KR100645804B1 - A refrigerants distributing apparatus of a condenser - Google Patents

A refrigerants distributing apparatus of a condenser Download PDF

Info

Publication number
KR100645804B1
KR100645804B1 KR1020040058912A KR20040058912A KR100645804B1 KR 100645804 B1 KR100645804 B1 KR 100645804B1 KR 1020040058912 A KR1020040058912 A KR 1020040058912A KR 20040058912 A KR20040058912 A KR 20040058912A KR 100645804 B1 KR100645804 B1 KR 100645804B1
Authority
KR
South Korea
Prior art keywords
refrigerant
condenser
pipe
refrigerant pipe
dryness
Prior art date
Application number
KR1020040058912A
Other languages
Korean (ko)
Other versions
KR20060010281A (en
Inventor
이한춘
오세윤
사용철
장동연
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020040058912A priority Critical patent/KR100645804B1/en
Publication of KR20060010281A publication Critical patent/KR20060010281A/en
Application granted granted Critical
Publication of KR100645804B1 publication Critical patent/KR100645804B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0444Condensers with an integrated receiver where the flow of refrigerant through the condenser receiver is split into two or more flows, each flow following a different path through the condenser receiver

Abstract

본 발명은 응축기에 관한 것으로, 보다 상세하게는 압축기로부터 유입된 고온고압의 기체상태 냉매가 응축기의 냉매관을 통과하는 동안 외부공기와 열교환을 이루어 응축이 계속적으로 진행되는 상태에서, 응축기의 대부분 구간에서 상기 냉매의 건도가 항상 적정 건도를 유지할 수 있도록 한 응축기의 냉매 분배장치에 관한 것으로서, 1개의 동파이프를 사형으로 반복 절곡하여 다단을 이루는 냉매관을 구성하고, 상기 냉매관에 다수의 냉각핀이 부착된 응축기에 있어서, 상기 냉매관의 입구를 통해 내부로 유입되어 응축이 일부 진행된 냉매로부터 액상의 냉매를 분리하는 수단이 구비되고; 상기 기액분리수단에 의하여 추출된 액상의 냉매를 냉매관의 출구측에 주입할 수 있도록 구성함으로써 관내측 열전달 계수의 증대에 따른 응축기의 성능을 향상시킬 수 있는 효과가 있다.The present invention relates to a condenser, and more particularly, in a state in which condensation proceeds continuously by exchanging heat with external air while the high temperature and high pressure gaseous refrigerant flowing from the compressor passes through the refrigerant pipe of the condenser, most of the condenser The present invention relates to a refrigerant distribution device of a condenser in which the dryness of the refrigerant is always maintained at an appropriate dryness. The refrigerant pipe is formed by repeatedly bending one copper pipe in a sand shape to form a multistage refrigerant pipe, and a plurality of cooling fins in the refrigerant pipe. In the attached condenser, there is provided a means for separating the liquid phase refrigerant from the refrigerant flowed into the interior through the inlet of the refrigerant pipe and the condensation is partially progressed; By configuring the liquid refrigerant extracted by the gas-liquid separation means to be injected into the outlet side of the refrigerant pipe, there is an effect of improving the performance of the condenser due to the increase in the heat transfer coefficient inside the tube.

냉매관, 건도, 기액분리수단, 분지관, 환상류, 응축, 리턴부Refrigerant pipe, dryness, gas-liquid separation means, branch pipe, annular flow, condensation, return part

Description

응축기의 냉매 분배장치{A refrigerants distributing apparatus of a condenser}A refrigerants distributing apparatus of a condenser

도 1은 일반적인 냉동사이클을 나타낸 계통도.1 is a system diagram showing a general refrigeration cycle.

도 2는 도 1의 응축기를 확대 도시한 정면도.FIG. 2 is an enlarged front view of the condenser of FIG. 1. FIG.

도 3은 냉매의 건도에 따른 열전달 계수의 변화를 나타낸 그래프.3 is a graph showing a change in the heat transfer coefficient according to the dryness of the refrigerant.

