JP2015195722A - 電力変換装置、電源切替装置、住宅及び電力変換方法 - Google Patents

電力変換装置、電源切替装置、住宅及び電力変換方法 Download PDF

Info

Publication number
JP2015195722A
JP2015195722A JP2015145659A JP2015145659A JP2015195722A JP 2015195722 A JP2015195722 A JP 2015195722A JP 2015145659 A JP2015145659 A JP 2015145659A JP 2015145659 A JP2015145659 A JP 2015145659A JP 2015195722 A JP2015195722 A JP 2015195722A
Authority
JP
Japan
Prior art keywords
power
capacitor
unit
charging
conversion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015145659A
Other languages
English (en)
Other versions
JP6112517B2 (ja
Inventor
和徳 畠山
Kazunori Hatakeyama
和徳 畠山
篠本 洋介
Yosuke Shinomoto
洋介 篠本
崇 山川
Takashi Yamakawa
崇 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2015145659A priority Critical patent/JP6112517B2/ja
Publication of JP2015195722A publication Critical patent/JP2015195722A/ja
Application granted granted Critical
Publication of JP6112517B2 publication Critical patent/JP6112517B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Direct Current Feeding And Distribution (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)
  • Protection Of Static Devices (AREA)

Abstract

【課題】電力変換装置が連系される際に発生する突入電流の増加を抑制する。
【解決手段】蓄電システムや商用電力系統に電力変換装置が連系されるときに、交直変換器53に設けられたコンデンサ57が、予め充電される。このため、蓄電システム等に電力変換装置が連系したときに、交直変換器53を構成するダイオードを介してコンデンサ57に流れこむ突入電流の増加が抑制される。したがって、突入電流によって機器が受ける悪影響を抑制することができる。
【選択図】図3

