WO2016021611A1 - Silane-grafted composition and method for producing same, as well as wire and cable using said composition - Google Patents

Silane-grafted composition and method for producing same, as well as wire and cable using said composition Download PDF

Info

Publication number
WO2016021611A1
WO2016021611A1 PCT/JP2015/072121 JP2015072121W WO2016021611A1 WO 2016021611 A1 WO2016021611 A1 WO 2016021611A1 JP 2015072121 W JP2015072121 W JP 2015072121W WO 2016021611 A1 WO2016021611 A1 WO 2016021611A1
Authority
WO
WIPO (PCT)
Prior art keywords
silane
polyethylene
graft
grafted
chlorinated polyethylene
Prior art date
Application number
PCT/JP2015/072121
Other languages
French (fr)
Japanese (ja)
Inventor
新吾 芦原
貴 青山
浩貴 矢崎
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to CN201580042043.9A priority Critical patent/CN106661306A/en
Publication of WO2016021611A1 publication Critical patent/WO2016021611A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation

Definitions

  • the present invention relates to a silane graft composition and a method for producing the same, and an electric wire and a cable using the composition.
  • Chlorinated polyethylene is widely used as a material for forming a coating layer such as an electric wire insulation layer or a cable jacket layer (sheath).
  • a chlorinated polyethylene is subjected to a crosslinking treatment when formed in a coating layer.
  • a crosslinking treatment for example, silane crosslinking using a silane compound (so-called silane coupling agent) is widely used (see, for example, Patent Document 1).
  • Silane crosslinking is carried out by graft polymerizing a silane compound to chlorinated polyethylene and bringing the resulting silane-grafted chlorinated polyethylene into contact with moisture.
  • the coating layer is formed by extruding silane-grafted chlorinated polyethylene.
  • the electric wire or cable provided with the coating layer is wound into a drum shape, for example, and exposed to the outside air for a predetermined time.
  • the silane-grafted chlorinated polyethylene of the coating layer is silane-crosslinked with moisture in the outside air.
  • silane crosslinking is performed in a high temperature environment of about 100 ° C., for example, instead of a normal temperature environment. This is because, in a high temperature environment, the silane crosslinking reaction is accelerated as compared with a normal temperature environment, and the time required for silane crosslinking can be shortened.
  • the coating layer when a coating layer made of silane-grafted chlorinated polyethylene is crosslinked with silane in a high temperature environment, the coating layer may be deformed. That is, the silane-grafted chlorinated polyethylene before crosslinking constituting the coating layer cannot sufficiently exhibit rubber elasticity in a high temperature environment, and therefore, in a high temperature environment, the silane-crosslinked silane-grafted chlorinated polyethylene is wound with a wire or cable wound in a drum shape. The cover layer is crushed and deformed by the weight and tension of the cable. As a result, the coating layer is silane-crosslinked in a deformed state, and the appearance of the surface is significantly impaired.
  • An object of this invention is to provide the silane graft
  • a silane graft composition according to an embodiment of the present invention includes a silane-grafted chlorinated polyethylene obtained by graft-polymerizing a silane compound to chlorinated polyethylene; And silane-grafted polyethylene obtained by graft-polymerizing a silane compound to polyethylene.
  • a method for producing a silane graft composition according to another embodiment of the present invention includes a step of forming a silane-grafted chlorinated polyethylene by graft-polymerizing a silane compound to chlorinated polyethylene; Forming a silane-grafted polyethylene by graft polymerizing a silane compound to polyethylene; Mixing the silane-grafted chlorinated polyethylene and the silane-grafted polyethylene.
  • the electric wire by other embodiment of this invention is equipped with the insulating layer formed from the crosslinked material which the said silane graft
  • a cable according to another embodiment of the present invention includes a jacket layer formed from a cross-linked product in which the silane graft composition is cross-linked.
  • a silane graft composition that suppresses deformation due to heating can be provided.
  • FIG. 1 is a cross-sectional view showing a schematic structure of a cable according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a schematic structure of an electric wire according to an embodiment of the present invention.
  • FIG. 3 is an explanatory view showing a grafting process using a single screw extruder in the example.
  • FIG. 4 is an explanatory view showing the production of the cable in the example.
  • FIG. 5 is an explanatory diagram showing a process of a heat deformation test in the example.
  • silane-grafted chlorinated polyethylene is a rubber material and is easily deformed by heating. Therefore, in order to suppress the deformation, a plastic material may be mixed. Plastic materials have more crystal components (high crystallinity) and higher melting points than rubber materials, and are not easily deformed by heating even if they are uncrosslinked. Therefore, the plastic material can impart heat deformation resistance to the rubber material.
  • polyethylene silane-grafted polyethylene
  • Polyethylene can be graft-polymerized with a silane compound in the same manner as chlorinated polyethylene, and can be crosslinked with silane. That is, silane-grafted polyethylene is mixed with silane-grafted chlorinated polyethylene and reacted with moisture, whereby these can be integrally crosslinked with silane. Therefore, according to polyethylene, even when mixed with chlorinated polyethylene, a degree of crosslinking equivalent to that when chlorinated polyethylene alone is silane-crosslinked can be obtained without reducing the degree of crosslinking of the mixture.
  • the present invention has been made based on the above findings.
  • the silane graft composition contains silane-grafted chlorinated polyethylene and silane-grafted polyethylene.
  • Silane-grafted chlorinated polyethylene is obtained by mixing chlorinated polyethylene, silane compound (silane coupling agent), and peroxide, and grafting the silane compound to chlorinated polyethylene in the presence of peroxide. It is.
  • Silane graft chlorinated polyethylene has a silane group derived from the graft polymerized silane compound in the molecular chain. When the silane-grafted chlorinated polyethylene is brought into contact with water, the silane group in the molecular chain is hydrolyzed to become a silanol group, and the silanol groups are dehydrated and condensed to form a crosslinked structure, thereby silane crosslinking.
  • the chlorinated polyethylene is obtained, for example, by blowing chlorine gas into an aqueous suspension obtained by suspending and dispersing linear polyethylene (such as low-density polyethylene or high-density polyethylene) in water.
  • linear polyethylene such as low-density polyethylene or high-density polyethylene
  • the degree of chlorination of the chlorinated polyethylene is not particularly limited, but from the viewpoint of setting the grafting rate of the silane compound and the degree of crosslinking when crosslinked to a desired range, for example, 25% to 45% is typical. Yes, 30% to 40% is more typical.
  • the silane compound has an unsaturated bond group and a hydrolyzable silane group.
  • the unsaturated bond group of the silane compound is not limited as long as the silane compound can be graft-polymerized to chlorinated polyethylene, and examples thereof include a vinyl group, a methacryl group, and an acrylic group. Among these, a vinyl group is typical as the unsaturated bond group. This is because a silane compound having a vinyl group (hereinafter also referred to as vinylsilane) has been widely used so far and can be suitably graft-polymerized to chlorinated polyethylene.
  • vinylsilane a silane compound having a vinyl group
  • hydrolyzable silane group of the silane compound examples include those having a hydrolyzable structure such as a halogen, an alkoxy group, an acyloxy group, and a phenoxy group.
  • silane group having a hydrolyzable structure examples include a halosilyl group, an alkoxysilyl group, an acyloxysilyl group, and a phenoxysilyl group.
  • vinylsilane such as trimethoxyvinylsilane or triethoxyvinylsilane can be typically used.
  • the amount of silane compound graft polymerized to chlorinated polyethylene is the degree of crosslinking of the final molded product (eg, insulation layer or sheath), or when crosslinked.
  • the reaction conditions may be appropriately changed depending on the reaction conditions (for example, temperature and time).
  • the compounding amount of the silane compound is typically 0.1 parts by mass or more and 10 parts by mass or less, more typically 1.0 parts by mass or more and 5 parts by mass with respect to 100 parts by mass of the chlorinated polyethylene. 0 parts by mass or less.
  • the blending amount is less than 0.1 parts by mass, the amount of silane compound to be graft-polymerized decreases, so that there is a possibility that a sufficient degree of crosslinking cannot be obtained when the silane graft composition is crosslinked with silane.
  • the amount exceeds 10 parts by mass, slippage may occur between the material and the screw when the chlorinated polyethylene and the silane compound are graft-polymerized while kneading, and the biting property may be lowered.
  • the silane compound is graft-polymerized, there is a risk of early crosslinking (unintended crosslinking reaction).
  • the local cross-linking proceeds in the silane graft composition, so that foreign matters (tubs) are formed due to the cross-linking, and irregularities are generated on the surface of the molded body. In other words, the appearance of the insulating layer and the sheath becomes poor due to the early crosslinking.
  • the peroxide is for graft polymerization of a silane compound on chlorinated polyethylene. Specifically, the peroxide generates oxy radicals by thermal decomposition. Oxy radicals generate chlorinated polyethylene radicals by extracting hydrogen from chlorinated polyethylene. And the radical of chlorinated polyethylene reacts with the unsaturated bond group (for example, vinyl group, methacryl group, etc.) which a silane compound has, and a silane compound will be graft-polymerized to chlorinated polyethylene. Thus, the peroxide generates oxy radicals and causes graft polymerization of the silane compound onto chlorinated polyethylene.
  • the unsaturated bond group for example, vinyl group, methacryl group, etc.
  • an organic peroxide can be used as the peroxide.
  • Organic peroxide has a high hydrogen abstraction ability for extracting hydrogen from chlorinated polyethylene, and can be thermally decomposed at a temperature at which chlorinated polyethylene is hardly deteriorated (it is difficult to dehydrochlorinate) to generate oxy radicals. Since the deterioration start temperature of chlorinated polyethylene is about 200 ° C., it is typical to use an organic peroxide having a one-minute half-life temperature of 120 ° C. or higher and 200 ° C. or lower as the peroxide. From the viewpoint of shortening the time required for the grafting reaction, it is better to use an organic peroxide having a one-minute half-life temperature of 150 ° C. or higher and 200 ° C. or lower.
  • the 1-minute half-life temperature is a temperature at which the half-life of the peroxide is 1 minute.
  • dicumyl peroxide 1,1-di (t-butylperoxy) cyclohexane, t-butylperoxyisopropyl carbonate, t-amylperoxyisopropyl carbonate, 2,5 dimethyl 2,5 di (t-butylperoxy) hexane, di-t-butyl peroxide, di-t-amyl peroxide, 1,1-di (t-amylperoxy) cyclohexane, t-butylperoxy 2- Ethyl hexyl carbonate or the like can be used. These may be used alone or in combination of two or more. Among these, dicumyl peroxide having a 1 minute half-life temperature of about 175 ° C. may be used.
  • the compounding amount of the peroxide may be appropriately changed according to the compounding amount of the silane compound.
  • the amount of peroxide (for example, dicumyl peroxide) blended in chlorinated polyethylene is x 1
  • the amount of silane compound (for example, trimethoxyvinylsilane) blended in chlorinated polyethylene is changed.
  • the ratio of the amount of peroxide to silane compound (x 1 / y 1) is typically such that about 0.01, may be changed the amount of peroxide.
  • the ratio x 1 / y 1 is excessively smaller than 0.01, the peroxide is excessively decreased with respect to the silane compound, so that the silane compound may not be efficiently graft-polymerized.
  • Silane-grafted polyethylene is obtained by mixing polyethylene, a silane compound, and a peroxide, and graft-polymerizing the silane compound onto polyethylene in the presence of the peroxide.
  • Silane-grafted polyethylene like the above-mentioned silane-grafted chlorinated polyethylene, has a silane group derived from a silane compound in the molecular chain and crosslinks with silane by reaction with water.
  • the polyethylene is not particularly limited as long as it can graft-polymerize a silane compound.
  • high-density polyethylene HDPE
  • low-density polyethylene LDPE
  • linear low-density polyethylene LLDPE
  • polyethylene having a high density may be used. This is because polyethylene becomes difficult to be deformed by heating because the crystal component increases as the density increases.
  • the density is typically 0.90 g / ml or more.
  • the upper limit value of the density is typically 0.95 g / ml or less.
  • the amount of the silane compound graft-polymerized to polyethylene that is, the blending amount of the silane compound to be blended with polyethylene is typically 0.1 parts by weight or more and 5.0 parts by weight or less with respect to 100 parts by weight of polyethylene. Typically, it is 1.0 part by mass or more and 3.0 parts by mass or less.
  • the blending amount is less than 0.1 parts by mass, the graft amount of the silane compound is decreased, and therefore there is a possibility that a sufficient degree of crosslinking cannot be obtained when the silane graft composition is crosslinked with silane.
  • it exceeds 5.0 parts by mass there is a risk that early crosslinking (unintended crosslinking reaction) may occur when the silane compound is graft polymerized.
  • the peroxide for graft polymerizing a silane compound to polyethylene those described above can be used.
  • the compounding amount of the peroxide may be appropriately changed according to the compounding amount of the silane compound. Specifically, when the blending amount of the peroxide blended with polyethylene is x 2 and the blending amount of the silane compound blended with polyethylene is y 2 , the ratio of the blending amount of the peroxide to the silane compound (x 2 / It is preferable to change the amount of peroxide so that y 2 ) is typically about 0.04.
  • the ratio x 2 / y 2 When the ratio x 2 / y 2 is excessively smaller than 0.04, the peroxide is excessively decreased with respect to the silane compound, and thus the silane compound may not be efficiently graft-polymerized.
  • the ratio x 2 / y 2 is excessively larger than 0.04, a large amount of peroxides and a large amount of radicals are generated, so that early crosslinking occurs, and irregularities are generated on the surfaces of the insulating layer and the sheath, resulting in an appearance. There is a risk of failure.
  • the silane graft composition of this embodiment contains silane graft chlorinated polyethylene and silane graft polyethylene, but the mixing ratio thereof is not particularly limited. Typically, silane-grafted chlorinated polyethylene and silane-grafted polyethylene are mixed so that the ratio of chlorinated polyethylene to polyethylene is 55:45 to 90:10. When the ratio of polyethylene is less than 10, the amount of silane-grafted polyethylene decreases, so that the silane-graft composition may be deformed under a high temperature or high pressure environment. If the ratio exceeds 45, the amount of silane-grafted polyethylene increases, so the hardness of the silane-graft composition increases, and the flexibility of the insulating layer and sheath may not be ensured.
  • the silane graft composition of this embodiment contains silane-grafted chlorinated polyethylene and silane-grafted polyethylene, but may contain a silanol condensation catalyst as necessary. According to the silanol condensation catalyst, the reaction of silane crosslinking can be promoted, and the silane graft composition can be efficiently crosslinked.
  • silanol condensation catalyst for example, a group II element such as magnesium or calcium, a group VIII element such as cobalt or iron, a metal element such as tin, zinc and titanium, or a metal compound containing these elements can be used.
  • a group II element such as magnesium or calcium
  • a group VIII element such as cobalt or iron
  • a metal element such as tin, zinc and titanium
  • metal compound containing these elements can be used.
  • metal salts of octylic acid and adipic acid, amine compounds, acids, and the like can be used.
  • dioctyltin dineodecanoate dibutyltin dilaurate, dibutyltin diacetate, dibutyltin dioctaate, stannous acetate, stannous cablate, lead naphthenate, zinc caprylate, naphthene Cobalt acid or the like
  • amine compound ethylamine, dibutylamine, hexylamine, pyridine and the like can be used.
  • acid inorganic acids such as sulfuric acid and hydrochloric acid, and organic acids such as toluenesulfonic acid, acetic acid, stearic acid, and maleic acid can be used.
  • silane graft compositions include plasticizers, antioxidants (including anti-aging agents), fillers such as carbon black, flame retardants, lubricants, copper damage discoloration inhibitors, crosslinking aids, stabilizers, and other An additive may be contained.
  • silane graft composition As a manufacturing method of a silane graft composition, there exists a method of mixing chlorinated polyethylene and polyethylene and graft-polymerizing a silane compound to the mixture. However, according to the study by the present inventors, it has been found that this method makes it difficult to uniformly graft-polymerize the silane compound to each of chlorinated polyethylene and polyethylene. This is presumably because the graft reactivity with the silane compound and the optimum conditions for graft polymerization are different between chlorinated polyethylene and polyethylene. If the graft polymerization cannot be performed uniformly, the grafting rate of the silane compound in the silane graft composition will not be uniform, resulting in variations.
  • the silane compound when the silane compound is graft-polymerized to a mixture of chlorinated polyethylene and polyethylene, the grafting rate of the silane compound is biased between the two polymers, and accordingly, the silane graft composition has an early cross-linking or degree of cross-linking. Decrease may occur.
  • the silane-grafted chlorinated polyethylene and the silane were obtained by graft-polymerizing the silane compound separately to each of chlorinated polyethylene and polyethylene. It has been found that silane graft compositions can be prepared by mixing with grafted polyethylene. Hereinafter, this manufacturing method will be specifically described.
  • silane grafting process of chlorinated polyethylene First, a silane compound is graft polymerized to chlorinated polyethylene. For example, dicumyl peroxide as a peroxide and a silane compound having a vinyl group (vinyl silane) are added to chlorinated polyethylene, followed by heating and kneading. Thereby, vinyl silane is graft-polymerized to chlorinated polyethylene in the presence of peroxide to form silane-grafted chlorinated polyethylene.
  • dicumyl peroxide as a peroxide and a silane compound having a vinyl group vinyl silane
  • the silane compound may be blended in an amount of 0.1 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of chlorinated polyethylene.
  • the amount of peroxide, x 1 the amount of peroxide, when the amount of the silane compound was y 1, the ratio (x 1 / y 1) is suitably such that about 0.01 It is good to change.
  • kneading may be performed using a kneading reaction apparatus such as a roll machine, an extruder, a kneader, a mixer, or an autoclave.
  • silane grafting process of polyethylene Moreover, a silane compound is graft-polymerized to polyethylene separately from the silane grafting step of chlorinated polyethylene. For example, dicumyl peroxide and vinyl silane are added as peroxides to polyethylene and kneaded by heating. Thereby, vinyl silane is graft-polymerized on polyethylene in the presence of peroxide to form silane-grafted polyethylene.
  • a different kind of silane compound or peroxide from the silane grafting step of chlorinated polyethylene may be used.
  • the silane compound may be blended in an amount of 0.1 to 5.0 parts by mass with respect to 100 parts by mass of polyethylene.
  • the amount of peroxide, x 2 the amount of peroxide, when the amount of the silane compound was y 2, the ratio (x 2 / y 2) is appropriately such that the order of 0.04 It is good to change.
  • each of chlorinated polyethylene and polyethylene is silane-grafted in separate steps.
  • each can be silane-grafted on optimal conditions (for example, the compounding quantity of a silane compound or a peroxide, etc.).
  • grafting composition obtained by mixing these has high crosslinking degree after making it bridge
  • the degree of crosslinking before crosslinking is small, and the gel fraction before crosslinking is 30% or less. If the gel fraction before cross-linking exceeds 30%, the degree of premature cross-linking increases, so that it is difficult to extrude the silane graft composition and the processability may be reduced. Moreover, the generation
  • the silane graft composition has a high degree of cross-linking after cross-linking, and the gel fraction after cross-linking is 60% or more. That is, the crosslinked product obtained by crosslinking the silane graft composition has a gel fraction of 60% or more. If the gel fraction after cross-linking is less than 60%, the cross-linking becomes insufficient, and therefore there is a possibility that mechanical properties such as a sheath formed from a cross-linked product cannot be ensured.
  • kneading may be performed using a kneading reaction apparatus such as a roll machine, an extruder, a kneader, a mixer, or an autoclave. Further, kneading conditions and grafting conditions (temperature, time, etc.) are not particularly limited.
  • FIG. 1 is a cross-sectional view showing a schematic structure of a cable 1 according to an embodiment of the present invention.
  • the cable 1 of this embodiment includes a conductor 10.
  • a conductor 10 As the conductor 10, a copper wire made of low-oxygen copper, oxygen-free copper, or the like, a copper alloy wire, a metal wire made of aluminum, silver, or the like, or a stranded wire formed by twisting metal wires can be used.
  • the outer diameter of the conductor 10 can be appropriately changed according to the use of the cable 1.
  • An insulating layer 11 is provided so as to cover the outer periphery of the conductor 10.
  • the insulating layer 11 is formed of a conventionally known resin composition, for example, a resin composition containing ethylene propylene rubber.
  • the thickness of the insulating layer 11 can be appropriately changed according to the use of the cable 1.
  • An outer cover layer 12 (sheath 12) is provided so as to cover the outer periphery of the insulating layer 11.
  • the sheath 12 is formed of a crosslinked product obtained by crosslinking the silane graft composition.
  • the sheath 12 is formed from a crosslinked product having a gel fraction of 60% or more, and has a high degree of crosslinking.
  • the cable 1 is manufactured as follows, for example. First, a copper wire is prepared as the conductor 10. And the resin composition containing ethylene propylene rubber is extruded so that the outer periphery of the conductor 10 may be coat
  • the silane graft composition contains silane graft chlorinated polyethylene and silane graft polyethylene. Since the silane-grafted polyethylene is made of polyethylene that has relatively high crystallinity and is not easily deformed by heating, heat-resistant deformation can be imparted to the silane-grafted composition. Therefore, according to the silane graft composition of the present embodiment, deformation due to heating is suppressed even when silane crosslinking is performed in a high-temperature environment in order to shorten the time for crosslinking treatment.
  • the silane graft composition is obtained by graft-polymerizing a silane compound separately to each of chlorinated polyethylene and polyethylene, and mixing the obtained silane-grafted chlorinated polyethylene and silane-grafted polyethylene. It is formed with.
  • each can be silane grafted under optimum conditions. Thereby, when the mixture of chlorinated polyethylene and polyethylene is silane-grafted, variation in grafting of the silane compound caused by the difference in graft reactivity can be suppressed.
  • the degree of crosslinking when the silane graft composition is crosslinked can be increased.
  • the degree of crosslinking before crosslinking of the silane graft composition can be made 30% or less in terms of gel fraction.
  • crosslinked the silane graft composition can be made high with 60% or more in a gel fraction.
  • silane-grafted chlorinated polyethylene and silane-grafted polyethylene are mixed so that the ratio of chlorinated polyethylene to polyethylene is 55:45 to 90:10.
  • the ratio of polyethylene is 10 or more, higher heat distortion resistance of the silane graft composition can be ensured.
  • it can suppress that the hardness of a silane graft
  • the cable includes a sheath formed from a crosslinked product obtained by crosslinking the silane graft composition. Since the silane graft composition is excellent in heat distortion resistance, the sheath formed therefrom is less deformed when crosslinked in a high temperature environment, and is prevented from being crushed. In addition, since the silane graft composition has a high degree of grafting of the silane compound and is uniform, the sheath has a high degree of crosslinking of 60% or more in terms of gel fraction. Moreover, since the early crosslinking
  • the cable 1 includes one electric wire provided with an insulating layer on the outer periphery of the conductor.
  • the cable 1 includes a stranded wire obtained by twisting two or more electric wires. Also good.
  • a silane graft composition was used as a coating layer (sheath 12) of the cable 1, it is not limited to this.
  • grafting composition can also be used for the insulating layer 11 of the electric wire 2 as shown, for example in FIG.
  • the insulating layer 11 is formed by extruding the silane graft composition on the outer periphery of the conductor 11, and the insulating layer 11 is brought into contact with water for silane crosslinking. Good.
  • Chlorinated polyethylene (Mooney viscosity at 121 ° C. (ML1 + 4): 55, heat of fusion less than 1.0 J / g): “CM352L” manufactured by Hangzhou Science & Technology Co., Ltd.
  • Low density polyethylene (density d: 0.922 g / ml, MFR: 2.3 g / 10 min): “Evolue SP2030” manufactured by Prime Polymer Co., Ltd.
  • -Hydrotalcite “Mugcellar 1” manufactured by Kyowa Chemical Industry Co., Ltd.
  • Epoxidized soybean oil “New Sizer 510R” manufactured by Nippon Oil & Fats Co., Ltd.
  • Polyethylene wax (molecular weight: 2800): “High Wax NL-200” manufactured by Mitsui Chemicals, Inc.
  • ⁇ Peroxide (Dicumyl peroxide): “DCP” manufactured by NOF Corporation Silane compound (vinyltrimethoxysilane): “KBM-1003” manufactured by Shin-Etsu Chemical Co., Ltd.
  • Plasticizer (Process oil): “NP-24” manufactured by Idemitsu Kosan Co., Ltd.
  • Sulfur-based antioxidant (4,4′-thiobis (3-methyl-6-tert-butylphenol)): “NOCRACK 300R” manufactured by Ouchi Shinsei Chemical Co., Ltd.
  • Amine-based antioxidant (2,2,4-trimethyl-1,2-dihydroquinoline polymer): “NOCRACK 224” manufactured by Ouchi Shinsei Chemical Co., Ltd. ⁇ Flame retardant (antimony trioxide): “Antimony trioxide” manufactured by Sumitomo Metal Mining Co., Ltd. ⁇ Carbon (FEF carbon black): “Asahi Carbon 60G” manufactured by Asahi Carbon Co., Ltd. ⁇ Lubricant (ethylenebisoleic acid amide): “Sripac-O” manufactured by Nippon Kasei Co., Ltd. Silanol condensation catalyst (dioctyltin dineodecanoate): “Neostan U-830” manufactured by Nitto Kasei Co., Ltd.
  • silane graft composition ⁇ Examples 1 to 5>
  • graft materials A and B were prepared by grafting using the materials described above with the formulation shown in Table 1, and then graft materials A and grafts with the formulation shown in Table 2.
  • a silane graft composition was prepared by mixing material B with other additives. This will be specifically described below.
  • the sheet obtained by kneading was pelletized into a 5 mm square shape to obtain pellets containing chlorinated polyethylene.
  • 1 part by mass of talc was applied to the pellets.
  • the obtained pellets were sufficiently impregnated with a silane mixture in which a peroxide was dissolved in a silane compound.
  • the pellet was impregnated with a silane mixture so that the peroxide was 0.03 part by mass and the silane compound was 3 parts by mass with respect to 100 parts by mass of the chlorinated polyethylene. It was.
  • the pellet impregnated with the silane mixture was put into the cylinder 103a from the hopper 101 of the single screw extruder 100 shown in FIG. 3, and sent out from the cylinder 103a to the cylinder 103b by the rotation of the screw 102.
  • the pellets were heated by the cylinders 103a and 103b and softened and kneaded to graft polymerize the silane compound to the chlorinated polyethylene. This formed the silane graft
  • the silane-grafted chlorinated polyethylene was fed to the head portion 104 of the extruder 100, and a strand 20 (length: 150 cm) of the silane-grafted chlorinated polyethylene was extruded from the die 105. Then, the strand 20 was introduced into the water tank 106, cooled with water, and drained with an air wiper 107.
  • the strand 20 was pelletized with the pelletizer 108 to obtain a pellet-shaped graft material A.
  • a single screw extruder 100 having a screw diameter of 40 mm was used.
  • the ratio L / D between the screw diameter D and the screw length L was 25.
  • the temperature of the cylinder 103a was 80 ° C.
  • the temperature of the cylinder 103b was 200 ° C.
  • the temperature of the head portion 104 was 200 ° C.
  • the rotation speed of the screw 102 was 20 rpm (extrusion amount about 120 g / min), and the screw 102 was made into a full flight shape.
  • a die having a hole diameter of 5 mm and three holes was used as the die 105.
  • polyethylene grafting The grafting process of polyethylene was performed similarly to the grafting process of chlorinated polyethylene. Specifically, polyethylene pellets were sufficiently impregnated with silane mixture. At this time, as shown in Table 1, the pellet was impregnated with a silane mixture so that the peroxide was 0.06 parts by mass and the silane compound was 1.5 parts by mass with respect to 100 parts by mass of polyethylene. It was. Then, the pellets impregnated with the silane mixture are put into a single screw extruder 100 shown in FIG. 3, and a silane-grafted polyethylene is formed by grafting, and the strands are pelletized to form pellet-like grafts. Material B was obtained.
  • a catalyst master batch containing a silanol condensation catalyst was prepared. Specifically, hydrotalcite is 6 parts by mass, epoxidized soybean oil is 6 parts by mass, polyethylene wax is 3 parts by mass, and silanol condensation catalyst with respect to 100 parts by mass of powdered chlorinated polyethylene. 2 parts by mass of dioctyltin dineodecanoate as a mixture was added and kneaded using an 8-inch roll machine.
  • the surface temperature of the roll was set to 100 ° C., and the kneading was carried out for 3 minutes after the silanol condensation catalyst was added. Then, the sheet
  • graft material A silane-grafted chlorinated polyethylene
  • graft material B silane-grafted polyethylene
  • other additives were kneaded by an 8-inch roll machine with the formulation shown in Table 2.
  • the ratio of chlorinated polyethylene to polyethylene was adjusted by appropriately changing the mixing ratio of graft material A and graft material B.
  • additives 10 parts by weight of process oil as a plasticizer, 0.08 parts by weight of a sulfur-based antioxidant, and amine-based oxidation with respect to a total of 100 parts by weight of chlorinated polyethylene and polyethylene.
  • Example 6 a silane graft composition was prepared using a graft material C obtained by previously mixing chlorinated polyethylene and polyethylene and grafting the mixture. Specifically, as shown in Table 1, 70 parts by mass of chlorinated polyethylene, 30 parts by mass of polyethylene, and other additives were mixed and kneaded using an 8-inch roll machine. At this time, the surface temperature of the roll was set to 100 ° C., and kneading was performed for 5 minutes after the addition of the additives and the like was completed. Thereafter, the sheet obtained by kneading was pelletized into a 5 mm square shape.
  • the obtained pellet is impregnated with a silane mixture containing 0.03 parts by mass of a peroxide and 3 parts by mass of a silane compound, and the silane compound is graft polymerized using the single screw extruder 100 shown in FIG. Graft material C was obtained. Subsequently, as described in Table 2, the silane graft composition of Example 6 was prepared by mixing the graft material C, other additives, and a catalyst master batch.
  • Example 7 a silane graft composition was prepared in the same manner as in Example 6 except that the graft material D shown in Table 1 was used instead of the graft material C used in Example 6.
  • the graft material D was prepared in the same manner as the graft material C, except that the amount of the silane compound and peroxide blended when the silane compound was graft polymerized to a mixture of chlorinated polyethylene and polyethylene was changed.
  • Comparative Example 1 In Comparative Example 1, as described in Table 2, silane graft compositions were prepared in the same manner as in Examples 1 to 5 except that the graft material A shown in Table 1 was used.
  • the cables of Examples 1 to 7 and Comparative Example 1 were produced by extruding the silane graft compositions of Examples 1 to 7 and Comparative Example 1. Specifically, a copper conductor (outer diameter 3.7 mm) having a cross-sectional area of 8 mm 2 is inserted as the conductor 10 into the die 105 of the single-screw extruder 100 shown in FIG.
  • the rubber 1) is extruded to form the insulating layer 11 having a thickness of 1.0 mm, and the sheath 12 having a thickness of 1.7 mm is formed by extruding the silane graft composition described above on the outer periphery of the insulating layer 11.
  • the sheath 12 having a thickness of 1.7 mm is formed by extruding the silane graft composition described above on the outer periphery of the insulating layer 11.
  • the cable 1 was stored in a constant temperature and humidity chamber having a temperature of 60 ° C. and a relative humidity of 95% for 24 hours to crosslink the sheath 12.
  • a 20 mm single-screw single-screw extruder 100 was used.
  • the ratio L / D between the screw diameter D and the screw length L was 15.
  • the temperature of the cylinder 103a was 120 ° C.
  • the temperature of the cylinder 103b was 150 ° C.
  • the temperature of the neck 109 was 140 ° C.
  • the temperature of the crosshead portion 110 was 150 ° C.
  • the temperature of the die 105 was 130 ° C.
  • the rotation speed of the screw 102 was 15 rpm
  • the shape of the screw 102 was a full flight shape.
  • heat-resistant deformation In order to evaluate the heat distortion resistance of the silane graft composition, a heat deformation test was performed on the cable immediately after the silane graft composition was extruded (the cable before the crosslinking treatment). This heat deformation test simulated the phenomenon that the surface of the cable is deformed when the cable wound in a drum shape is crosslinked with silane in a high temperature environment. Specifically, the heat deformation test was performed by the following method. First, a sample having a length of 30 mm was cut out from the cable before the crosslinking treatment. Subsequently, using a heat deformation tester (TM-1515 manufactured by Ueshima Seisakusho Co., Ltd.), as shown in FIG.
  • TM-1515 manufactured by Ueshima Seisakusho Co., Ltd.
  • the sample S was heat deformed under the conditions of a temperature of 60 ° C., a load of 2 N, and 24 hours. A test was conducted. And the width
  • the gel fraction before crosslinking of the silane graft composition was measured.
  • the gel fraction before cross-linking indicates quantitatively the degree to which early cross-linking has progressed during the preparation of the silane graft composition, and the higher the gel fraction before cross-linking indicates that pre-cross-linking has progressed. .
  • the gel fraction before crosslinking was measured by the following method. First, 0.5 g of a sample was taken from the silane graft composition, and this sample was placed in a 40 mesh brass wire mesh. Subsequently, the sample was extracted with xylene in a 110 ° C. oil bath.
  • Comparative Example 1 is an example in which only silane-grafted chlorinated polyethylene is blended.
  • Comparative Example 1 as shown in Table 2, the deformation width by the heat deformation test was 1.84 mm, and it was confirmed that the heat deformation resistance was poor.
  • Examples 1 to 7 it was confirmed that the deformation width can be reduced as compared with Comparative Example 1 by mixing silane-grafted polyethylene with silane-grafted chlorinated polyethylene. From this, it was found that by adding silane-grafted polyethylene, the silane-grafted chlorinated polyethylene can be imparted with heat distortion resistance, and deformation under a high temperature environment can be suppressed.
  • Examples 1 to 5 are examples in which the mixing ratio of the graft material A and the graft material B was changed to change the mixing ratio of the silane-grafted chlorinated polyethylene and the silane-grafted polyethylene.
  • Table 2 it is shown that as the blending amount of the graft material B is increased (the ratio of polyethylene is increased), the deformation width in the heat deformation test is further decreased. Yes.
  • the deformation width can be suppressed to 1.00 mm or less by setting the ratio of polyethylene to the total of chlorinated polyethylene and polyethylene to 10 or more. From this, it was found that the polyethylene ratio should be 10 or more from the viewpoint of reducing the deformation width.
  • Example 3 and Example 6 it was confirmed that the ratio of chlorinated polyethylene and polyethylene was the same, and that the heat distortion resistance, the gel fraction before crosslinking, and the hardness were all good. However, it was found that the gel fraction after crosslinking was 73% in Example 3 and 57% in Example 6, and that Example 3 was higher than Example 6. That is, it was confirmed that Example 3 had a higher degree of cross-linking of the sheath than Example 6 and was excellent in mechanical strength. The reason is presumed as follows. In Example 6, a mixture of chlorinated polyethylene and polyethylene was grafted, It is considered that the gel fraction after crosslinking was lowered because each could not be uniformly grafted, and in particular, the grafting of polyethylene could not be sufficiently performed. On the other hand, in Example 3, the thing which was able to raise the gel fraction after bridge
  • Example 3 and Example 7 it was confirmed that the ratio of chlorinated polyethylene and polyethylene was the same, and that the heat resistance, gel fraction after crosslinking, and hardness were all good. However, it was found that the gel fraction before crosslinking was 26% in Example 3 and 62% in Example 7, and that Example 7 was higher than Example 3. That is, in Example 7, it was confirmed that early cross-linking progressed more than Example 3. In Example 7 in which early crosslinking progressed, it was difficult to extrude the silane graft composition, and the tendency of the outer diameter of the sheath to fluctuate was confirmed.
  • Example 7 The reason why the early crosslinking progressed in Example 7 was that when the mixture of chlorinated polyethylene and polyethylene was grafted, the ratio of peroxide to silane compound was increased as shown in Table 1. Conceivable.
  • a silane graft composition according to an embodiment of the present invention includes a silane-grafted chlorinated polyethylene obtained by graft-polymerizing a silane compound to chlorinated polyethylene, And silane-grafted polyethylene obtained by graft-polymerizing a silane compound to polyethylene.
  • the gel fraction before crosslinking is 30% or less, and the gel fraction after crosslinking is 60% or more.
  • the silane graft chlorination is performed so that a ratio of the chlorinated polyethylene to the polyethylene is 55:45 to 90:10. Contains polyethylene and the silane-grafted polyethylene.
  • the silane compound has a vinyl group.
  • a method for producing a silane graft composition includes a step of forming a silane-grafted chlorinated polyethylene by graft-polymerizing a silane compound to chlorinated polyethylene; Forming a silane-grafted polyethylene by graft polymerizing a silane compound to polyethylene; Mixing the silane-grafted chlorinated polyethylene and the silane-grafted polyethylene.
  • silane graft chlorinated polyethylene and the silane graft polyethylene are used, and the ratio of the chlorinated polyethylene and the polyethylene is 55: Mix to 45-90: 10.
  • An electric wire according to an embodiment of the present invention includes an insulating layer formed from a crosslinked product obtained by crosslinking the silane graft composition of [1] to [4].
  • a cable according to an embodiment of the present invention includes a jacket layer formed from a crosslinked product obtained by crosslinking the silane graft composition of [1] to [4].
  • the present invention can be applied to a silane graft composition used as a material for forming a coating layer such as an electric wire insulation layer or a cable sheath layer (sheath).
  • a silane graft composition used as a material for forming a coating layer such as an electric wire insulation layer or a cable sheath layer (sheath).