도 4는 본 발명에 의한 응축기의 냉매 분배상태를 개략적으로 도시한 예시도.4 is an exemplary view schematically showing a refrigerant distribution state of a condenser according to the present invention.

도 5는 본 발명의 요부를 나타낸 사시도.5 is a perspective view showing the main portion of the present invention.

도 6은 본 발명의 냉매 건도 변화를 나타낸 대비표.6 is a contrast table showing the change in refrigerant dryness of the present invention.

*도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1:압축기1: compressor

2:응축기2: condenser

21:냉매관 21a:리턴부  21: refrigerant pipe 21a: return portion

22:냉각핀 23:기액분리수단  22: cooling fin 23: gas-liquid separation means

23a:분지관  23a: branch pipe

3:팽창기구 4:증발기3: expansion mechanism 4: evaporator

본 발명은 응축기에 관한 것으로, 보다 상세하게는 압축기로부터 유입된 고온고압의 기체상태 냉매가 응축기의 냉매관을 통과하는 동안 외부공기와 열교환을 이루어 응축이 계속적으로 진행되는 상태에서, 응축기의 대부분 구간에서 상기 냉매의 건도가 항상 적정 건도를 유지할 수 있도록 한 응축기의 냉매 분배장치에 관한 것이다.The present invention relates to a condenser, and more particularly, in a state in which condensation proceeds continuously by exchanging heat with external air while the high temperature and high pressure gaseous refrigerant flowing from the compressor passes through the refrigerant pipe of the condenser, most of the condenser In the present invention relates to a refrigerant distribution device of the condenser so that the dryness of the refrigerant can always maintain the appropriate dryness.

일반적으로 에어컨, 냉장고 등은 압축-응축-팽창-증발의 과정을 연속적으로 행하는 냉동사이클의 원리에 따라 냉매를 상태 변화시켜 실내를 냉방하거나 식품을 냉장 보관하게 된다.In general, an air conditioner, a refrigerator, or the like changes the state of a refrigerant according to the principle of a refrigeration cycle that continuously performs a process of compression, condensation, expansion, and evaporation, thereby cooling the room or refrigerating food.

도 1은 일반적인 냉동사이클을 나타낸 계통도이다.1 is a system diagram showing a general refrigeration cycle.

통상 냉동사이클은 저온저압의 기체 상태로 된 냉매를 압축하여 고온고압의 기체상태의 냉매로 변화시키는 압축기(1)와, 상기 압축기(1)에서 변화된 고온고압의 기체상태로 된 냉매를 외부공기와 열교환을 이루게 하여 상온고압의 액체상태의 냉매로 응축시키는 응축기(2)와, 상기 응축기(2)를 거친 상온고압의 액체상태의 냉매를 단열 팽창시켜 저온저압의 액체상태 냉매로 변화시키는 팽창기구(3)와, 상기 팽창기구(3)에서 변화된 저온저압의 액체상태의 냉매를 기체상태로 변화시키면서 외부의 열을 흡수하여 외부공기와 열교환을 이루는 증발기(4)로 구성된다.In general, a refrigeration cycle compresses a refrigerant in a gaseous state of low temperature and low pressure, and converts the refrigerant into a gaseous state of high temperature and high pressure, and a refrigerant in a gaseous state of high temperature and high pressure changed in the compressor (1). A condenser (2) for condensing into a liquid refrigerant at room temperature and high pressure through heat exchange, and an expansion mechanism for adiabatic expansion of the liquid refrigerant at room temperature and high pressure through the condenser (2) to change into a liquid refrigerant at low temperature and low pressure ( 3) and an evaporator 4 which absorbs external heat and exchanges heat with external air while changing the low-temperature low-pressure liquid refrigerant changed into the gas state by the expansion mechanism 3.