Description

本発明は、電力変換装置に関し、さらに詳しくは、電力系統からの電力を交流電力から直流電力へ変換する電力変換装置に関する。
近年、災害による電力供給能力の低下への対策として、エネルギー消費量の削減を目的とする取り組みが重要視されている。このような背景から、太陽光発電システムに代表される分散型の電源システムが普及しつつある(例えば特許文献1乃至3参照)。これらの電源システムには、夜間などに蓄えられた電力を、直流電力から交流電力に変換するための電力変換装置を備えているものがある。
特開2012−5313号公報 特開2012−70577号公報 特開2012−80683号公報
一般家庭に設置される分散型の電源システムの1つである蓄電システムについては、太陽光発電システムを除き、蓄電した電力や発電した電力を、商用の電力系統に潮流させることが禁止されている。そのため、蓄電システムを使用する必要が無い場合には、商用の電力系統と蓄電システムとを切り離すのが一般的である。
しかしながら、商用の電力系統から切り離された蓄電システムを商用の電力系統に接続すると、商用の電力系統と電源システムの間に設置された電力変換装置のコンデンサに比較的大きな突入電流が流れ込む。この突入電流は、電力変換器を構成するコンデンサの静電容量に応じて大きくなる。このため、今後何らかの対策が必要となる。
本発明は、上述の事情の下になされたもので、商用電力系統に電源システムを接続する際に発生する突入電流の増加を抑制することを目的とする。
上述の目的を達成するために、本発明に係る電力変換装置は、電力系統と蓄電システム間で電力を変換する電力変換装置であって、前記電力系統と前記蓄電システム間で、電力を、交流電力から直流電力、又は直流電力から交流電力へ変換する変換手段と、前記変換手段の動作を制御する制御手段と、直流電力を蓄えるコンデンサと、前記電力変換装置が、前記蓄電システムへ連系されるときに、予め前記コンデンサを充電する充電手段と、を備え、前記充電手段は、前記コンデンサに蓄積するための電力を蓄える蓄電手段を備える。
本発明によれば、商用電力系統に蓄電システムが連系したときに、商用電力系統からコンデンサに流れこむ突入電流の増加が抑制され、結果的に家庭内の電力系統へ流れこむ突入電流の増加が抑制される。
本実施形態に係る住宅の電力系統図である。 配電盤のブロック図である。 充放電装置のブロック図である。 昇圧ユニットのブロック図である。 電気自動車の制御系を示すブロック図である。 電源切替処理を示すフローチャートである。 電源復旧処理を示すフローチャートである。 充電されていないコンデンサの端子間電圧の推移を示す図である。 充電されていないコンデンサの電流の推移を示す図である。 充電されるコンデンサの端子間電圧の推移を示す図である。 充電されるコンデンサの電流の推移を示す図である。 地絡検出ユニット及び直流電流検出ユニットの配置を示す図である。 昇圧回路の変形例を示す図である。
以下、本発明の一実施形態を、図面を用いて説明する。図1は住宅10の電力系統図である。図1に示されるように、住宅10には電力会社の電力系統(以下、商用電力系統という)が引き込まれている。この商用電力系統には、電力量計20を介して、配電盤30が接続されている。住宅10に設置される電気設備は、配電盤30を介して、商用電力系統に接続されている
住宅10には電気設備として、負荷40、蓄電ユニット41、及び太陽光発電ユニット70が設置されている。本実施形態では、電力量計20と、電力量計20の二次側に接続される電気設備によって家庭内電力系統が構成される。
負荷40は、住宅10で使用される電気機器であり、例えば空調機、冷蔵庫、電子レンジ、洗濯機、テレビ、パーソナルコンピュータ等の家電である。
図2は、配電盤30のブロック図である。図2に示されるように、配電盤30は、主幹ブレーカ31、漏電遮断器32、コンタクタ33、複数の漏電ブレーカ34〜34、複数の分岐ブレーカ35〜35,36,37を備えている。
主幹ブレーカ31は、商用電力系統と、住宅10の家庭内電力系統とを分離する遮断器である。この主幹ブレーカ31は、商用電力系統から家庭内電力系統へ過電流が流れた場合等に、商用電力系統と連系する家庭内電力系統を、商用電力系統から解列する。なお、主幹ブレーカ31は、電力会社によっては設置されない場合もある。
漏電遮断器32は、主幹ブレーカ31の二次側(負荷側)に設けられている。この漏電遮断器32は、漏電遮断器32の二次側で漏電が発生した場合にオフとなる。漏電遮断器32がオフになることで、漏電遮断器32の二次側の負荷40が商用電力系統から切り離される。
コンタクタ33は、漏電遮断器32の二次側に設けられている。このコンタクタ33は、充放電装置50からの開閉指令によって動作し、商用電力系統と家庭内電力系統とを連系し、また解列する。
漏電ブレーカ34〜34は、コンタクタ33の二次側に相互に並列になった状態で設けられている。これらの漏電ブレーカ34〜34それぞれは、負荷40ごとに設けられている。そして、それぞれの漏電ブレーカ34〜34は、二次側に接続される線路や電気設備に地絡が生じた場合に動作する。これにより、家庭内電力系統から負荷40が切り離される。
分岐ブレーカ35〜35は、漏電ブレーカ34〜34の二次側にそれぞれ接続されている。これらの分岐ブレーカ35〜35それぞれは、負荷40〜40ごとに設けられている。この分岐ブレーカを開閉させることで、電力系統から負荷40をそれぞれ切り離すことができる。
分岐ブレーカ36,37は、漏電ブレーカ34を介することなく、直接コンタクタ33の二次側に接続されている。分岐ブレーカ36の二次側には蓄電ユニット41が接続されている。また、分岐ブレーカ37の二次側には太陽光発電ユニット70が接続されている。
コンタクタ33の一次側には、電圧検出変圧器VT1が設けられている。電圧検出変圧器VT1は、商用電力系統の電圧に比例した電圧の電圧信号V1を出力する。また、コンタクタ33の二次側には、変流器CT1が設けられ、この変流器CT1の二次側には、変流器CT2、及び変流器CT3が設けられている。
変流器CT1は、漏電遮断器32を流れる電流の大きさに比例した値の電流信号I1を出力する。この電流信号I1の値は、商用電力系統と家庭内電力系統の間を流れる電流の値に比例する。変流器CT2は、負荷40へ流入する電流の値と蓄電ユニット41から流出する電流の値との差に比例した値の電流信号I2を出力する。変流器CT3は、太陽光発電ユニット70から流出する電流の大きさに比例した値の電流信号I3を出力する。したがって、電流信号I1,I2,I3の値をそれぞれ、i1,i2,i3とすると、式i1+i3=i2が成立する。
上述した、主幹ブレーカ31、漏電遮断器32、コンタクタ33、漏電ブレーカ34〜34,及び分岐ブレーカ35〜35,36,37は、金属製或いは樹脂製の筐体に収容されている。
蓄電ユニット41は、充放電装置50と、この充放電装置50にコネクタ90を介して接続される電気自動車80を有している。図3は、充放電装置50のブロック図である。図3に示されるように、充放電装置50は、コンタクタ51、相互に直列に接続された3つの交直変換器53,54,55、各交直変換器53,54,55を駆動する駆動ユニット61,62,63、上記各部を統括的に制御する制御ユニット66、制御ユニット66に電力を供給する電力供給ユニット64、停電時の始動電力が蓄えられたバッテリユニット65、電力供給ユニット64に接続された昇圧ユニット68等を有している。
