JP2015193694A - Foam body and production method thereof - Google Patents

Foam body and production method thereof Download PDF

Info

Publication number
JP2015193694A
JP2015193694A JP2014071246A JP2014071246A JP2015193694A JP 2015193694 A JP2015193694 A JP 2015193694A JP 2014071246 A JP2014071246 A JP 2014071246A JP 2014071246 A JP2014071246 A JP 2014071246A JP 2015193694 A JP2015193694 A JP 2015193694A
Authority
JP
Japan
Prior art keywords
foam
cell
foamed
component
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014071246A
Other languages
Japanese (ja)
Other versions
JP6342686B2 (en
Inventor
上原 建彦
Tatsuhiko Uehara
建彦 上原
昂 上別府
Takashi Kamibeppu
昂 上別府
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2014071246A priority Critical patent/JP6342686B2/en
Publication of JP2015193694A publication Critical patent/JP2015193694A/en
Application granted granted Critical
Publication of JP6342686B2 publication Critical patent/JP6342686B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a foamed body that has a sound absorption peak performance in a low frequency band and moreover that can suppress the decrease in sound absorption performance in the high frequency band.SOLUTION: Provided is a foamed body H constituted of foamed cells S1 to S3 that are obtained by foaming pulp fiber component, synthetic resin component and starch component as adjuvant and in which a large number of spaces are formed, and in which the foamed cells S1 to S3 constitute a foamed cell layer 1 in which foamed cells S1 are densely disposed, and a surface membrane layer 2 that is disposed on the surface side of the foamed cell layer 1 and in which foamed cells S2 having a higher foam density than the foamed cell layer 1 are densely disposed, and in which the surface membrane layer 2 has, as foamed cell S2, ruptured cells S2b whose cell membrane is ruptured.

Description

本発明は、パルプ繊維成分と合成樹脂成分と補助剤としての澱粉成分とを発泡材とする発泡体、及びその製造方法に関する。   The present invention relates to a foam having a pulp fiber component, a synthetic resin component, and a starch component as an auxiliary agent as a foaming material, and a method for producing the same.

従来より紙を発泡材の一部として利用した発泡体が提案されている(特許文献1、2参照)。この発泡体は、パルプ繊維成分として古紙を使用できるため、紙のリサイクルに好適である。発泡体50は、図11(a)、(b)に示すように、パルプ繊維成分である紙粉末成分と、合成樹脂成分と、補助剤としての澱粉成分であるコーンスターチとを発泡させ、多数の発泡セルS11,S12より構成される。各発泡セルS11,S12は、内部の空間(空気層)がセル皮膜によって被われている。発泡体50は、その位置によって発泡セルS11,S12の発泡密度(発泡倍率)が異なり、発泡セル層51とこの両表面側に配置された2つの表面皮膜層52とから成る3層構造に概略構成されている。発泡セル層51は、各表面皮膜層52より発泡密度が低い発泡セルS11が密集配置されている。各表面皮膜層52は、極薄厚みであり、発泡セル層53より発泡密度が高い発泡セルS12が密集配置されている。   Conventionally, a foam using paper as a part of a foam material has been proposed (see Patent Documents 1 and 2). Since this foam can use waste paper as a pulp fiber component, it is suitable for paper recycling. As shown in FIGS. 11 (a) and 11 (b), the foam 50 foams a paper powder component that is a pulp fiber component, a synthetic resin component, and corn starch that is a starch component as an auxiliary agent. It is comprised from foam cell S11, S12. Each foam cell S11, S12 has an internal space (air layer) covered with a cell coating. The foam 50 has different foam densities (foaming ratios) of the foam cells S11 and S12 depending on the position, and has a three-layer structure including a foam cell layer 51 and two surface coating layers 52 arranged on both surfaces. It is configured. In the foam cell layer 51, foam cells S11 having a foam density lower than that of the respective surface coating layers 52 are densely arranged. Each surface film layer 52 has an extremely thin thickness, and foam cells S12 having a foam density higher than that of the foam cell layer 53 are densely arranged.

次に、上記発泡体50を製造する押出し成形機60を説明する。図12(a)に示すように、押出し成形機60は、発泡材を投入する投入口(図示せず)と、投入された発泡材を混練する混練手段(図示せず)と、混練した発泡材を高温に加熱する加熱手段(図示せず)と、発泡材を押圧する押圧手段(図示せず)と、押圧室の先端側を塞ぐように配置された口金部材61と、この口金部材61の外側を囲むように配置された規制枠壁70とを備えている。口金部材61は、図12(b)に示すように、水平方向に等間隔を置いて配置された複数の吐出口62を有する。吐出口62は、1段である。規制枠壁70は、この複数の吐出口62より吐出された発泡材の発泡領域を規制する。規制枠壁70は、偏平長方形状の枠である。   Next, an extrusion molding machine 60 for producing the foam 50 will be described. As shown in FIG. 12 (a), the extrusion molding machine 60 includes a charging port (not shown) for charging the foam material, kneading means (not shown) for kneading the charged foam material, and kneading foam. A heating means (not shown) for heating the material to a high temperature, a pressing means (not shown) for pressing the foam material, a base member 61 arranged so as to close the front end side of the pressing chamber, and the base member 61 And a regulation frame wall 70 arranged so as to surround the outside. As shown in FIG. 12B, the base member 61 has a plurality of discharge ports 62 arranged at equal intervals in the horizontal direction. The discharge port 62 is one stage. The restriction frame wall 70 restricts the foaming region of the foam material discharged from the plurality of discharge ports 62. The restriction frame wall 70 is a flat rectangular frame.

次に、発泡体50の製造方法を説明する。押出し成形機60内に紙粉末成分とポリプロピレン樹脂材と補助剤としてのコーンスターチと水を供給する。そして、紙粉末成分とポリプロピレン樹脂材とコーンスターチと水を加熱混練し、この高温の発泡材を複数の吐出口62より押圧によって吐出させる。   Next, the manufacturing method of the foam 50 is demonstrated. A paper powder component, a polypropylene resin material, corn starch as an auxiliary agent, and water are supplied into the extrusion molding machine 60. The paper powder component, polypropylene resin material, corn starch and water are kneaded with heat, and this high-temperature foam material is discharged from the plurality of discharge ports 62 by pressing.

すると、高温の発泡材に混入された水が各吐出口62より吐出された瞬間に気化し、水の蒸気圧により紙粉末成分とポリプロピレン樹脂材とコーンスターチから成る発泡材が発泡する。この発泡は、規制枠壁70によって規制されるため、規制枠壁70を断面積とする発泡体50が連続的に押し出される。各発泡セルS11,S12は、紙粉末成分の柔軟性やコーンスターチの粘着性等によって破泡することなく、密閉されたものとなる。   Then, the water mixed in the high-temperature foam material is vaporized at the moment when the water is discharged from each discharge port 62, and the foam material composed of the paper powder component, the polypropylene resin material, and the corn starch is foamed by the water vapor pressure. Since the foaming is regulated by the regulation frame wall 70, the foam 50 having the regulation frame wall 70 as a cross-sectional area is continuously extruded. Each of the foamed cells S11 and S12 is hermetically sealed without being broken by the flexibility of the paper powder component and the adhesiveness of corn starch.

