JP2015199795A - Silane-grafted chlorinated polyethylene and method for producing the same, and insulated wire and cable - Google Patents

Silane-grafted chlorinated polyethylene and method for producing the same, and insulated wire and cable Download PDF

Info

Publication number
JP2015199795A
JP2015199795A JP2014078079A JP2014078079A JP2015199795A JP 2015199795 A JP2015199795 A JP 2015199795A JP 2014078079 A JP2014078079 A JP 2014078079A JP 2014078079 A JP2014078079 A JP 2014078079A JP 2015199795 A JP2015199795 A JP 2015199795A
Authority
JP
Japan
Prior art keywords
silane
chlorinated polyethylene
peroxide
silane compound
graft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014078079A
Other languages
Japanese (ja)
Other versions
JP6187368B2 (en
Inventor
新吾 芦原
Shingo Ashihara
新吾 芦原
貴 青山
Takashi Aoyama
貴 青山
浩貴 矢崎
Hirotaka Yasaki
浩貴 矢崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2014078079A priority Critical patent/JP6187368B2/en
Priority to PCT/JP2015/059429 priority patent/WO2015152005A1/en
Priority to CN201580022355.3A priority patent/CN106232647B/en
Publication of JP2015199795A publication Critical patent/JP2015199795A/en
Application granted granted Critical
Publication of JP6187368B2 publication Critical patent/JP6187368B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • C08F255/023On to modified polymers, e.g. chlorinated polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)
  • Insulated Conductors (AREA)
  • Organic Insulating Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a silane-grafted chlorinated polyethylene obtained by graft-copolymerizing a silane compound having a methacrylic group capable of obtaining a high crosslinking degree when cross-linked.SOLUTION: There is provided a silane-grafted chlorinated polyethylene which is obtained by graft copolymerizing a silane compound having a methacrylic group represented by HC=C(CH)-CO- to a chlorinated polyethylene with a peroxide, wherein when the molar number of the silane compound is defined as x, the molar number of the peroxide is defined as y and the number of oxygen-oxygen bonds contained in the peroxide is defined as α, x/2αy is 1.5 or more and 20.0 or less and the gel fraction after crosslinking is 60% or more.

Description

本発明は、シラングラフト塩素化ポリエチレンおよびその製造方法、並びに絶縁電線およびケーブルに関する。   The present invention relates to a silane-grafted chlorinated polyethylene, a method for producing the same, an insulated wire and a cable.

塩素化ポリエチレンは、原料であるポリエチレンを水性懸濁法などの方法によって塩素を作用させることにより得られる熱可塑性エラストマーの一種である。塩素化ポリエチレンは、可撓性、耐候性、耐油性、耐薬品性、難燃性、耐熱性、耐摩耗性などの幅広い特性を有しており、ケーブルの外被層など(以下、シースともいう)を形成する材料として広く用いられている。   Chlorinated polyethylene is a kind of thermoplastic elastomer obtained by reacting polyethylene as a raw material with chlorine by a method such as an aqueous suspension method. Chlorinated polyethylene has a wide range of properties such as flexibility, weather resistance, oil resistance, chemical resistance, flame resistance, heat resistance, and wear resistance. Is widely used as a material for forming.

一般に、塩素化ポリエチレンでシースを形成する場合、塩素化ポリエチレンを押し出した後、塩素化ポリエチレンを架橋させることが知られている。架橋方法としては、シラン化合物(シランカップリング剤)を用いるシラン架橋が広く行われている(例えば、特許文献1を参照)。   Generally, when a sheath is formed of chlorinated polyethylene, it is known to crosslink the chlorinated polyethylene after the chlorinated polyethylene is extruded. As a crosslinking method, silane crosslinking using a silane compound (silane coupling agent) is widely performed (see, for example, Patent Document 1).

シラン架橋では、まず、塩素化ポリエチレンにシラン化合物と過酸化物とを含有させて、過酸化物の存在下で塩素化ポリエチレンにシラン化合物をグラフト共重合させ、シラングラフト塩素化ポリエチレンを形成する。次に、シラングラフト塩素化ポリエチレンを水と接触させて架橋させることでシラン架橋塩素化ポリエチレンを形成する。   In silane crosslinking, first, a silane compound and a peroxide are contained in chlorinated polyethylene, and the silane compound is graft copolymerized with the chlorinated polyethylene in the presence of the peroxide to form a silane-grafted chlorinated polyethylene. Next, silane-crosslinked chlorinated polyethylene is formed by bringing the silane-grafted chlorinated polyethylene into contact with water and crosslinking.

シラン化合物としては、例えばビニルトリメトキシシランやビニルトリエトキシシラン等のビニル基を有するシラン化合物(以下、ビニルシランともいう)が広く用いられている。しかしながら、ビニルシランは、揮発性が高く特有の刺激臭を有することから、取り扱いにくいといった問題がある。そこで、ビニルシランに代わるシラン化合物として、メタクリル基、アクリル基またはスチリル基を有するシラン化合物が検討されている。このうち、コスト面等で実用性が高いことから、メタクリル基を有するシラン化合物(以下、メタクリルシランともいう)が着目されている。   As the silane compound, for example, a silane compound having a vinyl group such as vinyltrimethoxysilane or vinyltriethoxysilane (hereinafter also referred to as vinylsilane) is widely used. However, vinyl silane has a problem that it is difficult to handle because it is highly volatile and has a unique irritating odor. Therefore, a silane compound having a methacryl group, an acryl group or a styryl group has been studied as a silane compound instead of vinyl silane. Of these, silane compounds having a methacryl group (hereinafter also referred to as methacryl silane) have attracted attention because of their high practicality in terms of cost and the like.

特許昭50−35540号公報Japanese Patent No. 50-35540

しかしながら、メタクリルシランはビニルシランと比較して塩素化ポリエチレンにグラフト共重合させにくい。そのため、メタクリルシランがグラフト共重合されたシラングラフト塩素化ポリエチレンは、架橋度が低くなるといった問題がある。   However, methacryl silane is less likely to be graft copolymerized with chlorinated polyethylene than vinyl silane. Therefore, the silane graft chlorinated polyethylene obtained by graft copolymerization of methacryl silane has a problem that the degree of crosslinking is lowered.

本発明は、このような問題に鑑みて成されたものであり、架橋させたときに高い架橋度が得られる、メタクリル基を有するシラン化合物がグラフト共重合されたシラングラフト塩素化ポリエチレン、それを用いた絶縁電線およびケーブルを提供することを目的とする。   The present invention has been made in view of such problems. A silane-grafted chlorinated polyethylene obtained by graft-copolymerizing a silane compound having a methacryl group, which has a high degree of crosslinking when crosslinked, is obtained. It aims at providing the insulated wire and cable which were used.

本発明の一態様によれば、
C=C(CH)−CO−で示されるメタクリル基を有するシラン化合物が過酸化物により塩素化ポリエチレンにグラフト共重合されており、前記シラン化合物のモル数をx、前記過酸化物のモル数をy、前記過酸化物に含まれる酸素と酸素との結合の数をαとしたとき、x/2αyが1.5以上20.0以下であり、架橋させた後のゲル分率が60%以上である、シラングラフト塩素化ポリエチレンが提供される。
According to one aspect of the invention,
A silane compound having a methacryl group represented by H 2 C═C (CH 3 ) —CO— is graft-copolymerized to a chlorinated polyethylene by a peroxide, wherein the number of moles of the silane compound is x, and the peroxide Where y / 2 is the number of moles of oxygen and α is the number of bonds between oxygen and oxygen contained in the peroxide, x / 2αy is 1.5 or more and 20.0 or less, and the gel fraction after crosslinking A silane-grafted chlorinated polyethylene is provided in which is 60% or more.

本発明の他の態様によれば、
塩素化ポリエチレンに過酸化物を添加する添加工程と、前記塩素化ポリエチレンに、HC=C(CH)−CO−で示されるメタクリル基を有するシラン化合物を添加することで、前記塩素化ポリエチレンに前記シラン化合物をグラフト共重合させるグラフト工程と、を有し、前記グラフト工程では、前記シラン化合物のモル数をx、前記過酸化物のモル数をy、前記過酸化物に含まれる酸素と酸素との結合の数をαとしたとき、x/2αyが1.5以上20.0以下となるように前記シラン化合物を添加しており、前記添加工程を行った後に前記グラフト工程を行う、シラングラフト塩素化ポリエチレンの製造方法が提供される。
According to another aspect of the invention,
Adding the peroxide to the chlorinated polyethylene, and adding the silane compound having a methacryl group represented by H 2 C═C (CH 3 ) —CO— to the chlorinated polyethylene, the chlorination A grafting step of graft-copolymerizing the silane compound onto polyethylene, wherein in the grafting step, the number of moles of the silane compound is x, the number of moles of the peroxide is y, and oxygen contained in the peroxide When the number of bonds between oxygen and oxygen is α, the silane compound is added so that x / 2αy is 1.5 or more and 20.0 or less, and the grafting step is performed after the addition step. A method for producing silane-grafted chlorinated polyethylene is provided.

本発明のさらに他の態様によれば、
導体と、前記導体の外周を囲うように設けられ、HC=C(CH)−CO−で示されるメタクリル基を有するシラン化合物が過酸化物により塩素化ポリエチレンにグラフト共重合されており、前記シラン化合物のモル数をx、前記過酸化物のモル数をy、前記過酸化物に含まれる酸素と酸素との結合の数をαとしたとき、x/2αyが1.5以上20.0以下であるシラングラフト塩素化ポリエチレンで形成され、ゲル分率が60%以上である絶縁層と、を備える絶縁電線が提供される。
According to yet another aspect of the invention,
A silane compound having a methacrylic group represented by H 2 C═C (CH 3 ) —CO—, which is provided so as to surround the conductor and the outer periphery of the conductor, is graft-copolymerized to the chlorinated polyethylene by a peroxide. Where x / 2αy is 1.5 or more, where x is the number of moles of the silane compound, y is the number of moles of the peroxide, and α is the number of bonds between oxygen and oxygen contained in the peroxide. And an insulating layer formed of silane-grafted chlorinated polyethylene having a gel fraction of 60% or more.

本発明のさらに他の態様によれば、
導体と、前記導体の外周を囲うように設けられる絶縁層と、前記絶縁層の外周を囲うように設けられ、HC=C(CH)−CO−で示されるメタクリル基を有するシラン化合物が過酸化物により塩素化ポリエチレンにグラフト共重合されており、前記シラン化合物のモル数をx、前記過酸化物のモル数をy、前記過酸化物に含まれる酸素と酸素との結合の数をαとしたとき、x/2αyが1.5以上20.0以下であるシラングラフト塩素化ポリエチレンで形成され、ゲル分率が60%以上である外被層と、を備えるケーブルが提供される。
According to yet another aspect of the invention,
Silane compound having a methacryl group, H 2 C═C (CH 3 ) —CO—, which is provided so as to surround the conductor, an insulating layer provided so as to surround the outer periphery of the conductor, and an outer periphery of the insulating layer Is graft-copolymerized to chlorinated polyethylene by peroxide, the number of moles of the silane compound is x, the number of moles of the peroxide is y, and the number of bonds between oxygen and oxygen contained in the peroxide And a jacket layer formed of a silane-grafted chlorinated polyethylene having x / 2αy of 1.5 or more and 20.0 or less, and having a gel fraction of 60% or more. .

本発明によれば、架橋させたときに高い架橋度が得られる、メタクリル基を有するシラン化合物がグラフト共重合されたシラングラフト塩素化ポリエチレン、それを用いた絶縁電線およびケーブルが得られる。   According to the present invention, a silane-grafted chlorinated polyethylene obtained by graft copolymerization with a silane compound having a methacryl group, which can obtain a high degree of crosslinking when crosslinked, an insulated wire and a cable using the silane-grafted chlorinated polyethylene are obtained.