그리고, 상기 냉동사이클은 냉매가스가 고압상태로 유지되어 순환하는 고압부(H)와, 냉매가스가 저압상태로 유지되어 순환하는 저압부(L)로 구분되는 것으로 서, 상기 압축기(1)와 응축기(2)로 구성되는 부분이 고압부(H)에 해당되고, 상기 팽창기구(3)와 증발기(4)로 구성되는 부분은 저압부(L)에 해당되는 것이며, 압축기(1)가 작동하면서 냉매가스가 고압부(H)와 저압부(L)를 통해 사이클을 순환하면서 냉각 또는 냉방기능을 수행하게 되는 것이다.The refrigerating cycle is divided into a high pressure part (H) through which refrigerant gas is maintained at high pressure and circulated, and a low pressure part (L) through which refrigerant gas is maintained at low pressure and circulated. The portion consisting of (2) corresponds to the high pressure portion (H), the portion consisting of the expansion mechanism (3) and the evaporator (4) corresponds to the low pressure portion (L), the compressor (1) while operating the refrigerant Gas is to perform the cooling or cooling function while circulating the cycle through the high pressure unit (H) and low pressure unit (L).

도 2는 도 1의 응축기를 확대 도시한 정면도이다.FIG. 2 is an enlarged front view of the condenser of FIG. 1.

상기 응축기(2)는 주로 핀-관형 열교환기가 사용되는 것으로서, 1개의 동파이프를 사형(巳型)으로 반복 절곡하여 다단을 이루는 냉매관(21)으로 구성되고, 상기 냉매관(1)의 외측에 알루미늄 재질의 평판체로 된 다수의 냉각핀(22)이 일정 간격으로 고정된다. 여기서, 미설명 부호 21a는 리턴부이다.The condenser 2 is mainly a fin-tubular heat exchanger, and is composed of a refrigerant pipe 21 constituting a plurality of stages by repeatedly bending one copper pipe into a sand shape, and the outside of the refrigerant pipe 1. A plurality of cooling fins 22 made of an aluminum flat plate are fixed at regular intervals. Here, reference numeral 21a is a return unit.

이러한 응축기(2)는 압축기로부터 고온고압의 기체상태의 냉매가 유입되면, 이 유입된 고온고압의 기체상태 냉매는 사형으로 반복 절곡된 냉매관(21)을 통과하면서 외부공기와 열교환을 이루어 열을 방출하게 되는데, 이때 냉각핀(22)에 의해서 외부공기와의 접촉면적이 확장되고, 응축기(2)의 내부로 유입된 고온고압의 기체상태의 냉매는 고압의 과냉액으로 응축된 상태로 팽창기구측으로 순환된다.When the condenser (2) is a high-temperature, high-pressure gaseous refrigerant flows from the compressor, the introduced high-temperature, high-pressure gaseous refrigerant passes through the refrigerant pipe 21 repeatedly bent in a sand shape to heat exchange with the outside air to heat At this time, the contact area with the external air is expanded by the cooling fin 22, and the high-temperature, high-pressure gaseous refrigerant introduced into the condenser 2 is condensed with a high-pressure subcooled liquid. Circulated to the side.

이때, 상기 냉매관(21)의 입구를 통해 내부로 유입된 고온고압의 기체상태 냉매는 외부공기와 열교환을 이루면서 상(相)이 변화할 때, 액체와 기체의 부피비를 나타내는 건도(乾度)도 함께 변하게 되는 것으로서, 도 3에 도시된 바와 같이 건도가 큰 구간에서는 관내측 열전달 계수가 높고, 건도가 작은 구간에서는 관내측 열전달 계수가 작아진다.At this time, the high-temperature, high-pressure gaseous refrigerant introduced into the refrigerant pipe 21 through the inlet is a dryness representing the volume ratio of liquid and gas when the phase changes while forming heat exchange with external air. Also, as shown in FIG. 3, the inner heat transfer coefficient is high in a section with a high dryness, and the inner heat transfer coefficient decreases in a section with a low dryness.