このような構造を有する発泡体50は、図13に示すような吸音特性を有する。この吸音特性は、固有振動及び位相速度によるものと多孔質型によるものを合わせたものと考えられる。つまり、固有振動による吸音性能は、入射振動によって発泡体が固有の振動数で固体振動し、入射振動と固体振動の相殺によるものである。位相速度による吸音性能は、外部から入射する音の内で、表面皮膜層52で反射する表面反射波と発泡体50の内部に進入し反射波として戻って来る透過反射波との相殺によるものである(図13の固有振動+位相速度による特性線図参照)。固有振動及び位相速度による吸音性能は、1kHz〜2kHzの低周波数帯内でピーク性能を発揮する。多孔質型による吸音性能は、発泡体50の内部に進入した音が発泡セルS11,S12の内部空間や発泡セルS11,S12の皮膜で振動し、振動によるエネルギー吸収(熱エネルギー放出)によるものである(図13の多孔質効果による特性線図参照)。多孔質型の吸音性能は、低周波数帯域では効果が低く、2kHz以上の高周波帯で高い吸音性能を発揮する。多孔質型の吸音性能は、高周波数帯域でも周波数が高くなればなるほど高くなる。   The foam 50 having such a structure has sound absorption characteristics as shown in FIG. This sound absorption characteristic is considered to be a combination of the natural vibration and phase velocity and the porous type. In other words, the sound absorption performance by the natural vibration is due to the solid vibration of the foam at the natural frequency due to the incident vibration, and the cancellation of the incident vibration and the solid vibration. The sound absorption performance by the phase velocity is due to the cancellation of the surface reflected wave reflected by the surface coating layer 52 and the transmitted reflected wave that enters the inside of the foam 50 and returns as the reflected wave among the sound incident from the outside. Yes (see the characteristic diagram of natural vibration + phase velocity in FIG. 13). The sound absorbing performance due to the natural vibration and the phase velocity exhibits peak performance in a low frequency band of 1 kHz to 2 kHz. The sound absorption performance by the porous type is due to the energy absorption (thermal energy release) due to the vibration that the sound entering the inside of the foam 50 vibrates in the internal space of the foam cells S11 and S12 and the film of the foam cells S11 and S12. Yes (see the characteristic diagram of the porous effect in FIG. 13). The porous sound absorbing performance is not effective in the low frequency band and exhibits high sound absorbing performance in the high frequency band of 2 kHz or higher. The sound absorption performance of the porous type becomes higher as the frequency becomes higher even in the high frequency band.

上記した発泡体50とシンサレート(登録商標)との吸音特性を比較すると、図13に示すようになる。シンサレートは、合繊の極細繊維を絡み合わせたもの(不織布)であり、ほぼ多孔質型による吸音性能を発揮する。図13に示すように、発泡体50は、低周波数帯域(ほぼ1kHz〜2kHZの帯域)では、固有振動・位相速度による吸音ピークを有するため、シンサレートより優れた吸音特性を発揮する。   FIG. 13 shows a comparison of sound absorption characteristics between the foam 50 and Shinsalate (registered trademark). Synthalate is an intertwined fabric (nonwoven fabric) of synthetic fibers, and exhibits a sound absorption performance by a porous type. As shown in FIG. 13, since the foam 50 has a sound absorption peak due to natural vibration and phase velocity in a low frequency band (approximately 1 kHz to 2 kHz), it exhibits sound absorption characteristics superior to a synthesizer.

特許第3326156号公報Japanese Patent No. 3326156 特開2000−273800号公報JP 2000-273800 A 特開平8−207170号公報JP-A-8-207170

しかしながら、上記した従来の発泡体50は、多孔質型による吸音性能がシンサレートより劣る。そのため、固有振動及び位相速度による吸音ピークの周波数帯域より高い周波数帯域、具体的にはほぼ2kHz以上の高周波数帯域で、シンサレートよりも吸音性能が極端に低下する帯域が存在する。   However, the above-described conventional foam 50 is inferior in sound absorption performance by the porous mold to that of cinsalate. For this reason, there is a band where the sound absorption performance is extremely lower than that of the synthesizer in a frequency band higher than the frequency band of the sound absorption peak due to natural vibration and phase velocity, specifically, a high frequency band of approximately 2 kHz or more.

そこで、本発明は、前記した課題を解決すべくなされたものであり、低周波数帯域で吸音ピーク性能を有し、しかも、高周波数帯域での吸音性能の低下を抑制できる発泡体、及びその製造方法を提供することを目的とする。   Accordingly, the present invention has been made to solve the above-described problems, and has a sound absorption peak performance in a low frequency band, and a foam capable of suppressing a decrease in sound absorption performance in a high frequency band, and its production It aims to provide a method.

本発明は、パルプ繊維成分と合成樹脂成分と補助剤としての澱粉成分とを発泡させ、多数の空間が形成された発泡セルより構成された発泡体であって、前記発泡セルは、発泡セルが密集配置された発泡セル層と、前記発泡セル層の表面側に配置され、前記発泡セル層より発泡密度が高い発泡セルが密集配置された表面皮膜層とを構成し、前記表面皮膜層は、前記発泡セルとしてセル皮膜が破れた破泡セルを有することを特徴とする発泡体である。   The present invention is a foam comprising foam cells in which a pulp fiber component, a synthetic resin component and a starch component as an auxiliary agent are foamed to form a large number of spaces. A foam cell layer densely arranged, and a surface film layer arranged on the surface side of the foam cell layer, and foam cells having a foam density higher than the foam cell layer are densely arranged, the surface film layer, It is a foam characterized by having a bubble-breaking cell in which a cell coating is broken as the foamed cell.

前記発泡セル層は、前記発泡セルとしてセル皮膜が破れた破泡セルを有するものであっても良い。前記合成樹脂成分は、ポリプロピレン樹脂材のJ830HV(株式会社プライムポリマーの商品名プライムポリプロの一種)であっても良い。   The foam cell layer may have a foam cell in which a cell film is torn as the foam cell. The synthetic resin component may be a polypropylene resin material J830HV (a kind of product name Prime Polypro of Prime Polymer Co., Ltd.).

他の本発明は、間隔を置いて配置された吐出口が設けられ、前記各吐出口より吐出された発泡材の発泡領域を規制する規制枠壁が設けられた押出し成形機を使用し、前記押出し成形機にパルプ繊維成分と合成樹脂成分と補助剤としての澱粉成分と水を供給し、前記パルプ繊維成分と合成樹脂成分と澱粉成分と水を加熱混練し、前記パルプ繊維成分と前記合成樹脂成分と前記澱粉成分を有する発泡材を流動性の高い状態で前記各吐出口より押圧力によって吐出させる押し出し成形工程と、前記押し出し成形工程の後に、前記押し出し成形によって作製された発泡体をプレスするプレス工程とを備えたことを特徴とする発泡体の製造方法である。   Another aspect of the present invention uses an extrusion molding machine provided with discharge ports arranged at intervals, and provided with a regulation frame wall for regulating a foaming region of a foam material discharged from each of the discharge ports, A pulp fiber component, a synthetic resin component, a starch component as an auxiliary agent and water are supplied to an extrusion molding machine, and the pulp fiber component, the synthetic resin component, the starch component and water are heated and kneaded, and the pulp fiber component and the synthetic resin are mixed. An extrusion molding process in which a foaming material having a component and the starch component is discharged from each of the discharge ports by a pressing force in a highly fluid state, and the foam produced by the extrusion molding is pressed after the extrusion molding process. It is a manufacturing method of the foam characterized by including a press process.

前記プレス工程は、発泡体の全面に均一な圧力を作用させて一括で圧縮するものを含む。前記プレス工程は、発泡体を局所的に順次圧力を作用させて圧縮するものを含む。合成樹脂成分は、ポリプロピレン樹脂材のJ830HV(株式会社プライムポリマーの商品名プライムポリプロの一種)であっても良い。   The pressing process includes a process in which uniform pressure is applied to the entire surface of the foam to compress it in a lump. The pressing step includes a step of compressing the foam by locally applying pressure sequentially. The synthetic resin component may be a polypropylene resin material J830HV (a kind of product name Prime Polypro of Prime Polymer Co., Ltd.).