本発明の一実施形態に係るケーブルの断面図である。It is sectional drawing of the cable which concerns on one Embodiment of this invention. 本発明の一実施形態に係る絶縁電線の断面図である。It is sectional drawing of the insulated wire which concerns on one Embodiment of this invention. 実施例における押出機を用いたグラフト工程を示す模式図である。It is a schematic diagram which shows the grafting process using the extruder in an Example. 実施例におけるケーブルの作製を示す模式図である。It is a schematic diagram which shows preparation of the cable in an Example.

本発明者らは、上記課題について検討したところ、メタクリルシランがビニルシランと比較して塩素化ポリエチレンにグラフト共重合されにくいこと、つまりメタクリルシランの塩素化ポリエチレンへのグラフト化率が低くなることは、メタクリルシランがグラフト共重合の際に生じるラジカルと反応しやすいためであることが分かった。この点につき、以下、具体的に説明する。   When the present inventors examined the above-mentioned problems, methacryl silane is less likely to be graft copolymerized with chlorinated polyethylene than vinyl silane, that is, the grafting rate of methacryl silane to chlorinated polyethylene is low. It was found that methacryl silane easily reacts with radicals generated during graft copolymerization. This point will be specifically described below.

一般に、シラン化合物のグラフト共重合はラジカルによって進行する。具体的には、まず、塩素化ポリエチレンにシラン化合物と過酸化物とを含有させて加熱し、過酸化物を熱分解させることでラジカル(例えばオキシラジカル)を生成させる。オキシラジカルは、塩素化ポリエチレン中の水素を引き抜くことで、塩素化ポリエチレンのラジカルを生成する。そして、塩素化ポリエチレンのラジカルとシラン化合物の有する不飽和結合(例えばビニル基やメタクリル基)とが反応することによって、シラン化合物が塩素化ポリエチレンにグラフト共重合されることになる。このように、シラン化合物のグラフト共重合は、過酸化物から生成するオキシラジカルによって反応し始める。   In general, graft copolymerization of a silane compound proceeds by radicals. Specifically, first, a silane compound and a peroxide are contained in chlorinated polyethylene and heated, and the peroxide is thermally decomposed to generate a radical (for example, an oxy radical). Oxy radicals generate chlorinated polyethylene radicals by extracting hydrogen from chlorinated polyethylene. Then, the radical of chlorinated polyethylene and the unsaturated bond (for example, vinyl group or methacryl group) possessed by the silane compound react, whereby the silane compound is graft-copolymerized to chlorinated polyethylene. Thus, the graft copolymerization of the silane compound begins to react with oxy radicals generated from the peroxide.

しかしながら、上述のグラフト共重合では、本来、塩素化ポリエチレンと反応するオキシラジカルが、シラン化合物と反応することがある。つまり、オキシラジカルがシラン化合物との反応により消費されることがある。そのため、オキシラジカルと塩素化ポリエチレンとの反応が阻害されて、塩素化ポリエチレンのラジカルが生成されにくくなる。その結果、シラン化合物が塩素化ポリエチレンに対して十分にグラフト共重合されず、シラン化合物のグラフト化率が低くなってしまう。特に、シラン化合物の中でも、メタクリルシランは、ビニルシラン等と比較してオキシラジカルとの反応性が高くオキシラジカルと反応しやすいため、グラフト化率がより低くなってしまう。このようにシラン化合物のグラフト化率が低くなると、シラングラフト塩素化ポリエチレンを架橋させたときに、架橋度が低くなってしまう。   However, in the graft copolymerization described above, an oxy radical that reacts with chlorinated polyethylene may react with a silane compound. That is, oxy radicals may be consumed by reaction with the silane compound. Therefore, the reaction between the oxy radical and the chlorinated polyethylene is inhibited, and the radical of the chlorinated polyethylene is hardly generated. As a result, the silane compound is not sufficiently graft copolymerized with the chlorinated polyethylene, and the grafting rate of the silane compound becomes low. In particular, among silane compounds, methacrylic silane has a higher reactivity with oxy radicals and easily reacts with oxy radicals than vinyl silane and the like, so that the grafting rate becomes lower. Thus, when the grafting rate of a silane compound becomes low, when a silane graft | grafting chlorinated polyethylene is bridge | crosslinked, a crosslinking degree will become low.

この問題を解決する方法について本発明者らが検討したところ、メタクリルシランを過酸化物と同時に添加するのではなく、過酸化物を塩素化ポリエチレンに添加した後、メタクリルシランを添加するとよいことが見出された。従来では、過酸化物およびシラン化合物を塩素化ポリエチレンに添加するとき、例えば過酸化物およびシラン化合物を溶解させた溶液を添加することで、これらを同時に添加していた。しかしながら、メタクリルシランの場合、過酸化物と同時に添加すると、これらを塩素化ポリエチレン中に分散させている最中に過酸化物から生成するラジカルとメタクリルシランとが反応することで、過酸化物が消費され、結果的にメタクリルシランのグラフト共重合が阻害されてしまう。これに対して、過酸化物を添加した後にメタクリルシランを添加する場合、過酸化物を予め塩素化ポリエチレン中に分散させておくことができるので、メタクリルシランを分散させるときに過酸化物の消費を抑制できる。その結果、塩素化ポリエチレンにメタクリルシランを良好にグラフト共重合させることができる。本発明は、これらの知見に基づいて成されたものである。   When the present inventors examined a method for solving this problem, it is preferable not to add methacrylic silane at the same time as the peroxide, but to add methacrylic silane after adding the peroxide to chlorinated polyethylene. It was found. Conventionally, when a peroxide and a silane compound are added to chlorinated polyethylene, for example, a solution in which the peroxide and the silane compound are dissolved is added at the same time. However, in the case of methacrylic silane, when added simultaneously with the peroxide, the radicals generated from the peroxide react with the methacrylic silane while they are dispersed in the chlorinated polyethylene. As a result, the graft copolymerization of methacrylsilane is hindered. On the other hand, when methacrylsilane is added after adding the peroxide, the peroxide can be dispersed in the chlorinated polyethylene in advance, so that the consumption of the peroxide is increased when methacrylsilane is dispersed. Can be suppressed. As a result, methacryl silane can be satisfactorily graft copolymerized with chlorinated polyethylene. The present invention has been made based on these findings.

<本発明の一実施形態>
以下、本発明の一実施形態について説明する。
<One Embodiment of the Present Invention>
Hereinafter, an embodiment of the present invention will be described.

(1)シラングラフト塩素化ポリエチレン
本実施形態のシラングラフト塩素化ポリエチレンは、メタクリル基を有するシラン化合物(メタクリルシラン)が過酸化物により塩素化ポリエチレンにグラフト共重合されたものである。シラングラフト塩素化ポリエチレンは、分子鎖中にシラン化合物に由来するシラン基を有しており、水との反応により架橋されるような構造を有している。以下、各成分について具体的に説明する。
(1) Silane-grafted chlorinated polyethylene The silane-grafted chlorinated polyethylene of this embodiment is obtained by graft-copolymerizing a silane compound having a methacrylic group (methacrylic silane) to chlorinated polyethylene with a peroxide. Silane-grafted chlorinated polyethylene has a silane group derived from a silane compound in the molecular chain and has a structure that is crosslinked by reaction with water. Hereinafter, each component will be specifically described.

塩素化ポリエチレンは、例えば、線状ポリエチレン(低密度ポリエチレンや高密度ポリエチレンなど)を水に懸濁分散させた水性懸濁液に塩素ガスを吹き込むことにより得られる。塩素化ポリエチレンの塩素化度は、シラン化合物のグラフト化率を向上させる、つまり架橋させたときの架橋度を向上させる観点から、25%以上45%以下とするとよく、30%以上40%以下とするとよりよい。   The chlorinated polyethylene can be obtained, for example, by blowing chlorine gas into an aqueous suspension obtained by suspending and dispersing linear polyethylene (such as low density polyethylene or high density polyethylene) in water. The degree of chlorination of the chlorinated polyethylene is preferably 25% or more and 45% or less, and 30% or more and 40% or less from the viewpoint of improving the grafting rate of the silane compound, that is, improving the degree of crosslinking when crosslinked. Then better.

シラン化合物は、HC=C(CH)−CO−で示されるメタクリル基を有している。メタクリル基は、塩素化ポリエチレンのラジカルと反応する不飽和結合の置換基である。シラン化合物は、メタクリル基が塩素化ポリエチレンのラジカルと反応することで、塩素化ポリエチレンにグラフト共重合されている。 The silane compound has a methacryl group represented by H 2 C═C (CH 3 ) —CO—. The methacryl group is an unsaturated bond substituent that reacts with the radicals of chlorinated polyethylene. The silane compound is graft-copolymerized to chlorinated polyethylene by the reaction of the methacrylic group with the radical of chlorinated polyethylene.

また、シラン化合物は、加水分解性のシラン基を有している。シラングラフト塩素化ポリエチレンの化学構造中には、シラン化合物が塩素化ポリエチレンにグラフト共重合されることで、シラン基が導入されることになる。シラン基は、シラングラフト塩素化ポリエチレンを水と反応させて架橋させる際に、加水分解することでシラノール基となる。シラノール基は、脱水縮合(シラノール縮合)することによって、架橋構造を形成する。シラン基としては、例えば、ハロゲン、アルコキシ基、アシルオキシ基、フェノキシ基などの加水分解可能な構造を有するものが挙げられる。これらの加水分解可能な構造を有するシラン基として、例えばハロシリル基、アルコキシシリル基、アシロキシシリル基、フェノキシシリル基などが挙げられる。   Moreover, the silane compound has a hydrolyzable silane group. In the chemical structure of silane-grafted chlorinated polyethylene, a silane group is introduced by graft copolymerization of the silane compound with chlorinated polyethylene. The silane group is converted to a silanol group by hydrolysis when the silane-grafted chlorinated polyethylene is reacted with water for crosslinking. Silanol groups form a crosslinked structure by dehydration condensation (silanol condensation). Examples of the silane group include those having a hydrolyzable structure such as a halogen, an alkoxy group, an acyloxy group, and a phenoxy group. Examples of the silane group having a hydrolyzable structure include a halosilyl group, an alkoxysilyl group, an acyloxysilyl group, and a phenoxysilyl group.

具体的には、シラン化合物としては、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン等のメタクリルシランを用いることができる。   Specifically, as the silane compound, methacryl silane such as 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, etc. Can be used.

過酸化物は、塩素化ポリエチレンにシラン化合物をグラフト共重合させるためのものである。過酸化物としては、塩素化ポリエチレンから水素を引き抜く水素引き抜き能が高く、また塩素化ポリエチレンが劣化しにくい(脱塩化水素しにくい)温度で熱分解してオキシラジカルを生成できる有機過酸化物を用いることができる。塩素化ポリエチレンの劣化開始温度が200℃程度であることから、過酸化物としては、1分間半減期温度が120℃以上200℃以下である有機過酸化物を用いることが好ましい。グラフト反応に要する時間を短縮する観点からは、1分間半減期温度が150℃以上200℃以下である有機過酸化物を用いるとよりよい。なお、1分間半減期温度とは、過酸化物の半減期が1分間となる温度のことである。   The peroxide is for graft copolymerizing a silane compound with chlorinated polyethylene. Peroxides are organic peroxides that have high hydrogen abstraction ability to extract hydrogen from chlorinated polyethylene, and can generate oxy radicals by thermal decomposition at a temperature at which chlorinated polyethylene is unlikely to deteriorate (hard to dehydrochlorinate). Can be used. Since the deterioration start temperature of chlorinated polyethylene is about 200 ° C., it is preferable to use an organic peroxide having a one-minute half-life temperature of 120 ° C. or more and 200 ° C. or less as the peroxide. From the viewpoint of shortening the time required for the grafting reaction, it is better to use an organic peroxide having a one-minute half-life temperature of 150 ° C. or higher and 200 ° C. or lower. The 1-minute half-life temperature is a temperature at which the half-life of the peroxide is 1 minute.