Abstract

To minimize deformation due to heating of silane-grafted chlorinated polyethylene. A silane-grafted composition in one embodiment of the present invention contains silane-grafted chlorinated polyethylene obtained by graft-polymerizing a silane compound to chlorinated polyethylene, and silane-grafted polyethylene obtained by graft-polymerizing a silane compound to polyethylene.

Description

シラングラフト組成物およびその製造方法、並びにその組成物を用いた電線およびケーブルSilane graft composition and method for producing the same, and electric wire and cable using the composition
本発明は、シラングラフト組成物およびその製造方法、並びにその組成物を用いた電線およびケーブルに関する。 The present invention relates to a silane graft composition and a method for producing the same, and an electric wire and a cable using the composition.
電線の絶縁層やケーブルの外被層(シース)などの被覆層を形成する材料として、塩素化ポリエチレンが広く用いられている。一般に、塩素化ポリエチレンは、被覆層に形成される際に架橋処理が施される。架橋処理としては、例えば、シラン化合物(いわゆるシランカップリング剤)を用いるシラン架橋が広く使用される(例えば、特許文献1を参照)。シラン架橋は、塩素化ポリエチレンにシラン化合物をグラフト重合させ、それにより得られたシラングラフト塩素化ポリエチレンを水分と接触させることにより行われる。 Chlorinated polyethylene is widely used as a material for forming a coating layer such as an electric wire insulation layer or a cable jacket layer (sheath). Generally, a chlorinated polyethylene is subjected to a crosslinking treatment when formed in a coating layer. As the crosslinking treatment, for example, silane crosslinking using a silane compound (so-called silane coupling agent) is widely used (see, for example, Patent Document 1). Silane crosslinking is carried out by graft polymerizing a silane compound to chlorinated polyethylene and bringing the resulting silane-grafted chlorinated polyethylene into contact with moisture.
例えば、被覆層をシラン架橋して電線やケーブルを製造する場合、まず、シラングラフト塩素化ポリエチレンを押し出して被覆層を形成する。続いて、被覆層が設けられた電線やケーブルを例えばドラム状に巻き取り、それを所定時間外気にさらす。これにより、被覆層のシラングラフト塩素化ポリエチレンを外気中の水分でシラン架橋させる。 For example, when manufacturing an electric wire or cable by silane-crosslinking the coating layer, first, the coating layer is formed by extruding silane-grafted chlorinated polyethylene. Subsequently, the electric wire or cable provided with the coating layer is wound into a drum shape, for example, and exposed to the outside air for a predetermined time. As a result, the silane-grafted chlorinated polyethylene of the coating layer is silane-crosslinked with moisture in the outside air.
特公昭50-35540号公報Japanese Patent Publication No. 50-35540
電線やケーブルにおいては、製造時間を短縮して生産性よく製造するため、シラン架橋を、常温環境ではなく、例えば100℃程度の高温環境で行うようになっている。これは、高温環境では、常温環境と比較してシラン架橋の反応が促進され、シラン架橋に要する時間を短縮できるからである。 In the case of electric wires and cables, in order to shorten the manufacturing time and to manufacture with high productivity, silane crosslinking is performed in a high temperature environment of about 100 ° C., for example, instead of a normal temperature environment. This is because, in a high temperature environment, the silane crosslinking reaction is accelerated as compared with a normal temperature environment, and the time required for silane crosslinking can be shortened.
しかしながら、シラングラフト塩素化ポリエチレンからなる被覆層が高温環境下でシラン架橋される場合、被覆層が変形してしまうことがある。即ち、被覆層を構成する架橋前のシラングラフト塩素化ポリエチレンは、高温環境下ではゴム弾性を十分に発現できないので、高温環境下において、電線やケーブルがドラム状に巻き付けられた状態でシラン架橋されるときに、被覆層がケーブルの自重や張力によって潰れて変形してしまう。その結果、被覆層は、変形した状態でシラン架橋されることとなり、表面の外観が著しく損なわれてしまう。 However, when a coating layer made of silane-grafted chlorinated polyethylene is crosslinked with silane in a high temperature environment, the coating layer may be deformed. That is, the silane-grafted chlorinated polyethylene before crosslinking constituting the coating layer cannot sufficiently exhibit rubber elasticity in a high temperature environment, and therefore, in a high temperature environment, the silane-crosslinked silane-grafted chlorinated polyethylene is wound with a wire or cable wound in a drum shape. The cover layer is crushed and deformed by the weight and tension of the cable. As a result, the coating layer is silane-crosslinked in a deformed state, and the appearance of the surface is significantly impaired.
本発明は、加熱による変形を抑制するシラングラフト組成物を提供することを目的とする。 An object of this invention is to provide the silane graft | grafting composition which suppresses the deformation | transformation by heating.
本発明の一実施形態によるシラングラフト組成物は、塩素化ポリエチレンにシラン化合物がグラフト重合されたシラングラフト塩素化ポリエチレンと、
ポリエチレンにシラン化合物がグラフト重合されたシラングラフトポリエチレンと、を含む。
A silane graft composition according to an embodiment of the present invention includes a silane-grafted chlorinated polyethylene obtained by graft-polymerizing a silane compound to chlorinated polyethylene;
And silane-grafted polyethylene obtained by graft-polymerizing a silane compound to polyethylene.
本発明の他の実施形態によるシラングラフト組成物の製造方法は、塩素化ポリエチレンにシラン化合物をグラフト重合させることでシラングラフト塩素化ポリエチレンを形成する工程と、
ポリエチレンにシラン化合物をグラフト重合させることでシラングラフトポリエチレンを形成する工程と、
前記シラングラフト塩素化ポリエチレン及び前記シラングラフトポリエチレンを混合する工程と、を有する。
A method for producing a silane graft composition according to another embodiment of the present invention includes a step of forming a silane-grafted chlorinated polyethylene by graft-polymerizing a silane compound to chlorinated polyethylene;
Forming a silane-grafted polyethylene by graft polymerizing a silane compound to polyethylene;
Mixing the silane-grafted chlorinated polyethylene and the silane-grafted polyethylene.
本発明の他の実施形態による電線は、当該シラングラフト組成物が架橋された架橋物から形成される絶縁層を備える。 The electric wire by other embodiment of this invention is equipped with the insulating layer formed from the crosslinked material which the said silane graft | grafting composition bridge | crosslinked.
本発明の他の実施形態によるケーブルは、当該シラングラフト組成物が架橋された架橋物から形成される外被層を備える。 A cable according to another embodiment of the present invention includes a jacket layer formed from a cross-linked product in which the silane graft composition is cross-linked.
本発明の一実施形態によれば、加熱による変形を抑制するシラングラフト組成物を提供することができる。 According to one embodiment of the present invention, a silane graft composition that suppresses deformation due to heating can be provided.
図1は、本発明の一実施形態に係るケーブルの概略構造を示す断面図である。FIG. 1 is a cross-sectional view showing a schematic structure of a cable according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る電線の概略構造を示す断面図である。FIG. 2 is a cross-sectional view showing a schematic structure of an electric wire according to an embodiment of the present invention. 図3は、実施例における単軸押出機を用いたグラフト処理を示す説明図である。FIG. 3 is an explanatory view showing a grafting process using a single screw extruder in the example. 図4は、実施例におけるケーブルの作製を示す説明図である。FIG. 4 is an explanatory view showing the production of the cable in the example. 図5は、実施例における加熱変形試験の過程を示す説明図である。FIG. 5 is an explanatory diagram showing a process of a heat deformation test in the example.
本発明者らの研究によると、シラングラフト塩素化ポリエチレンはゴム材料であり、加熱により変形しやすいことから、その変形を抑制するには、プラスチック材料を混合するとよいことが見出された。プラスチック材料は、ゴム材料と比較して結晶成分が多く(高結晶性であり)、融点が高いので、未架橋でも加熱により変形しにくい。そのため、プラスチック材料は、ゴム材料に耐熱変形性を付与することができる。 According to the study by the present inventors, it has been found that silane-grafted chlorinated polyethylene is a rubber material and is easily deformed by heating. Therefore, in order to suppress the deformation, a plastic material may be mixed. Plastic materials have more crystal components (high crystallinity) and higher melting points than rubber materials, and are not easily deformed by heating even if they are uncrosslinked. Therefore, the plastic material can impart heat deformation resistance to the rubber material.
さらに、本発明者らはプラスチック材料について研究を行ったところ、プラスチック材料の中でもポリエチレン(シラングラフトポリエチレン)が混合材料として適することを見出した。ポリエチレンは、塩素化ポリエチレンと同様にシラン化合物をグラフト重合でき、シラン架橋させることができる。つまり、シラングラフトポリエチレンをシラングラフト塩素化ポリエチレンに混合し、水分と反応させることにより、これらを一体的にシラン架橋させることができる。したがって、ポリエチレンによれば、塩素化ポリエチレンに混合した場合であっても、混合物の架橋度を低下させることなく、塩素化ポリエチレンのみをシラン架橋させたときと同等の架橋度を得ることができる。 Furthermore, the present inventors have conducted research on plastic materials and found that polyethylene (silane-grafted polyethylene) is suitable as a mixed material among plastic materials. Polyethylene can be graft-polymerized with a silane compound in the same manner as chlorinated polyethylene, and can be crosslinked with silane. That is, silane-grafted polyethylene is mixed with silane-grafted chlorinated polyethylene and reacted with moisture, whereby these can be integrally crosslinked with silane. Therefore, according to polyethylene, even when mixed with chlorinated polyethylene, a degree of crosslinking equivalent to that when chlorinated polyethylene alone is silane-crosslinked can be obtained without reducing the degree of crosslinking of the mixture.
本発明は、上記知見に基づいて成されたものである。 The present invention has been made based on the above findings.
<本発明の一実施形態>
以下、本発明の一実施形態について説明する。
<One Embodiment of the Present Invention>
Hereinafter, an embodiment of the present invention will be described.
(1)シラングラフト組成物
シラングラフト組成物は、シラングラフト塩素化ポリエチレンと、シラングラフトポリエチレンとを含む。
(1) Silane graft composition The silane graft composition contains silane-grafted chlorinated polyethylene and silane-grafted polyethylene.
(シラングラフト塩素化ポリエチレン)
シラングラフト塩素化ポリエチレンは、塩素化ポリエチレンとシラン化合物(シランカップリング剤)と過酸化物とを混合し、過酸化物の存在下で塩素化ポリエチレンにシラン化合物をグラフト重合させて得られたものである。シラングラフト塩素化ポリエチレンは、グラフト重合されたシラン化合物に由来するシラン基を分子鎖中に有している。シラングラフト塩素化ポリエチレンは、水と接触したときに、分子鎖中のシラン基が加水分解してシラノール基となり、このシラノール基同士が脱水縮合して架橋構造を形成することで、シラン架橋する。
(Silane-grafted chlorinated polyethylene)
Silane-grafted chlorinated polyethylene is obtained by mixing chlorinated polyethylene, silane compound (silane coupling agent), and peroxide, and grafting the silane compound to chlorinated polyethylene in the presence of peroxide. It is. Silane graft chlorinated polyethylene has a silane group derived from the graft polymerized silane compound in the molecular chain. When the silane-grafted chlorinated polyethylene is brought into contact with water, the silane group in the molecular chain is hydrolyzed to become a silanol group, and the silanol groups are dehydrated and condensed to form a crosslinked structure, thereby silane crosslinking.
塩素化ポリエチレンは、例えば、線状ポリエチレン(低密度ポリエチレンや高密度ポリエチレンなど)を水に懸濁分散させた水性懸濁液に塩素ガスを吹き込むことにより得られるものである。塩素化ポリエチレンの塩素化度は、特に限定されないが、シラン化合物のグラフト化率、および架橋させたときの架橋度を所望の範囲とする観点からは、例えば25%以上45%以下が代表的であり、30%以上40%以下がより代表的である。 The chlorinated polyethylene is obtained, for example, by blowing chlorine gas into an aqueous suspension obtained by suspending and dispersing linear polyethylene (such as low-density polyethylene or high-density polyethylene) in water. The degree of chlorination of the chlorinated polyethylene is not particularly limited, but from the viewpoint of setting the grafting rate of the silane compound and the degree of crosslinking when crosslinked to a desired range, for example, 25% to 45% is typical. Yes, 30% to 40% is more typical.
シラン化合物は、不飽和結合性基と、加水分解性のシラン基とを有している。シラン化合物は、不飽和結合性基により塩素化ポリエチレンにグラフト重合されることで、塩素化ポリエチレンにシラン基を導入する。 The silane compound has an unsaturated bond group and a hydrolyzable silane group. A silane compound introduce | transduces a silane group into chlorinated polyethylene by being graft-polymerized to chlorinated polyethylene by an unsaturated bond group.
シラン化合物の不飽和結合性基としては、塩素化ポリエチレンにシラン化合物をグラフト重合できるようなものであれば限定されず、例えば、ビニル基、メタクリル基およびアクリル基などが挙げられる。これらの中でも不飽和結合性基としてはビニル基が代表的である。ビニル基を有するシラン化合物(以下、ビニルシランともいう)は、これまでに広く用いられており、塩素化ポリエチレンに好適にグラフト重合できるからである。 The unsaturated bond group of the silane compound is not limited as long as the silane compound can be graft-polymerized to chlorinated polyethylene, and examples thereof include a vinyl group, a methacryl group, and an acrylic group. Among these, a vinyl group is typical as the unsaturated bond group. This is because a silane compound having a vinyl group (hereinafter also referred to as vinylsilane) has been widely used so far and can be suitably graft-polymerized to chlorinated polyethylene.
シラン化合物の加水分解性のシラン基としては、例えば、ハロゲン、アルコキシ基、アシルオキシ基、フェノキシ基などの加水分解可能な構造を有するものが挙げられる。これらの加水分解可能な構造を有するシラン基として、例えばハロシリル基、アルコキシシリル基、アシロキシシリル基、フェノキシシリル基などが挙げられる。 Examples of the hydrolyzable silane group of the silane compound include those having a hydrolyzable structure such as a halogen, an alkoxy group, an acyloxy group, and a phenoxy group. Examples of the silane group having a hydrolyzable structure include a halosilyl group, an alkoxysilyl group, an acyloxysilyl group, and a phenoxysilyl group.
シラン化合物としては、代表的には、トリメトキシビニルシラン、トリエトキシビニルシラン等のビニルシランを用いることができる。 As the silane compound, vinylsilane such as trimethoxyvinylsilane or triethoxyvinylsilane can be typically used.
シラン化合物の塩素化ポリエチレンにグラフト重合される量は、つまり、塩素化ポリエチレンに配合するシラン化合物の配合量は、最終的な成形体(例えば絶縁層やシースなど)の架橋度、もしくは架橋させるときの反応条件(例えば温度、時間など)によって適宜変更するとよい。具体的には、シラン化合物の配合量は、塩素化ポリエチレン100質量部に対して、代表的には0.1質量部以上10質量部以下、より代表的には1.0質量部以上5.0質量部以下である。配合量が0.1質量部未満であると、グラフト重合されるシラン化合物が少なくなるので、シラングラフト組成物をシラン架橋させたときに十分な架橋度を得られないおそれがある。一方、10質量部を超えると、塩素化ポリエチレンとシラン化合物とを混練しながらグラフト重合させるときに、材料とスクリュとの間で滑りが発生し、食い込み性が低くなるおそれがある。また、シラン化合物をグラフト重合させるときに早期架橋(意図しない架橋反応)が生じるおそれがある。早期架橋によると、シラングラフト組成物において局所的な架橋が進行することによって、架橋による異物(ツブ)が形成され、成形体の表面に凹凸が発生することとなる。つまり、早期架橋により、絶縁層やシースの外観が不良となってしまう。 The amount of silane compound graft polymerized to chlorinated polyethylene, that is, the amount of silane compound to be blended with chlorinated polyethylene is the degree of crosslinking of the final molded product (eg, insulation layer or sheath), or when crosslinked. The reaction conditions may be appropriately changed depending on the reaction conditions (for example, temperature and time). Specifically, the compounding amount of the silane compound is typically 0.1 parts by mass or more and 10 parts by mass or less, more typically 1.0 parts by mass or more and 5 parts by mass with respect to 100 parts by mass of the chlorinated polyethylene. 0 parts by mass or less. If the blending amount is less than 0.1 parts by mass, the amount of silane compound to be graft-polymerized decreases, so that there is a possibility that a sufficient degree of crosslinking cannot be obtained when the silane graft composition is crosslinked with silane. On the other hand, if the amount exceeds 10 parts by mass, slippage may occur between the material and the screw when the chlorinated polyethylene and the silane compound are graft-polymerized while kneading, and the biting property may be lowered. In addition, when the silane compound is graft-polymerized, there is a risk of early crosslinking (unintended crosslinking reaction). According to the early cross-linking, the local cross-linking proceeds in the silane graft composition, so that foreign matters (tubs) are formed due to the cross-linking, and irregularities are generated on the surface of the molded body. In other words, the appearance of the insulating layer and the sheath becomes poor due to the early crosslinking.
過酸化物は、塩素化ポリエチレンにシラン化合物をグラフト重合させるためのものである。具体的には、過酸化物は、熱分解によりオキシラジカルを発生させる。オキシラジカルは、塩素化ポリエチレン中の水素を引き抜くことで、塩素化ポリエチレンのラジカルを生成する。そして、塩素化ポリエチレンのラジカルがシラン化合物の有する不飽和結合性基(例えばビニル基やメタクリル基など)と反応することによって、シラン化合物が塩素化ポリエチレンにグラフト重合されることになる。このように、過酸化物は、オキシラジカルを発生させ、塩素化ポリエチレンへのシラン化合物のグラフト重合を生じさせる。 The peroxide is for graft polymerization of a silane compound on chlorinated polyethylene. Specifically, the peroxide generates oxy radicals by thermal decomposition. Oxy radicals generate chlorinated polyethylene radicals by extracting hydrogen from chlorinated polyethylene. And the radical of chlorinated polyethylene reacts with the unsaturated bond group (for example, vinyl group, methacryl group, etc.) which a silane compound has, and a silane compound will be graft-polymerized to chlorinated polyethylene. Thus, the peroxide generates oxy radicals and causes graft polymerization of the silane compound onto chlorinated polyethylene.
