JP2015190733A - Evaporator of turbo refrigerator, and turbo refrigerator including evaporator - Google Patents

Evaporator of turbo refrigerator, and turbo refrigerator including evaporator Download PDF

Info

Publication number
JP2015190733A
JP2015190733A JP2014070101A JP2014070101A JP2015190733A JP 2015190733 A JP2015190733 A JP 2015190733A JP 2014070101 A JP2014070101 A JP 2014070101A JP 2014070101 A JP2014070101 A JP 2014070101A JP 2015190733 A JP2015190733 A JP 2015190733A
Authority
JP
Japan
Prior art keywords
refrigerant
gas
evaporator
liquid
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014070101A
Other languages
Japanese (ja)
Other versions
JP6313090B2 (en
Inventor
大塚 晃一郎
Koichiro Otsuka
晃一郎 大塚
遠藤 哲也
Tetsuya Endo
哲也 遠藤
俊輔 天野
Shunsuke Amano
俊輔 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Refrigeration Equipment and Systems Co Ltd
Original Assignee
Ebara Refrigeration Equipment and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Refrigeration Equipment and Systems Co Ltd filed Critical Ebara Refrigeration Equipment and Systems Co Ltd
Priority to JP2014070101A priority Critical patent/JP6313090B2/en
Priority to CN201510118889.8A priority patent/CN104949397B/en
Publication of JP2015190733A publication Critical patent/JP2015190733A/en
Application granted granted Critical
Publication of JP6313090B2 publication Critical patent/JP6313090B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PROBLEM TO BE SOLVED: To inexpensively provide an evaporator that can improve a heat transfer coefficient.SOLUTION: An evaporator comprises: heat transfer pipes 35 in which fluid to be cooled flows; and a gas-liquid separator 41 that is arranged in a can body 31 and separates refrigerant gas and refrigerant liquid. The gas-liquid separator 41 comprises: a flow passage block 42 in which a gas-liquid refrigerant flow passage 45 is formed; and refrigerant gas guide members 50 connected to the flow passage block 42. Refrigerant gas flow passages 51 that communicate with the gas-liquid refrigerant flow passage 45 are formed in the refrigerant gas guide members 50, and the refrigerant gas flow passages 51 extend upward along an inner surface of the can body 31.

Description

本発明は、ターボ冷凍機の蒸発器に関し、特に冷水などの被冷却流体から熱を奪って冷媒が蒸発して冷凍効果を発揮する蒸発器に関するものである。また本発明は、そのような蒸発器を備えたターボ冷凍機に関するものである。   The present invention relates to an evaporator of a turbo refrigerator, and more particularly to an evaporator that exhibits a refrigeration effect by evaporating refrigerant from heat to be cooled such as cold water. The present invention also relates to a turbo refrigerator equipped with such an evaporator.

従来、冷凍空調装置などに利用されるターボ冷凍機は、冷媒を封入したクローズドシステムで構成され、冷水(被冷却流体)から熱を奪って冷媒が蒸発して冷凍効果を発揮する蒸発器と、前記蒸発器で蒸発した冷媒ガスを圧縮して高圧の冷媒ガスにする圧縮機と、高圧の冷媒ガスを冷却水(冷却流体)で冷却して凝縮させる凝縮器と、前記凝縮した冷媒を減圧して膨張させる膨張弁(膨張機構)とを、冷媒配管によって連結して構成されている。そして、圧縮機として冷媒ガスを多段の羽根車によって多段に圧縮する多段圧縮機を用いた場合は、凝縮器と蒸発器の間の冷媒配管中に設置した中間冷却器であるエコノマイザで生じる冷媒ガスを圧縮機の中間段(多段の羽根車の中間部分)に導入することが行われている。   Conventionally, a turbo refrigerator used in a refrigeration air conditioner or the like is configured by a closed system in which a refrigerant is enclosed, an evaporator that takes heat from cold water (fluid to be cooled) and evaporates the refrigerant to exert a refrigeration effect; A compressor that compresses the refrigerant gas evaporated in the evaporator to form a high-pressure refrigerant gas; a condenser that cools and condenses the high-pressure refrigerant gas with cooling water (cooling fluid); and depressurizes the condensed refrigerant. An expansion valve (expansion mechanism) that is expanded by being connected by a refrigerant pipe. When a multistage compressor that compresses refrigerant gas in multiple stages with a multistage impeller is used as the compressor, the refrigerant gas generated in the economizer that is an intermediate cooler installed in the refrigerant pipe between the condenser and the evaporator Is introduced into an intermediate stage of the compressor (intermediate part of a multistage impeller).

このような多段圧縮冷凍サイクルを採用したターボ冷凍機は、エコノマイザから出た冷媒液を、膨張機構によって減圧する。減圧された冷媒液の一部は蒸発し、気液二相の冷媒となって蒸発器の下部から蒸発器内に供給される。図8は、蒸発器の内部を示す断面図である。蒸発器の内部には伝熱管101が配置されており、この伝熱管101内を冷水(被冷却流体)が流れている。冷媒は伝熱管101内の冷水から熱を奪って蒸発し、冷媒ガスとして圧縮機に移送される。   A turbo chiller employing such a multistage compression refrigeration cycle depressurizes the refrigerant liquid discharged from the economizer by an expansion mechanism. A part of the decompressed refrigerant liquid evaporates and becomes a gas-liquid two-phase refrigerant and is supplied into the evaporator from the lower part of the evaporator. FIG. 8 is a cross-sectional view showing the inside of the evaporator. A heat transfer tube 101 is disposed inside the evaporator, and cold water (cooled fluid) flows through the heat transfer tube 101. The refrigerant takes heat from the cold water in the heat transfer tube 101 and evaporates, and is transferred to the compressor as refrigerant gas.

しかしながら、膨張機構によって減圧される過程で発生した冷媒ガスは蒸発器において冷凍に寄与しないだけでなく、図8に示すように、冷媒ガスが蒸発器の伝熱管101にまとわりつくことで伝熱管101に乾いた面が生成され、蒸発圧力の低下に伴うターボ冷凍機の効率が低下するという問題がある。   However, the refrigerant gas generated in the process of being depressurized by the expansion mechanism not only contributes to freezing in the evaporator, but as shown in FIG. 8, the refrigerant gas clings to the heat transfer tube 101 of the evaporator, thereby There is a problem that a dry surface is generated, and the efficiency of the centrifugal chiller is reduced as the evaporation pressure is reduced.