具体的には、過酸化物としては、ビス(1−メチル−1−フェニルエチル)ペルオキシド(ジクミルパーオキサイド)、1,1−ジ(t−ブチルパーオキシ)シクロヘキサン、t−ブチルパーオキシイソプロピルカーボネート、t−アミルパーオキシイソプロピルカーボネート、2,5ジメチル2,5ジ(t−ブチルパーオキシ)シクロヘキサン、t−ブチルパーオキシ2−エチルヘキシルカーボネートなどを用いることができる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。これらの中でも、1分間半減期温度が約175℃であるビス(1−メチル−1−フェニルエチル)ペルオキシド(いわゆるジクミルパーオキサイド)を用いるとよい。   Specifically, as the peroxide, bis (1-methyl-1-phenylethyl) peroxide (dicumyl peroxide), 1,1-di (t-butylperoxy) cyclohexane, t-butylperoxyisopropyl Carbonate, t-amyl peroxyisopropyl carbonate, 2,5 dimethyl 2,5 di (t-butylperoxy) cyclohexane, t-butylperoxy 2-ethylhexyl carbonate, and the like can be used. These may be used alone or in combination of two or more. Among these, bis (1-methyl-1-phenylethyl) peroxide (so-called dicumyl peroxide) having a 1 minute half-life temperature of about 175 ° C. may be used.

シラン化合物および過酸化物は、シラン化合物のモル数をx、過酸化物のモル数をy、過酸化物に含まれる酸素と酸素との結合(ペルオキシド結合、−O−O−結合)の数をαとしたとき、x/2αyが1.5以上20.0以下であるとよく、3以上9以下であるとよりよい。x/2αyは、塩素化ポリエチレンに配合するシラン化合物のモル数と、過酸化物から生成するラジカル(オキシラジカル)のモル数との比率を示す。x/2αyが1.5未満となると、シラン化合物に対してラジカルが不足する傾向があるため、塩素化ポリエチレンにシラン化合物を十分にグラフト共重合できないおそれがある。一方、x/2αyが20.0を超えると、シラン化合物に対してラジカルが過剰となる傾向があるため、シラン化合物をグラフト共重合させるときに、意図しない架橋反応が生じてしまうおそれがある。したがって、x/2αyを1.5以上20以下とすると、塩素化ポリエチレンにシラン化合物を十分にグラフト共重合させると共に、グラフト共重合させるときの架橋反応を抑制することができる。   The number of moles of the silane compound is x, the number of moles of the peroxide is y, and the number of oxygen-oxygen bonds (peroxide bond, —O—O— bond) contained in the peroxide. Where x / 2αy is preferably 1.5 or more and 20.0 or less, and more preferably 3 or more and 9 or less. x / 2αy represents the ratio between the number of moles of the silane compound blended in the chlorinated polyethylene and the number of moles of radicals (oxy radicals) generated from the peroxide. When x / 2αy is less than 1.5, radicals tend to be insufficient with respect to the silane compound, so that there is a possibility that the silane compound cannot be sufficiently copolymerized with chlorinated polyethylene. On the other hand, if x / 2αy exceeds 20.0, radicals tend to be excessive with respect to the silane compound, and thus an unintended crosslinking reaction may occur when the silane compound is graft-copolymerized. Therefore, when x / 2αy is 1.5 or more and 20 or less, the silane compound can be sufficiently graft copolymerized with chlorinated polyethylene, and the crosslinking reaction when graft copolymerization can be suppressed.

シラン化合物および過酸化物は、x/2αyが1.5以上20.0以下となるような含有量であれば特に限定されない。例えば、塩素化ポリエチレン100質量部に対して、シラン化合物の含有量は1.0質量部以上10質量部以下であるとよい。過酸化物の含有量は0.03質量部以上3.0質量部以下であるとよい。このとき、シラン化合物のモル数xが4.0×10−3〜4.0×10−2の範囲内あるとよく、過酸化物から生成するラジカル(オキシラジカル)のモル数2αyが2.2×10−4〜2.2×10−2の範囲内であるとよい。 The silane compound and the peroxide are not particularly limited as long as the content is such that x / 2αy is 1.5 or more and 20.0 or less. For example, the content of the silane compound is preferably 1.0 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of chlorinated polyethylene. The peroxide content is preferably 0.03 parts by mass or more and 3.0 parts by mass or less. At this time, the number of moles x of the silane compound is preferably in the range of 4.0 × 10 −3 to 4.0 × 10 −2 , and the number of moles 2αy of radicals (oxy radicals) generated from the peroxide is 2. It is good in the range of 2 * 10 < -4 > -2.2 * 10 <-2 >.

シラングラフト塩素化ポリエチレンには、効率的に架橋させる観点から、架橋反応を促進させるシラノール縮合触媒が含有されているとよい。シラノール縮合触媒としては、例えば、マグネシウムやカルシウム等のII族元素、コバルトや鉄等のVIII族元素、錫、亜鉛およびチタン等の金属元素、これらの元素を含む金属化合物を用いることができる。また、オクチル酸やアジピン酸の金属塩、アミン系化合物、酸などを用いることができる。具体的には、ジオクチル錫ジネオデカノエート、ジブチル錫ジラウリレート、ジブチル錫ジアセテート、ジブチル錫ジオクタエート、酢酸第一錫、カブリル酸第一錫、ナフテン酸鉛、カプリル酸亜鉛、ナフテン酸コバルトなどの金属塩、エチルアミン、ジブチルアミン、ヘキシルアミン、ピリジンなどのアミン系化合物、硫酸や塩酸などの無機酸、トルエンスルホン酸や酢酸、ステアリン酸、マレイン酸などの有機酸を用いることができる。   The silane-grafted chlorinated polyethylene preferably contains a silanol condensation catalyst that promotes the crosslinking reaction from the viewpoint of efficient crosslinking. As the silanol condensation catalyst, for example, a group II element such as magnesium and calcium, a group VIII element such as cobalt and iron, a metal element such as tin, zinc and titanium, and a metal compound containing these elements can be used. In addition, metal salts of octylic acid and adipic acid, amine compounds, acids, and the like can be used. Specifically, dioctyltin dineodecanoate, dibutyltin dilaurate, dibutyltin diacetate, dibutyltin dioctaate, stannous acetate, stannous carbrate, lead naphthenate, zinc caprylate, cobalt naphthenate, etc. Metal salts, amine compounds such as ethylamine, dibutylamine, hexylamine and pyridine, inorganic acids such as sulfuric acid and hydrochloric acid, and organic acids such as toluenesulfonic acid, acetic acid, stearic acid and maleic acid can be used.

また、シラングラフト塩素化ポリエチレンには、可塑剤、酸化防止剤(老化防止剤を含む)、カーボンブラック等の充填剤、難燃剤、滑剤、銅害変色防止剤、架橋助剤、安定剤などのその他の添加剤が含有されていてもよい。   Silane-grafted chlorinated polyethylene includes plasticizers, antioxidants (including antioxidants), fillers such as carbon black, flame retardants, lubricants, copper damage discoloration inhibitors, crosslinking aids, stabilizers, etc. Other additives may be contained.

(2)シラン架橋塩素化ポリエチレン
シラン架橋塩素化ポリエチレンは、上述のシラングラフト塩素化ポリエチレンが水との反応により架橋されたものである。シラン架橋塩素化ポリエチレンは、例えば架橋度の指標であるゲル分率が60%以上である。ゲル分率が60%未満であると、シラン架橋塩素化ポリエチレンの架橋度が低くなるので、例えばケーブルが備える外被層(シース)では引張強さ等の機械的特性が得られなくなる。シースなどの機械的特性を向上させる観点からは、ゲル分率の上限値は特に限定されない。ゲル分率が高くなり、架橋度が高くなるほど、シラン架橋塩素化ポリエチレンには多くの架橋構造が形成されるので、シースなどの機械的特性は向上する傾向を示すものが多い。
(2) Silane-crosslinked chlorinated polyethylene Silane-crosslinked chlorinated polyethylene is obtained by crosslinking the above-mentioned silane-grafted chlorinated polyethylene by reaction with water. Silane-crosslinked chlorinated polyethylene has a gel fraction, which is an index of the degree of crosslinking, for example, of 60% or more. When the gel fraction is less than 60%, the degree of cross-linking of the silane-crosslinked chlorinated polyethylene is low, and therefore mechanical properties such as tensile strength cannot be obtained in the jacket layer (sheath) provided in the cable. From the viewpoint of improving mechanical properties such as a sheath, the upper limit of the gel fraction is not particularly limited. As the gel fraction increases and the degree of cross-linking increases, many cross-linked structures are formed in the silane cross-linked chlorinated polyethylene, and therefore, mechanical properties such as a sheath tend to be improved.

ゲル分率は、以下のように求められる。まず、シラン架橋塩素化ポリエチレンで形成された試料をキシレン中に浸漬し、キシレンを加熱して沸騰させる。その後、キシレンに溶解せずに残存した試料(熱キシレンで抽出した後の試料)を取り出して乾燥させ、熱キシレンで抽出した後の試料の質量を計測する。そして、熱キシレンで抽出する前の試料の質量に対する熱キシレンで抽出した後の試料の質量の比率を算出することにより、シラン架橋塩素化ポリエチレンのゲル分率を求める。熱キシレンで抽出する前の試料の質量をa、熱キシレンで抽出した後の試料の質量をbとすると、ゲル分率Rは下記式で示される。
R(%)=(b/a)×100
The gel fraction is determined as follows. First, a sample formed of silane-crosslinked chlorinated polyethylene is immersed in xylene, and xylene is heated and boiled. Thereafter, a sample that remains without being dissolved in xylene (sample after extraction with hot xylene) is taken out and dried, and the mass of the sample after extraction with hot xylene is measured. Then, by calculating the ratio of the mass of the sample after extraction with hot xylene to the mass of the sample before extraction with hot xylene, the gel fraction of the silane-crosslinked chlorinated polyethylene is determined. When the mass of the sample before extraction with hot xylene is a, and the mass of the sample after extraction with hot xylene is b, the gel fraction R is expressed by the following formula.
R (%) = (b / a) × 100

(3)シラングラフト塩素化ポリエチレンの製造方法
次に、上述したシラングラフト塩素化ポリエチレンの製造方法について説明する。
(3) Manufacturing method of silane graft chlorinated polyethylene Next, the manufacturing method of the silane graft chlorinated polyethylene mentioned above is demonstrated.

(添加工程)
まず、塩素化ポリエチレンに過酸化物として例えばジクミルパーオキサイドを添加し、加熱混練する。混練により、塩素化ポリエチレン中に過酸化物を分散させる。このとき、塩素化ポリエチレン100質量部に対して過酸化物を0.03質量部以上3.0質量部以下、好ましくは0.1質量部以上1.2質量部以下添加する。なお、混練する際の温度は、塩素化ポリエチレンの劣化温度以下とするとよい。
(Addition process)
First, for example, dicumyl peroxide is added as a peroxide to chlorinated polyethylene and heated and kneaded. By kneading, the peroxide is dispersed in the chlorinated polyethylene. At this time, a peroxide is added in an amount of 0.03 to 3.0 parts by mass, preferably 0.1 to 1.2 parts by mass, with respect to 100 parts by mass of chlorinated polyethylene. In addition, the temperature at the time of kneading | mixing is good to be below the deterioration temperature of chlorinated polyethylene.

(グラフト工程)
続いて、過酸化物を分散させた塩素化ポリエチレンに、メタクリル基を有するメタクリルシランを添加し、加熱混練する。混練により塩素化ポリエチレン中にメタクリルシランを分散させる。グラフト工程では、シラン化合物のモル数をx、過酸化物のモル数をy、過酸化物に含まれる酸素と酸素との結合の数をαとしたとき、x/2αyが1.5以上20.0以下となるようにメタクリルシランを添加するとよい。例えば、塩素化ポリエチレン100質量部に対してメタクリルシランを1.0質量部以上10質量部以下添加するとよい。
(Grafting process)
Subsequently, methacrylic silane having a methacrylic group is added to chlorinated polyethylene in which the peroxide is dispersed, followed by heating and kneading. Methacrylsilane is dispersed in chlorinated polyethylene by kneading. In the grafting step, x / 2αy is 1.5 or more and 20 when the number of moles of the silane compound is x, the number of moles of peroxide is y, and the number of bonds between oxygen and oxygen contained in the peroxide is α. It is good to add methacryl silane so that it may become 0.0 or less. For example, 1.0 to 10 parts by mass of methacrylic silane may be added to 100 parts by mass of chlorinated polyethylene.