過酸化物としては、例えば有機過酸化物を用いることができる。有機過酸化物は、塩素化ポリエチレンから水素を引き抜く水素引き抜き能が高く、また塩素化ポリエチレンが劣化しにくい(脱塩化水素しにくい)温度で熱分解してオキシラジカルを生成できる。塩素化ポリエチレンの劣化開始温度が200℃程度であることから、過酸化物としては、1分半減期温度が120℃以上200℃以下である有機過酸化物を用いることが代表的である。グラフト反応に要する時間を短縮する観点からは、1分半減期温度が150℃以上200℃以下である有機過酸化物を用いるとよりよい。なお、1分半減期温度とは、過酸化物の半減期が1分間となる温度のことである。 As the peroxide, for example, an organic peroxide can be used. Organic peroxide has a high hydrogen abstraction ability for extracting hydrogen from chlorinated polyethylene, and can be thermally decomposed at a temperature at which chlorinated polyethylene is hardly deteriorated (it is difficult to dehydrochlorinate) to generate oxy radicals. Since the deterioration start temperature of chlorinated polyethylene is about 200 ° C., it is typical to use an organic peroxide having a one-minute half-life temperature of 120 ° C. or higher and 200 ° C. or lower as the peroxide. From the viewpoint of shortening the time required for the grafting reaction, it is better to use an organic peroxide having a one-minute half-life temperature of 150 ° C. or higher and 200 ° C. or lower. The 1-minute half-life temperature is a temperature at which the half-life of the peroxide is 1 minute.
具体的には、過酸化物としては、ジクミルパーオキサイド、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、t-ブチルパーオキシイソプロピルカーボネート、t-アミルパーオキシイソプロピルカーボネート、2,5ジメチル2,5ジ(t-ブチルパーオキシ)ヘキサン、ジ-t-ブチルパーオキサイド、ジ-t-アミルパーオキサイド、1,1-ジ(t-アミルパーオキシ)シクロヘキサン、t-ブチルパーオキシ2-エチルヘキシルカーボネートなどを用いることができる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。これらの中でも、1分半減期温度が約175℃であるジクミルパーオキサイドを用いるとよい。 Specifically, as the peroxide, dicumyl peroxide, 1,1-di (t-butylperoxy) cyclohexane, t-butylperoxyisopropyl carbonate, t-amylperoxyisopropyl carbonate, 2,5 dimethyl 2,5 di (t-butylperoxy) hexane, di-t-butyl peroxide, di-t-amyl peroxide, 1,1-di (t-amylperoxy) cyclohexane, t-butylperoxy 2- Ethyl hexyl carbonate or the like can be used. These may be used alone or in combination of two or more. Among these, dicumyl peroxide having a 1 minute half-life temperature of about 175 ° C. may be used.
過酸化物の配合量は、シラン化合物の配合量に対応させて適宜変更するとよい。具体的には、塩素化ポリエチレンに配合する過酸化物(例えば、ジクミルパーオキサイド等)の配合量をx、塩素化ポリエチレンに配合するシラン化合物(例えば、トリメトキシビニルシラン等)の配合量をyとしたとき、シラン化合物に対する過酸化物の配合量の比率(x/y)が、代表的には0.01程度となるように、過酸化物の配合量を変更するとよい。
比率x/yが0.01よりも過度に小さくなると、過酸化物がシラン化合物に対して過度に少なくなるため、シラン化合物を効率的にグラフト重合できないおそれがある。
比率x/yが0.01よりも過度に大きくなると、過酸化物が多く、生成するラジカルが多くなるため、早期架橋が生じ、絶縁層やシースの表面に凹凸が発生して外観が不良となるおそれがある。
The compounding amount of the peroxide may be appropriately changed according to the compounding amount of the silane compound. Specifically, the amount of peroxide (for example, dicumyl peroxide) blended in chlorinated polyethylene is x 1 , and the amount of silane compound (for example, trimethoxyvinylsilane) blended in chlorinated polyethylene is changed. when the y 1, the ratio of the amount of peroxide to silane compound (x 1 / y 1) is typically such that about 0.01, may be changed the amount of peroxide.
When the ratio x 1 / y 1 is excessively smaller than 0.01, the peroxide is excessively decreased with respect to the silane compound, so that the silane compound may not be efficiently graft-polymerized.
When the ratio x 1 / y 1 is excessively larger than 0.01, a large amount of peroxides and a large amount of radicals are generated, so that early cross-linking occurs and irregularities are generated on the surface of the insulating layer or the sheath, resulting in an appearance. There is a risk of failure.
(シラングラフトポリエチレン)
シラングラフトポリエチレンは、ポリエチレンとシラン化合物と過酸化物とを混合し、過酸化物の存在下でポリエチレンにシラン化合物をグラフト重合させて得られたものである。シラングラフトポリエチレンは、上述のシラングラフト塩素化ポリエチレンと同様に、シラン化合物に由来するシラン基を分子鎖中に有しており、水との反応によりシラン架橋する。
(Silane-grafted polyethylene)
Silane-grafted polyethylene is obtained by mixing polyethylene, a silane compound, and a peroxide, and graft-polymerizing the silane compound onto polyethylene in the presence of the peroxide. Silane-grafted polyethylene, like the above-mentioned silane-grafted chlorinated polyethylene, has a silane group derived from a silane compound in the molecular chain and crosslinks with silane by reaction with water.
ポリエチレンとしては、シラン化合物をグラフト重合できるものであれば、特に限定されず、例えば、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)等を用いることができる。シラングラフト組成物の耐熱変形性をより向上させる観点からは、ポリエチレンとして、密度が高いものを用いるとよい。これは、ポリエチレンは、密度が高くなるほど結晶成分が多くなるので、加熱により変形しにくくなるからである。具体的には、密度が0.90g/ml以上であることが代表的である。一方、密度が高すぎると、シラングラフト組成物の硬度が高くなるので、絶縁層やシースの可とう性が損なわれるおそれがある。そのため、密度の上限値は、0.95g/ml以下であることが代表的である。 The polyethylene is not particularly limited as long as it can graft-polymerize a silane compound. For example, high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), or the like is used. it can. From the viewpoint of further improving the heat distortion resistance of the silane graft composition, polyethylene having a high density may be used. This is because polyethylene becomes difficult to be deformed by heating because the crystal component increases as the density increases. Specifically, the density is typically 0.90 g / ml or more. On the other hand, if the density is too high, the hardness of the silane graft composition is increased, which may impair the flexibility of the insulating layer and the sheath. Therefore, the upper limit value of the density is typically 0.95 g / ml or less.
ポリエチレンにグラフト重合させるシラン化合物としては、上述したものを用いることができる。シラン化合物のポリエチレンにグラフト重合される量、つまり、ポリエチレンに配合するシラン化合物の配合量は、ポリエチレン100質量部に対して、代表的には0.1質量部以上5.0質量部以下、より代表的には1.0質量部以上3.0質量部以下である。配合量が0.1質量部未満であると、シラン化合物のグラフト量が少なくなるので、シラングラフト組成物をシラン架橋させたときに十分な架橋度を得られないおそれがある。一方、5.0質量部を超えると、シラン化合物をグラフト重合させるときに早期架橋(意図しない架橋反応)が生じるおそれがある。 As the silane compound to be graft-polymerized to polyethylene, those described above can be used. The amount of the silane compound graft-polymerized to polyethylene, that is, the blending amount of the silane compound to be blended with polyethylene is typically 0.1 parts by weight or more and 5.0 parts by weight or less with respect to 100 parts by weight of polyethylene. Typically, it is 1.0 part by mass or more and 3.0 parts by mass or less. When the blending amount is less than 0.1 parts by mass, the graft amount of the silane compound is decreased, and therefore there is a possibility that a sufficient degree of crosslinking cannot be obtained when the silane graft composition is crosslinked with silane. On the other hand, if it exceeds 5.0 parts by mass, there is a risk that early crosslinking (unintended crosslinking reaction) may occur when the silane compound is graft polymerized.
ポリエチレンにシラン化合物をグラフト重合させる過酸化物としては、上述したものを用いることができる。過酸化物の配合量は、シラン化合物の配合量に対応させて適宜変更するとよい。具体的には、ポリエチレンに配合する過酸化物の配合量をx、ポリエチレンに配合するシラン化合物の配合量をyとしたとき、シラン化合物に対する過酸化物の配合量の比率(x/y)が、代表的には0.04程度となるように、過酸化物の配合量を変更するとよい。
比率x/yが0.04よりも過度に小さくなると、過酸化物がシラン化合物に対して過度に少なくなるため、シラン化合物を効率的にグラフト重合できないおそれがある。
比率x/yが0.04よりも過度に大きくなると、過酸化物が多く、生成するラジカルが多くなるため、早期架橋が生じ、絶縁層やシースの表面に凹凸が発生して外観が不良となるおそれがある。
As the peroxide for graft polymerizing a silane compound to polyethylene, those described above can be used. The compounding amount of the peroxide may be appropriately changed according to the compounding amount of the silane compound. Specifically, when the blending amount of the peroxide blended with polyethylene is x 2 and the blending amount of the silane compound blended with polyethylene is y 2 , the ratio of the blending amount of the peroxide to the silane compound (x 2 / It is preferable to change the amount of peroxide so that y 2 ) is typically about 0.04.
When the ratio x 2 / y 2 is excessively smaller than 0.04, the peroxide is excessively decreased with respect to the silane compound, and thus the silane compound may not be efficiently graft-polymerized.
When the ratio x 2 / y 2 is excessively larger than 0.04, a large amount of peroxides and a large amount of radicals are generated, so that early crosslinking occurs, and irregularities are generated on the surfaces of the insulating layer and the sheath, resulting in an appearance. There is a risk of failure.
(混合比率)
本実施形態のシラングラフト組成物は、シラングラフト塩素化ポリエチレンとシラングラフトポリエチレンとを含有しているが、これらの混合比率は特に限定されない。代表的には、塩素化ポリエチレンとポリエチレンとの比率が55:45~90:10となるように、シラングラフト塩素化ポリエチレンとシラングラフトポリエチレンとが混合されているとよい。ポリエチレンの比率が10未満となると、シラングラフトポリエチレンが少なくなるため、シラングラフト組成物が高温または高圧環境下で変形するおそれがある。比率が45を超えると、シラングラフトポリエチレンが多くなるため、シラングラフト組成物の硬度が高くなり、絶縁層やシースの可とう性を確保できないおそれがある。
(Mixing ratio)
The silane graft composition of this embodiment contains silane graft chlorinated polyethylene and silane graft polyethylene, but the mixing ratio thereof is not particularly limited. Typically, silane-grafted chlorinated polyethylene and silane-grafted polyethylene are mixed so that the ratio of chlorinated polyethylene to polyethylene is 55:45 to 90:10. When the ratio of polyethylene is less than 10, the amount of silane-grafted polyethylene decreases, so that the silane-graft composition may be deformed under a high temperature or high pressure environment. If the ratio exceeds 45, the amount of silane-grafted polyethylene increases, so the hardness of the silane-graft composition increases, and the flexibility of the insulating layer and sheath may not be ensured.
(その他添加剤)
本実施形態のシラングラフト組成物は、シラングラフト塩素化ポリエチレン及びシラングラフトポリエチレンを含有しているが、必要に応じて、シラノール縮合触媒を含有してもよい。シラノール縮合触媒によれば、シラン架橋の反応を促進させ、シラングラフト組成物を効率的に架橋させることができる。
(Other additives)
The silane graft composition of this embodiment contains silane-grafted chlorinated polyethylene and silane-grafted polyethylene, but may contain a silanol condensation catalyst as necessary. According to the silanol condensation catalyst, the reaction of silane crosslinking can be promoted, and the silane graft composition can be efficiently crosslinked.
シラノール縮合触媒としては、例えば、マグネシウムやカルシウム等のII族元素、コバルトや鉄等のVIII族元素、錫、亜鉛およびチタン等の金属元素やこれらの元素を含む金属化合物を用いることができる。また、オクチル酸やアジピン酸の金属塩、アミン系化合物、酸などを用いることができる。具体的には、金属塩として、ジオクチル錫ジネオデカノエート、ジブチル錫ジラウリレート、ジブチル錫ジアセテート、ジブチル錫ジオクタエート、酢酸第一錫、カブリル酸第一錫、ナフテン酸鉛、カプリル酸亜鉛、ナフテン酸コバルト等を用いることができる。アミン系化合物として、エチルアミン、ジブチルアミン、ヘキシルアミン、ピリジン等を用いることができる。酸として、硫酸や塩酸などの無機酸、トルエンスルホン酸や酢酸、ステアリン酸、マレイン酸などの有機酸を用いることができる。 As the silanol condensation catalyst, for example, a group II element such as magnesium or calcium, a group VIII element such as cobalt or iron, a metal element such as tin, zinc and titanium, or a metal compound containing these elements can be used. In addition, metal salts of octylic acid and adipic acid, amine compounds, acids, and the like can be used. Specifically, dioctyltin dineodecanoate, dibutyltin dilaurate, dibutyltin diacetate, dibutyltin dioctaate, stannous acetate, stannous cablate, lead naphthenate, zinc caprylate, naphthene Cobalt acid or the like can be used. As the amine compound, ethylamine, dibutylamine, hexylamine, pyridine and the like can be used. As the acid, inorganic acids such as sulfuric acid and hydrochloric acid, and organic acids such as toluenesulfonic acid, acetic acid, stearic acid, and maleic acid can be used.
また、シラングラフト組成物は、可塑剤、酸化防止剤(老化防止剤を含む)、カーボンブラック等の充填剤、難燃剤、滑剤、銅害変色防止剤、架橋助剤、安定剤などのその他の添加剤を含有してもよい。 In addition, silane graft compositions include plasticizers, antioxidants (including anti-aging agents), fillers such as carbon black, flame retardants, lubricants, copper damage discoloration inhibitors, crosslinking aids, stabilizers, and other An additive may be contained.
(2)シラングラフト組成物の製造方法
シラングラフト組成物の製造方法としては、塩素化ポリエチレンとポリエチレンとを混合し、その混合物にシラン化合物をグラフト重合させる方法がある。
しかし、本発明者らの研究によると、この方法では、塩素化ポリエチレンおよびポリエチレンのそれぞれにシラン化合物を均一にグラフト重合させにくいことが見出された。これは、塩素化ポリエチレンとポリエチレンとの間ではシラン化合物とのグラフト反応性やグラフト重合の最適条件が相違するためと考えられる。均一にグラフト重合できないと、シラングラフト組成物においてシラン化合物のグラフト化率が均一とならず、ばらつきが生じてしまう。その結果、例えば、シラン化合物をグラフト重合させるときに意図しない早期架橋が生じることで、得られるシラングラフト組成物に局所的な架橋が生じ、架橋物が異物(ツブ)として形成されてしまう。一方、早期架橋を抑制するためにシラン化合物や過酸化物の配合量を減らすと、シラングラフト組成物にグラフト重合されるシラン化合物が少なくなることで、シラングラフト組成物を架橋させたときの架橋度が低くなるおそれがある。
このように、塩素化ポリエチレンとポリエチレンとの混合物にシラン化合物をグラフト重合させる場合、2つのポリマの間でシラン化合物のグラフト化率が偏り、それに伴ってシラングラフト組成物に早期架橋や架橋度の低下が生じてしまうことがある。
(2) Manufacturing method of silane graft composition As a manufacturing method of a silane graft composition, there exists a method of mixing chlorinated polyethylene and polyethylene and graft-polymerizing a silane compound to the mixture.
However, according to the study by the present inventors, it has been found that this method makes it difficult to uniformly graft-polymerize the silane compound to each of chlorinated polyethylene and polyethylene. This is presumably because the graft reactivity with the silane compound and the optimum conditions for graft polymerization are different between chlorinated polyethylene and polyethylene. If the graft polymerization cannot be performed uniformly, the grafting rate of the silane compound in the silane graft composition will not be uniform, resulting in variations. As a result, for example, unintended early crosslinking occurs when the silane compound is graft-polymerized, whereby local crosslinking occurs in the resulting silane graft composition, and a crosslinked product is formed as a foreign matter (tube). On the other hand, if the amount of the silane compound or peroxide is reduced in order to suppress premature crosslinking, the amount of silane compound that is graft-polymerized to the silane graft composition is reduced, so that the crosslinking when the silane graft composition is crosslinked. May become low.
As described above, when the silane compound is graft-polymerized to a mixture of chlorinated polyethylene and polyethylene, the grafting rate of the silane compound is biased between the two polymers, and accordingly, the silane graft composition has an early cross-linking or degree of cross-linking. Decrease may occur.
このことから、シラングラフト組成物の早期架橋や架橋度の低下を抑制する観点からは、塩素化ポリエチレンおよびポリエチレンのそれぞれに別々でシラン化合物をグラフト重合させ、得られたシラングラフト塩素化ポリエチレンとシラングラフトポリエチレンとを混合してシラングラフト組成物を製造するとよいことが見出された。以下、この製造方法について具体的に説明する。 From this viewpoint, from the viewpoint of suppressing the early crosslinking of the silane graft composition and the decrease in the degree of crosslinking, the silane-grafted chlorinated polyethylene and the silane were obtained by graft-polymerizing the silane compound separately to each of chlorinated polyethylene and polyethylene. It has been found that silane graft compositions can be prepared by mixing with grafted polyethylene. Hereinafter, this manufacturing method will be specifically described.
(塩素化ポリエチレンのシラングラフト工程)
まず、塩素化ポリエチレンにシラン化合物をグラフト重合させる。例えば、塩素化ポリエチレンに過酸化物としてジクミルパーオキサイド、およびビニル基を有するシラン化合物(ビニルシラン)を添加し、加熱混練する。これにより、過酸化物の存在下で塩素化ポリエチレンにビニルシランをグラフト重合させ、シラングラフト塩素化ポリエチレンを形成する。
(Silane grafting process of chlorinated polyethylene)
First, a silane compound is graft polymerized to chlorinated polyethylene. For example, dicumyl peroxide as a peroxide and a silane compound having a vinyl group (vinyl silane) are added to chlorinated polyethylene, followed by heating and kneading. Thereby, vinyl silane is graft-polymerized to chlorinated polyethylene in the presence of peroxide to form silane-grafted chlorinated polyethylene.