本発明によれば、外部から音が発泡体に入射すると、入射振動によって発泡体が固有の振動数で固体振動し、入射振動と固体振動の相殺によって吸音すると共に、発泡体の表面より内部に進入する入射波と、内部を透過した後に反射して来る透過反射波との相殺によっても吸音する。つまり、固有振動による吸音と位相速度による吸音は、低周波数帯域で吸音ピークを有し、吸音性能が得られる。その一方で、発泡体は多孔質形態であり、しかも、外部から発泡体に入射する音は、表面皮膜層の破泡セルより発泡体の内部に進入し易いため、内部での振動エネルギーによる吸収量が増加し、多孔質型による高周波数帯域での吸音特性が従来の発泡体より向上する。以上より、低周波数帯域で吸音ピーク性能を有し、しかも、高周波数帯域での吸音性能の低下を抑制できる。   According to the present invention, when sound is incident on the foam from the outside, the foam vibrates at a specific frequency by incident vibration, absorbs the sound by canceling the incident vibration and the solid vibration, and enters the inside from the surface of the foam. Sound absorption is also achieved by canceling the incoming incident wave and the transmitted reflected wave that is reflected after passing through the interior. That is, the sound absorption due to the natural vibration and the sound absorption due to the phase velocity have a sound absorption peak in the low frequency band, and sound absorption performance can be obtained. On the other hand, the foam has a porous form, and the sound incident on the foam from the outside easily enters the inside of the foam from the bubble-breaking cell of the surface film layer, so that it is absorbed by vibration energy inside. The amount increases, and the sound absorption characteristic in the high frequency band due to the porous type is improved as compared with the conventional foam. As described above, the sound absorption peak performance is obtained in the low frequency band, and the deterioration of the sound absorption performance in the high frequency band can be suppressed.

本発明の一実施形態を示し、発泡体の外観斜視図である。1 is an external perspective view of a foam according to an embodiment of the present invention. 本発明の一実施形態を示し、(a)は図1のA−A線に沿う発泡体の構造模式図、(b)は(a)の要部の概念構成図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an embodiment of the present invention, in which (a) is a structural schematic diagram of a foam along the line AA in FIG. 本発明の一実施形態を示し、(a)は押出し成形機の要部斜視図、(b)は口金部材の正面図である。1 shows an embodiment of the present invention, (a) is a perspective view of a main part of an extrusion molding machine, and (b) is a front view of a base member. 本発明の一実施形態を示し、押し出し成形機の概略要部断面図である。1 shows an embodiment of the present invention and is a schematic cross-sectional view of an essential part of an extrusion molding machine. 本発明の一実施形態を示し、プレス機の側面図である。1 is a side view of a press according to an embodiment of the present invention. 破泡セルあり発泡体(一実施形態)、プレスのみ発泡体及びシンサレートの吸音特性線図である。It is a sound-absorption characteristic diagram of a foam with a bubble-breaking cell (one embodiment), a foam only in a press, and a cinsalate. 他のプレス機の側面図である。It is a side view of another press. 他のプレス機でプレスした発泡体の斜視図である。It is a perspective view of the foam pressed with the other press. 全面一括圧縮によるプレス加工をした発泡体(破泡(小孔)あり発泡体)と、ローラによるプレス加工をした発泡体(破泡(小孔)と亀裂あり発泡体)と、シンサレートの吸音特性線図である。Foam (foam with broken bubbles (small holes)) pressed by full-surface compression, foam pressed with rollers (foam with broken bubbles (small holes) and cracks), and sound absorption characteristics of synthrate FIG. ローラによるプレス加工をした発泡体の吸音特性線図である。It is a sound-absorption characteristic diagram of the foam pressed by the roller. 従来例を示し、(a)は発泡体の外観斜視図、(b)は発泡体の構造模式図である。A prior art example is shown, (a) is an external appearance perspective view of a foam, (b) is a structural schematic diagram of a foam. 従来例を示し、(a)は押出し成形機の要部斜視図、(b)は口金部材の正面図である。A prior art example is shown, (a) is a principal part perspective view of an extrusion molding machine, (b) is a front view of a nozzle | cap | die member. 従来例の発泡体及びシンサレートの吸音特性線図である。It is a sound-absorption characteristic diagram of the foam of a conventional example, and a cinsalate.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(一実施形態)
図1〜図6は本発明の一実施形態を示す。図1に示すように、発泡体Hは、偏平長方形の板状発泡体である。発泡体Hは、パルプ繊維成分である紙粉末成分と、合成樹脂成分と、補助剤としての澱粉成分であるコーンスターチとを発泡させ、多数の空間を形成した発泡セルS1,S2,S3より構成されている(図2(b)参照)。紙粉末成分としては、官製葉書等の古紙を紙粉末繊維状にしたものを使用している。
(One embodiment)
1 to 6 show an embodiment of the present invention. As shown in FIG. 1, the foam H is a flat rectangular plate-like foam. Foam H is composed of foam cells S1, S2, and S3 formed by foaming a paper powder component that is a pulp fiber component, a synthetic resin component, and corn starch that is a starch component as an auxiliary agent to form a large number of spaces. (See FIG. 2 (b)). As the paper powder component, used paper such as government postcards made into paper powder fiber is used.

合成樹脂成分は、ポリプロピレン樹脂材のJ830HV(株式会社プライムポリマーの商品名プライムポリプロの一種)である。J830HVは、共重合の形態がブロックコポリマーで、メルトフローレイト(試験条件:230℃)が30g/10min、密度が910Kg/m3、引っ張り降伏応力が28.0MPa、引っ張り破壊呼びひずみが30%、引っ張り弾性率が1450MPaの物性を有する。   The synthetic resin component is a polypropylene resin material J830HV (a kind of product name Prime Polypro of Prime Polymer Co., Ltd.). J830HV is a block copolymer in the form of copolymer, melt flow rate (test condition: 230 ° C.) 30 g / 10 min, density 910 Kg / m 3, tensile yield stress 28.0 MPa, tensile fracture nominal strain 30%, tensile It has physical properties with an elastic modulus of 1450 MPa.

各発泡セルS1,S2,S3は、図2(a)、(b)に示すように、内部の空間(空気層)がセル皮膜によって被われている。各発泡セルS1,S2,S3は、その位置によって発泡密度(発泡倍率)が異なり、発泡体Hは発泡セルS1,S2,S3の密度によって以下のような層構造に形成される。   As shown in FIGS. 2A and 2B, each of the foam cells S1, S2, and S3 has an internal space (air layer) covered with a cell coating. Each foam cell S1, S2, S3 has a different foam density (foaming ratio) depending on its position, and the foam H is formed in the following layer structure depending on the density of the foam cells S1, S2, S3.

つまり、発泡体Hは、厚み方向では、発泡セルS1が密集配置された発泡セル層1と、この発泡セル層1の両表面側に配置された表面皮膜層2の3層構造に構成されている。   That is, the foam H is configured in a three-layer structure in the thickness direction: a foam cell layer 1 in which the foam cells S1 are densely arranged and a surface coating layer 2 arranged on both surfaces of the foam cell layer 1. Yes.

発泡セル層1は、各表面皮膜層2より発泡密度が低い発泡セルS1が密集配置されている。発泡セル層1の発泡セルS1は、内部の空間(空気層)が完全にセル皮膜で覆われた密閉セルS1aと、セル皮膜が破れた破泡セルS1bとを有し、これらが不規則に混在している。   In the foam cell layer 1, foam cells S1 having a foam density lower than that of each surface coating layer 2 are densely arranged. The foam cell S1 of the foam cell layer 1 has a sealed cell S1a in which the internal space (air layer) is completely covered with the cell coating, and a bubble-breaking cell S1b in which the cell coating is broken, and these are irregularly formed. It is mixed.

各表面皮膜層2は、極薄厚みであり、発泡セル層1より発泡密度が高い発泡セルS2が密集配置されている。各表面皮膜層2の発泡セルS2は、内部の空間(空気層)が完全にセル皮膜で覆われた密閉セルS2aと、セル皮膜が破れた破泡セルS2bとを有し、これらが不規則に混在している。破泡セルS2bのセル皮膜の破れによって、各表面皮膜層2、つまり、発泡体Hの表面には、多数の小孔6が形成されている。小孔6は、各表面皮膜層2(発泡体H)の表面の全領域にまんべんなく形成されている。   Each surface coating layer 2 has an extremely thin thickness, and foam cells S2 having a foam density higher than that of the foam cell layer 1 are densely arranged. The foam cell S2 of each surface coating layer 2 has a sealed cell S2a in which the internal space (air layer) is completely covered with the cell coating, and a bubble-breaking cell S2b in which the cell coating is broken, and these are irregular. Are mixed. A number of small holes 6 are formed in each surface film layer 2, that is, on the surface of the foam H, due to the cell film of the bubble-breaking cell S <b> 2 b being broken. The small holes 6 are uniformly formed in the entire area of the surface of each surface coating layer 2 (foam H).