塩素化ポリエチレンにメタクリルシランを添加することで、過酸化物の存在下で塩素化ポリエチレンにメタクリルシランをグラフト共重合させ、シラングラフト塩素化ポリエチレンを形成する。本実施形態では、過酸化物を塩素化ポリエチレンに予め添加して分散させることで、メタクリルシランを塩素化ポリエチレンに分散させる際に、過酸化物から生成するオキシラジカルとメタクリルシランとの反応を抑制することができる。つまり、過酸化物から生成するオキシラジカルを塩素化ポリエチレンと効率よく反応させて、塩素化ポリエチレンのラジカルを効率よく生成させることができる。これにより、オキシラジカルとの反応性の高いメタクリルシランを用いる場合であっても、塩素化ポリエチレンに好適にグラフト共重合させることができる。   By adding methacrylic silane to chlorinated polyethylene, methacrylic silane is graft copolymerized with chlorinated polyethylene in the presence of peroxide to form silane-grafted chlorinated polyethylene. In this embodiment, by adding a peroxide to chlorinated polyethylene and dispersing it in advance, when methacrylic silane is dispersed in chlorinated polyethylene, the reaction between oxy radicals generated from the peroxide and methacrylic silane is suppressed. can do. That is, the oxy radical produced | generated from a peroxide can be made to react efficiently with chlorinated polyethylene, and the radical of chlorinated polyethylene can be produced | generated efficiently. Thereby, even if it is a case where methacryl silane with high reactivity with an oxy radical is used, it can be made to graft-polymerize suitably to chlorinated polyethylene.

なお、上述の添加工程およびグラフト工程では、例えばロール機、押出機、ニーダ、ミキサ、オートクレーブなどの混練反応装置を用いて混練するとよい。また、混練条件やグラフト反応条件(温度、時間など)は特に限定されない。   In the above-described addition step and grafting step, kneading may be performed using a kneading reaction apparatus such as a roll machine, an extruder, a kneader, a mixer, or an autoclave. Further, kneading conditions and graft reaction conditions (temperature, time, etc.) are not particularly limited.

(4)ケーブルの構成および製造方法
次に、本発明の一実施形態に係るケーブル1について説明する。図1は、本発明の一実施形態に係るケーブル1の断面図である。
(4) Cable Configuration and Manufacturing Method Next, the cable 1 according to an embodiment of the present invention will be described. FIG. 1 is a cross-sectional view of a cable 1 according to an embodiment of the present invention.

図1に示すように、本実施形態のケーブル1は、導体10を備えている。導体10としては、低酸素銅や無酸素銅等からなる銅線、銅合金線、アルミニウムや銀等からなる金属線、又は金属線を撚り合わせた撚り線を用いることができる。導体10の外径は、ケーブル1の用途に応じて適宜変更することができる。   As shown in FIG. 1, the cable 1 of this embodiment includes a conductor 10. As the conductor 10, a copper wire made of low-oxygen copper, oxygen-free copper, or the like, a copper alloy wire, a metal wire made of aluminum, silver, or the like, or a stranded wire formed by twisting metal wires can be used. The outer diameter of the conductor 10 can be appropriately changed according to the use of the cable 1.

導体10の外周を被覆するように、絶縁層11が設けられている。絶縁層11は、従来公知の樹脂組成物、例えばエチレンプロピレンゴムを含む樹脂組成物で形成されている。絶縁層11の厚さは、ケーブル1の用途に応じて適宜変更することができる。   An insulating layer 11 is provided so as to cover the outer periphery of the conductor 10. The insulating layer 11 is formed of a conventionally known resin composition, for example, a resin composition containing ethylene propylene rubber. The thickness of the insulating layer 11 can be appropriately changed according to the use of the cable 1.

絶縁層11の外周を被覆するように、外被層12(シース12)が設けられている。シース12は、シラングラフト塩素化ポリエチレンが架橋されたシラン架橋塩素化ポリエチレンで形成されている。シース12は、ゲル分率が60%以上であるシラン架橋塩素化ポリエチレンで形成されており、高い架橋度を有している。   An outer cover layer 12 (sheath 12) is provided so as to cover the outer periphery of the insulating layer 11. The sheath 12 is formed of silane-crosslinked chlorinated polyethylene obtained by crosslinking silane-grafted chlorinated polyethylene. The sheath 12 is made of silane-crosslinked chlorinated polyethylene having a gel fraction of 60% or more, and has a high degree of crosslinking.

ケーブル1は、例えば以下のように製造される。まず、導体10として、例えば銅線を準備する。そして、例えば、押出機により、導体10の外周を被覆するように、エチレンプロピレンゴムを含む樹脂組成物を押し出して、所定厚さの絶縁層11を形成する。続いて、絶縁層11の外周を被覆するように、上述したシラングラフト塩素化ポリエチレンを所定の厚さで押し出してシース12を形成する。その後、シース12を形成するシラングラフト塩素化ポリエチレンを水と反応させて、シラン架橋塩素化ポリエチレンを形成することで、シース12を架橋させる。具体的には、シース12を形成するシラングラフト塩素化ポリエチレンでは、水との反応により、化学構造中のシラン基が加水分解してシラノール基となる。そして、シラノール基が脱水縮合して結合することでシラングラフト塩素化ポリエチレンの分子鎖が架橋されて、シラン架橋塩素化ポリエチレンが形成される。これにより、シース12が架橋されて、本実施形態のケーブル1を得る。なお、シラングラフト塩素化ポリエチレンを架橋させる場合、例えば、60℃の飽和水蒸気の雰囲気で行うとよい。   The cable 1 is manufactured as follows, for example. First, for example, a copper wire is prepared as the conductor 10. Then, for example, an extruder is used to extrude the resin composition containing ethylene propylene rubber so as to cover the outer periphery of the conductor 10 to form the insulating layer 11 having a predetermined thickness. Subsequently, the sheath 12 is formed by extruding the above-mentioned silane-grafted chlorinated polyethylene with a predetermined thickness so as to cover the outer periphery of the insulating layer 11. Thereafter, the silane-grafted chlorinated polyethylene that forms the sheath 12 is reacted with water to form a silane-crosslinked chlorinated polyethylene, thereby cross-linking the sheath 12. Specifically, in the silane-grafted chlorinated polyethylene forming the sheath 12, the silane group in the chemical structure is hydrolyzed into a silanol group by reaction with water. Then, silanol groups are dehydrated and condensed to bond with each other so that the molecular chain of the silane-grafted chlorinated polyethylene is crosslinked to form a silane-crosslinked chlorinated polyethylene. Thereby, the sheath 12 is bridge | crosslinked and the cable 1 of this embodiment is obtained. In addition, when bridge | crosslinking a silane graft | grafting chlorinated polyethylene, it is good to carry out in 60 degreeC saturated water vapor | steam atmosphere, for example.

<本発明の実施形態に係る効果>
本実施形態によれば、以下に示す1つ又は複数の効果を奏する。
<Effects of Embodiment of the Present Invention>
According to the present embodiment, the following one or more effects are achieved.

(a)本実施形態によれば、過酸化物の添加工程を行った後、グラフト工程を行っている。つまり、塩素化ポリエチレンに過酸化物を添加し、その後メタクリルシランを添加することで、シラン化合物を塩素化ポリエチレンにグラフト共重合させ、シラングラフト塩素化ポリエチレンを形成している。メタクリルシランを塩素化ポリエチレンに分散させてグラフト共重合させる際に、過酸化物を塩素化ポリエチレンに予め添加して分散させているため、過酸化物から生成するオキシラジカルとメタクリルシランとの反応を抑制することができる。つまり、オキシラジカルを塩素化ポリエチレンと反応させて、塩素化ポリエチレンのラジカルを効率よく生成させることができる。これにより、メタクリルシランを塩素化ポリエチレンに好適にグラフト共重合させることができ、シラングラフト塩素化ポリエチレンにおけるメタクリルシランのグラフト化率を向上させることができる。したがって、シラングラフト塩素化ポリエチレンを架橋させたときに、ゲル分率が60%以上であり、高い架橋度を有するシラン架橋塩素化ポリエチレンを得ることができる。 (A) According to the present embodiment, the grafting step is performed after the peroxide addition step. That is, by adding a peroxide to chlorinated polyethylene and then adding methacrylic silane, the silane compound is graft-copolymerized to chlorinated polyethylene to form a silane-grafted chlorinated polyethylene. When methacrylic silane is dispersed in chlorinated polyethylene and graft copolymerized, the peroxide is added to the chlorinated polyethylene and dispersed in advance, so the reaction between the oxy radicals generated from the peroxide and methacrylic silane Can be suppressed. That is, oxy radicals can be reacted with chlorinated polyethylene to generate chlorinated polyethylene radicals efficiently. Thereby, methacryl silane can be suitably graft copolymerized with chlorinated polyethylene, and the grafting rate of methacryl silane in the silane-grafted chlorinated polyethylene can be improved. Therefore, when the silane-grafted chlorinated polyethylene is crosslinked, a silane-crosslinked chlorinated polyethylene having a gel fraction of 60% or more and a high degree of crosslinking can be obtained.

これに対して、従来のように、塩素化ポリエチレンに過酸化物と同時にメタクリルシランを添加すると、これらを塩素化ポリエチレンに分散させる際に、過酸化物から生成するオキシラジカルとメタクリルシランとが反応することで過酸化物が消費されてしまう。そのため、塩素化ポリエチレンにメタクリルシランを効率的にグラフト共重合させることができない。この結果、メタクリルシランのグラフト化率が低減することとなり、シラングラフト塩素化ポリエチレンを架橋させたときのゲル分率が60%未満となってしまう。   On the other hand, when methacryl silane is added to chlorinated polyethylene at the same time as the peroxide as in the past, oxy radicals generated from the peroxide react with methacryl silane when these are dispersed in chlorinated polyethylene. As a result, peroxide is consumed. Therefore, methacrylsilane cannot be efficiently graft copolymerized with chlorinated polyethylene. As a result, the grafting rate of methacrylic silane is reduced, and the gel fraction when the silane-grafted chlorinated polyethylene is crosslinked is less than 60%.

(b)本実施形態によれば、メタクリルシランを塩素化ポリエチレンに分散させてグラフト共重合させる際に、過酸化物を塩素化ポリエチレンに予め添加して分散させている。そのため、分散させた過酸化物から塩素化ポリエチレン中に均一にラジカルを発生させることができる。そして、メタクリルシランを塩素化ポリエチレンに均一に分散させることによって、塩素化ポリエチレンの化学構造中にメタクリルシランを均一にグラフト共重合させて、シラン基を均一に導入することができる。これにより、塩素化ポリエチレンを均一に架橋させることができるので、シラン架橋塩素化ポリエチレンの架橋度のばらつき(局所的な架橋)を低減して、伸びなどの機械的特性を向上させることができる。また、塩素化ポリエチレンが局所的に過度に架橋されて生じるツブなどによる外観不良を低減することができる。 (B) According to this embodiment, when methacrylic silane is dispersed in chlorinated polyethylene and graft copolymerized, the peroxide is added to the chlorinated polyethylene and dispersed in advance. Therefore, radicals can be uniformly generated in the chlorinated polyethylene from the dispersed peroxide. Then, by uniformly dispersing methacryl silane in chlorinated polyethylene, methacryl silane can be uniformly graft-copolymerized into the chemical structure of chlorinated polyethylene, and silane groups can be introduced uniformly. As a result, the chlorinated polyethylene can be uniformly crosslinked, so that variation in the degree of crosslinking of the silane-crosslinked chlorinated polyethylene (local crosslinking) can be reduced and mechanical properties such as elongation can be improved. In addition, it is possible to reduce appearance defects due to the protrusions caused by the chlorinated polyethylene being locally crosslinked excessively.

