction of the contact ellipse is determined by the two input side disks 2a, 2b. And it changes with the rotation of both the output side disks 11, 11 (contact ellipse spins). However, if such slippage exceeding the spin, which is an unavoidable slip, occurs at each rolling contact portion, the transmission efficiency deteriorates.

特に、上記各転がり接触部で、グロススリップと呼ばれる著しい滑りが発生すると、上記各周面14、14と、上記入力側内側面3、3又は上記出力側内側面12、12とが、潤滑油(トラクションオイル)の膜を介さずに当接する、金属接触を発生する。金属接触が発生した場合には、上記各周面14、14と、上記入力側内側面3、3又は上記出力側内側面12、12との損傷が進み、トロイダル型無段変速機の耐久性が損なわれるだけでなく、著しい場合には焼き付き等の重大な故障の原因となる。尚、総てのトラニオン15、15の揺動角度は、油圧式及び機械式に互いに同期させるが、油圧式の同期は故障の可能性を否定できない。又、油圧式、機械式、何れの場合も、完全に同期させる事は難しく、各パワーローラ13、13毎に、それぞれの周面14、14と、入力側内側面3、3及び出力側内側面12、12との接触位置に(これら各内側面3、12の径方向に関して)多少のずれを生じる可能性は否定できない。   In particular, when significant slip called gloss slip occurs at each rolling contact portion, each of the peripheral surfaces 14 and 14 and the input side inner side surfaces 3 and 3 or the output side inner side surfaces 12 and 12 are lubricated. A metal contact that abuts without passing through the (traction oil) film is generated. When metal contact occurs, damage to the peripheral surfaces 14 and 14 and the input-side inner side surfaces 3 and 3 or the output-side inner side surfaces 12 and 12 proceeds, and the durability of the toroidal continuously variable transmission is increased. Not only is damaged, but if it is remarkable, it may cause a serious failure such as seizure. The swing angles of all the trunnions 15 and 15 are synchronized with each other hydraulically and mechanically, but the possibility of failure cannot be denied by the hydraulic synchronization. Moreover, it is difficult to synchronize completely in any of the hydraulic type and the mechanical type. For each of the power rollers 13, 13, the peripheral surfaces 14, 14, the input side inner surfaces 3, 3, and the output side There is no denying the possibility that a slight deviation will occur at the contact position with the side surfaces 12 and 12 (with respect to the radial direction of the inner side surfaces 3 and 12).

無段変速機の動力伝達部での滑りを検知する技術として従来から、特許文献4に記載された構造が知られている。この特許文献4に記載された構造の場合、ベルト式の無段変速機で、プーリとベルトとの接触部の滑りを検知する事を目的としている。この為に、入力回転数と出力回転数とを変速比を介して比較し、閾値を越えた差が生じた場合に滑りが発生していると判定する。この様にして滑りを検知する事は、ベルト式の無段変速機の場合には有効であるが、トロイダル型無段変速機の場合には適用できない。この理由は、ベルト式の無段変速機の場合には動力の伝達経路が1系統(1本のベルトのみ)であるのに対して、トロイダル型無段変速機の場合には、動力の伝達経路が複数存在する為である。例えば、図3〜5に記載した構造の場合には、4個のパワーローラ13、13が、動力の伝達方向に関して互いに並列に配置されている。従って、このうちの1個のパワーローラ13のトラクション部で過大な滑りが発生しても、他の3個のパワーローラ13、13が適正に動力伝達を行なっていると、前記両入力側ディスク2a、2bの回転速度と前記両出力側ディスク11、11の回転速度との比が、変速比に見合った適正な値になる。この為、上記1個のパワーローラ13のトラクション部での過大な滑りを検知できない。   Conventionally, a structure described in Patent Document 4 is known as a technique for detecting slippage in a power transmission unit of a continuously variable transmission. In the case of the structure described in Patent Document 4, the belt type continuously variable transmission is intended to detect slippage of the contact portion between the pulley and the belt. For this reason, the input rotation speed and the output rotation speed are compared via a gear ratio, and it is determined that slipping has occurred when a difference exceeding a threshold value occurs. Detecting slipping in this manner is effective in the case of a belt type continuously variable transmission, but cannot be applied in the case of a toroidal type continuously variable transmission. This is because, in the case of a belt-type continuously variable transmission, the power transmission path is one system (only one belt), whereas in the case of a toroidal continuously variable transmission, power transmission is performed. This is because there are multiple routes. For example, in the case of the structure described in FIGS. 3 to 5, four power rollers 13 and 13 are arranged in parallel with each other in the power transmission direction. Therefore, even if an excessive slip occurs in the traction portion of one of the power rollers 13, if the other three power rollers 13 and 13 are transmitting power properly, the both input side disks The ratio between the rotational speeds 2a and 2b and the rotational speeds of the output disks 11 and 11 is an appropriate value corresponding to the gear ratio. For this reason, the excessive slip in the traction part of the said one power roller 13 cannot be detected.