又、各発泡セル層1には、厚み方向の直交方向に沿って等間隔に複数の縦仕切皮膜層5が形成されている。各発泡セル層1は、縦仕切皮膜層5によって分割されている。縦仕切皮膜層5は、発泡セル層1より発泡密度が高い発泡セルS3が密集配置されている。縦仕切皮膜層5の発泡セルS3も、内部の空間(空気層)が完全にセル皮膜で覆われた密閉セルS3aと、セル皮膜が破れた破泡セルS3bとを有し、これらが不規則に混在している。   Each foam cell layer 1 is formed with a plurality of vertical partition coating layers 5 at equal intervals along the direction perpendicular to the thickness direction. Each foam cell layer 1 is divided by a vertical partition coating layer 5. In the vertical partition coating layer 5, foam cells S3 having a foam density higher than that of the foam cell layer 1 are densely arranged. The foaming cell S3 of the vertical partition coating layer 5 also has a sealed cell S3a in which the internal space (air layer) is completely covered with the cell coating, and a bubble-breaking cell S3b in which the cell coating is broken, and these are irregular. Are mixed.

次に、上記発泡体Hを製造する押出し成形機10とプレス装置30を説明する。押出し成形機10は、図3(a)、(b)及び図4に示すように、各発泡材を投入する投入口(図示せず)と、投入された発泡材を混練する混練手段(図示せず)と、混練された発泡材を高温に加熱する加熱手段(図示せず)と、発泡材を押圧する押圧手段(図示せず)と、押圧室の先端側を塞ぐように配置された口金部材11と、この口金部材11の外側を囲むように配置された規制枠壁20とを備えている。口金部材11は、水平方向に等間隔に配置された複数の吐出口12を1段有する。吐出口12は、上下位置の規制枠壁20の中間位置に配置されている。規制枠壁20は、この1段の吐出口12より吐出された発泡材の発泡領域を規制する。規制枠壁20は、偏平長方形状の枠である。規制枠壁2は、内部スペースの上下高さが10mmである。   Next, the extrusion molding machine 10 and the press apparatus 30 for producing the foam H will be described. As shown in FIGS. 3 (a), 3 (b) and 4, the extrusion molding machine 10 includes an inlet (not shown) for charging each foam material, and a kneading means (see FIG. 3) for kneading the charged foam material. (Not shown), a heating means (not shown) for heating the kneaded foam material to a high temperature, a pressing means (not shown) for pressing the foam material, and a front end side of the pressing chamber are arranged to be closed. A base member 11 and a regulation frame wall 20 disposed so as to surround the outside of the base member 11 are provided. The base member 11 has a plurality of discharge ports 12 arranged at equal intervals in the horizontal direction. The discharge port 12 is disposed at an intermediate position of the restriction frame wall 20 at the vertical position. The restriction frame wall 20 restricts the foaming region of the foam material discharged from the one-stage discharge port 12. The regulation frame wall 20 is a flat rectangular frame. The restriction frame wall 2 has an internal space whose vertical height is 10 mm.

プレス装置30は、図5に示すように、互いに対向配置された固定プレス体31と可動プレス体32とを有する。可動プレス体32は、固定プレス体31の近接・離間方向に移動できる。   As shown in FIG. 5, the press device 30 includes a fixed press body 31 and a movable press body 32 that are arranged to face each other. The movable press body 32 can move in the proximity / separation direction of the fixed press body 31.

次に、発泡体Hの製造方法を説明する。発泡体Hの製造方法は、押し出し成形機10を使用した押し出し工程と、プレス装置30を使用したプレス工程から成る。先ず、押し出し工程を説明する。押出し成形機10内に、紙粉末成分とポリプロピレン樹脂材のJ830HV(株式会社プライムポリマーの商品名プライムポリプロの一種)と補助剤としてのコーンスターチと水を供給する。そして、紙粉末成分とポリプロピレン樹脂材のJ830HV(株式会社プライムポリマーの商品名プライムポリプロの一種)とコーンスターチと水を、吐出直前の温度が184℃以上となる温度に加熱し且つ混練し、この高温の発泡材を口金部材11の1段の吐出口12より押圧によって吐出させる。   Next, the manufacturing method of the foam H is demonstrated. The method for manufacturing the foam H includes an extrusion process using the extrusion molding machine 10 and a pressing process using the press device 30. First, the extrusion process will be described. A paper powder component, a polypropylene resin material J830HV (a type of Prime Polymer, a product of Prime Polymer Co., Ltd.), corn starch as an auxiliary agent, and water are supplied into the extrusion molding machine 10. Then, the paper powder component, polypropylene resin material J830HV (a type of Prime Polymer, a product of Prime Polymer Co., Ltd.), corn starch, and water are heated and kneaded at a temperature of 184 ° C. or more immediately before discharge, and this high temperature The foamed material is discharged from the single-stage discharge port 12 of the base member 11 by pressing.

すると、高温の発泡材に混入された水が各吐出口12より吐出された瞬間に気化し、水の蒸気圧により紙粉末成分とポリプロピレン樹脂材とコーンスターチから成る発泡材が発泡する。この発泡は、図4に示すように、規制枠壁20によって規制されるため、規制枠壁20の規制スペースを断面積とする発泡体Ha(厚みT=10mm)が連続的に押し出される。   Then, the water mixed in the high-temperature foam material is vaporized at the moment when the water is discharged from each discharge port 12, and the foam material composed of the paper powder component, the polypropylene resin material and the corn starch is foamed by the vapor pressure of the water. As shown in FIG. 4, since the foaming is regulated by the regulation frame wall 20, the foam Ha (thickness T = 10 mm) having a regulation space of the regulation frame wall 20 as a cross-sectional area is continuously extruded.

各吐出口12から吐出された発泡材は、上記したように規制枠壁20で発泡形成を抑制されると共に、発泡セル同士が互いに干渉することによって発泡形成が抑制される。具体的には、規制枠壁20内周近傍に位置する発泡セルS2は、規制枠壁20で発泡形成が抑制される。これによって、表面皮膜層2が形成される。上下両側の表面皮膜層2の間で、且つ、水平方向の隣り合う吐出口12の中間位置付近の位置する発泡セルS3は、互いの発泡セルS3同士が衝突(干渉)して発泡形成が抑制される。これによって縦仕切皮膜層5が形成される。上下両側の表面皮膜層2の間で、各吐出口12の近傍に位置する発泡セルS1は、上記発泡セルS2,S3に較べて弱い抑制力しか働かない。これによって発泡セル層1が形成される。   As described above, the foam material discharged from each discharge port 12 is restrained from being foamed by the restriction frame wall 20, and foamed cells are restrained from interfering with each other. Specifically, the foaming cell S <b> 2 located in the vicinity of the inner periphery of the regulation frame wall 20 is suppressed from being foamed by the regulation frame wall 20. Thereby, the surface film layer 2 is formed. In the foam cell S3 located between the upper and lower surface coating layers 2 and in the vicinity of the intermediate position between the discharge ports 12 adjacent in the horizontal direction, the foam cells S3 collide (interfere) with each other to suppress foam formation. Is done. Thereby, the vertical partition film layer 5 is formed. Between the upper and lower surface coating layers 2, the foam cell S <b> 1 located in the vicinity of each discharge port 12 has only a weak suppression force compared to the foam cells S <b> 2 and S <b> 3. Thereby, the foam cell layer 1 is formed.