(c)本実施形態によれば、シラン化合物のモル数をx、過酸化物のモル数をy、過酸化物に含まれる酸素と酸素との結合の数をαとしたとき、x/2αyが1.5以上20.0以下である。x/2αyが1.5以上であると、メタクリルシランに対してラジカルを不足なく十分に供給させることで、塩素化ポリエチレンにメタクリルシランを効率的にグラフト共重合させることができる。x/2αyが20.0以下であると、メタクリルシランに対してラジカルを過剰とならないように供給させることで、メタクリルシランをグラフト共重合させる際に、塩素化ポリエチレンが架橋反応してしまうことを抑制することができる。したがって、x/2αyを1.5以上20以下とすると、塩素化ポリエチレンにシラン化合物を十分にグラフト共重合させると共に、グラフト共重合させるときの架橋反応を抑制することができる。 (C) According to this embodiment, when the number of moles of the silane compound is x, the number of moles of peroxide is y, and the number of bonds between oxygen and oxygen contained in the peroxide is α / 2αy Is 1.5 or more and 20.0 or less. When x / 2αy is 1.5 or more, methacrylic silane can be efficiently graft copolymerized with chlorinated polyethylene by supplying radicals sufficiently to methacrylic silane without being insufficient. When x / 2αy is 20.0 or less, the chlorinated polyethylene undergoes a crosslinking reaction when graft copolymerizing methacrylic silane by supplying radicals so as not to be excessive with respect to methacrylic silane. Can be suppressed. Therefore, when x / 2αy is 1.5 or more and 20 or less, the silane compound can be sufficiently graft copolymerized with chlorinated polyethylene, and the crosslinking reaction when graft copolymerization can be suppressed.

(d)本実施形態によれば、揮発性が高く、刺激臭を有するビニルシランの代わりにメタクリルシランを用いることで、作業環境性を向上させることができると共に、グラフト工程を安定して行うことができる。また、メタクリルシランはビニルシランと比較して沸点・引火点が高いため、グラフト工程などの製造工程において火災の発生を抑制することができる。 (D) According to the present embodiment, by using methacryl silane instead of vinyl silane having high volatility and an irritating odor, the work environment can be improved and the grafting process can be performed stably. it can. In addition, since methacrylic silane has a higher boiling point and flash point than vinyl silane, it is possible to suppress the occurrence of a fire in a manufacturing process such as a grafting process.

(e)本実施形態によれば、ケーブルのシースは、シラングラフト塩素化ポリエチレンが架橋されて、ゲル分率が60%以上であるシラン架橋塩素化ポリエチレンで形成されている。そのため、ケーブルは高い機械的強度を有している。 (E) According to the present embodiment, the sheath of the cable is formed of silane-crosslinked chlorinated polyethylene having a gel fraction of 60% or more obtained by crosslinking silane-grafted chlorinated polyethylene. Therefore, the cable has a high mechanical strength.

<本発明の他の実施形態>
以上、本発明の一実施形態を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で適宜変更可能である。
<Other Embodiments of the Present Invention>
As mentioned above, although one Embodiment of this invention was described concretely, this invention is not limited to the above-mentioned embodiment, In the range which does not deviate from the summary, it can change suitably.

上述の実施形態では、シラングラフト塩素化ポリエチレンをケーブル1の外被層12(シース12)に用いる場合について説明したが、これに限定されない。シラングラフト塩素化ポリエチレンを、例えば、図2に示すような絶縁電線2の絶縁層11に用いることもできる。この場合、上述の実施形態でシース12を形成するときと同様に、導体10の外周にシラングラフト塩素化ポリエチレンを押し出して絶縁層11を形成し、絶縁層11を水と接触させてシラン架橋させるとよい。   In the above-described embodiment, the case where the silane-grafted chlorinated polyethylene is used for the jacket layer 12 (sheath 12) of the cable 1 has been described. However, the present invention is not limited to this. Silane graft chlorinated polyethylene can also be used for the insulating layer 11 of the insulated wire 2 as shown in FIG. 2, for example. In this case, as in the case of forming the sheath 12 in the above-described embodiment, the insulating layer 11 is formed by extruding the silane-grafted chlorinated polyethylene to the outer periphery of the conductor 10, and the insulating layer 11 is brought into contact with water for silane crosslinking. Good.

次に、本発明の実施例を説明する。   Next, examples of the present invention will be described.

実施例および比較例で用いた材料は次の通りである。   The materials used in Examples and Comparative Examples are as follows.

・塩素化ポリエチレン(121℃でのムーニー粘度(ML1+4):55、融解熱量:1.0J/g未満):杭州科利化工株式会社製「CM352L」
・ハイドロタルサイト:協和化学工業株式会社製「マグセラー1」
・エポキシ化大豆油:日本油脂株式会社製「ニューサイザー510R」
・ポリエチレンワックス(PEワックス、分子量:2800):三井化学株式会社製「ハイワックスNL−200」
・過酸化物(ジクミルパーオキサイド):日本油脂株式会社製「DCP」
・シラン化合物(3−メタクリロキシプロピルトリメトキシシラン):信越化学工業株式会社製「KBM−503」
・シラン化合物(3−メタクリロキシプロピルトリエトキシシラン):信越化学工業株式会社製「KBE−503」
・可塑剤(ナフテン系プロセスオイル):出光興産株式会社製「NP−24」
・硫黄系酸化防止剤(4,4´−チオビス(3−メチル−6−tert−ブチルフェノール)):大内新興化学工業株式会社製「ノクラック300R」
・アミン系酸化防止剤(2,2,4−トリメチル−1,2−ジヒドロキノリン重合物):大内新興化学工業株式会社製「ノクラック224」
・難燃剤(三酸化アンチモン):住友金属鉱山株式会社製「三酸化アンチモン」
・カーボン(FEFカーボンブラック):旭カーボン株式会社製「旭カーボン60G」
・滑剤(エチレンビスオレイン酸アミド):日本化成株式会社製「スリパックス−O」
・シラノール縮合触媒(ジオクチル錫ジネオデカノエート):日東化成株式会社製「ネオスタンU−830」
Chlorinated polyethylene (Mooney viscosity at 121 ° C. (ML1 + 4): 55, heat of fusion: less than 1.0 J / g): “CM352L” manufactured by Hangzhou Science & Technology Co., Ltd.
-Hydrotalcite: “Mugcellar 1” manufactured by Kyowa Chemical Industry Co., Ltd.
Epoxidized soybean oil: “New Sizer 510R” manufactured by Nippon Oil & Fats Co., Ltd.
Polyethylene wax (PE wax, molecular weight: 2800): “High Wax NL-200” manufactured by Mitsui Chemicals, Inc.
・ Peroxide (Dicumyl peroxide): “DCP” manufactured by NOF Corporation
Silane compound (3-methacryloxypropyltrimethoxysilane): “KBM-503” manufactured by Shin-Etsu Chemical Co., Ltd.
Silane compound (3-methacryloxypropyltriethoxysilane): “KBE-503” manufactured by Shin-Etsu Chemical Co., Ltd.
・ Plasticizer (naphthenic process oil): “NP-24” manufactured by Idemitsu Kosan Co., Ltd.
・ Sulfur-based antioxidant (4,4′-thiobis (3-methyl-6-tert-butylphenol)): “NOCRACK 300R” manufactured by Ouchi Shinsei Chemical Co., Ltd.
Amine-based antioxidant (2,2,4-trimethyl-1,2-dihydroquinoline polymer): “NOCRACK 224” manufactured by Ouchi Shinsei Chemical Co., Ltd.
・ Flame retardant (antimony trioxide): “Antimony trioxide” manufactured by Sumitomo Metal Mining Co., Ltd.
・ Carbon (FEF carbon black): “Asahi Carbon 60G” manufactured by Asahi Carbon Co., Ltd.
・ Lubricant (ethylenebisoleic acid amide): “Sripac-O” manufactured by Nippon Kasei Co., Ltd.
Silanol condensation catalyst (dioctyltin dineodecanoate): “Neostan U-830” manufactured by Nitto Kasei Co., Ltd.

(1)塩素化ポリエチレン組成物の調製
(実施例1)
本実施例では、過酸化物の添加工程、グラフト工程および充填剤の添加工程を順に行って、シラングラフト塩素化ポリエチレンを含有する塩素化ポリエチレン組成物を調製した。
(1) Preparation of chlorinated polyethylene composition (Example 1)
In this example, a peroxide addition step, a grafting step, and a filler addition step were sequentially performed to prepare a chlorinated polyethylene composition containing a silane-grafted chlorinated polyethylene.

[過酸化物の添加工程]
まず、8インチロール機を用いて、粉末状の塩素化ポリエチレン100質量部に対して、安定剤としてのハイドロタルサイトを6質量部と、安定剤としてのエポキシ化大豆油を2質量部と、滑剤としてのポリエチレンワックスを3質量部と、を添加して混練し、コンパウンドAを調製した。このコンパウンドAに、過酸化物としてのジクミルパーオキサイドを、塩素化ポリエチレン100質量部に対して0.1質量部となるように添加して混練した。その後、混練して得られた混合物からなるシートを5mm角の形状にペレタイズし、ペレットを得た。そして、このペレット同士の粘着を防止するため、ペレットにタルクをまぶした。なお、過酸化物を混練するとき、過酸化物を塩素化ポリエチレン中に十分に分散させるとともに過酸化物が熱分解しないような条件で行った。具体的には、ロールの表面温度を100℃とし、過酸化物を添加してから5分間混練した。
[Peroxide addition process]
First, using an 8-inch roll machine, 6 parts by mass of hydrotalcite as a stabilizer and 2 parts by mass of epoxidized soybean oil as a stabilizer with respect to 100 parts by mass of powdered chlorinated polyethylene, 3 parts by mass of polyethylene wax as a lubricant was added and kneaded to prepare Compound A. To this compound A, dicumyl peroxide as a peroxide was added and kneaded so as to be 0.1 parts by mass with respect to 100 parts by mass of chlorinated polyethylene. Thereafter, a sheet made of the mixture obtained by kneading was pelletized into a 5 mm square shape to obtain pellets. And in order to prevent adhesion between these pellets, talc was applied to the pellets. When the peroxide was kneaded, the peroxide was sufficiently dispersed in the chlorinated polyethylene and the peroxide was not thermally decomposed. Specifically, the surface temperature of the roll was set to 100 ° C. and kneading was performed for 5 minutes after adding the peroxide.