통상적인 응축기의 경우, 전술한 바와 같이 냉매관(21)의 입구에서부터 출구 까지 중간에 분류(分流)되지 않고 하나의 유동 경로를 지나므로, 도 6에 도시된 바와 같이 건도는 입구에서 출구까지 일관되게 감소한다. 즉, 냉매의 건도는 냉매관의 입구에서 1.0일때, 점차 감소하여 출구에서 0으로 변화되는 것으로서, 냉매의 건도가 작아지면 냉매관(21)의 벽면을 타고 흐르는 응축액이 점점 두꺼워지면서 관내측 열전달 계수도 작아져 응축효율 및 응축기의 성능 저하를 초래하는 문제점이 있었다.In the case of a conventional condenser, as described above, since it passes through one flow path without being divided in the middle from the inlet to the outlet of the refrigerant pipe 21, the dryness is consistent from the inlet to the outlet as shown in FIG. Decreases. That is, the dryness of the coolant gradually decreases to 1.0 at the inlet of the coolant tube and changes to 0 at the inlet of the coolant tube. As the dryness of the coolant becomes smaller, the condensate flowing through the wall of the coolant tube 21 becomes thicker, and the heat transfer coefficient inside the pipe Also, there is a problem in that the condensation efficiency and the performance of the condenser are reduced.

이에 본 발명은 상기한 바와 같은 종래의 제반 문제점을 해소하기 위해서 창안된 것으로서, 그 목적은 압축기로부터 유입된 고온고압의 기체상태 냉매가 응축기의 냉매관을 통과하는 동안 외부공기와 열교환을 이루어 응축이 계속적으로 진행되는 상태에서, 응축기의 대부분 구간에서 상기 냉매의 건도가 항상 적정 건도를 유지할 수 있도록 함으로써 관내측 열전달 계수의 증대에 따른 응축기의 성능을 향상시킬 수 있도록 하는데 있다.Accordingly, the present invention has been made to solve the conventional problems as described above, the object of which is that the high-temperature, high-pressure gaseous refrigerant flowed from the compressor exchanges heat with the outside air while passing through the refrigerant tube of the condenser condensation In the continuous state, it is possible to improve the performance of the condenser by increasing the internal heat transfer coefficient of the refrigerant by allowing the dryness of the refrigerant to always maintain the appropriate dryness in most sections of the condenser.

이러한 본 발명의 목적을 달성하기 위하여 1개의 동파이프를 사형으로 반복 절곡하여 다단을 이루는 냉매관을 구성하고, 상기 냉매관에 다수의 냉각핀이 부착된 응축기에 있어서, 상기 냉매관의 입구를 통해 내부로 유입되어 응축이 일부 진행된 냉매로부터 액상의 냉매를 분리하는 수단이 구비되고; 상기 기액분리수단에 의하여 추출된 액상의 냉매를 냉매관의 출구측에 주입할 수 있도록 구성한 것을 특징으로 한 응축기의 냉매 분배장치가 제공된다.In order to achieve the object of the present invention, one copper pipe is repeatedly bent in a sand shape to form a multi-stage refrigerant pipe, and in the condenser having a plurality of cooling fins attached to the refrigerant pipe, through the inlet of the refrigerant pipe. Means for separating the liquid phase refrigerant from the refrigerant introduced into the condensation and partially proceeded; The refrigerant distribution device of the condenser is provided so as to inject the liquid refrigerant extracted by the gas-liquid separation means to the outlet side of the refrigerant pipe.

또한, 상기 기액분리수단은, 냉매관에서 하부측으로 곡선을 이루는 리턴부의 하부측에, 그 리턴부를 따라 작은 곡선을 이루는 분지관을 형성하여서 된 것을 특징으로 한다.Further, the gas-liquid separating means is formed by forming a branching tube having a small curve along the return portion, on the lower side of the return portion which is curved from the refrigerant pipe to the lower side.