冷凍に寄与しない冷媒ガスを削減し、蒸発器の性能を向上させる方法はいくつかあり、従来から実施されている。冷媒ガスを削減する第1の方法は、エコノマイザと蒸発器の圧力差を小さくすることである。膨張機構で減圧した際に蒸発する冷媒ガスの量は膨張機構前後の圧力差に依存する。したがって、エコノマイザと蒸発器の圧力差を小さくすることで、減圧した際に発生する冷媒ガスの量を少なくすることができる。   There are several methods for reducing the amount of refrigerant gas that does not contribute to refrigeration and improving the performance of the evaporator, which have been practiced conventionally. The first method for reducing the refrigerant gas is to reduce the pressure difference between the economizer and the evaporator. The amount of refrigerant gas that evaporates when the pressure is reduced by the expansion mechanism depends on the pressure difference before and after the expansion mechanism. Therefore, by reducing the pressure difference between the economizer and the evaporator, the amount of refrigerant gas generated when the pressure is reduced can be reduced.

図9(a)は、一般的なエコノマイザサイクルを示すモリエル線図であり、図9(b)はエコノマイザと蒸発器の圧力差を小さくしたエコノマイザサイクルを示すモリエル線図である。図9(a)では、エコノマイザと蒸発器の圧力差は、凝縮器とエコノマイザとの圧力差とほぼ同じであるのに対して、図9(b)では、エコノマイザと蒸発器との間の圧力差は、凝縮器とエコノマイザとの圧力差よりも小さい。結果として、膨張機構で減圧した際に発生する冷媒ガスの量を少なくすることができる。   FIG. 9A is a Mollier diagram showing a general economizer cycle, and FIG. 9B is a Mollier diagram showing an economizer cycle in which the pressure difference between the economizer and the evaporator is reduced. In FIG. 9 (a), the pressure difference between the economizer and the evaporator is almost the same as the pressure difference between the condenser and the economizer, whereas in FIG. 9 (b), the pressure between the economizer and the evaporator. The difference is smaller than the pressure difference between the condenser and the economizer. As a result, the amount of refrigerant gas generated when the pressure is reduced by the expansion mechanism can be reduced.

冷媒ガスを削減する第2の方法は、蒸発器の上流側に気液分離器を配置することである。エコノマイザから出た冷媒液を膨張機構にて減圧した後、気液二相となった冷媒を気液分離器に導入する。そして、冷媒液のみを蒸発器に導入し、冷媒ガスは多段圧縮機の吸込管近傍に導入する。これにより、冷媒ガスが蒸発器の伝熱管にまとわりつくことで伝熱管に乾いた面が生成され、蒸発圧力の低下に伴うターボ冷凍機の効率が低下することを回避することができる。   A second method for reducing the refrigerant gas is to dispose a gas-liquid separator upstream of the evaporator. After the refrigerant liquid discharged from the economizer is decompressed by the expansion mechanism, the refrigerant that has become a gas-liquid two-phase is introduced into the gas-liquid separator. Then, only the refrigerant liquid is introduced into the evaporator, and the refrigerant gas is introduced in the vicinity of the suction pipe of the multistage compressor. As a result, the refrigerant gas clings to the heat transfer tube of the evaporator, thereby generating a dry surface on the heat transfer tube and avoiding a decrease in the efficiency of the turbo refrigerator due to a decrease in the evaporation pressure.

冷媒ガスを削減する第3の方法は、蒸発器の伝熱面積を増大することである。具体的には、伝熱管本数を増加することによって、熱交換器としての蒸発器の効率を向上させる。   A third way to reduce the refrigerant gas is to increase the heat transfer area of the evaporator. Specifically, the efficiency of the evaporator as a heat exchanger is improved by increasing the number of heat transfer tubes.

特開2012−163243号公報JP 2012-163243 A

しかしながら、上述した第1乃至第3の方法は、下記に示す欠点も併せ持っている。
上述した第1の方法では、中間圧力であるエコノマイザの圧力を蒸発器の圧力に近づけると、多段圧縮機での前段羽根車と後段羽根車とでのヘッドの比率が50:50でなくなる。このため、ヘッドバランスを修正するために、圧縮機の羽根車等の最適化(形状の見直し)をすることが必要となる。
However, the first to third methods described above also have the following drawbacks.
In the first method described above, when the economizer pressure, which is an intermediate pressure, is brought close to the evaporator pressure, the head ratio of the front and rear impellers in the multistage compressor is not 50:50. For this reason, in order to correct the head balance, it is necessary to optimize the impeller of the compressor (review of the shape).

上述した第2の方法では、気液分離器が追加されるので、気液分離器の容器および追加配管の容積分に応じた冷媒が必要となる。このため、単価が高い冷媒を使用した場合、コストが増加する。   In the second method described above, since a gas-liquid separator is added, a refrigerant corresponding to the volume of the container of the gas-liquid separator and the additional piping is required. For this reason, when a refrigerant with a high unit price is used, cost increases.

上述した第3の方法では、単価の高い銅を使用した伝熱管を増やすことは、コスト高に繋がる。さらに、伝熱管を増やすことは管内冷水流速低下に伴う熱伝達率の低下にも繋がり、根本的な解決にはならない。   In the third method described above, increasing the number of heat transfer tubes using copper with a high unit price leads to high costs. Furthermore, increasing the number of heat transfer tubes also leads to a decrease in the heat transfer rate associated with a decrease in the flow rate of the cold water in the tube, and is not a fundamental solution.

そこで、本発明は、熱伝達率を向上させることができる蒸発器を低コストで提供することを目的とする。また、本発明は、そのような蒸発器を備えたターボ冷凍機を提供することを目的とする。   Then, an object of this invention is to provide the evaporator which can improve a heat transfer rate at low cost. Moreover, an object of this invention is to provide the turbo refrigerator provided with such an evaporator.

上述の目的を達成するため、本発明の一態様は、被冷却流体から熱を奪うことによって冷媒を蒸発させる蒸発器であって、缶胴と、前記缶胴の両端を閉塞する板材と、前記缶胴内に配置され、前記被冷却流体が内部を流れる伝熱管と、前記缶胴内に配置され、冷媒ガスと冷媒液とを分離する気液分離器とを備え、前記気液分離器は、気液冷媒流路が内部に形成された流路ブロックと、前記流路ブロックに接続された少なくとも1つの冷媒ガスガイド部材とを備え、前記冷媒ガスガイド部材の内部には、前記気液冷媒流路に連通する冷媒ガス流路が形成されており、前記冷媒ガス流路は、前記缶胴の内面に沿って上方に延びていることを特徴とする。   In order to achieve the above object, one aspect of the present invention is an evaporator that evaporates a refrigerant by removing heat from a fluid to be cooled, the can body, a plate member that closes both ends of the can body, A heat transfer tube disposed in the can body and through which the fluid to be cooled flows; and a gas-liquid separator disposed in the can body and separating the refrigerant gas and the refrigerant liquid, the gas-liquid separator comprising: And a flow path block having a gas-liquid refrigerant flow path formed therein, and at least one refrigerant gas guide member connected to the flow path block, wherein the gas-liquid refrigerant is disposed inside the refrigerant gas guide member. A refrigerant gas channel communicating with the channel is formed, and the refrigerant gas channel extends upward along the inner surface of the can body.