塩素化ポリエチレンのシラングラフト工程では、塩素化ポリエチレン100質量部に対して、シラン化合物を0.1質量部以上10質量部以下配合するとよい。また、過酸化物の配合量は、過酸化物の配合量をx、シラン化合物の配合量をyとしたとき、比率(x/y)が0.01程度となるように適宜変更するとよい。なお、シラングラフト工程では、例えばロール機、押出機、ニーダ、ミキサ、オートクレーブなどの混練反応装置を用いて混練するとよい。 In the silane grafting step of chlorinated polyethylene, the silane compound may be blended in an amount of 0.1 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of chlorinated polyethylene. The amount of peroxide, x 1 the amount of peroxide, when the amount of the silane compound was y 1, the ratio (x 1 / y 1) is suitably such that about 0.01 It is good to change. In the silane grafting step, for example, kneading may be performed using a kneading reaction apparatus such as a roll machine, an extruder, a kneader, a mixer, or an autoclave.
(ポリエチレンのシラングラフト工程)
また、塩素化ポリエチレンのシラングラフト工程とは別に、ポリエチレンにシラン化合物をグラフト重合させる。例えば、ポリエチレンに過酸化物としてジクミルパーオキサイド、およびビニルシランを添加し、加熱混練する。これにより、過酸化物の存在下でポリエチレンにビニルシランをグラフト重合させ、シラングラフトポリエチレンを形成する。
なお、ポリエチレンのシラングラフト工程では、上述の塩素化ポリエチレンのシラングラフト工程とは異なる種類のシラン化合物や過酸化物を用いてもよい。
(Silane grafting process of polyethylene)
Moreover, a silane compound is graft-polymerized to polyethylene separately from the silane grafting step of chlorinated polyethylene. For example, dicumyl peroxide and vinyl silane are added as peroxides to polyethylene and kneaded by heating. Thereby, vinyl silane is graft-polymerized on polyethylene in the presence of peroxide to form silane-grafted polyethylene.
In the silane grafting step of polyethylene, a different kind of silane compound or peroxide from the silane grafting step of chlorinated polyethylene may be used.
ポリエチレンのシラングラフト工程では、ポリエチレン100質量部に対してシラン化合物を0.1質量部以上5.0質量部以下配合するとよい。また、過酸化物の配合量は、過酸化物の配合量をx、シラン化合物の配合量をyとしたとき、比率(x/y)が0.04程度となるように適宜変更するとよい。 In the polyethylene silane grafting step, the silane compound may be blended in an amount of 0.1 to 5.0 parts by mass with respect to 100 parts by mass of polyethylene. The amount of peroxide, x 2 the amount of peroxide, when the amount of the silane compound was y 2, the ratio (x 2 / y 2) is appropriately such that the order of 0.04 It is good to change.
(混合工程)
上述の工程で得られたシラングラフト塩素化ポリエチレンおよびシラングラフトポリエチレンを、例えば、塩素化ポリエチレンとポリエチレンとの合計に対するポリエチレンの比率が10以上45以下となるように、混合する。これにより、本実施形態のシラングラフト組成物を得る。
(Mixing process)
The silane-grafted chlorinated polyethylene and the silane-grafted polyethylene obtained in the above-described steps are mixed so that, for example, the ratio of polyethylene to the total of chlorinated polyethylene and polyethylene is 10 or more and 45 or less. Thereby, the silane graft | grafting composition of this embodiment is obtained.
本実施形態では、塩素化ポリエチレンおよびポリエチレンのそれぞれを別々の工程でシラングラフトしている。これにより、それぞれを、最適な条件で(例えば、シラン化合物や過酸化物の配合量など)シラングラフトすることができる。そして、これらを混合することによって得られたシラングラフト組成物は、早期架橋が抑制されるうえに、架橋させた後の架橋度が高い。 In this embodiment, each of chlorinated polyethylene and polyethylene is silane-grafted in separate steps. Thereby, each can be silane-grafted on optimal conditions (for example, the compounding quantity of a silane compound or a peroxide, etc.). And the silane graft | grafting composition obtained by mixing these has high crosslinking degree after making it bridge | crosslink while suppressing early bridge | crosslinking.
具体的には、シラングラフト組成物は、早期架橋が抑制されているので、架橋させる前の架橋度が小さく、架橋前のゲル分率が30%以下である。架橋前のゲル分率が30%を超えると、早期架橋の程度が大きくなるため、シラングラフト組成物を押し出しにくくなり、加工性が低くなるおそれがある。また、早期架橋による異物(ツブ)の発生が増えて、シラングラフト組成物を押し出したときの表面の外観が損なわれるおそれがある。 Specifically, since early crosslinking is suppressed in the silane graft composition, the degree of crosslinking before crosslinking is small, and the gel fraction before crosslinking is 30% or less. If the gel fraction before cross-linking exceeds 30%, the degree of premature cross-linking increases, so that it is difficult to extrude the silane graft composition and the processability may be reduced. Moreover, the generation | occurrence | production of the foreign material (tub) by early bridge | crosslinking increases, and there exists a possibility that the external appearance of the surface when a silane graft composition is extruded may be impaired.
また、シラングラフト組成物は、架橋させた後の架橋度が高く、架橋後のゲル分率が60%以上である。つまり、シラングラフト組成物が架橋した架橋物は、ゲル分率が60%以上である。架橋後のゲル分率が60%未満であると、架橋が不十分となるため、例えば、架橋物から形成されるシースなどの機械的特性を確保できないおそれがある。 The silane graft composition has a high degree of cross-linking after cross-linking, and the gel fraction after cross-linking is 60% or more. That is, the crosslinked product obtained by crosslinking the silane graft composition has a gel fraction of 60% or more. If the gel fraction after cross-linking is less than 60%, the cross-linking becomes insufficient, and therefore there is a possibility that mechanical properties such as a sheath formed from a cross-linked product cannot be ensured.
なお、シラングラフト工程および混合工程では、例えばロール機、押出機、ニーダ、ミキサ、オートクレーブなどの混練反応装置を用いて混練するとよい。また、混練条件やグラフト条件(温度、時間など)は特に限定されない。 In the silane grafting step and the mixing step, for example, kneading may be performed using a kneading reaction apparatus such as a roll machine, an extruder, a kneader, a mixer, or an autoclave. Further, kneading conditions and grafting conditions (temperature, time, etc.) are not particularly limited.
(4)ケーブルの構成
次に、本発明の一実施形態に係るケーブル1について説明する。図1は、本発明の一実施形態に係るケーブル1の概略構造を示す断面図である。
(4) Cable Configuration Next, the cable 1 according to an embodiment of the present invention will be described. FIG. 1 is a cross-sectional view showing a schematic structure of a cable 1 according to an embodiment of the present invention.
図1に示されるように、本実施形態のケーブル1は、導体10を備えている。導体10としては、低酸素銅や無酸素銅等からなる銅線、銅合金線、アルミニウムや銀等からなる金属線、又は金属線を撚り合わせた撚り線を用いることができる。導体10の外径は、ケーブル1の用途に応じて適宜変更することができる。 As shown in FIG. 1, the cable 1 of this embodiment includes a conductor 10. As the conductor 10, a copper wire made of low-oxygen copper, oxygen-free copper, or the like, a copper alloy wire, a metal wire made of aluminum, silver, or the like, or a stranded wire formed by twisting metal wires can be used. The outer diameter of the conductor 10 can be appropriately changed according to the use of the cable 1.
導体10の外周を被覆するように、絶縁層11が設けられている。絶縁層11は、従来公知の樹脂組成物、例えばエチレンプロピレンゴムを含む樹脂組成物で形成されている。
絶縁層11の厚さは、ケーブル1の用途に応じて適宜変更することができる。
An insulating layer 11 is provided so as to cover the outer periphery of the conductor 10. The insulating layer 11 is formed of a conventionally known resin composition, for example, a resin composition containing ethylene propylene rubber.
The thickness of the insulating layer 11 can be appropriately changed according to the use of the cable 1.
絶縁層11の外周を被覆するように、外被層12(シース12)が設けられている。シース12は、シラングラフト組成物が架橋された架橋物で形成されている。シース12は、ゲル分率が60%以上である架橋物から形成されており、高い架橋度を有している。 An outer cover layer 12 (sheath 12) is provided so as to cover the outer periphery of the insulating layer 11. The sheath 12 is formed of a crosslinked product obtained by crosslinking the silane graft composition. The sheath 12 is formed from a crosslinked product having a gel fraction of 60% or more, and has a high degree of crosslinking.
ケーブル1は、例えば、以下のように製造される。まず、導体10として銅線を準備する。そして、押出機により、導体10の外周を被覆するように、エチレンプロピレンゴムを含む樹脂組成物を押し出して、所定厚さの絶縁層11を形成する。続いて、絶縁層11の外周を被覆するように、上述したシラングラフト組成物を所定の厚さで押し出してシース12を形成する。その後、シース12を例えば60℃の飽和水蒸気の雰囲気にさらすことにより、シース12を形成するシラングラフト組成物を水分と反応させてシラン架橋させる。 The cable 1 is manufactured as follows, for example. First, a copper wire is prepared as the conductor 10. And the resin composition containing ethylene propylene rubber is extruded so that the outer periphery of the conductor 10 may be coat | covered with an extruder, and the insulating layer 11 of predetermined thickness is formed. Subsequently, the sheath 12 is formed by extruding the silane graft composition described above at a predetermined thickness so as to cover the outer periphery of the insulating layer 11. Thereafter, the sheath 12 is exposed to an atmosphere of saturated water vapor at 60 ° C., for example, so that the silane graft composition forming the sheath 12 reacts with moisture to cause silane crosslinking.
<本発明の実施形態に係る効果>
本実施形態によれば、下記の1つ又は複数の効果を奏する。
<Effects of Embodiment of the Present Invention>
According to the present embodiment, the following one or more effects can be achieved.
(a)本実施形態によれば、シラングラフト組成物は、シラングラフト塩素化ポリエチレンおよびシラングラフトポリエチレンを含有している。シラングラフトポリエチレンは、結晶性が比較的高く、加熱により変形しにくいポリエチレンからなるので、シラングラフト組成物に耐熱変形性を付与することができる。したがって、本実施形態のシラングラフト組成物によれば、架橋処理の時間を短縮するために高温環境下でシラン架橋する場合であっても、加熱による変形が抑制される。 (A) According to this embodiment, the silane graft composition contains silane graft chlorinated polyethylene and silane graft polyethylene. Since the silane-grafted polyethylene is made of polyethylene that has relatively high crystallinity and is not easily deformed by heating, heat-resistant deformation can be imparted to the silane-grafted composition. Therefore, according to the silane graft composition of the present embodiment, deformation due to heating is suppressed even when silane crosslinking is performed in a high-temperature environment in order to shorten the time for crosslinking treatment.
(b)本実施形態によれば、シラングラフト組成物は、塩素化ポリエチレンおよびポリエチレンのそれぞれに別々でシラン化合物をグラフト重合させ、得られたシラングラフト塩素化ポリエチレンとシラングラフトポリエチレンとを混合することで形成されている。塩素化ポリエチレンのシラングラフトと、ポリエチレンのシラングラフトとを別々の工程とすることにより、それぞれを最適な条件でシラングラフトすることができる。これにより、塩素化ポリエチレンとポリエチレンとの混合物をシラングラフトさせるときに、グラフト反応性の相違によって生じるシラン化合物のグラフト化のバラつきを抑制することができる。その結果、シラン化合物のグラフト重合の際に生じる、意図しない早期架橋を抑制すると共に、シラングラフト組成物を架橋させたときの架橋度を高くすることができる。
具体的には、早期架橋を抑制することにより、シラングラフト組成物の架橋前の架橋度をゲル分率で30%以下とすることができる。また、シラングラフト組成物を架橋させた架橋物の架橋度をゲル分率で60%以上と高くすることができる。
(B) According to this embodiment, the silane graft composition is obtained by graft-polymerizing a silane compound separately to each of chlorinated polyethylene and polyethylene, and mixing the obtained silane-grafted chlorinated polyethylene and silane-grafted polyethylene. It is formed with. By making the silane graft of chlorinated polyethylene and the silane graft of polyethylene into separate steps, each can be silane grafted under optimum conditions. Thereby, when the mixture of chlorinated polyethylene and polyethylene is silane-grafted, variation in grafting of the silane compound caused by the difference in graft reactivity can be suppressed. As a result, unintended early crosslinking that occurs during graft polymerization of the silane compound can be suppressed, and the degree of crosslinking when the silane graft composition is crosslinked can be increased.
Specifically, by suppressing early crosslinking, the degree of crosslinking before crosslinking of the silane graft composition can be made 30% or less in terms of gel fraction. Moreover, the crosslinking degree of the crosslinked material which bridge | crosslinked the silane graft composition can be made high with 60% or more in a gel fraction.
(c)本実施形態によれば、シラングラフト塩素化ポリエチレンとシラングラフトポリエチレンとを、塩素化ポリエチレンとポリエチレンとの比率が55:45~90:10となるように、混合している。ポリエチレンの比率を10以上とすることで、シラングラフト組成物のより高い耐熱変形性を確保できる。また、ポリエチレンの比率を45以下とすることで、シラングラフト組成物の硬度が過度に高くなることを抑制できる。 (C) According to the present embodiment, silane-grafted chlorinated polyethylene and silane-grafted polyethylene are mixed so that the ratio of chlorinated polyethylene to polyethylene is 55:45 to 90:10. By setting the ratio of polyethylene to 10 or more, higher heat distortion resistance of the silane graft composition can be ensured. Moreover, it can suppress that the hardness of a silane graft | grafting composition becomes too high because the ratio of polyethylene shall be 45 or less.
(d)本実施形態によれば、シラングラフト組成物は早期架橋が抑制されているので、早期架橋による粘度の過度な上昇が抑制されている。そのため、シラングラフト組成物を安定して押し出すことができるので、シース等の成形体を寸法の変動を少なく形成することができる。また、早期架橋による異物(ツブ)の形成を抑制できるので、表面外観の良好な成形体を形成することができる。 (D) According to the present embodiment, since the early crosslinking is suppressed in the silane graft composition, an excessive increase in viscosity due to the early crosslinking is suppressed. Therefore, since the silane graft composition can be stably extruded, a molded body such as a sheath can be formed with less dimensional variation. Moreover, since the formation of foreign matters (tubs) due to early crosslinking can be suppressed, a molded article having a good surface appearance can be formed.
(e)本実施形態によれば、ケーブルは、シラングラフト組成物が架橋された架橋物から形成されるシースを備えている。シラングラフト組成物は耐熱変形性に優れているので、それから形成されるシースは、高温環境下で架橋されたときの変形が少なく、潰れが抑制されている。また、シラングラフト組成物はシラン化合物のグラフト化率が高く均一であるので、シースはゲル分率で60%以上の高い架橋度を有している。また、シラングラフト組成物は早期架橋が抑制されているので、シースは、外径の変動が少なく、表面外観が良好である。 (E) According to this embodiment, the cable includes a sheath formed from a crosslinked product obtained by crosslinking the silane graft composition. Since the silane graft composition is excellent in heat distortion resistance, the sheath formed therefrom is less deformed when crosslinked in a high temperature environment, and is prevented from being crushed. In addition, since the silane graft composition has a high degree of grafting of the silane compound and is uniform, the sheath has a high degree of crosslinking of 60% or more in terms of gel fraction. Moreover, since the early crosslinking | crosslinking is suppressed, the sheath has few fluctuation | variations of an outer diameter, and the surface external appearance is favorable.
<本発明の他の実施形態>
以上、本発明の一実施形態を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で適宜変更可能である。
<Other Embodiments of the Present Invention>
As mentioned above, although one Embodiment of this invention was described concretely, this invention is not limited to the above-mentioned embodiment, In the range which does not deviate from the summary, it can change suitably.
上述の実施形態では、ケーブル1が、導体の外周に絶縁層が設けられた1本の電線を備える場合について説明したが、ケーブル1は、2本以上の電線を撚り合わせた撚り線を備えてもよい。 In the above-described embodiment, the case where the cable 1 includes one electric wire provided with an insulating layer on the outer periphery of the conductor has been described. However, the cable 1 includes a stranded wire obtained by twisting two or more electric wires. Also good.
また、上述の実施形態では、シラングラフト組成物をケーブル1の被覆層(シース12)として用いる場合について説明したが、これに限定されない。シラングラフト組成物を、例えば、図2に示されるような電線2の絶縁層11に用いることもできる。この場合、上述の実施形態でシース12を形成する場合と同様に、導体11の外周にシラングラフト組成物を押し出して絶縁層11を形成し、絶縁層11を水と接触させてシラン架橋させるとよい。 Moreover, although the above-mentioned embodiment demonstrated the case where a silane graft composition was used as a coating layer (sheath 12) of the cable 1, it is not limited to this. A silane graft | grafting composition can also be used for the insulating layer 11 of the electric wire 2 as shown, for example in FIG. In this case, as in the case of forming the sheath 12 in the above-described embodiment, the insulating layer 11 is formed by extruding the silane graft composition on the outer periphery of the conductor 11, and the insulating layer 11 is brought into contact with water for silane crosslinking. Good.
次に、本発明の実施例を説明する。 Next, examples of the present invention will be described.
実施例および比較例で用いた材料は次の通りである。 The materials used in Examples and Comparative Examples are as follows.
・塩素化ポリエチレン(121℃でのムーニー粘度(ML1+4):55、融解熱量1.0J/g未満):杭州科利化工株式会社製「CM352L」
・低密度ポリエチレン(密度d:0.922g/ml、MFR:2.3g/10min):プライムポリマ-株式会社製「エボリューSP2030」
・ハイドロタルサイト:協和化学工業株式会社製「マグセラー1」
・エポキシ化大豆油:日本油脂株式会社製「ニューサイザー510R」
・ポリエチレンワックス(分子量:2800):三井化学株式会社製「ハイワックスNL-200」
・過酸化物(ジクミルパーオキサイド):日本油脂株式会社製「DCP」
・シラン化合物(ビニルトリメトキシシラン):信越化学工業株式会社製「KBM-1003」