ここで、J830HVは、メルトフローレイト(試験条件:230℃)が30g/10minという流動性の高い合成樹脂であるため、紙粉末成分の柔軟性やコーンスターチの粘着性と相俟って発泡材が流動性の高い状態で吐出される。このように、発泡材は、各吐出口12より流動性の高い状態で吐出されるため、規制枠壁20で発泡形成を抑制される状況下でも拡大発泡し、各発泡セルS1,S2,S3のセル皮膜が薄い密閉セルS1a,S2a,S3aと共にセル皮膜の破れた破泡セルS1b,S2b,S3bも形成される。   Here, J830HV is a highly flowable synthetic resin having a melt flow rate (test condition: 230 ° C.) of 30 g / 10 min. Therefore, the foam material is combined with the flexibility of the paper powder component and the adhesiveness of corn starch. Discharged with high fluidity. As described above, since the foam material is discharged in a state of high fluidity from the respective discharge ports 12, it expands and foams even under a situation where foam formation is suppressed by the regulation frame wall 20, and each of the foam cells S1, S2, S3. In addition to the closed cells S1a, S2a, and S3a having a thin cell coating, bubble-breaking cells S1b, S2b, and S3b having a broken cell coating are also formed.

特に、各表面皮膜層2の発泡セルS2は、規制枠壁20より大きな発泡抑制力を受けると共に外気温との温度差によって破泡し易い状況下におかれるため、破泡が促進される。以上より、発泡体Haは、各発泡セルS1,S2,S3が破泡セルS1b,S2b,S3bを有し、表面に小穴6が形成されたものが作製される。発泡体Haは、厚みが10mmとなる。   In particular, the foam cell S2 of each surface coating layer 2 is subjected to a foam suppression force larger than that of the regulation frame wall 20 and is easily broken by a temperature difference from the outside air temperature. As described above, the foamed body Ha is produced in which each of the foamed cells S1, S2, and S3 has the bubble breaking cells S1b, S2b, and S3b and the small holes 6 are formed on the surface. The foam Ha has a thickness of 10 mm.

次に、プレス工程を説明する。押出し成形機10より製造された発泡体Haは、所定寸法で裁断される。この裁断した発泡体Haは、図5に示すように、三枚重ねてプレス装置30にセットされる。プレス装置30は、発泡体Haを約10分の1程度にまで圧縮し、その後、圧縮を解除する。つまり、発泡体Haの全面に均一な圧力を作用させて一括で圧縮する(全面一括圧縮)。圧縮を解除した発泡体Hは、2mmほど薄くなる。ポリプロピレン樹脂材のJ830HVを合成樹成分とする発泡体Haは、押出し成形機10での押出し製造だけでは、発泡セルS1,S2,S3の皮膜に芯部分(硬い部分)を有し、音による振動がし難い発泡構造である。押出し成形機10より押出された発泡体(バージン材)1を一度圧縮変形させると、発泡セルS1,S2,S3の皮膜の芯部分(硬い部分)が破壊されることにより、柔軟な皮膜になる。これにより、音によって振動し易い柔軟な発泡体Hに加工される。これで、発泡体Hが製造される。   Next, the pressing process will be described. The foam Ha produced from the extrusion molding machine 10 is cut to a predetermined size. As shown in FIG. 5, the cut foam body Ha is stacked on the three sheets and set in the press device 30. The press device 30 compresses the foam Ha to about 1/10, and then releases the compression. In other words, uniform pressure is applied to the entire surface of the foam Ha to compress it all together (entire surface compression). The foam H whose compression has been released becomes thin by about 2 mm. Foam Ha containing polypropylene resin material J830HV as a synthetic tree component has a core portion (hard portion) on the coating of foamed cells S1, S2, and S3 only by extrusion production with the extrusion molding machine 10, and vibration due to sound. It is a foam structure that is difficult to break. When the foam (virgin material) 1 extruded from the extrusion molding machine 10 is once compressed and deformed, the core portion (hard portion) of the coating of the foam cells S1, S2, and S3 is destroyed, thereby forming a flexible coating. . Thereby, it processes into the flexible foam H which is easy to vibrate with a sound. Thus, the foam H is manufactured.

以上、このように製造された発泡体Hは、外部から音が入射すると、入射振動によって発泡体Hが固有の振動数で固体振動し、入射振動と固体振動の相殺によって吸音すると共に、発泡体Hの表面より内部に進入する入射波と、内部を透過した後に反射して来る透過反射波との相殺によっても吸音する。つまり、固有振動による吸音と位相速度による吸音は、低周波数帯域で吸音ピークを有し、吸音性能が得られる。その一方で、発泡体Hは多孔質形態であり、しかも、外部から入射する音は、表面皮膜層2の破泡セルS2bより発泡体Hの内部に進入し易いため、内部での振動エネルギーによる吸収量が増加し、多孔質型による高周波数帯域での吸音特性が従来の発泡体より向上する。以上より、低周波数帯域で吸音ピーク性能を有し、しかも、高周波数帯域での吸音性能の低下を抑制できる。   As described above, the foam H manufactured in this way is subjected to solid vibration at a specific frequency by incident vibration when sound is incident from the outside, and absorbs sound by cancellation of the incident vibration and solid vibration. Sound absorption is also achieved by canceling the incident wave that enters the interior from the surface of H and the transmitted reflected wave that is reflected after passing through the interior. That is, the sound absorption due to the natural vibration and the sound absorption due to the phase velocity have a sound absorption peak in the low frequency band, and sound absorption performance can be obtained. On the other hand, the foam H is in a porous form, and the sound incident from the outside easily enters the inside of the foam H from the bubble breaking cell S2b of the surface coating layer 2, so that it depends on the vibration energy inside. The amount of absorption is increased, and the sound absorption characteristics in the high frequency band due to the porous type are improved as compared with the conventional foam. As described above, the sound absorption peak performance is obtained in the low frequency band, and the deterioration of the sound absorption performance in the high frequency band can be suppressed.

これに加えて、各発泡セルS1,S2,S3の膜厚が薄いため、各発泡セルS1,S2,S3の膜が振動し易く、膜の振動によっても音を吸収する。以上より、紙を発泡材の一部とする発泡体からなる発泡体Hにあって、優れた吸音特性を発揮する。   In addition, since the film thickness of each foam cell S1, S2, S3 is thin, the film of each foam cell S1, S2, S3 is easy to vibrate, and the sound is also absorbed by the vibration of the film. As described above, the foam H is made of a foam having paper as a part of the foam material, and exhibits excellent sound absorption characteristics.

発泡セル層1は、発泡セルS1としてセル皮膜が破れた破泡セルS1bを有する。従った、発泡セル層1に進入した音が発泡セル層1の破泡セルS1bより発泡体Hの更に内部に進入し易いため、内部での振動エネルギーによる吸収量が更に増加し、吸音性能が向上する。   The foam cell layer 1 has a foam cell S1b in which the cell coating is broken as the foam cell S1. Therefore, since the sound that has entered the foam cell layer 1 is more likely to enter the inside of the foam H than the foam cell S1b of the foam cell layer 1, the amount of absorption due to vibration energy inside increases further, and the sound absorption performance is improved. improves.

合成樹脂成分は、ポリプロピレン樹脂材のJ830HV(株式会社プライムポリマーの商品名プライムポリプロの一種)である。紙粉末成分の柔軟性や澱粉成分の粘着性のみならず、合成樹脂成分(J830HV)がメルトフローレートの高い値(30g/10min程度)のものであるため、発泡過程にあって発泡材が高い流動性を示し、発泡セルS1,S2,S3が大きく膨らみ、破泡が促進される。これにより、確実に破泡セルS1b,S2b,S3bを有する発泡体Hを製造できる。   The synthetic resin component is a polypropylene resin material J830HV (a kind of product name Prime Polypro of Prime Polymer Co., Ltd.). Not only the flexibility of the paper powder component and the adhesiveness of the starch component, but also the synthetic resin component (J830HV) has a high melt flow rate (about 30 g / 10 min), so the foaming material is high in the foaming process It exhibits fluidity, and the foam cells S1, S2, and S3 swell greatly, and bubble breakage is promoted. Thereby, the foam H which has the bubble breaking cell S1b, S2b, S3b can be manufactured reliably.