또한, 상기 분지관을 각 구간별로 반복하여 리턴부에 형성한 것을 특징으로 한다.In addition, the branch pipe is characterized in that formed in the return portion by repeating for each section.

이하, 첨부된 도면을 참조로 하여 본 발명의 구성을 실시예에 따라 상세히 설명하기로 한다.Hereinafter, with reference to the accompanying drawings will be described in detail the configuration of the present invention according to the embodiment.

도 4는 본 발명에 의한 응축기의 냉매 분배상태를 개략적으로 도시한 예시도이다.4 is an exemplary view schematically showing a refrigerant distribution state of a condenser according to the present invention.

통상적으로 열교환기의 튜브(Tube), 즉 냉매관의 입구를 통해 내부로 유입된 고온고압의 기체상태 냉매는 그 입구에서 1.0의 건도를 갖다가 외부공기와 열교환을 이루면서 응축이 계속적으로 진행되어 출구에서 건도가 0이 된다.In general, the high-temperature, high-pressure gaseous refrigerant introduced into the tube of the heat exchanger, that is, the refrigerant tube, has a dryness of 1.0 at the inlet, and condenses continuously while exchanging heat with external air. The dryness at becomes zero.

이러한 응축기에 있어, 본 발명은 각 구간에서 액냉매를 추출하여 냉매관의 출구측에 그 추출된 액냉매가 다시 주입되는 냉매 분배 구조를 갖도록 구성한 것으로서, 상기 액냉매의 추출은 도 5에 도시된 바와 같은 기액분리수단(23)에 의해서 이루어진다.In the condenser, the present invention is configured to have a refrigerant distribution structure in which the liquid refrigerant is extracted in each section and the extracted liquid refrigerant is injected again to the outlet side of the refrigerant pipe, and the extraction of the liquid refrigerant is illustrated in FIG. 5. It is made by the gas-liquid separation means 23 as described above.

상기 기액분리수단(23)은 냉매관(21)에서 하부측으로 곡선을 이루는 리턴부(21a)의 하부측에, 상기 리턴부(21a)를 따라 작은 곡선을 이루는 분지관(23a)을 형성한 것이며, 상기 분지관(23a)의 단부측은 냉매관의 출구측에 연결되도록 구성한 것이다.The gas-liquid separation means 23 is formed on the lower side of the return portion 21a which curves from the refrigerant pipe 21 to the lower side, forming a branching pipe 23a having a small curve along the return portion 21a. The end side of the branch pipe 23a is configured to be connected to the outlet side of the refrigerant pipe.

통상적으로 응축이 일부 진행된 상태에서는 냉매의 흐름이 고리 형태를 이루는 환상류(Annular flow)가 되어 액상의 냉매는 냉매관(21)의 벽면을 따라 흐르고, 기상의 냉매는 중심부를 보다 빠른 속도로 흐른다.In general, in a state where the condensation is partially performed, the flow of the refrigerant becomes an annular flow in the form of a ring, so that the liquid refrigerant flows along the wall surface of the refrigerant pipe 21, and the gaseous refrigerant flows through the center at a higher speed. .

따라서, 냉매관(21)의 입구를 통해 내부로 유입되어 응축이 일부 진행된 냉매중에 속도가 빠른 기상의 냉매는 반지름이 큰 리턴부(21a)측에 집중되어 흐르고, 밀도가 큰 액상의 냉매는 반지름이 작은 곡선을 이루는 분지관(23a)측으로 집중되어 흐르게 됨으로써 기액 분리에 따른 액냉매의 추출이 이루어지게 되는 것이며, 이 추출된 액냉매는 상기 분지관(23a)을 통하여 냉매관(21)의 출구측에 주입됨으로써 냉매의 분배가 이루어지게 되는 것이다.Therefore, among the refrigerants introduced into the refrigerant pipe 21 through the inlet and partially condensed, the fast-flowing refrigerant flows concentrated on the return portion 21a having a large radius, and the liquid refrigerant having a high density has a radius. The liquid refrigerant is extracted by the gas-liquid separation by being concentrated toward the branch pipe 23a forming a small curve, and the extracted liquid refrigerant is discharged from the refrigerant pipe 21 through the branch pipe 23a. Injection into the side is to distribute the refrigerant.