・可塑剤(プロセスオイル):出光興産株式会社製「NP-24」
・硫黄系酸化防止剤(4,4´-チオビス(3-メチル-6-tert-ブチルフェノール)):大内新興化学工業株式会社製「ノクラック300R」
・アミン系酸化防止剤(2,2,4-トリメチル-1,2-ジヒドロキノリン重合物):大内新興化学工業株式会社製「ノクラック224」
・難燃剤(三酸化アンチモン):住友金属鉱山株式会社製「三酸化アンチモン」
・カーボン(FEFカーボンブラック):旭カーボン株式会社製「旭カーボン60G」
・滑剤(エチレンビスオレイン酸アミド):日本化成株式会社製「スリパックス-O」
・シラノール縮合触媒(ジオクチル錫ジネオデカノエート):日東化成株式会社製「ネオスタンU-830」
Chlorinated polyethylene (Mooney viscosity at 121 ° C. (ML1 + 4): 55, heat of fusion less than 1.0 J / g): “CM352L” manufactured by Hangzhou Science & Technology Co., Ltd.
Low density polyethylene (density d: 0.922 g / ml, MFR: 2.3 g / 10 min): “Evolue SP2030” manufactured by Prime Polymer Co., Ltd.
-Hydrotalcite: “Mugcellar 1” manufactured by Kyowa Chemical Industry Co., Ltd.
Epoxidized soybean oil: “New Sizer 510R” manufactured by Nippon Oil & Fats Co., Ltd.
Polyethylene wax (molecular weight: 2800): “High Wax NL-200” manufactured by Mitsui Chemicals, Inc.
・ Peroxide (Dicumyl peroxide): “DCP” manufactured by NOF Corporation
Silane compound (vinyltrimethoxysilane): “KBM-1003” manufactured by Shin-Etsu Chemical Co., Ltd.
・ Plasticizer (Process oil): “NP-24” manufactured by Idemitsu Kosan Co., Ltd.
・ Sulfur-based antioxidant (4,4′-thiobis (3-methyl-6-tert-butylphenol)): “NOCRACK 300R” manufactured by Ouchi Shinsei Chemical Co., Ltd.
Amine-based antioxidant (2,2,4-trimethyl-1,2-dihydroquinoline polymer): “NOCRACK 224” manufactured by Ouchi Shinsei Chemical Co., Ltd.
・ Flame retardant (antimony trioxide): “Antimony trioxide” manufactured by Sumitomo Metal Mining Co., Ltd.
・ Carbon (FEF carbon black): “Asahi Carbon 60G” manufactured by Asahi Carbon Co., Ltd.
・ Lubricant (ethylenebisoleic acid amide): “Sripac-O” manufactured by Nippon Kasei Co., Ltd.
Silanol condensation catalyst (dioctyltin dineodecanoate): “Neostan U-830” manufactured by Nitto Kasei Co., Ltd.
(1)シラングラフト組成物の調製
<実施例1~5>
実施例1~5では、上記材料を用いて、表1に記載される配合でグラフト処理することでグラフト材料AおよびBを調製し、その後、表2に記載される配合でグラフト材料Aとグラフト材料Bとその他の添加剤とを混合することによってシラングラフト組成物を調製した。以下、具体的に説明する。
(1) Preparation of silane graft composition <Examples 1 to 5>
In Examples 1 to 5, graft materials A and B were prepared by grafting using the materials described above with the formulation shown in Table 1, and then graft materials A and grafts with the formulation shown in Table 2. A silane graft composition was prepared by mixing material B with other additives. This will be specifically described below.
(塩素化ポリエチレンのグラフト処理)
まず、グラフト処理に先立ち、塩素化ポリエチレンに前処理を施した。
具体的には、表1に記載されるように、粉末状の塩素化ポリエチレン100質量部に対して、安定剤としてのハイドロタルサイトを6質量部と、安定剤としてのエポキシ化大豆油を6質量部と、滑剤としてのポリエチレンワックスを3質量部と、を添加し、8インチロール機を用いて混練した。このとき、ロールの表面温度を100℃とし、混練時間を、安定剤等を添加し終えてから5分間混練した。その後、混練して得られたシートを5mm角の形状にペレタイズし、塩素化ポリエチレンを含むペレットを得た。ペレット同士の粘着を防止するため、ペレットにタルク1質量部をまぶした。
(Grafting of chlorinated polyethylene)
First, prior to grafting, chlorinated polyethylene was pretreated.
Specifically, as shown in Table 1, 6 parts by mass of hydrotalcite as a stabilizer and 6 parts of epoxidized soybean oil as a stabilizer with respect to 100 parts by mass of powdered chlorinated polyethylene. Part by mass and 3 parts by mass of polyethylene wax as a lubricant were added and kneaded using an 8-inch roll machine. At this time, the surface temperature of the roll was set to 100 ° C., and the kneading time was kneaded for 5 minutes after the addition of the stabilizer and the like was completed. Thereafter, the sheet obtained by kneading was pelletized into a 5 mm square shape to obtain pellets containing chlorinated polyethylene. In order to prevent adhesion between the pellets, 1 part by mass of talc was applied to the pellets.
続いて、得られたペレットにグラフト処理を施した。
具体的には、得られたペレットに、過酸化物をシラン化合物に溶解させたシランミクスチャーを十分に含浸させた。このとき、表1に記載されるように、塩素化ポリエチレン100質量部に対して、過酸化物が0.03質量部、シラン化合物が3質量部となるように、ペレットにシランミクスチャーを含浸させた。そして、シランミクスチャーを含浸させたペレットを、図3に示される単軸押出機100のホッパー101からシリンダ103a内に投入し、スクリュ102の回転によりシリンダ103aからシリンダ103bに送出した。このとき、ペレットをシリンダ103a,103bで加熱して軟化混練することにより、塩素化ポリエチレンにシラン化合物をグラフト重合させた。これにより、シラングラフト塩素化ポリエチレンを形成した。その後、シラングラフト塩素化ポリエチレンを押出機100のヘッド部104に送出し、ダイス105からシラングラフト塩素化ポリエチレンのストランド20(長さ150cm)を押し出した。そして、ストランド20を水槽106に導入して水冷し、エアワイパ107で水切りした。その後、ペレタイザ108でストランド20をペレタイズし、ペレット状のグラフト材料Aを得た。
なお、グラフト処理では、スクリュ径40mmの単軸押出機100を用いた。また、スクリュ直径Dとスクリュ長さLとの比率L/Dを25とした。また、シリンダ103aの温度を80℃、シリンダ103bの温度を200℃、ヘッド部104の温度を200℃とした。また、スクリュ102の回転数を20rpm(押出量約120g/分)、スクリュ102をフルフライト形状とした。また、ダイス105として、穴径直径5mm、穴数3つのダイスを用いた。
Subsequently, grafting was performed on the obtained pellets.
Specifically, the obtained pellets were sufficiently impregnated with a silane mixture in which a peroxide was dissolved in a silane compound. At this time, as described in Table 1, the pellet was impregnated with a silane mixture so that the peroxide was 0.03 part by mass and the silane compound was 3 parts by mass with respect to 100 parts by mass of the chlorinated polyethylene. It was. Then, the pellet impregnated with the silane mixture was put into the cylinder 103a from the hopper 101 of the single screw extruder 100 shown in FIG. 3, and sent out from the cylinder 103a to the cylinder 103b by the rotation of the screw 102. At this time, the pellets were heated by the cylinders 103a and 103b and softened and kneaded to graft polymerize the silane compound to the chlorinated polyethylene. This formed the silane graft | grafting chlorinated polyethylene. Thereafter, the silane-grafted chlorinated polyethylene was fed to the head portion 104 of the extruder 100, and a strand 20 (length: 150 cm) of the silane-grafted chlorinated polyethylene was extruded from the die 105. Then, the strand 20 was introduced into the water tank 106, cooled with water, and drained with an air wiper 107. Thereafter, the strand 20 was pelletized with the pelletizer 108 to obtain a pellet-shaped graft material A.
In the grafting process, a single screw extruder 100 having a screw diameter of 40 mm was used. The ratio L / D between the screw diameter D and the screw length L was 25. Further, the temperature of the cylinder 103a was 80 ° C., the temperature of the cylinder 103b was 200 ° C., and the temperature of the head portion 104 was 200 ° C. Moreover, the rotation speed of the screw 102 was 20 rpm (extrusion amount about 120 g / min), and the screw 102 was made into a full flight shape. Further, a die having a hole diameter of 5 mm and three holes was used as the die 105.
(ポリエチレンのグラフト処理)
塩素化ポリエチレンのグラフト処理と同様に、ポリエチレンのグラフト処理を行った。
具体的には、ポリエチレンのペレットにシランミクスチャーを十分に含浸させた。このとき、表1に記載されるように、ポリエチレン100質量部に対して、過酸化物が0.06質量部、シラン化合物が1.5質量部となるように、ペレットにシランミクスチャーを含浸させた。そして、シランミクスチャーを含浸させたペレットを、図3に示される単軸押出機100に投入し、グラフト処理を行うことでシラングラフトポリエチレンを形成し、そのストランドをペレタイズすることにより、ペレット状のグラフト材料Bを得た。
(Polyethylene grafting)
The grafting process of polyethylene was performed similarly to the grafting process of chlorinated polyethylene.
Specifically, polyethylene pellets were sufficiently impregnated with silane mixture. At this time, as shown in Table 1, the pellet was impregnated with a silane mixture so that the peroxide was 0.06 parts by mass and the silane compound was 1.5 parts by mass with respect to 100 parts by mass of polyethylene. It was. Then, the pellets impregnated with the silane mixture are put into a single screw extruder 100 shown in FIG. 3, and a silane-grafted polyethylene is formed by grafting, and the strands are pelletized to form pellet-like grafts. Material B was obtained.
(触媒マスターバッチの調製)
続いて、上記グラフト材料Aおよびグラフト材料Bとは別に、シラノール縮合触媒を含む触媒マスターバッチを調製した。
具体的には、粉末状の塩素化ポリエチレン100質量部に対して、ハイドロタルサイトを6質量部と、エポキシ化大豆油を6質量部と、ポリエチレンワックスを3質量部と、さらに、シラノール縮合触媒としてのジオクチル錫ジネオデカノエートを2質量部と、を添加し、8インチロール機を用いて混練した。このとき、ロールの表面温度を100℃とし、シラノール縮合触媒を添加してから3分間混練した。その後、混練物からなるシートを5mm角の形状にペレタイズし、触媒マスターバッチを調製した。
(Preparation of catalyst masterbatch)
Subsequently, separately from the graft material A and the graft material B, a catalyst master batch containing a silanol condensation catalyst was prepared.
Specifically, hydrotalcite is 6 parts by mass, epoxidized soybean oil is 6 parts by mass, polyethylene wax is 3 parts by mass, and silanol condensation catalyst with respect to 100 parts by mass of powdered chlorinated polyethylene. 2 parts by mass of dioctyltin dineodecanoate as a mixture was added and kneaded using an 8-inch roll machine. At this time, the surface temperature of the roll was set to 100 ° C., and the kneading was carried out for 3 minutes after the silanol condensation catalyst was added. Then, the sheet | seat which consists of kneaded materials was pelletized in the shape of 5 square mm, and the catalyst masterbatch was prepared.
(混合処理)
続いて、表2に記載される配合で、グラフト材料A(シラングラフト塩素化ポリエチレン)とグラフト材料B(シラングラフトポリエチレン)と、その他の添加剤とを8インチロール機により混練した。実施例1~5では、表2に記載されるように、グラフト材料Aとグラフト材料Bとの混合比率を適宜変更することによって、塩素化ポリエチレンとポリエチレンとの比率を調整した。なお、添加剤としては、塩素化ポリエチレンとポリエチレンとの合計100質量部に対して、可塑剤としてのプロセスオイルを10質量部と、硫黄系酸化防止剤を0.08質量部と、アミン系酸化防止剤を1.5質量部と、難燃剤としての三酸化アンチモンを3質量部と、カーボンブラックとしてのFEFカーボンブラックを40質量部と、滑剤としてのエチレンビスオレイン酸アミドを1質量部と、をそれぞれ添加した。また、混練の際、ロールの表面温度を130℃とし、全ての添加剤を添加してから5分間混練した。
(Mixing process)
Subsequently, graft material A (silane-grafted chlorinated polyethylene), graft material B (silane-grafted polyethylene), and other additives were kneaded by an 8-inch roll machine with the formulation shown in Table 2. In Examples 1 to 5, as shown in Table 2, the ratio of chlorinated polyethylene to polyethylene was adjusted by appropriately changing the mixing ratio of graft material A and graft material B. As additives, 10 parts by weight of process oil as a plasticizer, 0.08 parts by weight of a sulfur-based antioxidant, and amine-based oxidation with respect to a total of 100 parts by weight of chlorinated polyethylene and polyethylene. 1.5 parts by mass of an inhibitor, 3 parts by mass of antimony trioxide as a flame retardant, 40 parts by mass of FEF carbon black as a carbon black, 1 part by mass of ethylene bisoleic acid amide as a lubricant, Was added respectively. Further, at the time of kneading, the surface temperature of the roll was set to 130 ° C., and all the additives were added, and kneading was performed for 5 minutes.
最後に、グラフト材料Aやグラフト材料Bなどの混練物に触媒マスターバッチを2.5質量部添加してドライブレンドすることによって、実施例1~5のシラングラフト組成物を調製した。 Finally, 2.5 parts by mass of the catalyst master batch was added to the kneaded material such as graft material A and graft material B and dry blended to prepare the silane graft compositions of Examples 1 to 5.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<実施例6>
実施例6では、塩素化ポリエチレンおよびポリエチレンを予め混合し、その混合物をグラフト処理したグラフト材料Cを用いてシラングラフト組成物を調製した。
具体的には、表1に記載されるように、塩素化ポリエチレンを70質量部と、ポリエチレン30質量部と、その他の添加剤と、を混合し、8インチロール機を用いて混練した。このとき、ロールの表面温度を100℃として、添加剤等を添加し終えてから5分間混練した。
その後、混練して得られたシートを5mm角の形状にペレタイズした。得られたペレットに、過酸化物を0.03質量部、およびシラン化合物を3質量部含むシランミクスチャーを含浸させ、図3に示される単軸押出機100を用いてシラン化合物をグラフト重合させることでグラフト材料Cを得た。続いて、表2に記載されるように、グラフト材料Cと、その他の添加剤と、触媒マスターバッチとを混合することで、実施例6のシラングラフト組成物を調製した。
<Example 6>
In Example 6, a silane graft composition was prepared using a graft material C obtained by previously mixing chlorinated polyethylene and polyethylene and grafting the mixture.
Specifically, as shown in Table 1, 70 parts by mass of chlorinated polyethylene, 30 parts by mass of polyethylene, and other additives were mixed and kneaded using an 8-inch roll machine. At this time, the surface temperature of the roll was set to 100 ° C., and kneading was performed for 5 minutes after the addition of the additives and the like was completed.
Thereafter, the sheet obtained by kneading was pelletized into a 5 mm square shape. The obtained pellet is impregnated with a silane mixture containing 0.03 parts by mass of a peroxide and 3 parts by mass of a silane compound, and the silane compound is graft polymerized using the single screw extruder 100 shown in FIG. Graft material C was obtained. Subsequently, as described in Table 2, the silane graft composition of Example 6 was prepared by mixing the graft material C, other additives, and a catalyst master batch.
<実施例7>
実施例7では、実施例6で用いたグラフト材料Cの代わりに表1に記載されるグラフト材料Dを用いた以外は、実施例6と同様にシラングラフト組成物を調製した。グラフト材料Dは、塩素化ポリエチレンおよびポリエチレンの混合物にシラン化合物をグラフト重合させるときに配合するシラン化合物および過酸化物の配合量を変更した以外は、グラフト材料Cと同様に調製した。
<Example 7>
In Example 7, a silane graft composition was prepared in the same manner as in Example 6 except that the graft material D shown in Table 1 was used instead of the graft material C used in Example 6. The graft material D was prepared in the same manner as the graft material C, except that the amount of the silane compound and peroxide blended when the silane compound was graft polymerized to a mixture of chlorinated polyethylene and polyethylene was changed.
<比較例1>
比較例1では、表2に記載されるように、表1のグラフト材料Aを用いた以外は、実施例1~5と同様にシラングラフト組成物を調製した。
<Comparative Example 1>
In Comparative Example 1, as described in Table 2, silane graft compositions were prepared in the same manner as in Examples 1 to 5 except that the graft material A shown in Table 1 was used.
(2)ケーブルの作製
次に、実施例1~7および比較例1のシラングラフト組成物を押し出すことで実施例1~7および比較例1のケーブルを作製した。
具体的には、図4に示される単軸押出機100のダイス105に、導体10として断面積が8mm2の銅導体(外径3.7mm)を挿通させて、その外周にエチレンプロピレンゴム(EPゴム)を押し出して厚さ1.0mmの絶縁層11を形成すると共に、絶縁層11の外周に上述のシラングラフト組成物を押し出して厚さ1.7mmのシース12を形成することで、ケーブル1を作製した。その後、ケーブル1を、温度60℃、相対湿度95%の恒温恒湿槽中に24時間保管し、シース12を架橋させた。
なお、ケーブル1の作製では、20mm単軸の単軸押出機100を用いた。また、スクリュ直径Dとスクリュ長さLとの比率L/Dを15とした。また、シリンダ103aの温度を120℃、シリンダ103bの温度を150℃、ネック109の温度を140℃、クロスヘッド部110の温度を150℃、ダイス105の温度を130℃とした。また、スクリュ102の回転数を15rpm、スクリュ102の形状をフルフライト形状とした。
(2) Production of Cable Next, the cables of Examples 1 to 7 and Comparative Example 1 were produced by extruding the silane graft compositions of Examples 1 to 7 and Comparative Example 1.
Specifically, a copper conductor (outer diameter 3.7 mm) having a cross-sectional area of 8 mm 2 is inserted as the conductor 10 into the die 105 of the single-screw extruder 100 shown in FIG. The rubber 1) is extruded to form the insulating layer 11 having a thickness of 1.0 mm, and the sheath 12 having a thickness of 1.7 mm is formed by extruding the silane graft composition described above on the outer periphery of the insulating layer 11. Was made. Thereafter, the cable 1 was stored in a constant temperature and humidity chamber having a temperature of 60 ° C. and a relative humidity of 95% for 24 hours to crosslink the sheath 12.
In manufacturing the cable 1, a 20 mm single-screw single-screw extruder 100 was used. The ratio L / D between the screw diameter D and the screw length L was 15. The temperature of the cylinder 103a was 120 ° C., the temperature of the cylinder 103b was 150 ° C., the temperature of the neck 109 was 140 ° C., the temperature of the crosshead portion 110 was 150 ° C., and the temperature of the die 105 was 130 ° C. Moreover, the rotation speed of the screw 102 was 15 rpm, and the shape of the screw 102 was a full flight shape.
(3)評価方法
調製したシラングラフト組成物、および作製したケーブルについて、以下の方法により評価した。
(3) Evaluation method The prepared silane graft composition and the produced cable were evaluated by the following methods.
(耐熱変形性)
シラングラフト組成物の耐熱変形性を評価するため、シラングラフト組成物を押し出した直後のケーブル(架橋処理前のケーブル)に対して加熱変形試験を行った。この加熱変形試験は、ドラム状に巻き取ったケーブルを高温環境下でシラン架橋させるときに、ケーブルの表面が変形する現象を模擬したものであり、具体的には以下の方法により行った。