コンタクタ51は、配電盤30に収容された分岐ブレーカ36の二次側に配置されている。このコンタクタ51は、制御ユニット66からの指示に基づいて動作する。コンタクタ51がオフの場合には、充放電装置50が負荷40から切り離され、コンタクタ51がオンの場合には、充放電装置50が負荷40に接続される。
交直変換器53は、トランジスタ等のスイッチング素子と、トランジスタそれぞれに並列に接続されたダイオードを有する。この交直変換器53は、コンタクタ51の二次側に、リアクトル52A,52Bを介して接続されている。交直変換器53は、一次側(電力系統側)から供給される交流電力を直流電力に変換する。または、二次側から供給される直流電力を交流電力に変換する。
交直変換器54は、交直変換器53と同様に、トランジスタ等のスイッチング素子とダイオードを有している。この交直変換器54は、交直変換器53の二次側に接続されている。そして、交直変換器54は、一次側から供給される直流電力を交流電力に変換する。または、二次側から供給される交流電力を直流電力に変換する。
交直変換器53と交直変換器54の間には、各交直変換器53,54の端子間電圧を安定させるためのコンデンサ57が接続されている。
交直変換器55は、上記交直変換器53,54と同様に、トランジスタ等のスイッチング素子とダイオードを有している。この交直変換器55は、絶縁トランス58を介して、交直変換器54の二次側に接続されている。そして、交直変換器55は、一次側から供給される交流電力を直流電力に変換する。または、二次側から供給される直流電力を交流電力に変換する。交直変換器55の二次側には、交直変換器55の端子間電圧を安定させるためのコンデンサ59が接続されている。
上記絶縁トランス58は、商用電力系統と蓄電ユニット41を絶縁する目的で設置されている。絶縁トランス58が配置されることで、交直変換器54,55を用いて、例えば、交直変換器54の二次側の交流電圧と、交直変換器55の一次側の交流電圧との位相を調整して、コンデンサ57の両端電圧よりコンデンサ59の両端電圧を高くしたり、或いは低くしたりすることができる。逆に、蓄電ユニット41から電力が供給される場合に、コンデンサ59の両端電圧よりコンデンサ57の両端電圧を高くしたり、或いは低くしたりすることができる。
充放電装置50では、上記交直変換器53〜55が協働することで、商用電力系統からの交流電力が直流電力に変換され、電気自動車80に供給される。また、電気自動車80からの直流電力が交流電力に変換され、配電盤30を介して負荷40に供給される。
駆動ユニット61,62,63は、制御ユニット66の指示に基づいて、それぞれ交直変換器53,54,55を構成するスイッチング素子を動作させる。駆動ユニット61〜63の制御に用いられる電力は、制御ユニット66から供給される。
ここで、説明の便宜上、充放電装置50の一次側から二次側に電力が供給されるときの交直変換器53〜55の動作を充電動作とし、充放電装置50の二次側から一次側に電力が供給されるときの交直変換器53〜55の動作を放電動作とする。
電力供給ユニット64は、制御ユニット66へ電力を供給するためのユニットである。この電力供給ユニット64には、商用電力系統が整流回路60を介して接続されている。そのため、整流回路60によって交流電圧から変換された直流電圧が、電力供給ユニット64に印加される。この状態のときには、電力供給ユニット64は、整流回路60を介して供給される電力を制御ユニット66へ供給する。同時に、整流回路60を介して供給される電力をバッテリユニット65にも供給する。これにより、バッテリユニット65の充電が行われる。
電力供給ユニット64は、交直変換器54の一次側に昇圧ユニット68を介して接続されている。電力供給ユニット64は、交直変換器53が商用電力系統に連系するときに、昇圧ユニット68に電力を供給する。
電力供給ユニット64には、バッテリユニット65が接続されている。そのため、商用電力系統が停電することにより、交直変換器53〜55の動作が一次的に停止した場合や、交直変換器53〜55の動作が停電発生前から停止していた場合には、電力供給ユニット64にバッテリユニット65の直流電圧のみが印加された状態になる。この状態のときには、電力供給ユニット64は、バッテリユニット65から供給される電力を制御ユニット66へ供給する。
バッテリユニット65は、電解液が充填された複数のセルからなるバッテリを有している。このバッテリユニット65には、商用電力系統が停電した場合に、交直変換器53〜55を始動するための電力が充電される。バッテリユニット65は、商用電力系統が健全である場合に、整流回路60を介して供給される電力を蓄電する。
図4は、昇圧ユニット68のブロック図である。昇圧ユニット68は、電力供給ユニット64によって印加される電圧Vinを昇圧して、コンデンサ57に電圧Voutを印加する。昇圧ユニット68は、昇圧回路100と、昇圧回路100を駆動する駆動ユニット101を有している。
昇圧回路100は、トランジスタとダイオードからなるスイッチング回路100aと、ダイオード100bと、コイル100cとから構成されている。そして、スイッチング回路100aはコンデンサ57に対して並列に接続され、ダイオード100bとコイル100cはコンデンサ57に対して直列に接続されている。
また、コンデンサ57へ供給される電流は電流センサS1によって検出され、コンデンサ57の電圧は電圧センサS2によって検出される。各センサS1,S2からは、検出結果に応じた値の信号が出力される。
駆動ユニット101は、制御ユニット66からの指示を受けると、電流センサS1と電圧センサS2からの出力をモニタしながら、スイッチング回路100aのトランジスタのオンとオフを繰り返す。これによ、電力供給ユニット64によって印加される電圧Vinが、電圧Vinの10倍程度の大きさの電圧Voutまで昇圧され、コンデンサ57へ印加される。本実施形態では、電圧Vinが12〜24V程度であり、電圧Voutが120〜240V程度である。
なお、上記昇圧ユニット68は、コンデンサ57の充電が必要な場合以外は、動作が停止した状態となる。
制御ユニット66は、CPU、主記憶部、補助記憶部、インタフェースを有するコンピュータを備えている。この制御ユニット66は、電圧検出変圧器VT1からの電圧信号V1と、変流器CT1〜CT3からの電流信号I1〜I3を監視して、電力供給ユニット64、配電盤30のコンタクタ33、充放電装置50のコンタクタ51を制御する。また、駆動ユニット61〜63を介して交直変換器53〜55を制御する。制御ユニット66の動作については後述する。
図5は、電気自動車80の制御系を示すブロック図である。電気自動車80は、コネクタ90を介して、充放電装置50に着脱自在に接続される。図5に示されるように、電気自動車80は、開閉スイッチ81、メインバッテリユニット82、充電ユニット83、補機用バッテリ84、駆動ユニット85、車両制御ユニット86を有している。
開閉スイッチ81は、駆動ユニット85によって駆動されるコンタクタである。この開閉スイッチ81は、充放電装置50と電気自動車80を連系し、また解列する。