本発明の好ましい態様は、複数の前記冷媒ガスガイド部材が、前記流路ブロックの両側面に接続されていることを特徴とする。
本発明の好ましい態様は、前記流路ブロックは、前記気液冷媒流路に連通する冷媒液出口を有することを特徴とする。
本発明の好ましい態様は、前記冷媒液出口は、前記流路ブロックの側面の下部に配置されており、前記冷媒ガスガイド部材は、前記流路ブロックの側面の上部に接続されていることを特徴とする。
本発明の好ましい態様は、前記冷媒ガスガイド部材は、前記気液冷媒流路に連通する冷媒液出口を有することを特徴とする。
In a preferred aspect of the present invention, a plurality of the refrigerant gas guide members are connected to both side surfaces of the flow path block.
In a preferred aspect of the present invention, the flow path block has a refrigerant liquid outlet communicating with the gas-liquid refrigerant flow path.
In a preferred aspect of the present invention, the refrigerant liquid outlet is disposed at a lower portion of the side surface of the flow path block, and the refrigerant gas guide member is connected to an upper portion of the side surface of the flow path block. And
In a preferred aspect of the present invention, the refrigerant gas guide member has a refrigerant liquid outlet communicating with the gas-liquid refrigerant flow path.

本発明の他の態様は、被冷却流体から熱を奪って冷媒が蒸発し冷凍効果を発揮する上記蒸発器と、冷媒を多段の羽根車によって圧縮する多段ターボ圧縮機と、圧縮された冷媒ガスを冷却流体で冷却して凝縮させる凝縮器と、凝縮した冷媒液の一部を蒸発させて生成した冷媒ガスを前記多段ターボ圧縮機の多段圧縮段の中間部分に供給する中間冷却器であるエコノマイザとを備えたターボ冷凍機である。   Another aspect of the present invention is the above evaporator in which heat is taken from a fluid to be cooled and the refrigerant evaporates to exert a refrigeration effect, a multistage turbo compressor that compresses the refrigerant by a multistage impeller, and compressed refrigerant gas A condenser that cools and condenses the refrigerant with a cooling fluid, and an economizer that is an intermediate cooler that supplies a refrigerant gas generated by evaporating a part of the condensed refrigerant liquid to an intermediate portion of the multistage compression stage of the multistage turbo compressor It is a turbo refrigerator equipped with.

本発明は、以下に列挙する効果を奏する。
(1)気液二相の冷媒は蒸発器内で気液分離され、冷媒ガスは伝熱管を回避するように缶胴の内面に沿って上方に導かれる。このように冷媒ガスと伝熱管との接触が回避されるので、蒸発器の熱伝達率が向上する。したがって、蒸発圧力が上昇し冷凍機の効率が向上する。
(2)気液分離器は蒸発器の内部に配置されるので、冷媒サイクルの容積増加を最小限とすることができる。したがって、追加で必要な冷媒の量が最小限となり、コストの増加を防止しつつ蒸発器の効率を向上することができる。
(3)蒸発器の外に配置された従来の気液分離器とは異なり、気液分離器は蒸発器の内部に配置されるので、気液分離器と蒸発器とを連結する配管が不要となる。
(4)伝熱管を増やすことが不要であるので、銅などの高価な材料からなる伝熱管を使用しても、コスト増加が回避される。
The present invention has the following effects.
(1) The gas-liquid two-phase refrigerant is gas-liquid separated in the evaporator, and the refrigerant gas is guided upward along the inner surface of the can body so as to avoid the heat transfer tube. Thus, since contact with refrigerant gas and a heat exchanger tube is avoided, the heat transfer rate of an evaporator improves. Therefore, the evaporation pressure increases and the efficiency of the refrigerator is improved.
(2) Since the gas-liquid separator is disposed inside the evaporator, an increase in the volume of the refrigerant cycle can be minimized. Therefore, the amount of additional necessary refrigerant is minimized, and the efficiency of the evaporator can be improved while preventing an increase in cost.
(3) Unlike conventional gas-liquid separators arranged outside the evaporator, the gas-liquid separator is arranged inside the evaporator, so no piping is required to connect the gas-liquid separator and the evaporator. It becomes.
(4) Since it is not necessary to increase the number of heat transfer tubes, an increase in cost is avoided even if heat transfer tubes made of an expensive material such as copper are used.

図1は、ターボ冷凍機の一実施形態を示す模式図である。FIG. 1 is a schematic view showing an embodiment of a turbo refrigerator. 図2は、蒸発器の第1の実施形態を示す正面断面図である。FIG. 2 is a front sectional view showing the first embodiment of the evaporator. 図3は、蒸発器の第1の実施形態を示す側面断面図である。FIG. 3 is a side sectional view showing the first embodiment of the evaporator. 図4は、缶胴の内部を示す斜視図である。FIG. 4 is a perspective view showing the inside of the can body. 図5は、蒸発器の第2の実施形態を示す正面断面図であるFIG. 5 is a front cross-sectional view showing a second embodiment of the evaporator. 図6は、蒸発器の第2の実施形態を示す側面断面図である。FIG. 6 is a side sectional view showing a second embodiment of the evaporator. 図7は、缶胴の内部を示す斜視図である。FIG. 7 is a perspective view showing the inside of the can body. 図8は、蒸発器の内部を示す断面図である。FIG. 8 is a cross-sectional view showing the inside of the evaporator. 図9(a)は、一般的なエコノマイザサイクルを示すモリエル線図であり、図9(b)はエコノマイザと蒸発器の圧力差を小さくしたエコノマイザサイクルを示すモリエル線図である。FIG. 9A is a Mollier diagram showing a general economizer cycle, and FIG. 9B is a Mollier diagram showing an economizer cycle in which the pressure difference between the economizer and the evaporator is reduced.

以下、本発明に係る蒸発器および該蒸発器を備えたターボ冷凍機の実施形態を図1乃至図7を参照して説明する。図1乃至図7において、同一または相当する構成要素には、同一の符号を付して重複した説明を省略する。   Hereinafter, an embodiment of an evaporator according to the present invention and a turbo refrigerator including the evaporator will be described with reference to FIGS. 1 to 7. 1 to 7, the same or corresponding components are denoted by the same reference numerals, and redundant description is omitted.