まず、架橋処理前のケーブルから長さ30mmを切り出し、サンプルを作製した。続いて、加熱変形試験機(株式会社上島製作所製のTM-1515)を用いて、図5に示されるように、サンプルSに対して、温度60℃、荷重2N、24時間の条件で加熱変形試験を行った。そして、加熱変形によりサンプルSの表面に生じた帯状の変形痕(図5中のハッチング領域)の幅を測定し、その幅の大きさによりシラングラフト組成物の耐熱変形性を評価した。変形痕の幅が小さいほど、シラングラフト組成物が加熱変形しにくく、耐熱変形性に優れていることを示す。本実施例では、比較例1(シラングラフト塩素化ポリエチレン単体)の変形幅1.84mmを基準とし、1.84mm以上の場合、耐熱変形性が悪いものと判断して「×」、変形幅が1.84mm未満1.00mm超の場合、耐熱変形性が改善されたものと判断して「○」、変形幅が1.00mm以下の場合、耐熱変形性がより改善されたものと判断して「◎」とした。なお、加熱変形試験は、ケーブルの形状やドラム状に巻き付けたケーブルの長さ、架橋させるときの温度等によって異なるため、上記試験条件は一例である。
(Heat-resistant deformation)
In order to evaluate the heat distortion resistance of the silane graft composition, a heat deformation test was performed on the cable immediately after the silane graft composition was extruded (the cable before the crosslinking treatment). This heat deformation test simulated the phenomenon that the surface of the cable is deformed when the cable wound in a drum shape is crosslinked with silane in a high temperature environment. Specifically, the heat deformation test was performed by the following method.
First, a sample having a length of 30 mm was cut out from the cable before the crosslinking treatment. Subsequently, using a heat deformation tester (TM-1515 manufactured by Ueshima Seisakusho Co., Ltd.), as shown in FIG. 5, the sample S was heat deformed under the conditions of a temperature of 60 ° C., a load of 2 N, and 24 hours. A test was conducted. And the width | variety of the strip-shaped deformation | transformation trace (hatching area | region in FIG. 5) which arose on the surface of the sample S by heat deformation was measured, and the heat-resistant deformation property of the silane graft composition was evaluated by the magnitude | size of the width | variety. A smaller width of the deformation mark indicates that the silane graft composition is less likely to be heat-deformed and has better heat distortion resistance. In this example, with reference to the deformation width of 1.84 mm of Comparative Example 1 (silane-grafted chlorinated polyethylene alone), when it is 1.84 mm or more, it is judged that the heat resistance deformation property is poor, and the deformation width is “X”. If it is less than 1.84 mm and more than 1.00 mm, it is judged that the heat distortion resistance has been improved, and if the deformation width is 1.00 mm or less, it is judged that the heat distortion resistance has been further improved. “◎”. In addition, since the heat deformation test differs depending on the shape of the cable, the length of the cable wound in a drum shape, the temperature at the time of crosslinking, and the like, the above test conditions are an example.
(架橋前のゲル分率)
シラングラフト組成物の早期架橋の程度を評価するため、シラングラフト組成物の架橋前のゲル分率を測定した。架橋前のゲル分率は、シラングラフト組成物の調製中に早期架橋が進行した程度を定量的に示しており、架橋前のゲル分率が高いほど、早期架橋が進行していることを示す。架橋前のゲル分率は、具体的には以下の方法により測定した。まず、シラングラフト組成物から試料0.5gを採取し、この試料を40メッシュの真鍮製金網に入れた。続いて、試料を110℃のオイルバス中でキシレンにより抽出処理した。抽出処理後、残存した試料をキシレンから取り出して80℃で4時間真空乾燥した。そして、残存した試料の乾燥後の質量を秤量し、キシレン抽出前の試料の質量aとキシレン抽出後の残存した試料の質量bとから、下記式により試料のゲル分率Rを算出した。
R(%)=b/a×100
本実施例では、架橋前のゲル分率が50%を超える場合を「×」、50%以下30%超の場合を「○」、30%以下の場合を「◎」とした。
(Gel fraction before crosslinking)
In order to evaluate the degree of early crosslinking of the silane graft composition, the gel fraction before crosslinking of the silane graft composition was measured. The gel fraction before cross-linking indicates quantitatively the degree to which early cross-linking has progressed during the preparation of the silane graft composition, and the higher the gel fraction before cross-linking indicates that pre-cross-linking has progressed. . Specifically, the gel fraction before crosslinking was measured by the following method. First, 0.5 g of a sample was taken from the silane graft composition, and this sample was placed in a 40 mesh brass wire mesh. Subsequently, the sample was extracted with xylene in a 110 ° C. oil bath. After the extraction treatment, the remaining sample was taken out from xylene and vacuum-dried at 80 ° C. for 4 hours. Then, the mass of the remaining sample after drying was weighed, and the gel fraction R of the sample was calculated from the following equation using the mass a of the sample before xylene extraction and the mass b of the remaining sample after xylene extraction.
R (%) = b / a × 100
In this example, the case where the gel fraction before cross-linking exceeds 50% is indicated as “X”, the case where the gel fraction is 50% or less and over 30% is indicated as “◯”, and the case where it is 30% or less is indicated as “「 ”.
(架橋後のゲル分率)
シラングラフト組成物の架橋させた後のゲル分率を測定するため、ケーブル1のシース12から試料0.5gを採取し、上記と同様にゲル分率を算出した。本実施例では、架橋後のゲル分率が60%以上の場合を「◎」、60%未満50%以上の場合を「○」、50%未満の場合を「×」とした。
(Gel fraction after crosslinking)
In order to measure the gel fraction after the silane graft composition was cross-linked, a 0.5 g sample was taken from the sheath 12 of the cable 1 and the gel fraction was calculated in the same manner as described above. In this example, the case where the gel fraction after crosslinking is 60% or more is “◎”, the case where it is less than 60% and 50% or more is “◯”, and the case where it is less than 50% is “×”.
(硬度)
架橋後のシースの可とう性を評価するため、架橋後のシースについて、JIS Aの硬度を測定した。本実施例では、硬度が95を超える場合を「×」、硬度が95以下90超の場合を「○」、硬度が90以下の場合を「◎」とした。
(hardness)
In order to evaluate the flexibility of the cross-linked sheath, the hardness of JIS A was measured for the cross-linked sheath. In this example, the case where the hardness exceeds 95 is indicated as “x”, the case where the hardness is 95 or less and over 90 is indicated as “◯”, and the case where the hardness is 90 or less is indicated as “◎”.
(総合評価)
総合評価としては、全ての評価が◎であるものを「◎」、1つでも○があるものを「○」、1つでも×があるものを「×」とした。
(Comprehensive evaluation)
As the overall evaluation, “◎” indicates that all evaluations are “◎”, “◯” indicates that there is at least one ○, and “×” indicates that there is at least one ×.
(4)評価結果
評価結果は表2に記載される。表2に記載されるように、実施例2~4は総合評価が◎であり、実施例1,5~7は総合評価が○であり、比較例1は総合評価が×であった。
(4) Evaluation results The evaluation results are listed in Table 2. As shown in Table 2, Examples 2 to 4 had an overall evaluation of ◎, Examples 1 and 5 to 7 had an overall evaluation of ◯, and Comparative Example 1 had an overall evaluation of ×.
比較例1は、シラングラフト塩素化ポリエチレンのみを配合した例である。比較例1では、表2に記載されるように、加熱変形試験による変形幅が1.84mmであり、耐熱変形性に劣ることが確認された。
これに対して、実施例1~7では、シラングラフト塩素化ポリエチレンにシラングラフトポリエチレンを混合することで、比較例1よりも変形幅を低減できることが確認された。このことから、シラングラフトポリエチレンを混合することにより、シラングラフト塩素化ポリエチレンに耐熱変形性を付与し、高温環境下における変形を抑制できることが分かった。
Comparative Example 1 is an example in which only silane-grafted chlorinated polyethylene is blended. In Comparative Example 1, as shown in Table 2, the deformation width by the heat deformation test was 1.84 mm, and it was confirmed that the heat deformation resistance was poor.
On the other hand, in Examples 1 to 7, it was confirmed that the deformation width can be reduced as compared with Comparative Example 1 by mixing silane-grafted polyethylene with silane-grafted chlorinated polyethylene. From this, it was found that by adding silane-grafted polyethylene, the silane-grafted chlorinated polyethylene can be imparted with heat distortion resistance, and deformation under a high temperature environment can be suppressed.
実施例1~5は、グラフト材料Aおよびグラフト材料Bの配合量を変更することで、シラングラフト塩素化ポリエチレンとシラングラフトポリエチレンの混合比率を変更した例である。実施例1~5によると、表2に記載されるように、グラフト材料Bの配合量を増やすほど(ポリエチレンの比率が大きくなるほど)、加熱変形試験における変形幅がより小さくなることが示されている。特に、実施例2~5によると、塩素化ポリエチレンとポリエチレンとの合計に占めるポリエチレンの比率を10以上とすることで、変形幅を1.00mm以下に抑制できることが示されている。このことから、変形幅をより小さくする観点からは、ポリエチレンの比率を10以上とするとよいことが分かった。 Examples 1 to 5 are examples in which the mixing ratio of the graft material A and the graft material B was changed to change the mixing ratio of the silane-grafted chlorinated polyethylene and the silane-grafted polyethylene. According to Examples 1 to 5, as shown in Table 2, it is shown that as the blending amount of the graft material B is increased (the ratio of polyethylene is increased), the deformation width in the heat deformation test is further decreased. Yes. Particularly, according to Examples 2 to 5, it is shown that the deformation width can be suppressed to 1.00 mm or less by setting the ratio of polyethylene to the total of chlorinated polyethylene and polyethylene to 10 or more. From this, it was found that the polyethylene ratio should be 10 or more from the viewpoint of reducing the deformation width.
一方、実施例1~5によると、ポリエチレンの比率を増やすほど、架橋後のシースの硬度が高くなることが示されている。硬度が90よりも高くなると、ケーブルの可とう性が損なわれるので、硬度を90以下としてケーブルの可とう性を確保する観点からは、ポリエチレンの比率を45以下するとよいことが分かった。 On the other hand, according to Examples 1 to 5, it is shown that the hardness of the sheath after crosslinking increases as the ratio of polyethylene increases. When the hardness is higher than 90, the flexibility of the cable is impaired. From the viewpoint of securing the flexibility of the cable by setting the hardness to 90 or less, it has been found that the ratio of polyethylene should be 45 or less.
実施例3および実施例6によると、塩素化ポリエチレンとポリエチレンとの比率が同じであり、耐熱変形性、架橋前のゲル分率、および硬度がともに良好であることが確認された。しかし、架橋後のゲル分率については、実施例3が73%、実施例6が57%であり、実施例3が実施例6よりも高いことが分かった。つまり、実施例3は、実施例6よりもシースの架橋度が高く、機械的強度に優れていることが確認された。この理由は以下のように推測される。
実施例6では、塩素化ポリエチレンとポリエチレンとの混合物をグラフト処理したが、
それぞれを均一にグラフト処理できず、特にポリエチレンのグラフト処理が十分に行えなかったため、架橋後のゲル分率が低くなったものと考えられる。
これに対して、実施例3では、塩素化ポリエチレンおよびポリエチレンのそれぞれを別々に最適な条件でグラフト処理することで、架橋後のゲル分率を高くできたものを考えられる。
According to Example 3 and Example 6, it was confirmed that the ratio of chlorinated polyethylene and polyethylene was the same, and that the heat distortion resistance, the gel fraction before crosslinking, and the hardness were all good. However, it was found that the gel fraction after crosslinking was 73% in Example 3 and 57% in Example 6, and that Example 3 was higher than Example 6. That is, it was confirmed that Example 3 had a higher degree of cross-linking of the sheath than Example 6 and was excellent in mechanical strength. The reason is presumed as follows.
In Example 6, a mixture of chlorinated polyethylene and polyethylene was grafted,
It is considered that the gel fraction after crosslinking was lowered because each could not be uniformly grafted, and in particular, the grafting of polyethylene could not be sufficiently performed.
On the other hand, in Example 3, the thing which was able to raise the gel fraction after bridge | crosslinking by grafting each of chlorinated polyethylene and polyethylene separately on optimal conditions can be considered.
実施例3および実施例7によると、塩素化ポリエチレンとポリエチレンとの比率が同じであり、耐熱変形性、架橋後のゲル分率、および硬度がともに良好であることが確認された。しかし、架橋前のゲル分率については、実施例3が26%、実施例7が62%であり、実施例7が実施例3よりも高いことが分かった。つまり、実施例7では実施例3よりも早期架橋が進行していることが確認された。そして、早期架橋が進行した実施例7では、シラングラフト組成物を押し出しにくくなり、シースの外径が変動する傾向が確認された。また、早期架橋により異物(ツブ)が形成されたため、シラングラフト組成物を押し出して形成されたシースの表面には異物が現れて外観が損なわれる傾向にあることが確認された。実施例7において早期架橋が進行した理由としては、塩素化ポリエチレンとポリエチレンとの混合物をグラフト処理するときに、表1に記載されるように過酸化物とシラン化合物との比率を大きくさせたためと考えられる。 According to Example 3 and Example 7, it was confirmed that the ratio of chlorinated polyethylene and polyethylene was the same, and that the heat resistance, gel fraction after crosslinking, and hardness were all good. However, it was found that the gel fraction before crosslinking was 26% in Example 3 and 62% in Example 7, and that Example 7 was higher than Example 3. That is, in Example 7, it was confirmed that early cross-linking progressed more than Example 3. In Example 7 in which early crosslinking progressed, it was difficult to extrude the silane graft composition, and the tendency of the outer diameter of the sheath to fluctuate was confirmed. Further, it was confirmed that foreign matters (tubs) were formed by the early cross-linking, and foreign matters appeared on the surface of the sheath formed by extruding the silane graft composition and the appearance was liable to be impaired. The reason why the early crosslinking progressed in Example 7 was that when the mixture of chlorinated polyethylene and polyethylene was grafted, the ratio of peroxide to silane compound was increased as shown in Table 1. Conceivable.
<本発明の代表的な実施形態>
以下に、本発明の代表的な実施形態をリストする。
<Representative Embodiment of the Present Invention>
In the following, exemplary embodiments of the present invention are listed.
[1]本発明の一実施形態によるシラングラフト組成物は、塩素化ポリエチレンにシラン化合物がグラフト重合されたシラングラフト塩素化ポリエチレンと、
ポリエチレンにシラン化合物がグラフト重合されたシラングラフトポリエチレンと、を含む。
[1] A silane graft composition according to an embodiment of the present invention includes a silane-grafted chlorinated polyethylene obtained by graft-polymerizing a silane compound to chlorinated polyethylene,
And silane-grafted polyethylene obtained by graft-polymerizing a silane compound to polyethylene.
[2][1]のシラングラフト組成物において、代表的には、架橋させる前のゲル分率が30%以下、かつ架橋させた後のゲル分率が60%以上である。 [2] In the silane graft composition of [1], typically, the gel fraction before crosslinking is 30% or less, and the gel fraction after crosslinking is 60% or more.
[3][1]又は[2]のシラングラフト組成物において、代表的には、前記塩素化ポリエチレンと前記ポリエチレンとの比率が55:45~90:10となるように、前記シラングラフト塩素化ポリエチレンおよび前記シラングラフトポリエチレンを含有する。 [3] In the silane graft composition according to [1] or [2], typically, the silane graft chlorination is performed so that a ratio of the chlorinated polyethylene to the polyethylene is 55:45 to 90:10. Contains polyethylene and the silane-grafted polyethylene.
[4][1]~[3]のシラングラフト組成物において、代表的には、前記シラン化合物がビニル基を有する。 [4] In the silane graft compositions of [1] to [3], typically, the silane compound has a vinyl group.
[5]本発明の一実施形態によるシラングラフト組成物の製造方法は、塩素化ポリエチレンにシラン化合物をグラフト重合させることでシラングラフト塩素化ポリエチレンを形成する工程と、
ポリエチレンにシラン化合物をグラフト重合させることでシラングラフトポリエチレンを形成する工程と、
前記シラングラフト塩素化ポリエチレン及び前記シラングラフトポリエチレンを混合する工程と、を有する。
[5] A method for producing a silane graft composition according to an embodiment of the present invention includes a step of forming a silane-grafted chlorinated polyethylene by graft-polymerizing a silane compound to chlorinated polyethylene;
Forming a silane-grafted polyethylene by graft polymerizing a silane compound to polyethylene;
Mixing the silane-grafted chlorinated polyethylene and the silane-grafted polyethylene.
[5]のシラングラフト組成物の製造方法において、代表的には、前記混合する工程では、前記シラングラフト塩素化ポリエチレンと前記シラングラフトポリエチレンを、前記塩素化ポリエチレンと前記ポリエチレンとの比率が55:45~90:10となるように、混合する。 In the method for producing a silane graft composition according to [5], typically, in the mixing step, the silane graft chlorinated polyethylene and the silane graft polyethylene are used, and the ratio of the chlorinated polyethylene and the polyethylene is 55: Mix to 45-90: 10.
[6]本発明の一実施形態による電線は、[1]~[4]のシラングラフト組成物が架橋された架橋物から形成される絶縁層を備える。 [6] An electric wire according to an embodiment of the present invention includes an insulating layer formed from a crosslinked product obtained by crosslinking the silane graft composition of [1] to [4].
[7]本発明の一実施形態によるケーブルは、[1]~[4]のシラングラフト組成物が架橋された架橋物から形成される外被層を備える。 [7] A cable according to an embodiment of the present invention includes a jacket layer formed from a crosslinked product obtained by crosslinking the silane graft composition of [1] to [4].
本発明は、電線の絶縁層やケーブルの外被層(シース)などの被覆層を形成する材料として用いられるシラングラフト組成物に適用できる。 The present invention can be applied to a silane graft composition used as a material for forming a coating layer such as an electric wire insulation layer or a cable sheath layer (sheath).
1 ケーブル
2 電線
10 導体
11 絶縁層
12 外被層(シース)
1 Cable 2 Electric wire 10 Conductor 11 Insulating layer 12 Outer layer (sheath)