押出し成形機10は、間隔を置いて配置された吐出口12が設けられ、各吐出口12より吐出された発泡材の発泡領域を規制する規制枠壁20が設けられ、押出し成形機10にパルプ繊維成分と合成樹脂成分と補助剤としての澱粉成分と水を供給し、パルプ繊維成分と合成樹脂成分と澱粉成分と水を加熱混練し、パルプ繊維成分と合成樹脂成分と澱粉成分を有する発泡材を流動性の高い状態で各吐出口12より押圧力によって吐出させる押し出し成形工程と、押し出し成形工程の後に、押し出し成形によって作製された発泡体Haをプレスするプレス工程とを行って発泡体Hを製造した。従って、吐出口12より吐出された高温の発泡材は、高温の発泡材に混入された水が瞬間に気化し、水の蒸気圧により発泡材が発泡する。ここで、発泡時に発泡材が高い流動性を示し、各発泡セルS1,S2,S3が大きく膨らもうとして破泡し、セル皮膜が破れた破泡セルS1b,S2b,S3bを有する発泡体Haが作製され、作製された発泡体Haが発泡セルS1,S2,S3のセル皮膜に芯部分(硬い部分)を有するものであっても、プレス工程による圧縮変形によってセル皮膜の芯部分(硬い部分)が破壊されて柔軟なセル皮膜になり、音によって振動し易い柔軟な発泡体Hが製造される。以上より、低周波数帯域で吸音ピーク性能を有し、しかも、高周波数帯域での吸音性能の低下を抑制できる発泡体Hを製造できる。   The extrusion molding machine 10 is provided with discharge ports 12 arranged at intervals, and is provided with a regulation frame wall 20 that regulates the foaming region of the foam material discharged from each discharge port 12. A foam material having a pulp fiber component, a synthetic resin component, and a starch component, supplying the fiber component, the synthetic resin component, the starch component and water as an auxiliary agent, and kneading the pulp fiber component, the synthetic resin component, the starch component, and the water by heating. The foam H is obtained by performing an extrusion molding process for discharging the foam H from each discharge port 12 with a pressing force in a highly fluid state, and a pressing process for pressing the foam Ha produced by the extrusion molding after the extrusion molding process. Manufactured. Therefore, in the high-temperature foam material discharged from the discharge port 12, water mixed in the high-temperature foam material is instantly vaporized, and the foam material is foamed by the vapor pressure of the water. Here, the foamed material Ha has high fluidity at the time of foaming, the foamed cells Ha, S2b, S3b each having foamed cells S1, S2, S3, in which the foamed cells S1, S2, S3 are about to swell and break, and the cell coating is broken. Even if the produced foam Ha has a core portion (hard portion) in the cell coating of the foamed cells S1, S2, S3, the core portion (hard portion) of the cell coating is formed by compressive deformation by the pressing process. ) Is broken to form a flexible cell film, and a flexible foam H that is easily vibrated by sound is produced. From the above, it is possible to produce a foam H that has sound absorption peak performance in a low frequency band and that can suppress a decrease in sound absorption performance in a high frequency band.

発泡体Hを所望形状に裁断する裁断工程ではプレス工程を含むため、実際の発泡体Hの製造工程では工程増加を伴わない。   Since the cutting process of cutting the foam H into a desired shape includes a pressing process, the actual foam H manufacturing process does not involve an increase in the process.

図6は、プレス加工しただけで表面に小孔なし発泡体(プレスのみ発泡体)と、表面に破泡による小孔6あり発泡体(小孔あり発泡体)1と、シンサレートとにおける残響室法による吸音率測定結果である。各発泡体のサンプルは、横寸法:100cm、縦寸法:50cm、厚み寸法10mmである。   FIG. 6 shows a reverberation chamber in a foam without a small hole (press only foam) on the surface, a foam with a small hole 6 due to bubble breakage (foam with a small hole) 1 on the surface, and a synthalate. It is a sound absorption coefficient measurement result by the method. Each foam sample has a horizontal dimension of 100 cm, a vertical dimension of 50 cm, and a thickness dimension of 10 mm.

図6に示すように、小孔6あり発泡体Hは、シンサレートと比較して、大略1000〜2000Hzの範囲で高い吸音率を示した。従って、1000Hz〜2000Hzの会話明瞭度の領域で高い吸音特性を発揮することが確認された。例えば自動車内に使用する吸音材として好適である。しかも、小孔6あり発泡体Hは、小孔なしのプレスのみ発泡体と比較して、高周波数帯域(2000Hz以上)での吸音性能の低下を抑制できることが確認できた。   As shown in FIG. 6, the foam H with the small holes 6 showed a higher sound absorption rate in the range of about 1000 to 2000 Hz, compared with the synthate. Therefore, it was confirmed that a high sound absorption characteristic is exhibited in the range of the speech intelligibility of 1000 Hz to 2000 Hz. For example, it is suitable as a sound absorbing material used in an automobile. Moreover, it was confirmed that the foam H with the small holes 6 can suppress the deterioration of the sound absorption performance in the high frequency band (2000 Hz or more) as compared with the foam only in the press without the small holes.

次に、前記とは異なる別のプレス工程を説明する。この別のプレス工程で使用するプレス装置40は、図7に示すように、一対のローラ41と、この一対のローラ41間に発泡体Haを搬送する搬送手段(図示せず)とを有する。一対のローラ41は、互いに対向位置に配置されている。一対のローラ41間の寸法は、調整可能に構成されている。   Next, another pressing process different from the above will be described. As shown in FIG. 7, the pressing device 40 used in this separate pressing step includes a pair of rollers 41 and a conveying means (not shown) that conveys the foam Ha between the pair of rollers 41. A pair of roller 41 is arrange | positioned in the mutually opposing position. The dimension between the pair of rollers 41 is configured to be adjustable.

押出し成形機10より製造された発泡体Haを一対のローラ41間に通し、発泡体Haを圧縮する。つまり、前記した全面一括圧縮のプレス工程は、発泡体Haの全面に均一な圧力を作用させて一括で圧縮するのに対し、このプレス工程は、発泡体Haを局所的に順次圧縮する。   The foam Ha produced from the extrusion molding machine 10 is passed between the pair of rollers 41 to compress the foam Ha. In other words, the pressing process of the entire surface batch compression described above compresses the foam Ha in a local and sequential manner while the uniform pressure is applied to the entire surface of the foam Ha to compress the entire surface.

全面一括圧縮とローラ41による圧縮との相違点は、次のようになる。全面一括圧縮は、発泡体Haの全面に均一な圧力が作用するため、表面皮膜層2に亀裂が発生し難いが、圧縮力の方向は折れや亀裂が発生し、柔軟な構造体となる。全面一括圧縮された発泡体Hは、圧縮前に比較して約2mm程度薄くなる。   The difference between the whole surface batch compression and the compression by the roller 41 is as follows. In the whole surface compression, since uniform pressure acts on the entire surface of the foam Ha, cracks are hardly generated in the surface coating layer 2, but the direction of the compression force is broken or cracked, and a flexible structure is obtained. The foam H that is compressed all over is thinner by about 2 mm than before compression.

ローラ41による圧縮は、表面皮膜層2に圧力差(ローラ41で押圧された箇所とそうでない隣接箇所の間での引っ張り力)により亀裂44(図8参照)が発生し、破泡も促進され、この相乗効果によって内部への通気性の良い構造体となる。ローラ41による発泡体Hは、全面一括圧縮と同様に、圧縮前に比較して厚みが薄くなるが、厚さ変化(潰し量)は、ローラ41間の寸法管理によって調整可能である。   In the compression by the roller 41, a crack 44 (see FIG. 8) is generated in the surface film layer 2 due to a pressure difference (a tensile force between a portion pressed by the roller 41 and an adjacent portion that is not), and bubble breakage is also promoted. This synergistic effect provides a structure with good air permeability to the inside. The foam H by the roller 41 is thinner than before compression, as in the case of full-surface compression, but the change in thickness (the amount of crushing) can be adjusted by dimensional management between the rollers 41.

図9は、全面一括圧縮によるプレス加工をした発泡体(破泡(小孔)あり発泡体)と、ローラ41によるプレス加工をした発泡体(破泡(小孔)と亀裂あり発泡体)と、シンサレートとにおける残響室法による吸音率測定結果である。   FIG. 9 shows a foam (foam with broken bubbles (small holes)) that has been pressed by batch compression, and a foam that has been pressed by rollers 41 (foam with broken bubbles (small holes) and cracks). It is a sound absorption coefficient measurement result by the reverberation room method in a synthesizer.