[グラフト工程]
続いて、図3に示す単軸押出機100を用いて、添加工程で得られたペレットにシラン化合物を含浸させ、グラフト工程を行った。具体的には、添加工程で得られたペレットに、シラン化合物としての3−メタクリロキシプロピルトリメトキシシランを、塩素化ポリエチレン100質量部に対して3.35質量部となるように含浸させた。シラン化合物を含浸させたペレットを、単軸押出機100のホッパー101からシリンダ103a内に投入し、スクリュ102の回転によりシリンダ103aからシリンダ103bに送出した。このとき、ペレットをシリンダ103a,103bで加熱して軟化混練することにより、塩素化ポリエチレンにシラン化合物をグラフト共重合させた。これにより、シラングラフト塩素化ポリエチレンを形成した。その後、シラングラフト塩素化ポリエチレンを押出機100のヘッド部104に送出し、ダイス105からシラングラフト塩素化ポリエチレンのストランド20(長さ150cm)を押し出した。そして、ストランド20を水槽106に導入して水冷し、エアワイパ107で水切りした。その後、ペレタイザ108でストランド20をペレタイズし、シラングラフト塩素化ポリエチレンを含有するペレット21を得た。
なお、グラフト工程では、40mm単軸の単軸押出機100を用いた。また、スクリュ直径Dとスクリュ長さLとの比率L/Dを25とした。また、シリンダ103aの温度を80℃、シリンダ103bの温度を200℃、ヘッド部104の温度を200℃とした。また、スクリュ102の回転数を20rpm、スクリュ102をフルフライト形状とした。また、ダイス105として、穴径直径5mm、穴数3つのダイスを用いた。
[Grafting process]
Then, using the single screw extruder 100 shown in FIG. 3, the pellet obtained by the addition process was impregnated with the silane compound, and the graft process was performed. Specifically, the pellet obtained in the addition step was impregnated with 3-methacryloxypropyltrimethoxysilane as a silane compound so as to be 3.35 parts by mass with respect to 100 parts by mass of chlorinated polyethylene. The pellet impregnated with the silane compound was put into the cylinder 103 a from the hopper 101 of the single screw extruder 100, and sent out from the cylinder 103 a to the cylinder 103 b by the rotation of the screw 102. At this time, the pellets were heated and softened and kneaded by the cylinders 103a and 103b to graft copolymerize the chlorinated polyethylene with the silane compound. This formed the silane graft | grafting chlorinated polyethylene. Thereafter, the silane-grafted chlorinated polyethylene was fed to the head portion 104 of the extruder 100, and a strand 20 (length: 150 cm) of the silane-grafted chlorinated polyethylene was extruded from the die 105. Then, the strand 20 was introduced into the water tank 106, cooled with water, and drained with an air wiper 107. Thereafter, the strand 20 was pelletized with a pelletizer 108 to obtain pellets 21 containing silane-grafted chlorinated polyethylene.
In the grafting process, a 40 mm single screw single screw extruder 100 was used. The ratio L / D between the screw diameter D and the screw length L was 25. Further, the temperature of the cylinder 103a was 80 ° C., the temperature of the cylinder 103b was 200 ° C., and the temperature of the head portion 104 was 200 ° C. Moreover, the rotation speed of the screw 102 was 20 rpm, and the screw 102 was made into the full flight shape. Further, a die having a hole diameter of 5 mm and three holes was used as the die 105.

[充填剤の添加工程]
続いて、グラフト工程で得られたペレット21に、各種充填剤を添加し、8インチロール機を用いて混練した。具体的には、塩素化ポリエチレン100質量部に対して、可塑剤としてのナフテン系プロセスオイルが10質量部、硫黄系酸化防止剤が0.08質量部、アミン系酸化防止剤が1.5質量部、難燃剤としての三酸化アンチモンが3質量部、カーボンブラックとしてのFEFカーボンブラックが40質量部、滑剤としてのエチレンビスオレイン酸アミドが1質量部、となるように各種添加剤を添加した。混練後、混練物からなるシートを5mm角の形状にペレタイズし、コンパウンドBのペレットを得た。なお、混練の際、ロールの表面温度を100℃とし、全ての充填剤を添加してから5分間混練した。
[Filler addition process]
Subsequently, various fillers were added to the pellets 21 obtained in the grafting step and kneaded using an 8-inch roll machine. Specifically, 10 parts by mass of a naphthenic process oil as a plasticizer, 0.08 parts by mass of a sulfur-based antioxidant, and 1.5 parts by mass of an amine-based antioxidant with respect to 100 parts by mass of chlorinated polyethylene. Various additives were added so that 3 parts by mass of antimony trioxide as a flame retardant, 40 parts by mass of FEF carbon black as carbon black, and 1 part by mass of ethylenebisoleic acid amide as a lubricant were added. After kneading, a sheet made of the kneaded material was pelletized into a 5 mm square shape to obtain Compound B pellets. During kneading, the surface temperature of the roll was set to 100 ° C., and all the fillers were added and kneaded for 5 minutes.

また、コンパウンドBのペレットとは別に、シラノール縮合触媒を含むシラノール縮合触媒マスターバッチを調製した。具体的には、コンパウンドA111質量部に対して、シラノール縮合触媒としてのジオクチル錫ジネオデカノエートを1質量部添加し、8インチロール機を用いて混練した。このとき、ロールの表面温度を100℃とし、シラノール縮合触媒を添加してから3分間混練した。その後、混練物からなるシートを5mm角の形状にペレタイズし、シラノール縮合触媒マスターバッチを調製した。   In addition to the compound B pellets, a silanol condensation catalyst master batch containing a silanol condensation catalyst was prepared. Specifically, 1 part by mass of dioctyltin dineodecanoate as a silanol condensation catalyst was added to 111 parts by mass of compound A and kneaded using an 8-inch roll machine. At this time, the surface temperature of the roll was set to 100 ° C., and the kneading was carried out for 3 minutes after the silanol condensation catalyst was added. Then, the sheet | seat which consists of kneaded materials was pelletized in the shape of 5 square mm, and the silanol condensation catalyst masterbatch was prepared.

最後に、コンパウンドBのペレットにシラノール縮合触媒マスターバッチを、コンパウンドBの塩素化ポリエチレン100質量部に対して2.5質量部となるように添加し、ドライブレンドすることによって、実施例1の塩素化ポリエチレン組成物を調製した。   Finally, the silanol condensation catalyst master batch is added to the pellets of compound B so as to be 2.5 parts by mass with respect to 100 parts by mass of chlorinated polyethylene of compound B, and dry blending is performed. A polyethylene composition was prepared.

実施例1の調製条件を以下の表1に示す。   The preparation conditions of Example 1 are shown in Table 1 below.

Figure 2015199795
Figure 2015199795

(実施例2)
実施例2では、表1に示すように、シラン化合物の種類を3−メタクリロキシプロピルトリエトキシシランに変更し、その添加量を塩素化ポリエチレン100質量部に対して3.92質量部とした以外は、実施例1と同様に塩素化ポリエチレン組成物を調製した。
(Example 2)
In Example 2, as shown in Table 1, the type of the silane compound was changed to 3-methacryloxypropyltriethoxysilane, and the addition amount was 3.92 parts by mass with respect to 100 parts by mass of chlorinated polyethylene. Prepared a chlorinated polyethylene composition in the same manner as in Example 1.

(実施例3,4)
実施例3,4では、表1に示すように、過酸化物の添加量を増加させて、シラン化合物と過酸化物から発生するラジカルとの比率(x/2αy)を変更した以外は、実施例1と同様に塩素化ポリエチレン組成物を調製した。実施例3では、過酸化物の添加量を0.5質量部とし、比率を3.7とした。実施例4では、過酸化物の添加量を1.0質量部とし、比率を1.8とした。
(Examples 3 and 4)
In Examples 3 and 4, as shown in Table 1, except that the amount of peroxide added was increased and the ratio (x / 2αy) between the silane compound and radicals generated from the peroxide was changed. A chlorinated polyethylene composition was prepared in the same manner as in Example 1. In Example 3, the amount of peroxide added was 0.5 parts by mass, and the ratio was 3.7. In Example 4, the amount of peroxide added was 1.0 part by mass, and the ratio was 1.8.

(比較例1)
比較例1では、表1に示すように、コンパウンドAのペレットに過酸化物とシラン化合物とを同時に含浸させた以外は、実施例1と同様に塩素化ポリエチレン組成物を調製した。
(Comparative Example 1)
In Comparative Example 1, as shown in Table 1, a chlorinated polyethylene composition was prepared in the same manner as in Example 1 except that Compound A pellets were impregnated with a peroxide and a silane compound at the same time.

(比較例2〜4)
比較例2〜4では、表1に示すように、過酸化物の含有量を変更した以外は、実施例1と同様に、塩素化ポリエチレン組成物を調製した。過酸化物の含有量を、比較例2では0.02質量部、比較例3では0.08質量部、比較例4では1.5質量部とした。
(Comparative Examples 2 to 4)
In Comparative Examples 2 to 4, as shown in Table 1, chlorinated polyethylene compositions were prepared in the same manner as in Example 1 except that the peroxide content was changed. The peroxide content was 0.02 parts by mass in Comparative Example 2, 0.08 parts by mass in Comparative Example 3, and 1.5 parts by mass in Comparative Example 4.

(2)ケーブルの作製
次に、図4に示す単軸押出機100により、調製した塩素化ポリエチレン組成物を押し出すことでケーブル1を作製した。具体的には、単軸押出機100のダイス105に、導体10として断面積が8mmの銅導体を挿通させて、その外周にエチレンプロピレンゴム(EPゴム)を押し出して厚さ1.0mmの絶縁層11を形成すると共に、絶縁層11の外周に上述の塩素化ポリエチレン組成物を押し出して厚さ1.7mmのシース12を形成することで、ケーブル1を作製した。その後、ケーブル1を、60℃の飽和水蒸気の雰囲気であるステンレス製密閉容器中に24時間保管し、シース12を架橋させた。
なお、ケーブル1の作製では、20mm単軸の単軸押出機100を用いた。また、スクリュ直径Dとスクリュ長さLとの比率L/Dを15とした。また、シリンダ103aの温度を120℃、シリンダ103bの温度を150℃、クロスヘッド部110の温度を150℃、ネック109の温度を150℃、ダイス105の温度を150℃とした。また、スクリュ102の回転数を15rpm、スクリュ102の形状をフルフライト形状とした。
(2) Production of cable Next, the cable 1 was produced by extruding the prepared chlorinated polyethylene composition with the single screw extruder 100 shown in FIG. Specifically, a copper conductor having a cross-sectional area of 8 mm 2 is inserted as the conductor 10 into the die 105 of the single-screw extruder 100, and ethylene propylene rubber (EP rubber) is extruded on the outer periphery thereof to have a thickness of 1.0 mm. The cable 1 was produced by forming the insulating layer 11 and extruding the above-described chlorinated polyethylene composition on the outer periphery of the insulating layer 11 to form a sheath 12 having a thickness of 1.7 mm. Thereafter, the cable 1 was stored for 24 hours in a sealed stainless steel container having a saturated water vapor atmosphere at 60 ° C. to crosslink the sheath 12.
In manufacturing the cable 1, a 20 mm single-screw single-screw extruder 100 was used. The ratio L / D between the screw diameter D and the screw length L was 15. The temperature of the cylinder 103a was 120 ° C., the temperature of the cylinder 103b was 150 ° C., the temperature of the crosshead portion 110 was 150 ° C., the temperature of the neck 109 was 150 ° C., and the temperature of the die 105 was 150 ° C. Moreover, the rotation speed of the screw 102 was 15 rpm, and the shape of the screw 102 was a full flight shape.

(3)評価方法
塩素化ポリエチレン組成物についてグラフト工程後のゲル分率および架橋処理後のゲル分率を評価した。また、ケーブル1について外観を評価した。以下、具体的に説明する。
(3) Evaluation method About the chlorinated polyethylene composition, the gel fraction after a grafting process and the gel fraction after a crosslinking process were evaluated. Further, the appearance of the cable 1 was evaluated. This will be specifically described below.