図1は、ターボ冷凍機の一実施形態を示す模式図である。図1に示すように、ターボ冷凍機は、冷媒を圧縮するターボ圧縮機1と、圧縮された冷媒ガスを冷却水(冷却流体)で冷却して凝縮させる凝縮器2と、冷水(被冷却流体)から熱を奪って冷媒が蒸発し冷凍効果を発揮する蒸発器3と、凝縮器2と蒸発器3との間に配置される中間冷却器であるエコノマイザ4とを備えている。   FIG. 1 is a schematic view showing an embodiment of a turbo refrigerator. As shown in FIG. 1, a turbo refrigerator includes a turbo compressor 1 that compresses refrigerant, a condenser 2 that cools and compresses the compressed refrigerant gas with cooling water (cooling fluid), and cold water (cooled fluid). ), The evaporator 3 which evaporates the refrigerant and exhibits the refrigeration effect, and the economizer 4 which is an intermediate cooler disposed between the condenser 2 and the evaporator 3.

ターボ圧縮機1、凝縮器2、エコノマイザ4、および蒸発器3は、冷媒が循環する冷媒配管5A,5B,5C,5Dによって連結されている。より具体的には、ターボ圧縮機1と凝縮器2とは冷媒配管5Aによって連結され、凝縮器2とエコノマイザ4とは冷媒配管5Bによって連結され、エコノマイザ4と蒸発器3とは冷媒配管5Cによって連結され、蒸発器3とターボ圧縮機1とは冷媒配管5Dによって連結されている。冷媒配管5Bおよび冷媒配管5Cには、それぞれ膨張弁20,21が設けられている。   The turbo compressor 1, the condenser 2, the economizer 4, and the evaporator 3 are connected by refrigerant pipes 5A, 5B, 5C, and 5D through which the refrigerant circulates. More specifically, the turbo compressor 1 and the condenser 2 are connected by a refrigerant pipe 5A, the condenser 2 and the economizer 4 are connected by a refrigerant pipe 5B, and the economizer 4 and the evaporator 3 are connected by a refrigerant pipe 5C. The evaporator 3 and the turbo compressor 1 are connected by a refrigerant pipe 5D. Expansion valves 20 and 21 are provided in the refrigerant pipe 5B and the refrigerant pipe 5C, respectively.

図1に示す実施形態においては、ターボ圧縮機1は多段ターボ圧縮機から構成されている。つまり、多段ターボ圧縮機は二段ターボ圧縮機からなり、一段目羽根車11と、二段目羽根車12と、これらの羽根車11,12を回転させる圧縮機モータ13とから構成されている。一段目羽根車11の吸込側には、冷媒ガスの羽根車11,12への吸込流量を調整するサクションベーン14が設けられている。   In the embodiment shown in FIG. 1, the turbo compressor 1 is composed of a multistage turbo compressor. That is, the multi-stage turbo compressor is composed of a two-stage turbo compressor, and includes a first-stage impeller 11, a second-stage impeller 12, and a compressor motor 13 that rotates the impellers 11 and 12. . On the suction side of the first stage impeller 11, a suction vane 14 for adjusting the suction flow rate of the refrigerant gas to the impellers 11 and 12 is provided.

ターボ圧縮機1は軸受や増速機を収容するギヤケーシング15を備えており、ギヤケーシング15の下部には軸受と増速機に給油するための油タンク16が設けられている。ギヤケーシング15は均圧管17によってターボ圧縮機1の吸込部に連通されている。ターボ圧縮機1は、冷媒配管8によってエコノマイザ4と接続されており、エコノマイザ4で分離された冷媒ガスはターボ圧縮機1の多段の圧縮段(この例では2段)の中間部分(この例では一段目羽根車11と二段目羽根車12の間の部分)に導入されるようになっている。   The turbo compressor 1 includes a gear casing 15 that accommodates a bearing and a speed increaser, and an oil tank 16 for supplying oil to the bearing and the speed increaser is provided below the gear casing 15. The gear casing 15 is communicated with a suction portion of the turbo compressor 1 by a pressure equalizing pipe 17. The turbo compressor 1 is connected to the economizer 4 by a refrigerant pipe 8, and the refrigerant gas separated by the economizer 4 is an intermediate portion (in this example, two stages) of the multistage compression stage of the turbo compressor 1 (in this example). A portion between the first stage impeller 11 and the second stage impeller 12) is introduced.

図1に示すように構成されたターボ冷凍機の冷凍サイクルでは、ターボ圧縮機1と凝縮器2とエコノマイザ4と蒸発器3とを冷媒が循環し、蒸発器3で得られる冷熱源で冷水が製造されて負荷に対応し、冷凍サイクル内に取り込まれた蒸発器3からの熱量およびモータ13から供給されるターボ圧縮機1の仕事に相当する熱量が凝縮器2に供給される冷却水に放出される。一方、エコノマイザ4にて分離された冷媒ガスはターボ圧縮機1の多段圧縮段の中間部分に導入され、一段目羽根車11からの冷媒ガスと合流して二段目羽根車12により圧縮される。2段圧縮単段エコノマイザサイクルによれば、エコノマイザ4による冷凍効果が付加されるので、その分だけ冷凍効果が増加し、エコノマイザ4を設置しない場合に比べて冷凍効果の高効率化を図ることができる。   In the refrigeration cycle of the turbo chiller configured as shown in FIG. 1, the refrigerant circulates through the turbo compressor 1, the condenser 2, the economizer 4, and the evaporator 3, and chilled water is generated by the cold heat source obtained by the evaporator 3. The amount of heat from the evaporator 3 that is manufactured and corresponds to the load and taken into the refrigeration cycle and the amount of heat corresponding to the work of the turbo compressor 1 supplied from the motor 13 are released to the cooling water supplied to the condenser 2. Is done. On the other hand, the refrigerant gas separated by the economizer 4 is introduced into an intermediate portion of the multistage compression stage of the turbo compressor 1, merged with the refrigerant gas from the first stage impeller 11 and compressed by the second stage impeller 12. . According to the two-stage compression single stage economizer cycle, since the refrigeration effect by the economizer 4 is added, the refrigeration effect is increased by that amount, and the efficiency of the refrigeration effect can be improved compared to the case where the economizer 4 is not installed. it can.