メインバッテリユニット82は、開閉スイッチ81の二次側に接続されている。このメインバッテリユニット82は、電気自動車80の走行に使用される電力を蓄えるためのユニットである。このメインバッテリユニット82のバッテリとしては、複数のリチウムイオン電池が用いられる。本実施形態では、3V〜4Vのリチウムイオン電池セルが直列に接続されることで、端子間電圧200V〜400V程度のバッテリが構成されている。
メインバッテリユニット82は、コネクタ90が電気自動車80に接続されることで、充放電装置50に接続される。そして、電気自動車80の開閉スイッチ81がオンのときに充放電装置50に連系され、電力の充電及び放電が可能な状態になる。
補機用バッテリ84は、車両制御ユニット86の制御に用いられる電力を蓄えるためのバッテリである。この補機用バッテリ84は、端子間電圧が12Vもしくは24V程度で、電解液が充填された複数のセルから構成されている。
充電ユニット83は、メインバッテリユニット82と補機用バッテリ84の間に設けられている。この充電ユニット83は、メインバッテリユニット82の電圧を降圧して、補機用バッテリ84と、車両制御ユニット86に印加する。これにより、補機用バッテリ84の充電と、車両制御ユニット86への電力の供給が実現する。
駆動ユニット85は、車両制御ユニット86の指示に基づいて、開閉スイッチ81を駆動する。
車両制御ユニット86は、CPU、主記憶部、補助記憶部、インタフェースを有するコンピュータを備えている。この車両制御ユニット86は、コネクタ90を介して制御ユニット66と接続されている。そして、制御ユニット66からの指示に基づいて、駆動ユニット85を動作させる。また、車両制御ユニット86は、メインバッテリユニット82に蓄電された電力量などの情報を取得し、必要に応じて、制御ユニット66に当該情報を提供する。
次に、上述した充放電装置50の動作を、図6及び図7を参照して説明する。図6及び図7は、充放電装置50を構成する制御ユニット66によって実行される一連の処理を示すフローチャートである。まず、図6を参照して、制御ユニット66が実行する電源切替処理を説明する。
電源切替処理は、商用電力系統が停電した場合に、負荷40の電源を、商用電力系統からメインバッテリユニット82に切り替える処理である。この電源切替処理は、電気自動車80のメインバッテリユニット82に十分な電力が蓄えられているときに実行される。
最初のステップS201では、制御ユニット66は、商用電力系統に停電が発生したか否かを判断する。商用電力系統に停電が発生した場合には、商用電力系統の電圧が零になるため、電圧検出変圧器VT1からの電圧信号V1の値が所定の閾値以下になる。そこで、制御ユニット66は、電圧信号V1の値を監視し、電圧信号V1の値が所定の閾値以下になった場合に、商用電力系統に停電が発生したと判断し(ステップS201:Yes)、次のステップS202へ移行する。
次のステップS202では、制御ユニット66は、電力供給ユニット64へ、停電の発生を通知する。また、制御ユニット66は、交直変換器53〜55が充電動作又は放電動作を実行しているときに、商用電力系統に停電が発生した場合には、交直変換器53〜55の動作を停止させる。
電力供給ユニット64は、制御ユニット66から停電の発生が通知されると、バッテリユニット65に蓄えられた電力を制御ユニット66に供給する。これにより、制御ユニット66は、引き続き充放電装置50を構成する交直変換器53〜55の制御を行うことができる。
次のステップS203では、制御ユニット66は、電気自動車80を構成する車両制御ユニット86に、メインバッテリユニット82の解列指示を通知する。電気自動車80の車両制御ユニット86は、解列指示を受信すると、駆動ユニット85を駆動して開閉スイッチ81をオフにする。これにより、メインバッテリユニット82が商用電力系統から解列する。
次のステップS204では、制御ユニット66は、充放電装置50のコンタクタ51をオフにする。これにより、充放電装置50が、商用電力系統から解列する。なお、停電発生時に交直変換器53〜55が停止していたときは、開閉スイッチ81及びコンタクタ51はオフ(開)である。この場合は、ステップS203、S204の処理を実行する必要はない。
次のステップS205では、制御ユニット66は、住宅10に居住するユーザからの電源切替操作を待ち受ける。この電源切替操作は、災害等が原因で商用電力系統がある程度長期にわたって停電する場合、または事前に通告のある計画停電が行われる場合に、電気自動車80の走行に使用される電力を、住宅10に設置された負荷に供給するための操作である。本実施形態では、上記電源切替操作は、例えば、充放電装置50に設けられた操作スイッチが操作されることによって実現する。
制御ユニット66は、居住者によって電源切替操作が行われるまで(ステップS205:No)、ステップS201〜S205までの処理を繰り返し実行する。一方、制御ユニット66は、居住者等によって電源切替操作が行われると(ステップS205:Yes)、ステップS206へ移行する。
ステップS206では、制御ユニット66は、配電盤30に収容されたコンタクタ33をオフにする。これにより、商用電力系統から家庭内電力系統が解列される。
上記、ステップS203〜S206までの処理によって、商用電力系統と家庭内電力系統とが完全に解列する。これにより、停電時に家庭内電力系統への電力供給源が、商用電力系統から電気自動車80のメインバッテリユニット82に切替わっても、商用電力系統への逆潮流が防止され、停電時のメンテナンスを行う作業員の安全を確保することができる。
次のステップS207では、制御ユニット66は、電気自動車80を構成する車両制御ユニット86に、メインバッテリユニット82の連系指示を通知する。電気自動車80の車両制御ユニット86は、連系指示を受信すると、駆動ユニット85を駆動して開閉スイッチ81をオンにする。これにより、メインバッテリユニット82が充放電装置50に接続される。
次のステップS208では、制御ユニット66は、充放電装置50のコンタクタ51をオンにする。これにより、充放電装置50が、負荷40に連系される。
次のステップS209では、制御ユニット66は、各駆動ユニット61〜63に、放電動作の開始を指示する。各駆動ユニット61〜63は、放電動作開始指示を受信すると、交直変換器53〜55に放電時の動作をさせる。これにより、交直変換器53〜55が、放電動作を開始する。そして、電気自動車80に蓄えられた電力が、住宅10に設置された負荷40に供給される。また、電力供給ユニット64は、交直変換器54が放電動作を開始すると、交直変換器54からの電力を制御ユニット66及びバッテリユニット65に出力する。これにより、制御ユニット66の動作が維持されるとともに、バッテリユニット65の充電が開始される。なお、充放電装置50のコンタクタ51をオンにする動作(ステップS208)を、放電動作開始後に実行しても何ら問題はない。制御ユニット66は、ステップS209の処理が終わると、電源切替処理を終了する。
次に、図7を参照して、制御ユニット66が実行する電源復旧処理を説明する。電源復旧処理は、商用電力系統が停電から復旧した場合に、負荷40の電源を、メインバッテリユニット82から商用電力系統へ切り替えることで、商用電力系統を電源として復旧させる処理である。この電源復旧処理は、商用電力が健全になったときに実行可能となる。
最初のステップS301では、制御ユニット66は、電圧が復旧したか否かを判断する。商用電力系統が復旧した場合には、商用電力系統の電圧が定格電圧になるため、電圧検出変圧器VT1からの電圧信号V1の値が所定の閾値以上になる。そこで、制御ユニット66は、電圧信号V1の値を監視し、電圧信号V1の値が所定の閾値以上になった場合に、商用電力系統の電圧が復旧したと判断し(ステップS301:Yes)、次のステップS302へ移行する。
次のステップS302では、制御ユニット66は、住宅10に居住するユーザからの電源復旧操作を待ち受ける。この電源復旧操作は、商用電力系統が停電から復旧した場合に、負荷40の電源を商用電力系統に切り替えるための操作である。本実施形態では、上記電源復旧操作は、例えば、充放電装置に設けられた操作スイッチが操作されることによって実現する。
制御ユニット66は、電源復旧操作がない場合は(ステップS302:No)、ステップS301,S302の処理を繰り返し実行する。また、制御ユニット66は、電源復旧操作がなされた場合は(ステップS302:Yes)、ステップS303へ移行する。
ステップS303では、制御ユニット66は、各駆動ユニット61〜63に、放電動作の停止を指示する。各駆動ユニット61〜63は、放電動作停止指示を受信すると、交直変換器53〜55の動作を停止させる。これにより、交直変換器53〜55の動作が停止する。
交直変換器53〜55の動作が停止すると、電力供給ユニット64は、バッテリユニット65に蓄えられた電力を制御ユニット66に供給する。これにより、制御ユニット66の動作が維持される。
次のステップS304では、制御ユニット66は、昇圧ユニット68にコンデンサ57の充電を指示する。昇圧ユニット68は、充電指示を受信すると、電力供給ユニット64によって印加される電圧Vinを一定の割合で昇圧させていく。例えば、昇圧を時刻t0から時刻t1まで行う場合には、時刻t0から時刻t1まで、一定の割合で、電圧Vinを緩やかに昇圧させる。これにより、電圧Voutも一定の割合で緩やかに上昇し、コンデンサ57の端子間電圧Vdcは、時刻t0から時刻t1まで、一定の割合で上昇する。(図10参照)。
次のステップS305では、制御ユニット66は、コンデンサ57の端子間電圧が基準値Vs以上になったか否かを判断する。なお、基準値Vsは、交直変換器53の二次側の電圧とほぼ等しい値である。一般に商用電力系統の電圧は交流100〜200Vである。このため、コンデンサ57端子間電圧は概ね140V〜280V(=100√2又は200√2)程度である。しがたって、基準値Vsは、110V〜120V程度、或いは220V〜240V程度とすることが考えられる。
ステップS305の処理は、具体的には、昇圧ユニット68の電圧センサS2から出力される出力信号Voの値が、基準値Vsに対応する閾値Th以上であるか否かを判断することにより行う。制御ユニット66は、出力信号Voの値が閾値Th以上になると(ステップS305:Yes)、次のステップS306へ移行する。
次のステップS306では、制御ユニット66は、昇圧ユニット68にコンデンサ57の充電の停止を指示する。昇圧ユニット68は、充電停止指示を受信すると、電力供給ユニット64によって印加される電圧Vinの昇圧を停止する。
次のステップS307では、制御ユニット66は、配電盤30に収容されたコンタクタ33をオンにする、これにより、商用電力系統に家庭内電力系統が連系する。この時、コンデンサ57には、交直変換器53を構成するダイオードを介して、突入電流が流れ込むが、コンデンサ57は、予め充電されているため、突入電流の増加が抑制される。以下、その効果について図面を参照しつつ説明する。
図8は、充電されていないコンデンサ57の端子間電圧Vdcの推移を示す図である。また、図9は、充電されていないコンデンサ57に流れる電流Idcの推移を示す図である。コンタクタ33がオンとなった場合には、図8に示されるように、端子間電圧Vdcが、時刻t1から急峻に上昇し、瞬時に交直変換器53の二次側電圧に等しいa1に至る。
この場合には、図9に示されるように、コンデンサ57に流入する電流Idcは、急峻に上昇してb1に至った後に、ほぼ零に収束する。
図10は、充電されるコンデンサ57の端子間電圧Vdcの推移を示す図である。また、図11は、充電されるコンデンサ57に流れる電流Idcの推移を示す図である。コンタクタ33がオンとなる時刻t1よりも前の時刻t0から、コンデンサ57を充電した場合には、図10に示されるように、端子間電圧Vdcが、時刻t0から時刻t1まで、緩やかに上昇する。そして、端子間電圧Vdcは、交直変換器53の二次側電圧とほぼ等しい基準値Vsとなる。本実施形態では、端子間電圧Vdcが基準値Vsとなる時刻t1(ステップS305での判断が肯定された時刻)に、コンタクタ33がオンとなる。そのため、時刻t1で、充放電装置50が商用電力系統と連系し、端子間電圧Vdcはa1に至る。
端子間電圧Vdcが、図10に示されるように推移する場合には、コンデンサ57に流入する電流Idcは、図11に示されるように、時刻t0から時刻t1まで徐々に増加していく。そして、電流Idcは、時刻t1に瞬間的に大きくなってb2至った後、ほぼ零に収束する。
端子間電圧Vdcがa1に収束する場合には、最終的にコンデンサ57に蓄えられる電荷は、コンデンサ57の容量に比例し、その電荷は、電流Idcの推移を示す曲線の積分で算出される。そのため、図9に示されるように、電流Idcが急峻に大きくなった後に零に収束する場合と、図11に示されるように、電流Idcが、徐々に大きくなった後に零に収束する場合とを比較すると、図11に示されるように、電流Idcが、徐々に大きくなる場合の方が、電流Idcの最大値は小さくなる(b1>b2)。
本実施形態では、充放電装置50が商用電力系統と連系する前に、予めコンデンサ57が充電されるため、連系時のコンデンサ57に流れる突入電流の増加が抑制される。これにより、商用電力系統から家庭内電力系統への突入電流も同様に抑制される。
次のステップS308では、制御ユニット66は、各駆動ユニット61〜63に、充電動作の開始を指示する。各駆動ユニット61〜63は、充電動作開始指示を受信すると、交直変換器53〜55に充電時の動作をさせる。これにより、交直変換器53〜55が、充電動作を開始する。また、商用電力系統からの電力は、住宅10に設置された負荷40に供給される。
電力供給ユニット64は、商用電力系統と家庭内電力系統との連系が完了すると、商用電力系統からの電力を制御ユニット66及びバッテリユニット65に出力する。これにより、制御ユニット66の動作が維持されるとともに、バッテリユニット65の充電が開始される。制御ユニット66は、ステップS308の処理が終わると、電源復旧処理を終了する。なお、本実施形態では、電源復旧処理でメインバッテリユニット82の充電動作を速やかに実行したが、必ずしも、充電動作を速やかに実行する必要はない。例えば、開始時刻を予約し、予約した時刻から充電動作を開始することとしてもよい。その場合は、消費電力削減の観点から充放電装置50のコンタクタ51をオフ(開)とし、充電動作を行う時点で予めコンデンサ57の充電を行った後に、コンタクタ51オンとする。これにより、同様に突入電流を抑制することが可能となる。