(ゲル分率)
本実施例では、グラフト工程後のゲル分率を評価するため、試料として、シラングラフト塩素化ポリエチレンのストランド20を用いた。このストランド20から試料0.5gを採取し、この試料を40メッシュの真鍮製金網に入れた。続いて、試料を110℃のオイルバス中でキシレンにより抽出処理した。抽出処理後、残存した試料をキシレンから取り出して80℃で4時間真空乾燥した。そして、残存した試料の乾燥後の質量を秤量し、キシレン抽出前の試料の質量aとキシレン抽出後の残存した試料の質量bとから、下記式により試料のゲル分率Rを算出した。
R(%)=b/a×100
(Gel fraction)
In this example, a silane-grafted chlorinated polyethylene strand 20 was used as a sample in order to evaluate the gel fraction after the grafting step. A 0.5 g sample was taken from the strand 20, and the sample was placed in a 40 mesh brass wire mesh. Subsequently, the sample was extracted with xylene in a 110 ° C. oil bath. After the extraction treatment, the remaining sample was taken out from xylene and vacuum-dried at 80 ° C. for 4 hours. Then, the mass of the remaining sample after drying was weighed, and the gel fraction R of the sample was calculated from the following equation using the mass a of the sample before xylene extraction and the mass b of the remaining sample after xylene extraction.
R (%) = b / a × 100

また、架橋処理後のゲル分率を評価するため、ケーブル1のシース12から試料0.5gを採取し、上記と同様にゲル分率を算出した。本実施例では、架橋処理後のゲル分率が60%以上である場合を合格(○)とし、ゲル分率が60%未満である場合を不合格(×)とした。   Further, in order to evaluate the gel fraction after the crosslinking treatment, 0.5 g of a sample was taken from the sheath 12 of the cable 1 and the gel fraction was calculated in the same manner as described above. In this example, the case where the gel fraction after the crosslinking treatment was 60% or more was determined to be acceptable (◯), and the case where the gel fraction was less than 60% was determined to be unacceptable (x).

(外観)
外観の評価は、ケーブル1のシース12の外観を目視、手触りにより評価し、十分に平滑である場合を合格(○)とし、シース12にざらつきやツブ(局所的な突起)などにより外観が不良である場合を不合格(×)とした。
(appearance)
Appearance is evaluated by visually and touching the outer appearance of the sheath 12 of the cable 1, and when it is sufficiently smooth, it is accepted (O), and the outer appearance is poor due to roughness or protrusions (local protrusions) on the sheath 12. The case where it was was made into the failure (x).

(総合評価)
本実施例では、ゲル分率および外観の両方の評価で合格した場合を合格(○)とし、いずれか1つでも不合格となった場合を不合格(×)とした。
(Comprehensive evaluation)
In the present Example, the case where it passed by evaluation of both a gel fraction and an external appearance was set as the pass ((circle)), and the case where any one failed was set as the disqualification (x).

(4)評価結果
実施例1では、表1に示すように、グラフト工程後のストランドのゲル分率が2%であり、グラフト工程において意図しない架橋反応が過度に進行していないことが確認された。また、実施例1のシース12では、架橋させた後のゲル分率が67%と高く、十分な架橋度を有することが確認された。また、シース12の外観は、平滑であり、良好であることが確認された。なお、実施例1では、ビニルシランと比較して揮発性が少なく、刺激臭の少ないメタクリルシランを用いたため、塩素化ポリエチレン組成物を調製する際に、作業環境性が低下するといった問題は確認されなかった。
(4) Evaluation results In Example 1, as shown in Table 1, it was confirmed that the gel fraction of the strand after the grafting process was 2%, and the unintended crosslinking reaction did not proceed excessively in the grafting process. It was. Moreover, in the sheath 12 of Example 1, it was confirmed that the gel fraction after being crosslinked is as high as 67% and has a sufficient degree of crosslinking. Further, it was confirmed that the appearance of the sheath 12 was smooth and good. In Example 1, since methacrylic silane having less volatility and less irritating odor was used compared to vinyl silane, there was no problem that the working environment deteriorated when preparing a chlorinated polyethylene composition. It was.

実施例2では、表1に示すように、メタクリルシランの種類を変更しても、実施例1と同様に、ゲル分率および外観の評価が良好であることが確認された。   In Example 2, as shown in Table 1, even when the type of methacrylsilane was changed, it was confirmed that the gel fraction and the appearance were evaluated well as in Example 1.

実施例3,4では、表1に示すように、過酸化物の添加量を増加させて比率(x/2αy)を小さくするほど、架橋させた後のゲル分率を向上できることが確認された。なお、実施例3,4では、比率(x/2αy)を小さくしてラジカルの比率を多くしたため、グラフト工程後のゲル分率が実施例1と比較して高くなることが確認された。   In Examples 3 and 4, as shown in Table 1, it was confirmed that the gel fraction after crosslinking can be improved as the amount of peroxide added is increased and the ratio (x / 2αy) is decreased. . In Examples 3 and 4, since the ratio (x / 2αy) was decreased to increase the radical ratio, it was confirmed that the gel fraction after the grafting step was higher than that in Example 1.

比較例1では、メタクリルシランを過酸化物と同時に添加したため、架橋させた後のゲル分率が58%となったことが確認された。これは、メタクリルシランを過酸化物と同時に添加したため、過酸化物から発生したラジカルがメタクリルシランによって消費されてしまい、メタクリルシランを効率的にグラフト共重合できなかったためと考えられる。   In Comparative Example 1, since methacrylsilane was added simultaneously with the peroxide, it was confirmed that the gel fraction after crosslinking was 58%. This is probably because methacrylsilane was added at the same time as the peroxide, and radicals generated from the peroxide were consumed by the methacrylsilane, and the methacrylsilane could not be efficiently graft copolymerized.

比較例2,3では、メタクリルシランに対して過酸化物の添加量が少なすぎるため、架橋させた後のゲル分率がそれぞれ30%、34%であり、十分な架橋度を得られないことが確認された。なお、比較例2,3では、過酸化物の添加量が少ないため、グラフト工程後のゲル分率が0%であり、グラフト工程において意図しない架橋反応が進行していないことが確認された。   In Comparative Examples 2 and 3, since the amount of peroxide added is too small relative to methacrylic silane, the gel fraction after crosslinking is 30% and 34%, respectively, and a sufficient degree of crosslinking cannot be obtained. Was confirmed. In Comparative Examples 2 and 3, since the amount of peroxide added was small, the gel fraction after the grafting process was 0%, and it was confirmed that an unintended crosslinking reaction did not proceed in the grafting process.

比較例4では、メタクリルシランに対して過酸化物の添加量が多すぎるため、グラフト工程時において架橋反応が進行してしまい、グラフト工程後のゲル分率が71%と高いことが確認された。また、グラフト工程後のゲル分率が71%と高いため、シラングラフト塩素化ポリエチレンを押し出してストランドを形成した際に、吐出量が不安定となり、ストランドの切断が頻発することが確認された。また、この塩素化ポリエチレン組成物で形成されたシースの表面には、ざらつきと、局所的な過度な架橋反応によって生じたと考えられるツブ(突起)とが確認された。なお、比較例4では、架橋させた後のゲル分率が89%であり、高い架橋度であることが確認された。   In Comparative Example 4, since the amount of peroxide added was too large relative to methacrylic silane, the crosslinking reaction proceeded during the grafting process, and it was confirmed that the gel fraction after the grafting process was as high as 71%. . Further, since the gel fraction after the grafting process was as high as 71%, it was confirmed that when the silane-grafted chlorinated polyethylene was extruded to form a strand, the discharge amount became unstable and the strand was frequently cut. Moreover, the surface of the sheath formed with this chlorinated polyethylene composition was confirmed to have roughness and protrusions (protrusions) that were considered to be caused by local excessive crosslinking reaction. In Comparative Example 4, the gel fraction after crosslinking was 89%, and it was confirmed that the degree of crosslinking was high.

なお、本実施例では、HC=C(CH)−CO−で示されるメタクリル基を有するシラン化合物を用いる場合について説明したが、HC=CH−CO−で示されるアクリル基を有するシラン化合物であっても、同様の効果を得られるものと考えられる。 In the present embodiment has described the case of using a silane compound having a H 2 C = C (CH 3 ) -CO- methacryl group represented by the acrylic group represented by H 2 C = CH-CO- Even if it is the silane compound which has, it is thought that the same effect is acquired.

<本発明の好ましい態様>
以下に、本発明の好ましい態様について付記する。
<Preferred embodiment of the present invention>
Hereinafter, preferred embodiments of the present invention will be additionally described.

[付記1]
本発明の一態様によれば、
C=C(CH)−CO−で示されるメタクリル基を有するシラン化合物が過酸化物により塩素化ポリエチレンにグラフト共重合されており、
前記シラン化合物のモル数をx、前記過酸化物のモル数をy、前記過酸化物に含まれる酸素と酸素との結合の数をαとしたとき、x/2αyが1.5以上20.0以下であり、
架橋させた後のゲル分率が60%以上である、シラングラフト塩素化ポリエチレンが提供される。
[Appendix 1]
According to one aspect of the invention,
A silane compound having a methacryl group represented by H 2 C═C (CH 3 ) —CO— is graft-copolymerized to a chlorinated polyethylene by a peroxide,
When the number of moles of the silane compound is x, the number of moles of the peroxide is y, and the number of bonds between oxygen and oxygen contained in the peroxide is α, x / 2αy is 1.5 or more and 20. 0 or less,
A silane-grafted chlorinated polyethylene having a gel fraction after crosslinking of 60% or more is provided.

[付記2]
付記1のシラングラフト塩素化ポリエチレンにおいて、好ましくは、
前記シラン化合物が、3−メタクリロキシプロピルトリメトキシシランまたは3−メタクリロキシプロピルトリエトキシシランである。
[Appendix 2]
In the silane-grafted chlorinated polyethylene according to Appendix 1, preferably,
The silane compound is 3-methacryloxypropyltrimethoxysilane or 3-methacryloxypropyltriethoxysilane.

[付記3]
本発明の他の態様によれば、
塩素化ポリエチレンに過酸化物を添加する添加工程と、
前記塩素化ポリエチレンに、HC=C(CH)−CO−で示されるメタクリル基を有するシラン化合物を添加することで、前記塩素化ポリエチレンに前記シラン化合物をグラフト共重合させるグラフト工程と、を有し、
前記グラフト工程では、前記シラン化合物のモル数をx、前記過酸化物のモル数をy、前記過酸化物に含まれる酸素と酸素との結合の数をαとしたとき、x/2αyが1.5以上20.0以下となるように前記シラン化合物を添加しており、
前記添加工程を行った後に前記グラフト工程を行う、シラングラフト塩素化ポリエチレンの製造方法が提供される。
[Appendix 3]
According to another aspect of the invention,
An addition step of adding a peroxide to chlorinated polyethylene;
A grafting step of graft copolymerizing the silane compound with the chlorinated polyethylene by adding a silane compound having a methacryl group represented by H 2 C═C (CH 3 ) —CO— to the chlorinated polyethylene; Have
In the grafting step, x / 2αy is 1 where x is the number of moles of the silane compound, y is the number of moles of the peroxide, and α is the number of bonds between oxygen and oxygen contained in the peroxide. The silane compound is added so as to be 5 or more and 20.0 or less,
Provided is a method for producing a silane-grafted chlorinated polyethylene, wherein the grafting step is performed after the addition step.

[付記4]
本発明の他の態様によれば、
導体と、
前記導体の外周を囲うように設けられ、HC=C(CH)−CO−で示されるメタクリル基を有するシラン化合物が過酸化物により塩素化ポリエチレンにグラフト共重合されており、前記シラン化合物のモル数をx、前記過酸化物のモル数をy、前記過酸化物に含まれる酸素と酸素との結合の数をαとしたとき、x/2αyが1.5以上20.0以下であるシラングラフト塩素化ポリエチレンで形成され、ゲル分率が60%以上である絶縁層と、を備える絶縁電線が提供される。
[Appendix 4]
According to another aspect of the invention,
Conductors,
A silane compound having a methacryl group represented by H 2 C═C (CH 3 ) —CO—, which is provided so as to surround the outer periphery of the conductor, is graft-copolymerized to a chlorinated polyethylene by a peroxide, and the silane When x is the number of moles of the compound, y is the number of moles of the peroxide, and α is the number of bonds between oxygen and oxygen contained in the peroxide, x / 2αy is 1.5 or more and 20.0 or less. And an insulating layer formed of silane-grafted chlorinated polyethylene and having a gel fraction of 60% or more.