이렇게 개선된 냉매 분배 구조에 의한 응축기의 건도를 살펴보면 도 6에 도시된 바와 같다.Looking at the dryness of the condenser by the improved refrigerant distribution structure as shown in FIG.

즉, 냉매관의 입구에서 1.0의 건도를 갖는 냉매는 외부공기와 열교환을 이루면서 일부 응축되어 건도가 0.7로 저하되는데, 이때 응축이 일부 진행된 상기 냉매로부터 액냉매를 추출하게 되면, 건도가 다시 0.9로 상승되어 관내측 열전달 계수도 함께 증가하게 된다.That is, the refrigerant having a dryness of 1.0 at the inlet of the refrigerant pipe is partially condensed as it exchanges heat with external air, and the dryness is lowered to 0.7. At this time, when the liquid refrigerant is extracted from the refrigerant having undergone some condensation, the dryness is again 0.9. As it increases, the internal heat transfer coefficient also increases.

그리고, 필요에 따라 액냉매를 구간별로 반복하여 추출하게 되면, 응축기의 대부분의 구간에서 건도를 0.7∼0.9 사이로 유지할 수 있게 되므로 응축효율 및 응축기의 성능을 향상시킬 수 있게 되는 것이며, 여기서 추출된 액냉매는 냉매관의 출구측에 주입되어 응축액이 되는 것으로서, 액냉매를 추출하고 난 후에는 냉매의 유량이 감소하여 냉매의 유속이 느려지므로 필요에 따라서 유사한 건도의 냉매관과 합지하여 냉매의 유속을 일정값 이상으로 유지할 수 있다.In addition, if the liquid refrigerant is repeatedly extracted for each section as necessary, the dryness can be maintained between 0.7 and 0.9 in most sections of the condenser, thereby improving condensation efficiency and performance of the condenser. The refrigerant is injected into the outlet of the refrigerant pipe to form a condensate. After the liquid refrigerant is extracted, the flow rate of the refrigerant decreases to decrease the flow rate of the refrigerant, so that the refrigerant flows together with a similar dry refrigerant pipe as necessary. It can be kept above a certain value.

상술한 바와 같이 본 발명은 압축기로부터 유입된 고온고압의 기체상태 냉매가 응축기의 냉매관을 통과하는 동안 외부공기와 열교환을 이루어 응축이 계속적으로 진행되는 상태에서, 응축기의 대부분 구간에서 상기 냉매의 건도가 항상 적정 건도를 유지할 수 있도록 함으로써 관내측 열전달 계수의 증대에 따른 응축기의 성능을 향상시킬 수 있는 효과가 있다.As described above, the present invention provides a dryness of the refrigerant in most sections of the condenser in a state in which heat is exchanged with external air while the high temperature and high pressure gaseous refrigerant flowing from the compressor passes through the refrigerant pipe of the condenser. By maintaining the proper dryness at all times, there is an effect of improving the performance of the condenser due to the increase in the heat transfer coefficient inside the tube.

Claims (3)