又、仮に1個のパワーローラ13のトラクション部での過大な滑りが、上記両入力側ディスク2a、2bの回転速度と上記両出力側ディスク11、11の回転速度との比に影響を及ぼすとしても、上記滑りを十分に精度良く検知する事はできない。特に、トロイダル型無段変速機の運転速度が低い場合には、上記滑りを検知する事は非常に難しい。しかも、上記トラクション部で発生するミクロ的な現象である滑りを、マクロ的な現象である変速比のずれで検知しようとしても、滑りが発生してからこの滑りを検知するまでに相当の時間的遅れが発生する事が避けられず、この滑りがグロススリップに迄成長する事を抑える事は難しい。   In addition, it is assumed that excessive slip at the traction portion of one power roller 13 affects the ratio between the rotational speeds of the input disks 2a and 2b and the rotational speeds of the output disks 11 and 11. However, the slip cannot be detected with sufficient accuracy. In particular, when the operating speed of the toroidal type continuously variable transmission is low, it is very difficult to detect the slip. Moreover, even if the slip, which is a microscopic phenomenon occurring in the traction section, is detected by a shift in the gear ratio, which is a macro phenomenon, it takes a considerable amount of time from the occurrence of the slip until the slip is detected. It is inevitable that a delay will occur, and it is difficult to prevent this slip from growing to a gross slip.

特開平7−208569号公報JP 7-20569 A 特開平11−63146号公報JP 11-63146 A 特開平11−166605号公報Japanese Patent Laid-Open No. 11-166605 特開2005−42884号公報JP 2005-42884 A

本発明は、上述の様な事情に鑑みて、トロイダル型無段変速機を構成する複数個のパワーローラのうちの何れかで過大な{動力伝達に基づく滑り(Creep )を上回る}滑りが発生した場合に、この滑りを、素早く(精度良く)検知できる構造を実現すべく発明したものである。   In the present invention, in view of the circumstances as described above, excessive {slip based on power transmission (Creep)} slip occurs in any of a plurality of power rollers constituting a toroidal continuously variable transmission. In this case, the present invention has been invented to realize a structure that can detect this slip quickly (with high accuracy).

本発明のトロイダル型無段変速機は、従来から知られているトロイダル型無段変速機と同様に、少なくとも1対の入力側ディスク及び出力側ディスクと、複数個の支持部材と、複数個のパワーローラと、押圧装置とを備える。
このうちの入力側ディスク及び出力側ディスクは、それぞれがトロイド曲面である軸方向片側面同士を対向させた状態で、互いに同心に、且つ、相対回転を自在に支持されている。
又、上記各支持部材は、軸方向に関して上記両ディスク同士の間位置に、これら両ディスクの中心軸に対し捩れの位置にある枢軸を中心とする揺動変位を自在に設けられている。
又、上記各パワーローラは、上記各支持部材に回転自在に支持され、球状凸面としたそれぞれの周面を、上記両ディスクの軸方向片側面に当接させている。
更に、上記押圧装置は、これら両ディスクを互いに近付ける方向に押圧する。
The toroidal type continuously variable transmission of the present invention, like the conventionally known toroidal type continuously variable transmission, has at least one pair of input side disk and output side disk, a plurality of support members, and a plurality of A power roller and a pressing device are provided.
Of these, the input-side disk and the output-side disk are supported concentrically and freely in relative rotation with each axial side surface being a toroidal curved surface facing each other.
Further, the support members are freely provided at a position between the two disks in the axial direction so as to be oscillated and displaced around a pivot that is twisted with respect to the central axes of the two disks.
Each power roller is rotatably supported by each support member, and has a spherical convex surface that is in contact with one axial side surface of both disks.
Further, the pressing device presses both the discs in a direction approaching each other.

特に、本発明のトロイダル型無段変速機に於いては、状態量測定手段と比較手段とを備える。
このうちの状態量測定手段は、上記各枢軸を中心とする上記各支持部材の傾斜角度と、上記各パワーローラの回転速度とのうちの少なくとも一方を測定するものである。
又、上記比較手段は、上記状態量測定手段が測定した、上記各支持部材毎の傾斜角度と上記各パワーローラ毎の回転速度とのうちの少なくとも一方を状態量を比較する。
そして、この比較手段は、何れかの支持部材の傾斜角度が他の支持部材の傾斜角度と閾値を越えて異なる場合、又は、何れかのパワーローラの回転速度が他のパワーローラの回転速度と閾値を越えて異なる場合に、何れかのパワーローラの周面と当該パワーローラを挟持している入力側ディスク及び出力側ディスクの軸方向片側面との接触部に過大な滑りが発生していると判定する機能を有する。
又、本発明を実施する場合に、例えば請求項2に記載した様に、上記押圧装置を、油圧室内に油圧を導入する事により両ディスクを互いに近づける方向の押圧力を発生させる油圧式のものとする。そして、上記比較手段が過大な滑りが発生していると判定した場合に、上記押圧装置が発生する押圧力を大きくする。
In particular, the toroidal-type continuously variable transmission according to the present invention includes state quantity measuring means and comparison means.
Of these, the state quantity measuring means measures at least one of the inclination angle of each of the support members around the pivots and the rotational speed of the power rollers.
The comparing means compares the state quantity with at least one of the inclination angle for each support member and the rotational speed for each power roller measured by the state quantity measuring means.
Then, the comparison means is configured such that the tilt angle of any one of the support members is different from the tilt angle of the other support member beyond a threshold value, or the rotational speed of any of the power rollers is different from the rotational speed of the other power roller. When the difference exceeds the threshold value, excessive slippage occurs at the contact portion between the peripheral surface of one of the power rollers and one side surface in the axial direction of the input side disk and output side disk holding the power roller. It has the function to judge.
Further, when the present invention is implemented, as described in claim 2, for example, the pressing device is a hydraulic device that generates a pressing force in a direction in which both disks are brought close to each other by introducing hydraulic pressure into the hydraulic chamber. And And when the said comparison means determines that the excessive slip has generate | occur | produced, the pressing force which the said press apparatus generate | occur | produces is enlarged.

上述の様に構成する本発明のトロイダル型無段変速機によれば、複数個のパワーローラのうちの何れかで過大な{動力伝達に基づく滑り(Creep )を上回る}滑りが発生した場合に、この滑りを、素早く(精度良く)検知できる。そして、押圧装置が発生する押圧力を直ちに大きくして、上記過大な滑りをなくし、この滑りがグロススリップに迄成長する事を確実に防止できる。この為、トロイダル型無段変速機の伝達効率及び耐久性を十分に確保できる。   According to the toroidal-type continuously variable transmission of the present invention configured as described above, when an excessively large slip (exceeding slip based on power transmission (Creep)) occurs in any of a plurality of power rollers. This slip can be detected quickly (accurately). Then, the pressing force generated by the pressing device is immediately increased to eliminate the excessive slip, and it is possible to reliably prevent the slip from growing to a gross slip. For this reason, the transmission efficiency and durability of the toroidal-type continuously variable transmission can be sufficiently secured.

図1〜2により、本発明の実施の形態の1例に就いて説明する。尚、本例の特徴は、図1に示す様なダブルキャビティ型のトロイダル型無段変速機を構成する、フロント側左右2個ずつ(FL、FR)、リヤ側左右2個ずつ(RL、RR)、合計4個のパワーローラ13、13を回転自在に支持したトラニオン15、15の、枢軸21、21(図4〜5参照)を中心とする傾斜角度(傾転角度)を、これら各トラニオン15、15毎に測定する事で、上記各パワーローラ13、13のうちの何れかのパワーローラ13に関するトラクション部に過大な滑りが発生した場合に、これを検知する点にある。トロイダル型無段変速機の基本的な構造及び作用に就いては、前述の図3〜5に示した構造等、従来から知られているトロイダル型無段変速機と同様であるから、重複する図示並びに説明は省略する。   An example of the embodiment of the present invention will be described with reference to FIGS. The feature of this example is that the double cavity type toroidal continuously variable transmission shown in FIG. 1 is composed of two front left and right (FL, FR), two rear left and right (RL, RR). ), The inclination angles (tilt angles) of the trunnions 15 and 15 that support the four power rollers 13 and 13 in a freely rotatable manner around the pivots 21 and 21 (see FIGS. 4 to 5). By measuring every 15 and 15, it is in the point which detects this when the excessive slip generate | occur | produces in the traction part regarding the power roller 13 of any one of said power rollers 13 and 13. The basic structure and operation of the toroidal-type continuously variable transmission are the same as those of the conventional toroidal-type continuously variable transmission such as the structures shown in FIGS. Illustration and description are omitted.

本例の場合には、上記各トラニオン15、15の端部に設けた枢軸21、21と、これら各枢軸21、21を支持した、回転しない部分との間に、エンコーダを設ける事により、上記各トラニオン15、15の傾斜角度を測定する。これら各トラニオン15、15の傾斜角度は、図2に示す様に、トロイダル型無段変速機の運転中、連続的に測定し、測定値を表す信号を図示しない制御器の比較回路に入力する。尚、上記図2には、明りょう化の為、上記各トラニオン15、15の傾斜角度を上下に異ならせて記載してあるが、実際の場合には、上記各パワーローラ13、13に関するトラクション部に過大な滑りが発生していない限り、上記各トラニオン15、15の傾斜角度は互いに一致する(図2の各線の左半部は互いに重なり合う)。   In the case of this example, by providing an encoder between the pivots 21 and 21 provided at the ends of the trunnions 15 and 15 and the non-rotating portion that supports the pivots 21 and 21, The inclination angle of each trunnion 15, 15 is measured. As shown in FIG. 2, the inclination angles of the trunnions 15 and 15 are continuously measured during operation of the toroidal continuously variable transmission, and a signal representing the measured value is input to a comparison circuit of a controller (not shown). . In FIG. 2, for the sake of clarity, the inclination angles of the trunnions 15 and 15 are illustrated as being different from each other. However, in the actual case, the traction relating to the power rollers 13 and 13 is described. As long as excessive slip does not occur in the portion, the inclination angles of the trunnions 15, 15 coincide with each other (the left half portions of the lines in FIG. 2 overlap each other).

上記各トラニオン15、15の傾斜角度を表す信号を入力した、上記比較回路は、絶えずこれら各トラニオン15、15の傾斜角度を比較する。そして、何れか(少なくとも1個)のトラニオン15の傾斜角度と他のトラニオン15、15の傾斜角度との間に、予め設定しておいた閾値(例えば0.5度)を越えた差を生じた場合に、何れかのトラニオン15に支持したパワーローラ13のトラクション部で、過大な滑りが発生したと判定する。例えば、図2に示す様に、リヤ側右(RR)のパワーローラ13を支持したトラニオン15の傾斜角度が、他の(FL、FR、RL)パワーローラ13、13を支持したトラニオン15、15の傾斜角度と異なり始めた場合には、上記リヤ側右(RR)のパワーローラ13のトラクション部の滑りが大きくなり始めたと判定する。そして、油圧式の押圧装置の油圧室内に導入する油圧を高くして、この押圧装置が発生する押圧力を直ちに大きくする。この様にして、上記各パワーローラ13、13に関するトラクション部の面圧を上昇させれば、上記過大な滑りを解消し、この滑りがグロススリップに迄成長する事を確実に防止できる。この為、トロイダル型無段変速機の伝達効率及び耐久性を十分に確保できる。尚、本発明を実施する場合には、何れかの部分で過大な滑りが発生した事を検知できれば良く、特に、過大な滑りを発生させたパワーローラ13を特定する必要はない。   The comparison circuit, to which a signal representing the tilt angle of each trunnion 15, 15 is input, constantly compares the tilt angle of each trunnion 15, 15. Then, a difference exceeding a preset threshold value (for example, 0.5 degrees) is generated between the inclination angle of one (at least one) trunnion 15 and the inclination angle of the other trunnions 15 and 15. In this case, it is determined that excessive slip has occurred in the traction portion of the power roller 13 supported by any trunnion 15. For example, as shown in FIG. 2, the inclination angle of the trunnion 15 that supports the rear right (RR) power roller 13 is equal to that of the trunnions 15 and 15 that support the other (FL, FR, RL) power rollers 13 and 13. If it begins to differ from the inclination angle, it is determined that the slip of the traction portion of the rear side right (RR) power roller 13 has started to increase. Then, the hydraulic pressure introduced into the hydraulic chamber of the hydraulic pressing device is increased, and the pressing force generated by the pressing device is immediately increased. In this way, if the surface pressure of the traction portion related to each of the power rollers 13 and 13 is increased, the excessive slip can be eliminated and the slip can be reliably prevented from growing to a gross slip. For this reason, the transmission efficiency and durability of the toroidal-type continuously variable transmission can be sufficiently secured. In the case of carrying out the present invention, it is only necessary to detect that excessive slip has occurred in any part, and it is not particularly necessary to identify the power roller 13 that has generated excessive slip.

上述の説明では、各トラニオンの傾斜角度の相違により過大な滑りを検知する様にしているが、この滑りは、各パワーローラの回転速度の相違によっても検知できる。
又、本発明は、図示の様な、入力側ディスクと出力側ディスクとを2個ずつ設けた、ダブルキャビティ型のトロイダル型無段変速機に限らず、例えば特許文献1に記載された様な、入力側ディスクと出力側ディスクとを1個ずつ設けた、シングルキャビティ型のトロイダル型無段変速機でも実施できる。シングルキャビティ型のトロイダル型無段変速機で実施する場合には、1対のパワーローラの回転速度同士の間、或いは、これら両パワーローラを支持したトラニオンの傾斜角度同士の間に閾値を越える差が生じた場合に、少なくとも何れか一方のパワーローラに関するトラクション部で、過大な滑りが発生したと判定する。
更に、本発明は、ダブルキャビティ型、シングルキャビティ型とを問わず、ハーフトロイダル型のトロイダル型無段変速機だけでなく、フルトロイダル型のトロイダル型無段変速機でも実施できる。
In the above description, an excessive slip is detected by the difference in the inclination angle of each trunnion, but this slip can also be detected by a difference in the rotation speed of each power roller.
Further, the present invention is not limited to the double cavity type toroidal continuously variable transmission in which two input side disks and two output side disks are provided as shown in the figure, for example, as described in Patent Document 1. The present invention can also be implemented by a single cavity type toroidal continuously variable transmission in which one input disk and one output disk are provided. When implemented with a single-cavity toroidal continuously variable transmission, the difference between the rotational speeds of a pair of power rollers or the inclination angle of a trunnion that supports both power rollers exceeds a threshold. When this occurs, it is determined that an excessive slip has occurred in at least one of the traction portions related to the power roller.
Furthermore, the present invention can be implemented not only in a double cavity type and a single cavity type, but also in a full toroidal toroidal continuously variable transmission as well as a half toroidal continuously variable transmission.