[付記5]
本発明の他の態様によれば、
導体と、
前記導体の外周を囲うように設けられる絶縁層と、
前記絶縁層の外周を囲うように設けられ、HC=C(CH)−CO−で示されるメタクリル基を有するシラン化合物が過酸化物により塩素化ポリエチレンにグラフト共重合されており、前記シラン化合物のモル数をx、前記過酸化物のモル数をy、前記過酸化物に含まれる酸素と酸素との結合の数をαとしたとき、x/2αyが1.5以上20.0以下であるシラングラフト塩素化ポリエチレンで形成され、ゲル分率が60%以上である外被層と、を備えるケーブルが提供される。
[Appendix 5]
According to another aspect of the invention,
Conductors,
An insulating layer provided so as to surround the outer periphery of the conductor;
A silane compound having a methacryl group represented by H 2 C═C (CH 3 ) —CO—, which is provided so as to surround the outer periphery of the insulating layer, is graft-copolymerized to a chlorinated polyethylene by a peroxide, When the number of moles of the silane compound is x, the number of moles of the peroxide is y, and the number of bonds between oxygen and oxygen contained in the peroxide is α, x / 2αy is 1.5 or more and 20.0. There is provided a cable comprising: a jacket layer formed of silane-grafted chlorinated polyethylene which has the following and a gel fraction of 60% or more.

1 ケーブル
2 絶縁電線
10 導体
11 絶縁層
12 外被層(シース)
1 Cable 2 Insulated Wire 10 Conductor 11 Insulating Layer 12 Outer Layer (Sheath)

Claims (5)

C=C(CH)−CO−で示されるメタクリル基を有するシラン化合物が過酸化物により塩素化ポリエチレンにグラフト共重合されており、
前記シラン化合物のモル数をx、前記過酸化物のモル数をy、前記過酸化物に含まれる酸素と酸素との結合の数をαとしたとき、x/2αyが1.5以上20.0以下であり、
架橋させた後のゲル分率が60%以上である、シラングラフト塩素化ポリエチレン。
A silane compound having a methacryl group represented by H 2 C═C (CH 3 ) —CO— is graft-copolymerized to a chlorinated polyethylene by a peroxide,
When the number of moles of the silane compound is x, the number of moles of the peroxide is y, and the number of bonds between oxygen and oxygen contained in the peroxide is α, x / 2αy is 1.5 or more and 20. 0 or less,
Silane-grafted chlorinated polyethylene having a gel fraction of 60% or more after crosslinking.
前記シラン化合物が、3−メタクリロキシプロピルトリメトキシシランまたは3−メタクリロキシプロピルトリエトキシシランである、請求項1に記載のシラングラフト塩素化ポリエチレン。   The silane-grafted chlorinated polyethylene according to claim 1, wherein the silane compound is 3-methacryloxypropyltrimethoxysilane or 3-methacryloxypropyltriethoxysilane. 塩素化ポリエチレンに過酸化物を添加する添加工程と、
前記塩素化ポリエチレンに、HC=C(CH)−CO−で示されるメタクリル基を有するシラン化合物を添加することで、前記塩素化ポリエチレンに前記シラン化合物をグラフト共重合させるグラフト工程と、を有し、
前記グラフト工程では、前記シラン化合物のモル数をx、前記過酸化物のモル数をy、前記過酸化物に含まれる酸素と酸素との結合の数をαとしたとき、x/2αyが1.5以上20.0以下となるように前記シラン化合物を添加しており、
前記添加工程を行った後に前記グラフト工程を行う、シラングラフト塩素化ポリエチレンの製造方法。
An addition step of adding a peroxide to chlorinated polyethylene;
A grafting step of graft copolymerizing the silane compound with the chlorinated polyethylene by adding a silane compound having a methacryl group represented by H 2 C═C (CH 3 ) —CO— to the chlorinated polyethylene; Have
In the grafting step, x / 2αy is 1 where x is the number of moles of the silane compound, y is the number of moles of the peroxide, and α is the number of bonds between oxygen and oxygen contained in the peroxide. The silane compound is added so as to be 5 or more and 20.0 or less,
The manufacturing method of the silane graft | grafting chlorinated polyethylene which performs the said grafting process after performing the said addition process.
導体と、
前記導体の外周を囲うように設けられ、HC=C(CH)−CO−で示されるメタクリル基を有するシラン化合物が過酸化物により塩素化ポリエチレンにグラフト共重合されており、前記シラン化合物のモル数をx、前記過酸化物のモル数をy、前記過酸化物に含まれる酸素と酸素との結合の数をαとしたとき、x/2αyが1.5以上20.0以下であるシラングラフト塩素化ポリエチレンで形成され、ゲル分率が60%以上である絶縁層と、を備える絶縁電線。
Conductors,
A silane compound having a methacryl group represented by H 2 C═C (CH 3 ) —CO—, which is provided so as to surround the outer periphery of the conductor, is graft-copolymerized to a chlorinated polyethylene by a peroxide, and the silane When x is the number of moles of the compound, y is the number of moles of the peroxide, and α is the number of bonds between oxygen and oxygen contained in the peroxide, x / 2αy is 1.5 or more and 20.0 or less. An insulated wire comprising: an insulating layer formed of silane-grafted chlorinated polyethylene and having a gel fraction of 60% or more.
導体と、
前記導体の外周を囲うように設けられる絶縁層と、
前記絶縁層の外周を囲うように設けられ、HC=C(CH)−CO−で示されるメタクリル基を有するシラン化合物が過酸化物により塩素化ポリエチレンにグラフト共重合されており、前記シラン化合物のモル数をx、前記過酸化物のモル数をy、前記過酸化物に含まれる酸素と酸素との結合の数をαとしたとき、x/2αyが1.5以上20.0以下であるシラングラフト塩素化ポリエチレンで形成され、ゲル分率が60%以上である外被層と、を備えるケーブル。
Conductors,
An insulating layer provided so as to surround the outer periphery of the conductor;
A silane compound having a methacryl group represented by H 2 C═C (CH 3 ) —CO—, which is provided so as to surround the outer periphery of the insulating layer, is graft-copolymerized to a chlorinated polyethylene by a peroxide, When the number of moles of the silane compound is x, the number of moles of the peroxide is y, and the number of bonds between oxygen and oxygen contained in the peroxide is α, x / 2αy is 1.5 or more and 20.0. A jacket comprising: a jacket layer formed of silane-grafted chlorinated polyethylene and having a gel fraction of 60% or more.
JP2014078079A 2014-04-04 2014-04-04 Method for producing silane-grafted chlorinated polyethylene, method for producing insulated wire, and method for producing cable Active JP6187368B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014078079A JP6187368B2 (en) 2014-04-04 2014-04-04 Method for producing silane-grafted chlorinated polyethylene, method for producing insulated wire, and method for producing cable
PCT/JP2015/059429 WO2015152005A1 (en) 2014-04-04 2015-03-26 Silane-grafted chlorinated polyethylene, method for producing same, and insulated wire and cable using said polyethylene
CN201580022355.3A CN106232647B (en) 2014-04-04 2015-03-26 Silane Grafted haloflex, its manufacturing method and the insulated electric conductor and cable that have used the polyethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014078079A JP6187368B2 (en) 2014-04-04 2014-04-04 Method for producing silane-grafted chlorinated polyethylene, method for producing insulated wire, and method for producing cable

Publications (2)

Publication Number Publication Date
JP2015199795A true JP2015199795A (en) 2015-11-12
JP6187368B2 JP6187368B2 (en) 2017-08-30

Family

ID=54240331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014078079A Active JP6187368B2 (en) 2014-04-04 2014-04-04 Method for producing silane-grafted chlorinated polyethylene, method for producing insulated wire, and method for producing cable

Country Status (3)

Country Link
JP (1) JP6187368B2 (en)
CN (1) CN106232647B (en)
WO (1) WO2015152005A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017141386A (en) * 2016-02-12 2017-08-17 古河電気工業株式会社 Heat-resistant silane crosslinked resin molded body and method for producing the same, and silane masterbatch and heat-resistant product
JP2017224454A (en) * 2016-06-14 2017-12-21 日立金属株式会社 cable

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3802913A (en) * 1970-10-28 1974-04-09 Gen Electric Pressureless curing system for chemically cross-linking ethylene containing polymers,and product formed thereby
JPS61101509A (en) * 1984-10-24 1986-05-20 Sunstar Giken Kk Modified chlorinated polyolefin
JPH09302043A (en) * 1996-05-16 1997-11-25 Sekisui Chem Co Ltd Production of silane-modified polyolefin
WO2001009237A1 (en) * 1999-07-30 2001-02-08 Nok Corporation Molding material for carbon dioxide

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5907079B2 (en) * 2013-01-17 2016-04-20 日立金属株式会社 Electric wires and cables using silane-grafted chlorinated polyethylene

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3802913A (en) * 1970-10-28 1974-04-09 Gen Electric Pressureless curing system for chemically cross-linking ethylene containing polymers,and product formed thereby
JPS61101509A (en) * 1984-10-24 1986-05-20 Sunstar Giken Kk Modified chlorinated polyolefin
JPH09302043A (en) * 1996-05-16 1997-11-25 Sekisui Chem Co Ltd Production of silane-modified polyolefin
WO2001009237A1 (en) * 1999-07-30 2001-02-08 Nok Corporation Molding material for carbon dioxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017141386A (en) * 2016-02-12 2017-08-17 古河電気工業株式会社 Heat-resistant silane crosslinked resin molded body and method for producing the same, and silane masterbatch and heat-resistant product
JP2017224454A (en) * 2016-06-14 2017-12-21 日立金属株式会社 cable

Also Published As

Publication number Publication date
CN106232647B (en) 2019-08-09
JP6187368B2 (en) 2017-08-30
WO2015152005A1 (en) 2015-10-08
CN106232647A (en) 2016-12-14

Similar Documents

Publication Publication Date Title
JP5907079B2 (en) Electric wires and cables using silane-grafted chlorinated polyethylene
JP6858139B2 (en) Heat-resistant crosslinked fluororubber molded product and its manufacturing method, silane masterbatch, masterbatch mixture and its molded product, and heat-resistant products
JP6706854B2 (en) Heat-resistant cross-linked resin molded product and its manufacturing method, and heat-resistant product
JP6152724B2 (en) Electric wire and cable manufacturing method using chlorinated polyethylene composition
JP6549928B2 (en) Wire cable
JP6187368B2 (en) Method for producing silane-grafted chlorinated polyethylene, method for producing insulated wire, and method for producing cable
WO2016021611A1 (en) Silane-grafted composition and method for producing same, as well as wire and cable using said composition
CN107501836B (en) Cable with a protective layer
JP5614376B2 (en) Silane cross-linked polyolefin insulated wire
JPWO2018180690A1 (en) Heat-resistant chlorine-containing crosslinked resin molded article and method for producing the same, silane masterbatch and masterbatch mixture, and heat-resistant product
JP6504484B2 (en) Electric wire cable and method of manufacturing silane cross-linked product, method of manufacturing electric wire, method of manufacturing cable
CN115141393A (en) Chlorine-based resin composition, electric wire and cable
JP2021121665A (en) Molding method of resin molded article, and manufacturing method of electric cable
JP4070006B2 (en) Fluorine-containing elastomer composition
JP6720565B2 (en) Insulated wire and cable
JP6424767B2 (en) Insulated wire and cable
JP6951658B2 (en) Silane graft resin composition, electric wires and cables
JP2023121558A (en) Silane crosslinked rubber composition, method for producing the same and electric wire/cable
JP6969082B2 (en) Catalyst batch, electric wire / cable formed using it, and its manufacturing method
JP2021138846A (en) Thermoplastic rubber composition, method for producing thermoplastic rubber composition, electric wire and cable
JP2014062180A (en) Chlorine-containing polymer composition, and electric wire and cable using the same
CN116622181A (en) Silane-grafted rubber composition, silane-crosslinked rubber composition, wire, cable, and process for producing silane-crosslinked rubber composition
JP2017186415A (en) Catalyst batch, wire and cable formed by using the same and manufacturing method therefor
JP2016177944A (en) Elevator cable and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160715

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170417

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170717

R150 Certificate of patent or registration of utility model

Ref document number: 6187368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350