1kHz周辺の領域での立ち上がり特性は、厚さの変化(潰し量)に依存することが確認された。厚さが厚くなるに従って立ち上がり特性が低周波側にシフトし、逆に厚さが薄くなるに従って立ち上がり特性が高周波側にシフトする。つまり、発泡体Hの厚み変化によって、固有振動による吸音と位相速度による吸音性能が変化することが確認された。これにより、ローラ41間の寸法dによって発泡体Haの潰す量を調整し、1kHz周辺の吸音特性を管理することができる。具体的には、ローラ41間の寸法dが4mmの場合には、発泡体Hの厚みTが10mm(潰れ量0mm)、ローラ41間の寸法dが3mmの場合には、発泡体Hの厚みTが9mm(潰れ量1mm)、ローラ41間の寸法dが2mmの場合には、発泡体Hの厚みTが8.5mm(潰れ量1.5mm)、ローラ41間の寸法dが1mm、0mmの場合には、発泡体Hの厚みTが7〜6mm(潰れ量3〜4mm)となる。   It was confirmed that the rising characteristic in the region around 1 kHz depends on the change in thickness (crushing amount). As the thickness increases, the rising characteristic shifts to the low frequency side. Conversely, as the thickness decreases, the rising characteristic shifts to the high frequency side. That is, it was confirmed that the sound absorption performance due to the natural vibration and the sound absorption performance due to the phase velocity change depending on the thickness change of the foam H. Thereby, the amount of crushing of the foam Ha can be adjusted by the dimension d between the rollers 41, and the sound absorption characteristics around 1 kHz can be managed. Specifically, when the dimension d between the rollers 41 is 4 mm, the thickness T of the foam H is 10 mm (crushing amount 0 mm), and when the dimension d between the rollers 41 is 3 mm, the thickness of the foam H is When T is 9 mm (crushing amount 1 mm) and the dimension d between the rollers 41 is 2 mm, the thickness T of the foam H is 8.5 mm (crushing amount 1.5 mm), and the dimension d between the rollers 41 is 1 mm and 0 mm. In this case, the thickness T of the foam H is 7 to 6 mm (crushed amount 3 to 4 mm).

また、高周波数帯域での吸音性能の低下を更に抑制できることが確認された。つまり、局所的な潰しによって表面皮膜層2等に破泡セルS2bが発生すると共に亀裂44が発生し、発泡体Hの通気性が向上したため、具体的には、外部から入射する音が発泡体Hの内部にいっそう進入し易くなったためであると推測される。破泡セルS2bの割合と亀裂44の量・大きさは、潰し量が依存し、潰し量が大きいと破泡セルS2bの割合と亀裂44の量・大きさが増し、通気性ひいては吸音性が向上することが確認された。なお、ローラ41間の寸法dは4mmの場合は、圧縮後の厚さが10mm(潰し量0mm)であり、吸音性の向上が少ないことから、全面一括圧縮の発泡体Hよりも多孔質型による高周波数帯域での吸音特性が劣ることが確認された。   Moreover, it was confirmed that the fall of the sound absorption performance in a high frequency band can further be suppressed. That is, the foaming cell S2b is generated in the surface film layer 2 and the like by the local crushing and the crack 44 is generated, and the air permeability of the foam H is improved. It is presumed that this is because it became easier to enter the inside of H. The ratio of the bubble breaking cell S2b and the amount / size of the crack 44 depend on the amount of crushing. If the amount of crushing is large, the ratio of the bubble breaking cell S2b and the amount / size of the crack 44 are increased. It was confirmed to improve. When the dimension d between the rollers 41 is 4 mm, the thickness after compression is 10 mm (crushing amount 0 mm), and the improvement in sound absorption is small. It was confirmed that the sound absorption characteristic in the high frequency band due to was inferior.

ローラ41間の寸法dを2mmとした場合の発泡体Hは、1000Hz〜2000Hzの会話明瞭度の領域で最も高い吸音特性を発揮することが確認された。   It was confirmed that the foam H in the case where the dimension d between the rollers 41 is 2 mm exhibits the highest sound absorption characteristics in the region of conversation clarity of 1000 Hz to 2000 Hz.

図10は、全面一括圧縮によるプレス加工をした発泡体(3サンプル)と、ローラ41によるプレス加工をした発泡体(10サンプル)と、シンサレートとにおける残響室法による吸音率測定結果である。各ローラ41間の寸法毎に、多数(10個)のサンプルを作製し、その各サンプルの吸音特性を調べた。全面一括圧縮によるプレス加工をした発泡体Hは、1枚当たり1.5mmの圧縮をかけたものである。ローラ41によるプレス加工をした発泡体Hは、ローラ41間の寸法dが2mmとし、発泡体Hの厚みTが8.5mm(潰れ量1.5mm)のものである。   FIG. 10 shows sound absorption coefficient measurement results by a reverberation chamber method in a foam (3 samples) subjected to press processing by full-surface compression, a foam (10 samples) pressed by a roller 41, and a synthesizer. A large number (10) of samples were produced for each dimension between the rollers 41, and the sound absorption characteristics of each sample were examined. The foam H that has been pressed by batch compression over the entire surface is subjected to compression of 1.5 mm per sheet. The foam H pressed by the roller 41 has a dimension d between the rollers 41 of 2 mm and a thickness T of the foam H of 8.5 mm (crushed 1.5 mm).

ローラ圧縮による場合、10サンプルについて、1000Hz〜5000Hzの吸音率バラツキは、(3σ)−(平均値)=0.05以内となり、安定した吸音特性が得られることが確認された。   In the case of roller compression, the sound absorption coefficient variation of 1000 Hz to 5000 Hz was within (3σ) − (average value) = 0.05 for 10 samples, and it was confirmed that stable sound absorption characteristics were obtained.

前記実施形態では、合成樹脂成分として、ポリプロピレン樹脂材のJ830HV(株式会社プライムポリマーの商品名プライムポリプロの一種)を使用し、且つ、吐出直前の温度を184℃以上とすることによって、発泡過程で発泡材が流動性の高い状態とすることを実現している。しかし、発泡過程で発泡材を流動性の高い状態で吐出でき、破泡セルを形成できる樹脂であれば樹脂であれば、ポリプロピレン樹脂材のJ830HV(株式会社プライムポリマーの商品名プライムポリプロの一種)以外の樹脂であっても良く、又、使用樹脂によって加熱温度を適宜変更することになる。   In the above embodiment, as a synthetic resin component, a polypropylene resin material J830HV (a kind of product name Prime Polypro of Prime Polymer Co., Ltd.) is used. The foam material is in a highly fluid state. However, if it is a resin that can discharge a foamed material in a foaming process in a highly fluid state and can form a bubble-breaking cell, it is a polypropylene resin material J830HV (a kind of product name Prime Polypro of Prime Polymer Co., Ltd.) Any other resin may be used, and the heating temperature is appropriately changed depending on the resin used.

H 発泡体
1 発泡セル層
2 表面皮膜層
10 押出し成形機
12 吐出口
20 規制枠壁
S1,S2,S3 発泡セル
S1b,S2b,S3b 破泡セル
H Foam 1 Foam cell layer 2 Surface coating layer 10 Extruder 12 Discharge port 20 Restriction frame wall S1, S2, S3 Foam cell S1b, S2b, S3b Foam break cell

Claims (7)

パルプ繊維成分と合成樹脂成分と補助剤としての澱粉成分とを発泡させ、多数の空間が形成された発泡セルより構成された発泡体であって、
前記発泡セルは、発泡セルが密集配置された発泡セル層と、前記発泡セル層の表面側に配置され、前記発泡セル層より発泡密度が高い発泡セルが密集配置された表面皮膜層とを構成し、
前記表面皮膜層は、前記発泡セルとしてセル皮膜が破れた破泡セルを有することを特徴とする発泡体。
A foam comprising a foam cell in which a pulp fiber component, a synthetic resin component, and a starch component as an auxiliary agent are foamed, and a large number of spaces are formed,
The foamed cell comprises a foamed cell layer in which foamed cells are densely arranged, and a surface film layer in which foamed cells having a foaming density higher than the foamed cell layer are densely arranged on the surface side of the foamed cell layer. And
The said surface membrane | film | coat layer has a foam cell by which the cell membrane was torn as said foam cell.
請求項1記載の発泡体であって、
前記発泡セル層は、前記発泡セルとしてセル皮膜が破れた破泡セルを有することを特徴とする発泡体。
The foam according to claim 1,
The foamed cell layer has a foamed cell in which a cell coating is broken as the foamed cell.
請求項1又は請求項2のいずれかに記載の発泡体であって、
前記合成樹脂成分は、ポリプロピレン樹脂材のJ830HV(株式会社プライムポリマーの商品名プライムポリプロの一種)であることを特徴とする発泡体。
The foam according to claim 1 or 2,
The synthetic resin component is a polypropylene resin material J830HV (a kind of product name Prime Polypro of Prime Polymer Co., Ltd.).
間隔を置いて配置された吐出口が設けられ、前記各吐出口より吐出された発泡材の発泡領域を規制する規制枠壁が設けられた押出し成形機を使用し、
前記押出し成形機にパルプ繊維成分と合成樹脂成分と補助剤としての澱粉成分と水を供給し、前記パルプ繊維成分と合成樹脂成分と澱粉成分と水を加熱混練し、前記パルプ繊維成分と前記合成樹脂成分と前記澱粉成分を有する発泡材を流動性の高い状態で前記各吐出口より押圧力によって吐出させる押し出し成形工程と、
前記押し出し成形工程の後に、前記押し出し成形によって作製された発泡体をプレスするプレス工程とを備えたことを特徴とする発泡体の製造方法。
Using an extrusion machine provided with discharge ports arranged at intervals and provided with a regulation frame wall for regulating the foaming area of the foam material discharged from each of the discharge ports,
A pulp fiber component, a synthetic resin component, a starch component as an auxiliary agent, and water are supplied to the extrusion molding machine, and the pulp fiber component, the synthetic resin component, the starch component, and water are heated and kneaded, and the pulp fiber component and the synthesis are mixed. An extrusion molding step of discharging a foam material having a resin component and the starch component from each of the discharge ports in a highly fluid state by a pressing force;
A method for producing a foam, comprising a pressing step of pressing the foam produced by the extrusion molding after the extrusion molding step.
請求項4記載の発泡体の製造方法であって、
前記プレス工程は、発泡体の全面に均一な圧力を作用させて一括で圧縮することを特徴とする発泡体の製造方法。
A method for producing a foam according to claim 4,
The said press process is applying the uniform pressure to the whole surface of a foam, and compressing it collectively, The manufacturing method of the foam characterized by the above-mentioned.
請求項4記載の発泡体の製造方法であって、
前記プレス工程は、発泡体を局所的に順次圧力を作用させて圧縮することを特徴とする発泡体の製造方法。
A method for producing a foam according to claim 4,
The method for producing a foam, wherein the pressing step compresses the foam by locally applying a pressure sequentially.
請求項4〜請求項6のいずれかに記載の発泡体の製造方法であって、
前記合成樹脂成分は、ポリプロピレン樹脂材のJ830HV(株式会社プライムポリマーの商品名プライムポリプロの一種)であることを特徴とする発泡体の製造方法。
It is a manufacturing method of the foam according to any one of claims 4 to 6,
The synthetic resin component is a polypropylene resin material J830HV (a kind of product name Prime Polypro of Prime Polymer Co., Ltd.).
JP2014071246A 2014-03-31 2014-03-31 Foam and foam manufacturing method Active JP6342686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014071246A JP6342686B2 (en) 2014-03-31 2014-03-31 Foam and foam manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014071246A JP6342686B2 (en) 2014-03-31 2014-03-31 Foam and foam manufacturing method

Publications (2)

Publication Number Publication Date
JP2015193694A true JP2015193694A (en) 2015-11-05
JP6342686B2 JP6342686B2 (en) 2018-06-13

Family

ID=54433042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014071246A Active JP6342686B2 (en) 2014-03-31 2014-03-31 Foam and foam manufacturing method

Country Status (1)

Country Link
JP (1) JP6342686B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01222929A (en) * 1988-03-01 1989-09-06 Toray Ind Inc Polyolefin-based resin foam for laminating skin material, manufacture thereof and composite material used therewith
JP2001040128A (en) * 1999-07-28 2001-02-13 Sekisui Chem Co Ltd Preparation of open-cell foam of crosslinked olefinic resin
JP2001354795A (en) * 2000-06-09 2001-12-25 Tokiwa Printing Inc Foam obtained from recycled official postcard and it manufacturing method
JP2008143147A (en) * 2006-12-13 2008-06-26 Prime Polymer:Kk Propylene-based resin extrusion-foamed body and its manufacturing method
WO2012008225A1 (en) * 2010-07-15 2012-01-19 アイシン化工株式会社 Sound absorption characteristic structure
JP2014005346A (en) * 2012-06-22 2014-01-16 Yazaki Corp Acoustic material and method for producing acoustic material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01222929A (en) * 1988-03-01 1989-09-06 Toray Ind Inc Polyolefin-based resin foam for laminating skin material, manufacture thereof and composite material used therewith
JP2001040128A (en) * 1999-07-28 2001-02-13 Sekisui Chem Co Ltd Preparation of open-cell foam of crosslinked olefinic resin
JP2001354795A (en) * 2000-06-09 2001-12-25 Tokiwa Printing Inc Foam obtained from recycled official postcard and it manufacturing method
JP2008143147A (en) * 2006-12-13 2008-06-26 Prime Polymer:Kk Propylene-based resin extrusion-foamed body and its manufacturing method
WO2012008225A1 (en) * 2010-07-15 2012-01-19 アイシン化工株式会社 Sound absorption characteristic structure
JP2014005346A (en) * 2012-06-22 2014-01-16 Yazaki Corp Acoustic material and method for producing acoustic material

Also Published As

Publication number Publication date
JP6342686B2 (en) 2018-06-13

Similar Documents

Publication Publication Date Title
EP1491327B1 (en) Hollow structure plate, manufacturing method thereof and manufacturing device thereof
KR20070072880A (en) Method for producing polyolefin based resin crosslinked foamed sheet and polyolefin based resin crosslinked foamed sheet
JP4381941B2 (en) Laminate for automotive interior ceiling materials
JP6084819B2 (en) Foam and foam manufacturing method
JP6342686B2 (en) Foam and foam manufacturing method
JP2017519376A (en) Thin film for manufacturing diaphragm, method for manufacturing diaphragm, and composite diaphragm
JP6215566B2 (en) Foam manufacturing method, foam manufacturing apparatus, and foam
JP2014015605A (en) Resin foam and foam seal material
CN103306049A (en) Preparation method of acupuncturing 3D sound-absorbing body
JP5902565B2 (en) Sound absorbing material and method for producing sound absorbing material
JP6534288B2 (en) Foam
JP2013028031A (en) Method of manufacturing resin molded product
JP2007168292A (en) Base material for interior trim
JP2013028030A (en) Method of producing multilayer foam
KR101189521B1 (en) Sound-absorbing body, and process for manufacture thereof
JP2015017188A (en) Foam
JP6294590B2 (en) Foam
JP6084818B2 (en) Foam and foam manufacturing method
JP6534287B2 (en) Foam
JP3067548B2 (en) Polyolefin resin foam board and method for producing the same
JP2014156503A (en) Foamed product
JP6055318B2 (en) Foam
Subramonian et al. Acoustics and forming of novel polyolefin blend foams
JP6092605B2 (en) Sound absorbing material and door structure of automobile using this sound absorbing material
JP2016534685A (en) Method for producing a film for a loudspeaker diaphragm or a microphone diaphragm

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180517

R150 Certificate of patent or registration of utility model

Ref document number: 6342686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250