次に、蒸発器3についてより詳細に説明する。図2は、蒸発器3の第1の実施形態を示す正面断面図であり、図3は、蒸発器3の第1の実施形態を示す側面断面図である。蒸発器3は、円筒状の缶胴31と、缶胴31の両端を閉塞する板材33と、缶胴31内に配置され、内部を冷水(被冷却流体)が流れる伝熱管35と、冷媒ガスと冷媒液とを分離する気液分離器41とを備えている。伝熱管35は、缶胴31内に配置された複数の支持板37によって支持されている。図3においては、伝熱管35は模式的に描かれている。伝熱管35の上方にはデミスタ38が配置されている。   Next, the evaporator 3 will be described in more detail. FIG. 2 is a front cross-sectional view showing the first embodiment of the evaporator 3, and FIG. 3 is a side cross-sectional view showing the first embodiment of the evaporator 3. The evaporator 3 includes a cylindrical can body 31, a plate member 33 that closes both ends of the can body 31, a heat transfer pipe 35 that is disposed in the can body 31, and in which cold water (fluid to be cooled) flows, and refrigerant gas And a gas-liquid separator 41 for separating the refrigerant liquid. The heat transfer tube 35 is supported by a plurality of support plates 37 disposed in the can body 31. In FIG. 3, the heat transfer tube 35 is schematically drawn. A demister 38 is disposed above the heat transfer tube 35.

気液分離器41は、缶胴31内に配置されている。この気液分離器41は、気液冷媒流路45が内部に形成された流路ブロック42と、流路ブロック42に接続された複数の冷媒ガスガイド部材50とを備えている。流路ブロック42は、伝熱管35の下方に配置されており、缶胴31の長手方向に沿って延びている。流路ブロック42は缶胴31の底面に固定されている。缶胴31の底面中央には、エコノマイザ4から延びる冷媒配管5Cの端部が接続されている。冷媒配管5Cは流路ブロック42の気液冷媒流路45に連通しており、気液二相の冷媒は冷媒配管5Cを通じて気液冷媒流路45内に導入される。   The gas-liquid separator 41 is disposed in the can body 31. The gas-liquid separator 41 includes a channel block 42 in which a gas-liquid refrigerant channel 45 is formed, and a plurality of refrigerant gas guide members 50 connected to the channel block 42. The flow path block 42 is disposed below the heat transfer tube 35, and extends along the longitudinal direction of the can body 31. The channel block 42 is fixed to the bottom surface of the can body 31. An end of a refrigerant pipe 5 </ b> C extending from the economizer 4 is connected to the bottom center of the can body 31. The refrigerant pipe 5C communicates with the gas-liquid refrigerant flow path 45 of the flow path block 42, and the gas-liquid two-phase refrigerant is introduced into the gas-liquid refrigerant flow path 45 through the refrigerant pipe 5C.

図4は、缶胴31の内部を示す斜視図である。内部構成を見やすくするために、図4では伝熱管35の図示は省略されている。本実施形態では、10個の冷媒ガスガイド部材50が流路ブロック42の両側面に接続されている。より具体的には、5つの冷媒ガスガイド部材50が流路ブロック42の一方の側面に接続され、他の5つの冷媒ガスガイド部材50が流路ブロック42の他方の側面に接続されている。これら冷媒ガスガイド部材50は、缶胴31の内面に固定されている。   FIG. 4 is a perspective view showing the inside of the can body 31. In order to make the internal configuration easy to see, the heat transfer tube 35 is not shown in FIG. In the present embodiment, ten refrigerant gas guide members 50 are connected to both side surfaces of the flow path block 42. More specifically, five refrigerant gas guide members 50 are connected to one side surface of the flow path block 42, and the other five refrigerant gas guide members 50 are connected to the other side surface of the flow path block 42. These refrigerant gas guide members 50 are fixed to the inner surface of the can body 31.

各冷媒ガスガイド部材50の内部には気液冷媒流路45に連通する冷媒ガス流路51が形成されている。この冷媒ガス流路51は、缶胴31の内面に沿って上方に延びている。冷媒ガスガイド部材50の上端には、冷媒ガス出口53が形成されている。この冷媒ガス出口53は伝熱管35の外側に位置しており、冷媒ガス出口53から出た冷媒ガスが伝熱管35に接触しないようになっている。冷媒ガスガイド部材50の下端は、流路ブロック42の両側面の上部に接続されている。流路ブロック42の両側面の下部には、気液冷媒流路45に連通する複数の冷媒液出口46が形成されており、これら冷媒液出口46は缶胴31の長手方向に沿って等間隔に配列されている。冷媒液出口46を下部に形成することにより、比重の小さい冷媒ガスが缶胴31の内部に導入することを回避することができる。また、冷媒ガスガイド部材50の下端を流路ブロック42の両側面の上部に接続することにより、冷媒液が冷媒ガスに同伴して冷媒ガス流路51に導入することを回避することができる。   In each refrigerant gas guide member 50, a refrigerant gas channel 51 communicating with the gas-liquid refrigerant channel 45 is formed. The refrigerant gas channel 51 extends upward along the inner surface of the can body 31. A refrigerant gas outlet 53 is formed at the upper end of the refrigerant gas guide member 50. The refrigerant gas outlet 53 is located outside the heat transfer tube 35 so that the refrigerant gas emitted from the refrigerant gas outlet 53 does not contact the heat transfer tube 35. The lower end of the refrigerant gas guide member 50 is connected to the upper part of both side surfaces of the flow path block 42. A plurality of refrigerant liquid outlets 46 communicating with the gas-liquid refrigerant flow path 45 are formed at lower portions on both side surfaces of the flow path block 42, and these refrigerant liquid outlets 46 are equally spaced along the longitudinal direction of the can body 31. Is arranged. By forming the refrigerant liquid outlet 46 in the lower part, it is possible to avoid introduction of refrigerant gas having a small specific gravity into the can body 31. Further, by connecting the lower end of the refrigerant gas guide member 50 to the upper part of both side surfaces of the flow path block 42, it is possible to avoid the refrigerant liquid accompanying the refrigerant gas and introducing it into the refrigerant gas flow path 51.

気液二相の冷媒は、缶胴31の底面中央から気液冷媒流路45内に導入される。冷媒ガスから分離された冷媒液は、複数の冷媒液出口46から缶胴31の内部に排出され、伝熱管35に接触する。一方、冷媒液から分離された冷媒ガスは冷媒ガス流路51に導かれる。流路ブロック42の上面には開口部が存在しないので、気液冷媒流路45内のすべての冷媒ガスは冷媒ガス流路51に導かれる。   The gas-liquid two-phase refrigerant is introduced into the gas-liquid refrigerant channel 45 from the center of the bottom surface of the can body 31. The refrigerant liquid separated from the refrigerant gas is discharged from the plurality of refrigerant liquid outlets 46 into the can body 31 and comes into contact with the heat transfer tube 35. On the other hand, the refrigerant gas separated from the refrigerant liquid is guided to the refrigerant gas channel 51. Since there is no opening on the upper surface of the channel block 42, all the refrigerant gas in the gas-liquid refrigerant channel 45 is guided to the refrigerant gas channel 51.