以上説明したように、本実施形態では、商用電力系統と家庭内電力系統が連系することにより、商用電力系統と充放電装置50が連系するときには、予め充放電装置50を構成する交直変換器53の二次側に配置されたコンデンサ57が充電される(ステップS304,S305,S306)。このため、連系時にコンデンサ57に流れる突入電流の増加が抑制され、結果的に家庭内電力系統へ流入する突入電流を抑制することができる。したがって、連系時に発生する突入電流によって、住宅10に設置された電気機器が受ける悪影響を抑制することができる。
本実施形態では、コンデンサ57の充電に、バッテリユニット65に蓄えられた電力が用いられる。このため、商用電力系統からの電力の供給が停止しても、コンデンサ57の充電が実行できる。このため、災害等によって商用電力系統が停電したとしても、復電時には、家庭内電力系統へ流入する突入電流を抑制し、住宅10に設置された電気機器が受ける悪影響を抑制することが可能となる。
本実施形態では、蓄電ユニット41の蓄電池として電気自動車80を用いた場合には、当該電気自動車80を商用電力系統に連系する際に、絶縁診断を実施することができる。
例えば、図12に示されるように、充放電装置50に、交直変換器55の二次側の地絡電流を検出する地絡電流検出ユニットELと、交直変換器55の二次側の直流電流を検出する直流電流検出ユニットCSとを設ける。そして、コネクタ90と走行後の電気自動車80とを接続する際に、昇圧ユニット68によって充電されたコンデンサ57の電圧を、交直変換器54,55によって更に昇圧してから、開閉スイッチ81が開とされた電気自動車80に印加する。次に、地絡電流検出ユニットELと、直流電流検出ユニットCSとを用いて、電気自動車80に昇圧された電圧を印加したときの地絡の発生と、電気自動車80に流れる直流電流の検出を試みる。その結果、地絡が検出されたり、基準値以上の直流電流が検出された場合には、電気自動車80の絶縁耐力が低下していると判断できる。
電気自動車80への絶縁診断では、バッテリユニット65の電圧を12Vとすると、12Vの電圧が、昇圧ユニット68によって12V〜120Vの範囲で昇圧される。そして、12V〜120V程度の電圧が、交直変換器54,55によって、12V〜600V程度の範囲で昇圧される。このため、電気自動車80の電気回路に対して、絶縁診断や絶縁試験では一般的な500V程度の電圧を用いた絶縁診断ができる。これにより、停電時にも、電気自動車80を安全に家庭内電力系統へ連系することが可能となる。
また、昇圧ユニット68及び、交直変換器54、55により、コンデンサ59を12V〜600Vの電圧で充電することが可能であるため、予めメインバッテリユニット82と同等の電圧でコンデンサ59を充電することにより、開閉スイッチ81をオンにしたときに発生する突入電流を抑制することも可能である。これによりメインバッテリユニット82に流れる突入電流が抑制されるため、メインバッテリユニット82の長寿命化などが期待できる。
以上、本発明の実施形態について説明したが、本発明は上記実施形態によって限定されるものではない。例えば、上記実施形態では、図4に示されるように、昇圧ユニット68の昇圧回路100が、スイッチング回路100aと、ダイオード100bと、コイル100cとから構成されたチョッパ回路である場合について説明した。これに限らず、昇圧回路100は、一例として図13に示されるように、コンデンサとダイオードからなるコッククロフトウォルトン回路等の昇圧回路であってもよい。
上記実施形態では、商用電力系統の停電時に、電気自動車80に蓄えられた電力を負荷40へ供給する場合について説明した。これに限らず、蓄電ユニット41は、電気自動車80に変えて専用のバッテリを備えた蓄電手段を備えていてもよい。また、蓄電ユニット41は、風力発電装置とバッテリとを備える蓄電ユニット等であってもよい。
上記実施形態では、図3に示されるように、充放電装置50が、単相の交直変換器54,55を有している場合について説明した。これは一例であり、充放電装置50は、三相の交直変換器を有していてもよい。この場合には、絶縁トランスとして、Y−Y結線の絶縁トランス、Y−Δ結線の絶縁トランス、或いはΔ−Δ結線のトランスを用いることができる。この場合には、単相三線式の家庭内電力系統への対応も容易になる。
上記実施形態では、バッテリユニット65が、電解液が充填された複数のセルからなることとした。これに限らず、バッテリユニット65は、リチウムイオン電池セル等を有していてもよい。また、バッテリユニット65は、制御に用いられる電力を蓄えるだけでよいため、例えばアルカリ乾電池等を用いることも可能である。また、バッテリユニット65を常時設置した状態にするのではなく、端子口を準備することで、停電時にのみバッテリユニット65を、制御ユニット66に接続したり、バッテリユニット65の充電が不十分な場合に、汎用の乾電池を接続して、制御ユニット66に電力を供給してもよい。また、バッテリユニット65に代えて、携帯用発電機、燃料電池、太陽電池、風力発電機を用いてもよい。
上記携帯用発電機は、プロパンガス、ガソリン、軽油を利用して発電するものや、給湯器に蓄えられた熱エネルギーを利用して発電するペルチェ素子で構成されたもので何ら問題はない。この場合にも、上記バッテリユニット65と同等の効果を実現することができる。
上記実施形態では、電気自動車80を構成するメインバッテリユニット82が、リチウムイオン電池セルが直列に接続されることで構成されたバッテリを備えることとした。これに限らず、メインバッテリユニット82は、リチウム電池セル以外の電池セルからなるバッテリを備えていてもよい。また、メインバッテリユニット82の端子間電圧は、200V〜400Vに限定されるものではない。
上記実施形態では、図2に示されるように、配電盤30に、主幹ブレーカ31、漏電遮断器32、コンタクタ33、漏電ブレーカ34、分岐ブレーカ35等が収容されている場合について説明した。図2に示される例は一例であり、本発明はこれに限定されるものではない。例えば、主幹ブレーカ31、漏電遮断器32、コンタクタ33等を、配電盤30とは別の配電盤に収容することとしてもよい。
本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。
本発明の電力変換装置は、電力の変換に適している。本発明の電源切替装置及び電源切替方法は、商用電源と住宅内に設置された電源の切替に適している。また、本発明の住宅は、商用電力系統が不安定な災害時の居住に適している。
10 住宅、 20 電力量計、 30 配電盤、 31 主幹ブレーカ、 32 漏電遮断器、 33 コンタクタ、 34 漏電ブレーカ、 35〜37 分岐ブレーカ、 40 負荷、 41 蓄電ユニット、 50 充放電装置、 51 コンタクタ、 52A,52B リアクトル、 53〜55 交直変換器、 57 コンデンサ、 58 絶縁トランス、 59 コンデンサ、 60 整流回路、 61〜63 駆動ユニット、 64 電力供給ユニット、 65 バッテリユニット、 66 制御ユニット、 68 昇圧ユニット、 70 太陽光発電ユニット、 80 電気自動車、 81 開閉スイッチ、 82 メインバッテリユニット、 83 充電ユニット、 84 補機用バッテリ、 85 駆動ユニット、 86 車両制御ユニット、 90 コネクタ、 100 昇圧回路、 100a スイッチング回路、 100b ダイオード、 100c コイル、 101 駆動ユニット、 CS 直流電流検出ユニット、 CT1〜CT3 変流器、 EL 地絡電流検出ユニット、 S1 電流センサ、 S2 電圧センサ

Claims (10)

  1. 電力系統と蓄電システム間で電力を変換する電力変換装置であって、
    前記電力系統と前記蓄電システム間で、電力を、交流電力から直流電力、又は直流電力から交流電力へ変換する変換手段と、
    前記変換手段の動作を制御する制御手段と、
    直流電力を蓄えるコンデンサと、
    前記電力変換装置が、前記蓄電システムへ連系されるときに、予め前記コンデンサを充電する充電手段と、
    を備え、
    前記充電手段は、前記コンデンサに蓄積するための電力を蓄える蓄電手段を備える、
    電力変換装置。
  2. 電力系統と蓄電システム間で電力を変換する電力変換装置であって、
    前記電力系統と前記蓄電システム間で、電力を、交流電力から直流電力、又は直流電力から交流電力へ変換する変換手段と、
    前記変換手段の動作を制御する制御手段と、
    直流電力を蓄えるコンデンサと、
    前記電力変換装置が、前記電力系統へ連系されるとき及び前記蓄電システムへ連系されるときに、予め前記コンデンサを充電する充電手段と、
    を備え、
    前記充電手段は、前記コンデンサに蓄積するための電力を蓄える蓄電手段を備える、
    電力変換装置。
  3. 前記蓄電手段には、前記電力系統及び前記蓄電システムからの電力が供給される請求項1又は2に記載の電力変換装置。
  4. 負荷へ電力を供給する電源を切り替える電源切替装置であって、
    請求項1から3のいずれか一項に記載の電力変換装置と、
    前記電力変換装置によって変換された直流電力を蓄電する前記蓄電システムと、
    前記電力系統と前記変換手段との間に設けられた開閉手段と、
    前記開閉手段と前記変換手段との間に接続された前記負荷と、
    を備える電源切替装置。
  5. 前記充電手段は、前記開閉手段によって、前記電力系統へ前記電力変換装置が連系されるときに、前記コンデンサに電圧を印加する請求項4に記載の電源切替装置。
  6. 前記蓄電システムは、電気自動車である請求項4又は5に記載の電源切替装置。
  7. 前記蓄電システムへ流れる電流を検出する電流検出手段と、
    前記蓄電システムと前記変換手段の地絡を検出する地絡検出手段と、
    を有する請求項4から6のいずれか一項に記載の電源切替装置。
  8. 請求項4から7のいずれか一項に記載の電源切替装置と、
    前記負荷としての電気設備と、
    を備える住宅。
  9. 電力変換装置が有する蓄電手段に電力を蓄える工程と、
    前記電力変換装置が、蓄電システムと連系されるときに、前記蓄電手段に蓄えられた電力を供給し、予め前記電力変換装置が備えるコンデンサを充電する工程と、
    前記電力変換装置と、電力系統又は前記蓄電システムとを連系する工程と、
    前記電力系統と前記蓄電システム間で、前記電力変換装置が有する変換手段が、電力を、交流電力から直流電力、又は直流電力から交流電力へ変換する工程と、
    を含む電力変換方法。
  10. 電力変換装置が有する蓄電手段に電力を蓄える工程と、
    前記電力変換装置が、電力系統と連系されるとき及び蓄電システムと連系されるときに、前記蓄電手段に蓄えられた電力を供給し、予め前記電力変換装置が備えるコンデンサを充電する工程と、
    前記電力変換装置と、前記電力系統又は前記蓄電システムとを連系する工程と、
    前記電力系統と前記蓄電システム間で、前記電力変換装置が有する変換手段が、電力を、交流電力から直流電力、又は直流電力から交流電力へ変換する工程と、
    を含む電力変換方法。
JP2015145659A 2015-07-23 2015-07-23 電力変換装置、電源切替装置、住宅及び電力変換方法 Active JP6112517B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015145659A JP6112517B2 (ja) 2015-07-23 2015-07-23 電力変換装置、電源切替装置、住宅及び電力変換方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015145659A JP6112517B2 (ja) 2015-07-23 2015-07-23 電力変換装置、電源切替装置、住宅及び電力変換方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014223492A Division JP5785316B2 (ja) 2014-10-31 2014-10-31 電力変換装置

Publications (2)

Publication Number Publication Date
JP2015195722A true JP2015195722A (ja) 2015-11-05
JP6112517B2 JP6112517B2 (ja) 2017-04-12

Family

ID=54434320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015145659A Active JP6112517B2 (ja) 2015-07-23 2015-07-23 電力変換装置、電源切替装置、住宅及び電力変換方法

Country Status (1)

Country Link
JP (1) JP6112517B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021505120A (ja) * 2017-11-29 2021-02-15 ▲蘇▼州博思得▲電▼▲気▼有限公司 パルス電圧発生装置、方法及びコントローラ

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03173355A (ja) * 1989-11-30 1991-07-26 Semiconductor Res Found 電源装置
JPH06351258A (ja) * 1993-06-08 1994-12-22 Meidensha Corp インバータの停電対策回路
JP2002320390A (ja) * 2001-04-19 2002-10-31 Hitachi Ltd 蓄電装置
WO2003032466A1 (fr) * 2001-10-03 2003-04-17 Mitsubishi Denki Kabushiki Kaisha Alimentation electrique sans coupure et procede de demarrage de celle-ci
WO2007007749A1 (ja) * 2005-07-12 2007-01-18 Komatsu Ltd. 車載用電力供給システムの漏電検出装置
JP2009089572A (ja) * 2007-10-03 2009-04-23 Tdk-Lambda Corp バックアップ給電システム
JP2010239773A (ja) * 2009-03-31 2010-10-21 Tokyo Electric Power Co Inc:The 充電器、電動車両、および、充電システムにおける地絡・短絡の検知方法
JP2010239845A (ja) * 2009-03-31 2010-10-21 Tokyo Electric Power Co Inc:The 充電システム、電動車両の充電方法、および電動車両
JP2011193633A (ja) * 2010-03-15 2011-09-29 Daihen Corp 電力変換装置
JP2011250605A (ja) * 2010-05-27 2011-12-08 Nippon Soken Inc 電力変換装置
JP2012120295A (ja) * 2010-11-30 2012-06-21 Mitsubishi Electric Corp 住宅電気エネルギー管理装置、住宅電気エネルギー管理システム、住宅電気エネルギー管理方法、および、プログラム

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03173355A (ja) * 1989-11-30 1991-07-26 Semiconductor Res Found 電源装置
JPH06351258A (ja) * 1993-06-08 1994-12-22 Meidensha Corp インバータの停電対策回路
JP2002320390A (ja) * 2001-04-19 2002-10-31 Hitachi Ltd 蓄電装置
WO2003032466A1 (fr) * 2001-10-03 2003-04-17 Mitsubishi Denki Kabushiki Kaisha Alimentation electrique sans coupure et procede de demarrage de celle-ci
WO2007007749A1 (ja) * 2005-07-12 2007-01-18 Komatsu Ltd. 車載用電力供給システムの漏電検出装置
JP2009089572A (ja) * 2007-10-03 2009-04-23 Tdk-Lambda Corp バックアップ給電システム
JP2010239773A (ja) * 2009-03-31 2010-10-21 Tokyo Electric Power Co Inc:The 充電器、電動車両、および、充電システムにおける地絡・短絡の検知方法
JP2010239845A (ja) * 2009-03-31 2010-10-21 Tokyo Electric Power Co Inc:The 充電システム、電動車両の充電方法、および電動車両
JP2011193633A (ja) * 2010-03-15 2011-09-29 Daihen Corp 電力変換装置
JP2011250605A (ja) * 2010-05-27 2011-12-08 Nippon Soken Inc 電力変換装置
JP2012120295A (ja) * 2010-11-30 2012-06-21 Mitsubishi Electric Corp 住宅電気エネルギー管理装置、住宅電気エネルギー管理システム、住宅電気エネルギー管理方法、および、プログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021505120A (ja) * 2017-11-29 2021-02-15 ▲蘇▼州博思得▲電▼▲気▼有限公司 パルス電圧発生装置、方法及びコントローラ
US11146250B2 (en) 2017-11-29 2021-10-12 Suzhou Powersite Electric Co., Ltd. Pulse voltage generation device, method, and controller

Also Published As

Publication number Publication date
JP6112517B2 (ja) 2017-04-12

Similar Documents

Publication Publication Date Title
JP5705178B2 (ja) 電力変換装置、電源切替装置、住宅及び電力変換方法
JP5774765B2 (ja) 充放電装置及び電源切替システム
US9825488B2 (en) Power supply switching device and switch board
JP5903622B2 (ja) 電力供給システムおよび充放電用パワーコンディショナ
EP3087655B1 (en) Power supply system
JP6503095B2 (ja) 充放電装置
JP7251908B2 (ja) 充放電装置及び電源切替システム
JP5785316B2 (ja) 電力変換装置
JP5756903B2 (ja) 配電システム
JP2017135889A (ja) 電力変換装置、及び電力変換システム
CN107257160B (zh) 一种直流操作电源系统及其控制方法
JP2017184362A (ja) パワーコンディショナ、電力供給システム及び電流制御方法
JP2019198223A (ja) 電力変換システム
CN105529735A (zh) 并网光伏发电系统
CN103683467A (zh) 一种具有自启动功能的独立光伏供电系统
KR101920695B1 (ko) 동시 충방전 및 on-off 그리드 전환 사용이 가능한 에너지 저장 장치(ess)
JP2017135888A (ja) 電力変換システム
CN211183508U (zh) 供电控制装置
JP6076381B2 (ja) 電力供給システム
JP5895143B2 (ja) 蓄電装置
JP6112517B2 (ja) 電力変換装置、電源切替装置、住宅及び電力変換方法
CN217406243U (zh) 一种中高压直挂装置及其电源切换电路
JP6272971B2 (ja) 電源切替装置及び住宅
JP5497216B1 (ja) 配電システムの制御方法及び情報処理装置
JP2023053370A (ja) 充放電装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170307

R150 Certificate of patent or registration of utility model

Ref document number: 6112517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250