Claims (7)

  1. 塩素化ポリエチレンにシラン化合物がグラフト重合されたシラングラフト塩素化ポリエチレンと、
    ポリエチレンにシラン化合物がグラフト重合されたシラングラフトポリエチレンと、を含む、シラングラフト組成物。
    A silane-grafted chlorinated polyethylene obtained by graft-polymerizing a silane compound to chlorinated polyethylene;
    A silane graft composition comprising: a silane graft polyethylene obtained by graft-polymerizing a silane compound to polyethylene.
  2. 前記塩素化ポリエチレンと前記ポリエチレンとの比率が55:45~90:10となるように、前記シラングラフト塩素化ポリエチレンおよび前記シラングラフトポリエチレンを含有する、請求項1に記載のシラングラフト組成物。 The silane graft composition according to claim 1, comprising the silane-grafted chlorinated polyethylene and the silane-grafted polyethylene so that a ratio of the chlorinated polyethylene to the polyethylene is 55:45 to 90:10.
  3. 前記シラン化合物がビニル基を有する、請求項1または2に記載のシラングラフト組成物。 The silane graft composition according to claim 1 or 2, wherein the silane compound has a vinyl group.
  4. 塩素化ポリエチレンにシラン化合物をグラフト重合させることでシラングラフト塩素化ポリエチレンを形成する工程と、
    ポリエチレンにシラン化合物をグラフト重合させることでシラングラフトポリエチレンを形成する工程と、
    前記シラングラフト塩素化ポリエチレン及び前記シラングラフトポリエチレンを混合する工程と、を有する、シラングラフト組成物の製造方法。
    Forming a silane-grafted chlorinated polyethylene by graft polymerizing a silane compound to the chlorinated polyethylene;
    Forming a silane-grafted polyethylene by graft polymerizing a silane compound to polyethylene;
    And a step of mixing the silane-grafted chlorinated polyethylene and the silane-grafted polyethylene.
  5. 前記混合する工程では、前記シラングラフト塩素化ポリエチレンと前記シラングラフトポリエチレンを、前記塩素化ポリエチレンと前記ポリエチレンとの比率が55:45~90:10となるように、混合する、請求項4に記載のシラングラフト組成物の製造方法。 The silane-grafted chlorinated polyethylene and the silane-grafted polyethylene are mixed in the mixing step so that a ratio of the chlorinated polyethylene and the polyethylene is 55:45 to 90:10. The manufacturing method of silane graft | grafting composition of this.
  6. 請求項1~3のいずれか1項に記載のシラングラフト組成物の架橋物から形成される絶縁層を備える、電線。 An electric wire comprising an insulating layer formed from a crosslinked product of the silane graft composition according to any one of claims 1 to 3.
  7. 請求項1~3のいずれか1項に記載のシラングラフト組成物の架橋物から形成される外被層を備える、ケーブル。 A cable comprising a jacket layer formed from a crosslinked product of the silane graft composition according to any one of claims 1 to 3.
PCT/JP2015/072121 2014-08-08 2015-08-04 Silane-grafted composition and method for producing same, as well as wire and cable using said composition WO2016021611A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580042043.9A CN106661306A (en) 2014-08-08 2015-08-04 Silane-grafted composition and method for producing same, as well as wire and cable using said composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014162353A JP2016037563A (en) 2014-08-08 2014-08-08 Silane graft composition and method for producing the same, and wire and cable prepared therewith
JP2014-162353 2014-08-08