本発明を説明する為のトロイダル型無段変速機の模式図。The schematic diagram of the toroidal type continuously variable transmission for demonstrating this invention. 各トラニオンの傾斜角度と経過時間との関係を示す線図。The diagram which shows the relationship between the inclination-angle of each trunnion and elapsed time. 本発明の対象となるトロイダル型無段変速機の1例を示す断面図。Sectional drawing which shows one example of the toroidal type continuously variable transmission used as the object of this invention. 図3のA−A断面図。AA sectional drawing of FIG. 同B−B断面図。BB sectional drawing.

符号の説明Explanation of symbols

1 入力回転軸
2a、2b 入力側ディスク
3 入力側内側面
4 ボールスプライン
5 ケーシング
6 隔壁部
7 通孔
8 出力筒
9 転がり軸受
10 出力歯車
11 出力側ディスク
12 出力側内側面
13 パワーローラ
14 周面
15 トラニオン
16 支持軸
17 ラジアルニードル軸受
18 スラスト玉軸受
19 スラストニードル軸受
20 ラジアルニードル軸受
21 枢軸
22 アクチェータ
23 駆動軸
24 押圧装置
DESCRIPTION OF SYMBOLS 1 Input rotating shaft 2a, 2b Input side disk 3 Input side inner surface 4 Ball spline 5 Casing 6 Partition part 7 Through-hole 8 Output cylinder 9 Rolling bearing 10 Output gear 11 Output side disk 12 Output side inner surface 13 Power roller 14 Circumferential surface DESCRIPTION OF SYMBOLS 15 Trunnion 16 Support shaft 17 Radial needle bearing 18 Thrust ball bearing 19 Thrust needle bearing 20 Radial needle bearing 21 Pivot 22 Actuator 23 Drive shaft 24 Pressing device

Claims (2)

それぞれがトロイド曲面である軸方向片側面同士を対向させた状態で、互いに同心に、且つ、相対回転を自在に支持された、少なくとも1対の入力側ディスク及び出力側ディスクと、軸方向に関してこれら両ディスク同士の間位置に、これら両ディスクの中心軸に対し捩れの位置にある枢軸を中心とする揺動変位を自在に設けられた複数個の支持部材と、これら各支持部材に回転自在に支持され、球状凸面としたそれぞれの周面を、上記両ディスクの軸方向片側面に当接させたパワーローラと、これら両ディスクを互いに近付ける方向に押圧する押圧装置とを備えたトロイダル型無段変速機に於いて、上記各枢軸を中心とする上記各支持部材の傾斜角度と上記各パワーローラの回転速度とのうちの少なくとも一方を測定する状態量測定手段と、この状態量測定手段が測定した、上記各支持部材毎の傾斜角度と上記各パワーローラ毎の回転速度とのうちの少なくとも一方を状態量を比較する比較手段とを備え、この比較手段は、何れかの支持部材の傾斜角度が他の支持部材の傾斜角度と閾値を越えて異なる場合、又は、何れかのパワーローラの回転速度が他のパワーローラの回転速度と閾値を越えて異なる場合に、何れかのパワーローラの周面と当該パワーローラを挟持している入力側ディスク及び出力側ディスクの軸方向片側面との接触部に過大な滑りが発生していると判定する機能を有する事を特徴とするトロイダル型無段変速機。   At least one pair of an input side disk and an output side disk that are supported concentrically and freely rotating relative to each other in a state in which one side surfaces in the axial direction, each of which is a toroidal curved surface, are opposed to each other in the axial direction. A plurality of support members provided in a position between the two discs so as to be freely oscillating around a pivot that is twisted with respect to the central axes of the two discs, and each of the support members can be freely rotated. A toroidal stepless unit comprising a power roller that is supported and has a spherical convex surface that is in contact with one axial side surface of both disks, and a pressing device that presses both disks toward each other. In the transmission, a state quantity measuring means for measuring at least one of an inclination angle of each of the support members around the pivots and a rotation speed of the power rollers; Comparing means for comparing state quantities of at least one of the inclination angle for each of the support members and the rotational speed for each of the power rollers measured by the state quantity measuring means. When the inclination angle of one of the support members is different from the inclination angle of the other support member over a threshold value, or when the rotation speed of any of the power rollers is different from the rotation speed of the other power roller beyond the threshold value, It has a function of determining that excessive slip has occurred at the contact portion between the peripheral surface of any power roller and one side surface in the axial direction of the input side disk and output side disk holding the power roller. A toroidal-type continuously variable transmission. 押圧装置が、油圧室内に油圧を導入する事により両ディスクを互いに近づける方向の押圧力を発生させる油圧式のものであり、比較手段が過大な滑りが発生していると判定した場合に、上記押圧装置が発生する押圧力を大きくする、請求項1に記載したトロイダル型無段変速機。   When the pressing device is of a hydraulic type that generates a pressing force in a direction in which both disks are brought close to each other by introducing hydraulic pressure into the hydraulic chamber, and the comparison means determines that excessive slip has occurred, The toroidal continuously variable transmission according to claim 1, wherein the pressing force generated by the pressing device is increased.
JP2006126007A 2006-04-28 2006-04-28 Toroidal type continuously variable transmission Pending JP2007298098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006126007A JP2007298098A (en) 2006-04-28 2006-04-28 Toroidal type continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006126007A JP2007298098A (en) 2006-04-28 2006-04-28 Toroidal type continuously variable transmission