冷媒ガスは、冷媒ガス流路51の内部を缶胴31の内面に沿って上昇し、冷媒ガス出口53から缶胴31の内部に排出される。冷媒ガス出口53は伝熱管35の外側に位置しているので、冷媒ガスは伝熱管35のない領域に導入される。このような構成により、冷媒ガスは伝熱管35に接触せず、冷媒ガスが伝熱管35にまとわりつかないので、伝熱管35に乾いた面が生成されることがない。また、缶胴31の内部に気液分離器41を備えているので、気液分離器を外部に配置した場合に比して気液分離器の容器および追加配管の容積分に応じた冷媒が必要ない。したがって、コストを増加することなく、蒸発器3の熱伝達率が向上し、蒸発圧力が上昇し、冷凍機の効率が向上する。   The refrigerant gas rises in the refrigerant gas flow path 51 along the inner surface of the can body 31 and is discharged from the refrigerant gas outlet 53 to the inside of the can body 31. Since the refrigerant gas outlet 53 is located outside the heat transfer tube 35, the refrigerant gas is introduced into a region where the heat transfer tube 35 is not present. With such a configuration, the refrigerant gas does not contact the heat transfer tube 35 and the refrigerant gas does not cling to the heat transfer tube 35, so that a dry surface is not generated on the heat transfer tube 35. Further, since the gas-liquid separator 41 is provided inside the can body 31, a refrigerant corresponding to the volume of the container of the gas-liquid separator and the volume of the additional pipe can be obtained as compared with the case where the gas-liquid separator is arranged outside. unnecessary. Therefore, without increasing the cost, the heat transfer coefficient of the evaporator 3 is improved, the evaporation pressure is increased, and the efficiency of the refrigerator is improved.

冷媒ガスは、缶胴31内を上昇し、デミスタ38を通過して冷媒配管5D(図1参照)に流入する。冷媒ガスから分離された冷媒液は、複数の冷媒液出口46から缶胴31の内部に排出され、伝熱管35と接触する。複数の冷媒液出口46は、蒸発器3の長手方向に沿って両側面に等間隔で配列されているので、冷媒液は、複数の冷媒液出口46を通って伝熱管35に均一に接触し、蒸発器3の効率が最適化される。   The refrigerant gas rises in the can body 31 and passes through the demister 38 and flows into the refrigerant pipe 5D (see FIG. 1). The refrigerant liquid separated from the refrigerant gas is discharged from the plurality of refrigerant liquid outlets 46 into the can body 31 and comes into contact with the heat transfer tube 35. Since the plurality of refrigerant liquid outlets 46 are arranged at equal intervals on both side surfaces along the longitudinal direction of the evaporator 3, the refrigerant liquid uniformly contacts the heat transfer tube 35 through the plurality of refrigerant liquid outlets 46. The efficiency of the evaporator 3 is optimized.

図5は、蒸発器3の第2の実施形態を示す正面断面図であり、図6は、蒸発器3の第2の実施形態を示す側面断面図であり、図7は、缶胴31の内部を示す斜視図である。内部構成を見やすくするために、図7では伝熱管35の図示は省略されている。本実施形態の特に説明しない構成は、上述した第1の実施形態と同じであるので、その重複する説明を省略する。本実施形態では、一対の横長の冷媒ガスガイド部材50が流路ブロック42の両側面に接続されている。各冷媒ガスガイド部材50の上端には1つの冷媒ガス出口53が形成されている。冷媒ガスガイド部材50は、気液冷媒流路45に連通する複数の冷媒液出口46を有している。これら冷媒液出口46は、冷媒ガスガイド部材50の内壁に形成されている。   FIG. 5 is a front cross-sectional view showing a second embodiment of the evaporator 3, FIG. 6 is a side cross-sectional view showing the second embodiment of the evaporator 3, and FIG. It is a perspective view which shows an inside. In order to make the internal configuration easy to see, the heat transfer tube 35 is not shown in FIG. The configuration of the present embodiment that is not specifically described is the same as that of the above-described first embodiment, and thus redundant description thereof is omitted. In the present embodiment, a pair of horizontally long refrigerant gas guide members 50 are connected to both side surfaces of the flow path block 42. One refrigerant gas outlet 53 is formed at the upper end of each refrigerant gas guide member 50. The refrigerant gas guide member 50 has a plurality of refrigerant liquid outlets 46 communicating with the gas-liquid refrigerant flow path 45. These refrigerant liquid outlets 46 are formed on the inner wall of the refrigerant gas guide member 50.

気液二相の冷媒は、缶胴31の底面中央から気液冷媒流路45内に導入される。冷媒液は、冷媒ガスとともに冷媒ガス流路51内に導かれ、冷媒液のみが複数の冷媒液出口46から缶胴31の内部に排出される。冷媒液から分離された冷媒ガスは、冷媒ガス流路51の内部を缶胴31の内面に沿って上昇し、冷媒ガス出口53から缶胴31の内部に排出される。冷媒ガス出口53は伝熱管35の外側に位置しているので、冷媒ガスは伝熱管35のない領域に導入される。このような構成により、冷媒ガスは伝熱管35に接触せず、冷媒ガスが伝熱管35にまとわりつかないので、伝熱管35に乾いた面が生成されることがない。また、缶胴31の内部に気液分離器41を備えているので、気液分離器を外部に配置した場合に比して気液分離器の容器および追加配管の容積分に応じた冷媒が必要ない。さらに、第1の実施形態に比して簡易な構造となっているので、缶胴の組立てが容易となる。したがって、コストを増加することなく、蒸発器3の熱伝達率が向上し、蒸発圧力が上昇し、冷凍機の効率が向上する。   The gas-liquid two-phase refrigerant is introduced into the gas-liquid refrigerant channel 45 from the center of the bottom surface of the can body 31. The refrigerant liquid is introduced into the refrigerant gas flow path 51 together with the refrigerant gas, and only the refrigerant liquid is discharged from the plurality of refrigerant liquid outlets 46 to the inside of the can body 31. The refrigerant gas separated from the refrigerant liquid rises in the refrigerant gas flow path 51 along the inner surface of the can body 31, and is discharged from the refrigerant gas outlet 53 to the inside of the can body 31. Since the refrigerant gas outlet 53 is located outside the heat transfer tube 35, the refrigerant gas is introduced into a region where the heat transfer tube 35 is not present. With such a configuration, the refrigerant gas does not contact the heat transfer tube 35 and the refrigerant gas does not cling to the heat transfer tube 35, so that a dry surface is not generated on the heat transfer tube 35. Further, since the gas-liquid separator 41 is provided inside the can body 31, a refrigerant corresponding to the volume of the container of the gas-liquid separator and the volume of the additional pipe can be obtained as compared with the case where the gas-liquid separator is arranged outside. unnecessary. Furthermore, since the structure is simpler than that of the first embodiment, the can body can be easily assembled. Therefore, without increasing the cost, the heat transfer coefficient of the evaporator 3 is improved, the evaporation pressure is increased, and the efficiency of the refrigerator is improved.

これまで本発明の実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術思想の範囲内において、種々の異なる形態で実施されてよいことは勿論である。   Although the embodiment of the present invention has been described so far, the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention may be implemented in various different forms within the scope of the technical idea.

1 ターボ圧縮機
2 凝縮器
3 蒸発器
4 エコノマイザ
5 冷媒配管
11 一段目羽根車
12 二段目羽根車
13 圧縮機モータ
14 一段目サクションベーン
15 ギヤケーシング
16 油タンク
17 均圧管
20,21 膨張弁
31 缶胴
33 板材
35 伝熱管
37 支持板
38 デミスタ
41 気液分離器
42 流路ブロック
45 気液冷媒流路
46 冷媒液出口
50 冷媒ガスガイド部材
51 冷媒ガス流路
53 冷媒ガス出口
DESCRIPTION OF SYMBOLS 1 Turbo compressor 2 Condenser 3 Evaporator 4 Economizer 5 Refrigerant piping 11 First stage impeller 12 Second stage impeller 13 Compressor motor 14 First stage suction vane 15 Gear casing 16 Oil tank 17 Pressure equalizing pipes 20, 21 Expansion valve 31 Can body 33 Plate member 35 Heat transfer tube 37 Support plate 38 Demister 41 Gas-liquid separator 42 Channel block 45 Gas-liquid refrigerant channel 46 Refrigerant liquid outlet 50 Refrigerant gas guide member 51 Refrigerant gas channel 53 Refrigerant gas outlet

Claims (6)

被冷却流体から熱を奪うことによって冷媒を蒸発させる蒸発器であって、
缶胴と、
前記缶胴の両端を閉塞する板材と、
前記缶胴内に配置され、前記被冷却流体が内部を流れる伝熱管と、
前記缶胴内に配置され、冷媒ガスと冷媒液とを分離する気液分離器とを備え、
前記気液分離器は、
気液冷媒流路が内部に形成された流路ブロックと、
前記流路ブロックに接続された少なくとも1つの冷媒ガスガイド部材とを備え、
前記冷媒ガスガイド部材の内部には、前記気液冷媒流路に連通する冷媒ガス流路が形成されており、
前記冷媒ガス流路は、前記缶胴の内面に沿って上方に延びていることを特徴とする蒸発器。
An evaporator that evaporates the refrigerant by removing heat from the fluid to be cooled,
A can body,
A plate material for closing both ends of the can body;
A heat transfer tube disposed in the can body and through which the fluid to be cooled flows;
A gas-liquid separator disposed in the can body and separating the refrigerant gas and the refrigerant liquid;
The gas-liquid separator is
A flow path block having a gas-liquid refrigerant flow path formed therein;
And at least one refrigerant gas guide member connected to the flow path block,
Inside the refrigerant gas guide member, a refrigerant gas flow path communicating with the gas-liquid refrigerant flow path is formed,
The evaporator, wherein the refrigerant gas flow path extends upward along the inner surface of the can body.
複数の前記冷媒ガスガイド部材が、前記流路ブロックの両側面に接続されていることを特徴とする請求項1に記載の蒸発器。   The evaporator according to claim 1, wherein a plurality of the refrigerant gas guide members are connected to both side surfaces of the flow path block. 前記流路ブロックは、前記気液冷媒流路に連通する冷媒液出口を有することを特徴とする請求項1に記載の蒸発器。   The evaporator according to claim 1, wherein the flow path block has a refrigerant liquid outlet communicating with the gas-liquid refrigerant flow path. 前記冷媒液出口は、前記流路ブロックの側面の下部に配置されており、
前記冷媒ガスガイド部材は、前記流路ブロックの側面の上部に接続されていることを特徴とする請求項3に記載の蒸発器。
The refrigerant liquid outlet is disposed at the lower part of the side surface of the flow path block,
The evaporator according to claim 3, wherein the refrigerant gas guide member is connected to an upper portion of a side surface of the flow path block.
前記冷媒ガスガイド部材は、前記気液冷媒流路に連通する冷媒液出口を有することを特徴とする請求項1に記載の蒸発器。   The evaporator according to claim 1, wherein the refrigerant gas guide member has a refrigerant liquid outlet communicating with the gas-liquid refrigerant flow path. 被冷却流体から熱を奪って冷媒が蒸発し冷凍効果を発揮する蒸発器と、
冷媒を多段の羽根車によって圧縮する多段ターボ圧縮機と、
圧縮された冷媒ガスを冷却流体で冷却して凝縮させる凝縮器と、
凝縮した冷媒液の一部を蒸発させて生成した冷媒ガスを前記多段ターボ圧縮機の多段圧縮段の中間部分に供給する中間冷却器であるエコノマイザとを備えたターボ冷凍機において、
前記蒸発器は、請求項1乃至5のいずれか一項に記載の蒸発器であることを特徴とするターボ冷凍機。
An evaporator that draws heat from the fluid to be cooled and evaporates the refrigerant to exert a refrigeration effect;
A multi-stage turbo compressor that compresses the refrigerant with a multi-stage impeller; and
A condenser that cools and compresses the compressed refrigerant gas with a cooling fluid;
In a centrifugal chiller comprising an economizer that is an intermediate cooler that supplies refrigerant gas generated by evaporating a part of the condensed refrigerant liquid to an intermediate part of the multistage compression stage of the multistage turbo compressor,
The turbo chiller, wherein the evaporator is the evaporator according to any one of claims 1 to 5.
JP2014070101A 2014-03-28 2014-03-28 Turbo refrigerator evaporator and turbo refrigerator equipped with the evaporator Active JP6313090B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014070101A JP6313090B2 (en) 2014-03-28 2014-03-28 Turbo refrigerator evaporator and turbo refrigerator equipped with the evaporator
CN201510118889.8A CN104949397B (en) 2014-03-28 2015-03-18 The evaporator of turborefrigerator and the turborefrigerator for having the evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014070101A JP6313090B2 (en) 2014-03-28 2014-03-28 Turbo refrigerator evaporator and turbo refrigerator equipped with the evaporator

Publications (2)

Publication Number Publication Date
JP2015190733A true JP2015190733A (en) 2015-11-02
JP6313090B2 JP6313090B2 (en) 2018-04-18

Family

ID=54164260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014070101A Active JP6313090B2 (en) 2014-03-28 2014-03-28 Turbo refrigerator evaporator and turbo refrigerator equipped with the evaporator

Country Status (2)

Country Link
JP (1) JP6313090B2 (en)
CN (1) CN104949397B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106996663A (en) * 2017-04-28 2017-08-01 依米康冷元节能科技(上海)有限公司 Gas-liquid separator and plate-type evaporator for plate-type evaporator
CN113251708A (en) * 2020-02-13 2021-08-13 Lg电子株式会社 Evaporator with a heat exchanger
JP2021162282A (en) * 2020-04-03 2021-10-11 三菱重工サーマルシステムズ株式会社 Evaporator
US11624533B2 (en) 2020-02-13 2023-04-11 Lg Electronics Inc. Evaporator
US11898780B2 (en) 2020-02-13 2024-02-13 Lg Electronics Inc. Evaporator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08189726A (en) * 1995-01-10 1996-07-23 Hitachi Ltd Falling film evaporator, and turbo refrigerating machine equipped with the evaporator
US20080163637A1 (en) * 2007-01-04 2008-07-10 American Standard International Inc. Gas trap distributor for an evaporator
JP2009186034A (en) * 2008-02-01 2009-08-20 Daikin Ind Ltd Economizer
JP2009236430A (en) * 2008-03-27 2009-10-15 Ebara Refrigeration Equipment & Systems Co Ltd Compression type refrigerating machine and its capacity control method
US20110041528A1 (en) * 2008-03-06 2011-02-24 Carrier Corporation Cooler distributor for a heat exchanger
WO2013162759A1 (en) * 2012-04-23 2013-10-31 Aaf-Mcquay Inc. Heat exchanger
JP2014020753A (en) * 2012-07-23 2014-02-03 Daikin Ind Ltd Downward flow liquid film type evaporator
JP2014038002A (en) * 2012-08-13 2014-02-27 Ihi Corp Liquid surface display device, turbo compressor, and turbo refrigerator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4414621B4 (en) * 1994-04-18 2005-06-02 Grasso Gmbh Refrigeration Technology Device consisting of evaporator and liquid separator
JP3891907B2 (en) * 2002-08-30 2007-03-14 三菱重工業株式会社 Evaporator and refrigerator
US6868695B1 (en) * 2004-04-13 2005-03-22 American Standard International Inc. Flow distributor and baffle system for a falling film evaporator
CN201209980Y (en) * 2008-05-13 2009-03-18 上海环球制冷设备有限公司 Energy-conserving type full liquid type evaporator
JP5554277B2 (en) * 2011-03-31 2014-07-23 三菱重工業株式会社 Heat medium flow rate estimation device, heat source machine, and heat medium flow rate estimation method
CN202885362U (en) * 2012-09-17 2013-04-17 重庆美的通用制冷设备有限公司 Refrigerant distributor of falling-film evaporator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08189726A (en) * 1995-01-10 1996-07-23 Hitachi Ltd Falling film evaporator, and turbo refrigerating machine equipped with the evaporator
US20080163637A1 (en) * 2007-01-04 2008-07-10 American Standard International Inc. Gas trap distributor for an evaporator
JP2009186034A (en) * 2008-02-01 2009-08-20 Daikin Ind Ltd Economizer
US20110041528A1 (en) * 2008-03-06 2011-02-24 Carrier Corporation Cooler distributor for a heat exchanger
JP2009236430A (en) * 2008-03-27 2009-10-15 Ebara Refrigeration Equipment & Systems Co Ltd Compression type refrigerating machine and its capacity control method
WO2013162759A1 (en) * 2012-04-23 2013-10-31 Aaf-Mcquay Inc. Heat exchanger
JP2014020753A (en) * 2012-07-23 2014-02-03 Daikin Ind Ltd Downward flow liquid film type evaporator
JP2014038002A (en) * 2012-08-13 2014-02-27 Ihi Corp Liquid surface display device, turbo compressor, and turbo refrigerator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106996663A (en) * 2017-04-28 2017-08-01 依米康冷元节能科技(上海)有限公司 Gas-liquid separator and plate-type evaporator for plate-type evaporator
CN113251708A (en) * 2020-02-13 2021-08-13 Lg电子株式会社 Evaporator with a heat exchanger
US11536497B2 (en) 2020-02-13 2022-12-27 Lg Electronics Inc. Evaporator
US11624533B2 (en) 2020-02-13 2023-04-11 Lg Electronics Inc. Evaporator
US11898780B2 (en) 2020-02-13 2024-02-13 Lg Electronics Inc. Evaporator
JP2021162282A (en) * 2020-04-03 2021-10-11 三菱重工サーマルシステムズ株式会社 Evaporator
JP7098680B2 (en) 2020-04-03 2022-07-11 三菱重工サーマルシステムズ株式会社 Evaporator

Also Published As

Publication number Publication date
JP6313090B2 (en) 2018-04-18
CN104949397B (en) 2018-11-09
CN104949397A (en) 2015-09-30

Similar Documents

Publication Publication Date Title
JP6313090B2 (en) Turbo refrigerator evaporator and turbo refrigerator equipped with the evaporator
JP4404148B2 (en) Economizer
JP5452367B2 (en) Gas-liquid separator and refrigeration cycle apparatus
JP6295051B2 (en) Condenser for compression refrigerator
EP3073218A1 (en) Water cooled microchannel condenser
JP2011214753A (en) Refrigerating device
CN108700354B (en) Condenser and turbo refrigeration device provided with same
CN107655238B (en) Condenser for compression type refrigerator
JP6397246B2 (en) Refrigerator condenser
JP6176470B2 (en) refrigerator
CN108626916B (en) Condenser for compression type refrigerator
JP6599176B2 (en) Turbo refrigeration equipment
JP6273838B2 (en) Heat exchanger
JP2007078317A (en) Heat exchanger for cooling equipment, and cooling equipment
KR20080004857A (en) Condensor with receiver dryer
JP2017036900A (en) Radiator and super-critical pressure refrigerating-cycle using the radiator
JP2017187222A (en) Condenser
JP2015105783A (en) Turbo refrigerator
WO2013125215A1 (en) Refrigeration machine
JP2015194302A (en) turbo refrigerator
JP2017161088A (en) Refrigeration cycle device
WO2021117254A1 (en) Spot cooler device
WO2021117240A1 (en) Refrigerator
KR100645804B1 (en) A refrigerants distributing apparatus of a condenser
WO2020235053A1 (en) Refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180322

R150 Certificate of patent or registration of utility model

Ref document number: 6313090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250