Publications (1)

Publication Number Publication Date
WO2016021611A1 true WO2016021611A1 (en) 2016-02-11

Family

ID=55263872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072121 WO2016021611A1 (en) 2014-08-08 2015-08-04 Silane-grafted composition and method for producing same, as well as wire and cable using said composition

Country Status (3)

Country Link
JP (1) JP2016037563A (en)
CN (1) CN106661306A (en)
WO (1) WO2016021611A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6969082B2 (en) * 2016-09-12 2021-11-24 日立金属株式会社 Catalyst batch, electric wire / cable formed using it, and its manufacturing method
JP7219414B2 (en) * 2018-02-15 2023-02-08 株式会社プロテリアル Cable and cable manufacturing method
JP7107185B2 (en) * 2018-11-20 2022-07-27 日立金属株式会社 Electric wire, coaxial wire, cable, and method of manufacturing electric wire

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339341A (en) * 1976-09-24 1978-04-11 Sumitomo Bakelite Co Ltd Polyethylene resin composition
JPS5365347A (en) * 1976-11-24 1978-06-10 Sumitomo Bakelite Co Ltd Flame betardant p olyolefin composition
JPS57209912A (en) * 1981-06-22 1982-12-23 Hitachi Cable Ltd Production of chlorinated polyethylene composition
JPS5865388A (en) * 1981-10-15 1983-04-19 三菱電線工業株式会社 Pipe for transporting water containing chlorine
JPH05242737A (en) * 1992-02-25 1993-09-21 Hitachi Cable Ltd Polyethylene chloride sheath cable
JPH0612923A (en) * 1992-06-29 1994-01-21 Hitachi Cable Ltd Electric cable
JPH0641391A (en) * 1991-02-06 1994-02-15 Hitachi Cable Ltd Insulating composition and its production

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1061295C (en) * 1998-04-24 2001-01-31 青岛化工学院高分子工程材料研究所 Silane cross-linked polyethylene aluminium plastic composite material and its preparing method
CN101935423B (en) * 2010-10-11 2012-04-18 河北世纪光明电缆电线有限公司 Thermoplastic chlorinated polyethylene cable material and preparation method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339341A (en) * 1976-09-24 1978-04-11 Sumitomo Bakelite Co Ltd Polyethylene resin composition
JPS5365347A (en) * 1976-11-24 1978-06-10 Sumitomo Bakelite Co Ltd Flame betardant p olyolefin composition
JPS57209912A (en) * 1981-06-22 1982-12-23 Hitachi Cable Ltd Production of chlorinated polyethylene composition
JPS5865388A (en) * 1981-10-15 1983-04-19 三菱電線工業株式会社 Pipe for transporting water containing chlorine
JPH0641391A (en) * 1991-02-06 1994-02-15 Hitachi Cable Ltd Insulating composition and its production
JPH05242737A (en) * 1992-02-25 1993-09-21 Hitachi Cable Ltd Polyethylene chloride sheath cable
JPH0612923A (en) * 1992-06-29 1994-01-21 Hitachi Cable Ltd Electric cable

Also Published As

Publication number Publication date
JP2016037563A (en) 2016-03-22
CN106661306A (en) 2017-05-10

Similar Documents

Publication Publication Date Title
JP5907079B2 (en) Electric wires and cables using silane-grafted chlorinated polyethylene
JP6858139B2 (en) Heat-resistant crosslinked fluororubber molded product and its manufacturing method, silane masterbatch, masterbatch mixture and its molded product, and heat-resistant products
JP6706854B2 (en) Heat-resistant cross-linked resin molded product and its manufacturing method, and heat-resistant product
WO2017138641A1 (en) Molded body of chlorine-containing heat-resistant crosslinked resin, production method therefor, silane masterbatch, masterbatch mixture, molded body thereof, and heat-resistant product
JP6762341B2 (en) Heat-resistant crosslinked fluororubber molded article and its manufacturing method, silane masterbatch, masterbatch mixture, and heat-resistant products
WO2016021611A1 (en) Silane-grafted composition and method for producing same, as well as wire and cable using said composition
WO2017018091A1 (en) Electrical cable
JP6152724B2 (en) Electric wire and cable manufacturing method using chlorinated polyethylene composition
JP6706855B2 (en) Heat-resistant chlorine-containing crosslinked resin molded body, method for producing the same, and heat-resistant product
CN107501836B (en) Cable with a protective layer
JP6706858B2 (en) Heat-resistant chlorine-containing crosslinked resin molded product and its manufacturing method, silane masterbatch, masterbatch mixture and its molded product, and heat-resistant product
JP2017141386A (en) Heat-resistant silane crosslinked resin molded body and method for producing the same, and silane masterbatch and heat-resistant product
JP6187368B2 (en) Method for producing silane-grafted chlorinated polyethylene, method for producing insulated wire, and method for producing cable
JP5655595B2 (en) Flame-retardant composition having peelability, method for producing flame-retardant resin, and insulated wire
CN115141393A (en) Chlorine-based resin composition, electric wire and cable
JP2021121665A (en) Molding method of resin molded article, and manufacturing method of electric cable
JP6720565B2 (en) Insulated wire and cable
JP6424767B2 (en) Insulated wire and cable
JP7060582B2 (en) Heat-resistant chlorine-containing crosslinked resin molded article and its manufacturing method, silane masterbatch and masterbatch mixture, and heat-resistant products
JP6504484B2 (en) Electric wire cable and method of manufacturing silane cross-linked product, method of manufacturing electric wire, method of manufacturing cable
JP6969082B2 (en) Catalyst batch, electric wire / cable formed using it, and its manufacturing method
JP6567589B2 (en) Chlorine-containing crosslinked resin molded product and method for producing the same, silane masterbatch, masterbatch mixture and molded product thereof, and molded product
JP2017186415A (en) Catalyst batch, wire and cable formed by using the same and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15829090

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15829090

Country of ref document: EP

Kind code of ref document: A1