Publications (1)

Publication Number Publication Date
JP2007298098A true JP2007298098A (en) 2007-11-15

Family

ID=38767759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006126007A Pending JP2007298098A (en) 2006-04-28 2006-04-28 Toroidal type continuously variable transmission

Country Status (1)

Country Link
JP (1) JP2007298098A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052712A (en) * 2009-08-31 2011-03-17 Nsk Ltd Toroidal type continuously variable transmission
JP2014169726A (en) * 2013-03-01 2014-09-18 Nsk Ltd Toroidal continuously variable transmission
JP2015200330A (en) * 2014-04-04 2015-11-12 日本精工株式会社 Toroidal type continuously variable transmission

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052712A (en) * 2009-08-31 2011-03-17 Nsk Ltd Toroidal type continuously variable transmission
JP2014169726A (en) * 2013-03-01 2014-09-18 Nsk Ltd Toroidal continuously variable transmission
JP2015200330A (en) * 2014-04-04 2015-11-12 日本精工株式会社 Toroidal type continuously variable transmission

Similar Documents

Publication Publication Date Title
US20040092359A1 (en) Toroidal-type continuously variable transmission
JP2007298098A (en) Toroidal type continuously variable transmission
JP3932027B2 (en) Toroidal continuously variable transmission
JP4135249B2 (en) Half toroidal continuously variable transmission
JP2004340180A (en) Toroidal type non-stage transmission and testing apparatus therefor
JP2000257685A (en) Toroidal-type continuously variable transmission
JP2006308037A (en) Toroidal continuously variable transmission
JP5915174B2 (en) Toroidal continuously variable transmission
JP6413377B2 (en) Toroidal continuously variable transmission
JP2003021210A (en) Toroidal type continuously variable transmission and continuously variable transmission device
JP2006002882A (en) Toroidal continuously variable transmission
JP6163790B2 (en) Toroidal continuously variable transmission
JP2005195156A (en) Toroidal-type stepless transmission
JPH10299852A (en) Toroidal type continuously variable transmission
JP4721040B2 (en) Toroidal continuously variable transmission
JP5195785B2 (en) Continuously variable transmission
JP4893639B2 (en) Toroidal continuously variable transmission
JP4247733B2 (en) Toroidal continuously variable transmission
JP2009074951A (en) Method and apparatus for testing toroidal type continuously variable transmission
JP4561126B2 (en) Toroidal continuously variable transmission
JP4172102B2 (en) Toroidal continuously variable transmission
JP2007092946A (en) Toroidal continuously variable transmission
JP4483382B2 (en) Toroidal continuously variable transmission
JP2011247388A (en) Toroidal type continuously variable transmission
JP6277834B2 (en) Toroidal continuously variable transmission