삭제delete 1개의 동파이프를 사형으로 반복 절곡하여 다단을 이루는 냉매관을 구성하고, 상기 냉매관에 다수의 냉각핀이 부착된 응축기에 있어서,In a condenser in which one copper pipe is repeatedly bent in a sand shape to form a multistage refrigerant pipe, and a plurality of cooling fins are attached to the refrigerant pipe, 상기 냉매관의 입구를 통해 내부로 유입되어 응축이 일부 진행된 냉매로부터 액상의 냉매를 분리할 수 있도록 냉매관에서 하부측으로 곡선을 이루는 리턴부의 하부측에, 그 리턴부를 따라 작은 곡선을 이루는 분지관을 형성한 기액분리수단이 구비되고;A branch pipe having a small curve along the return part is provided on the lower side of the return part which is introduced into the through the inlet of the coolant pipe and curves downward from the coolant pipe so as to separate the liquid refrigerant from the refrigerant having partially condensed. A formed gas-liquid separation means is provided; 상기 기액분리수단에 의하여 추출된 액상의 냉매를 냉매관의 출구측에 주입할 수 있도록 구성한 것을 특징으로 한 응축기의 냉매 분배장치.Refrigerant distribution device of the condenser characterized in that the liquid refrigerant extracted by the gas-liquid separation means configured to inject to the outlet side of the refrigerant pipe. 제2항에 있어서,The method of claim 2, 상기 분지관을 각 구간별로 반복하여 리턴부에 형성한 것을 특징으로 한 응축기의 냉매 분배장치.Refrigerant distribution device of the condenser, characterized in that formed in the return section by repeating the branch pipe for each section.
KR1020040058912A 2004-07-27 2004-07-27 A refrigerants distributing apparatus of a condenser KR100645804B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040058912A KR100645804B1 (en) 2004-07-27 2004-07-27 A refrigerants distributing apparatus of a condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040058912A KR100645804B1 (en) 2004-07-27 2004-07-27 A refrigerants distributing apparatus of a condenser

Publications (2)

Publication Number Publication Date
KR20060010281A KR20060010281A (en) 2006-02-02
KR100645804B1 true KR100645804B1 (en) 2006-11-23

Family

ID=37120619

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040058912A KR100645804B1 (en) 2004-07-27 2004-07-27 A refrigerants distributing apparatus of a condenser

Country Status (1)

Country Link
KR (1) KR100645804B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190118320A (en) * 2018-04-10 2019-10-18 노홍조 Liquid refrigerant separating type heat pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190118320A (en) * 2018-04-10 2019-10-18 노홍조 Liquid refrigerant separating type heat pump
KR102152499B1 (en) * 2018-04-10 2020-09-04 노홍조 Liquid refrigerant separating type heat pump

Also Published As

Publication number Publication date
KR20060010281A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
CN100590372C (en) Refrigeration circuit with improved liquid/steam receiver
KR20110100905A (en) Chiller
JP6295051B2 (en) Condenser for compression refrigerator
CN101652610A (en) Refrigeration device comprising coolant conduits that are connected in parallel in the heat exchanger
KR101173157B1 (en) Air-Conditioning System for Vehicle having Water-Cooled Condenser and Water-Cooled Heat Exchanger for Supercooling
CN112944770B (en) Refrigerator and refrigerating system thereof
TWI571606B (en) A refrigeration unit using a triple tube heat exchanger
JP6313090B2 (en) Turbo refrigerator evaporator and turbo refrigerator equipped with the evaporator
CN103649650A (en) Refrigeration circuit, gas-liquid separator and heating and cooling system
KR101385194B1 (en) A Condenser
US7073347B2 (en) Evaporator for a refrigeration system
JP6670197B2 (en) Condenser for compression refrigerator
KR100645804B1 (en) A refrigerants distributing apparatus of a condenser
CN104697232A (en) A heat pump system
JP6397246B2 (en) Refrigerator condenser
KR101898994B1 (en) Air conditioner having refrigerant booster
JP6817124B2 (en) Condenser for compression refrigerator
KR100581565B1 (en) A refrigerants distributing apparatus of an evaporator
JP6945202B2 (en) Cyclone type freezer and heat pump system equipped with the cyclone type freezer
KR101280312B1 (en) Hot water heating device using cooling apparatus
JP2006029714A (en) Ejector cycle
KR20090080312A (en) Condenser having integrated receiver drier
JP2008089252A (en) Cooling apparatus
KR101541961B1 (en) Heat pump system
KR101870672B1 (en) smart Air conditioner control apparatus

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121026

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131024

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20141024

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20151023

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee