JP2015178054A - Polymer coagulant dissolution device - Google Patents

Polymer coagulant dissolution device Download PDF

Info

Publication number
JP2015178054A
JP2015178054A JP2014055704A JP2014055704A JP2015178054A JP 2015178054 A JP2015178054 A JP 2015178054A JP 2014055704 A JP2014055704 A JP 2014055704A JP 2014055704 A JP2014055704 A JP 2014055704A JP 2015178054 A JP2015178054 A JP 2015178054A
Authority
JP
Japan
Prior art keywords
storage tank
polymer flocculant
flocculant solution
dissolution
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014055704A
Other languages
Japanese (ja)
Other versions
JP6242002B2 (en
Inventor
大原 工
Takumi Ohara
工 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hymo Corp
Original Assignee
Hymo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hymo Corp filed Critical Hymo Corp
Priority to JP2014055704A priority Critical patent/JP6242002B2/en
Publication of JP2015178054A publication Critical patent/JP2015178054A/en
Application granted granted Critical
Publication of JP6242002B2 publication Critical patent/JP6242002B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dissolution device which prevents a polymer coagulant solution from being transferred quickly in a low state of viscosity and can maximize the viscosity of the polymer coagulant solution in a method of dissolving a dispersion-type polymer coagulant in a storage tank.SOLUTION: A dissolution device, in which a storage tank provided with partition opening parts is divided into four or more sections at an arbitrary ratio by three or more partition plates, is used. The dissolution device stores a polymer coagulant solution in the storage tank for a certain period of time. When the opening parts of the partition plates adjacent in parallel are provided on a diagonal line, the dissolution effect is facilitated, and thereby the maximum effect can be achieved.

Description

本発明は、高分子凝集剤を溶解する溶解装置に関するものであり、詳しくは、高分子凝集剤を溶解する貯留槽において、仕切り板を設置し流路を設けることで未溶解のままで通過することを防ぎ、高分子凝集剤溶液の粘度を最大限に引き出した溶解装置に関する。 The present invention relates to a dissolution apparatus for dissolving a polymer flocculant, and more specifically, in a storage tank for dissolving a polymer flocculant, a partition plate is provided and a flow path is provided to pass undissolved. The present invention relates to a dissolution apparatus that prevents this and maximizes the viscosity of the polymer flocculant solution.

高分子凝集剤は、廃水処理用薬剤、汚泥脱水用薬剤や歩留向上剤や濾水性向上剤等の製紙用添加剤として広範囲に使用され、既に工業的になくてはならない薬剤となっている。これら凝集剤は水溶性高分子であり、水で希釈・溶解して0.05〜0.5質量%程度で使用する。通常では、溶解には溶解槽を用いて高分子凝集剤原液と溶解水を投入し、撹拌溶解され高分子凝集剤溶解液添加ラインを通じて排水や汚泥、製紙原料等の対象物に添加される。対象物に添加される前に貯留槽を用いて滞留時間を設け溶解を促進する場合もある。貯留槽を用いた溶解については様々な方法が開示されており、例えば、特許文献1では、溶解槽の内部に水位保持用仕切板を設けて一定水位を保持するよう形成し、一定水位保持側に撹拌機を設け、上記溶解槽の上面板に粉末状凝集剤定量供給装置及び圧力水給水管を設け、上記上面板に上記凝集剤の定量給粉口を開口し、該給粉口の近傍に上記給水管の下向給水ノズルを配設した凝集剤溶解装置について開示されており、特許文献2では、粉末状高分子凝集剤を水に添加して膨潤液を調製する膨潤工程と、前記膨潤液を濾過部材に供給し、前記濾過部材の濾過面を通過させることにより凝集剤水溶液を得る溶解工程を有する技術について開示されている。しかし、これらは粉末状高分子凝集剤についての技術である。現在では粉末状高分子凝集剤の他に分散型高分子凝集剤、油中水型エマルジョン、塩水中分散液等が汎用されている。これら分散型高分子凝集剤原液の濃度は15〜50質量%程度であり、分散型高分子凝集剤の成分である水溶性高分子は、溶解当初は水と接触すると膨潤し粘性が出るため順々に移送されるのではなく、粘性が低い状態では移送が速く未溶解のまま高分子凝集剤溶解液添加ラインに移送され効果が十分に発揮されない場合や未溶解物によるトラブルが発生する場合がある。そのため、分散型高分子凝集剤を十分に溶解させ効果を最大限に発揮させる溶解装置が要望されている。 Polymer flocculants are widely used as papermaking additives such as wastewater treatment chemicals, sludge dehydration chemicals, yield improvers and drainage improvers, and are already industrially indispensable chemicals. . These flocculants are water-soluble polymers, and are diluted and dissolved with water and used at about 0.05 to 0.5% by mass. Usually, for dissolution, a polymer flocculant stock solution and dissolved water are added using a dissolution tank, stirred and dissolved, and added to objects such as waste water, sludge, and papermaking raw materials through a polymer flocculant solution addition line. In some cases, the dissolution time is promoted by providing a residence time using a storage tank before being added to the object. Various methods have been disclosed for dissolution using a storage tank.For example, in Patent Document 1, a water level holding partition plate is provided inside the dissolution tank so as to hold a constant water level. Provided with an agitator, a powder flocculant quantitative supply device and a pressure water supply pipe are provided on the upper surface plate of the dissolution tank, the quantitative powder feed port of the flocculant is opened on the upper surface plate, and the vicinity of the powder feed port The coagulant dissolving device is provided with a downward water supply nozzle provided in the above water supply pipe. In Patent Document 2, a swelling step of adding a powdery polymer flocculant to water to prepare a swelling liquid; A technique is disclosed that has a dissolution step of supplying a swelling liquid to a filtration member and passing the filtration surface of the filtration member to obtain an aqueous flocculant solution. However, these are techniques for powdery polymer flocculants. At present, in addition to powdery polymer flocculants, dispersed polymer flocculants, water-in-oil emulsions, brine dispersions and the like are widely used. The concentration of these dispersion-type polymer flocculant stock solutions is about 15 to 50% by mass, and the water-soluble polymer that is a component of the dispersion-type polymer flocculant is swollen and viscous when contacted with water at the beginning of dissolution. Rather than being transported frequently, when the viscosity is low, the transport is fast and undissolved, and it is transported to the polymer flocculant solution addition line and the effect is not fully exhibited or troubles due to undissolved materials may occur. is there. Therefore, there is a demand for a dissolution apparatus that fully dissolves the dispersion-type polymer flocculant and exhibits the effect to the maximum.

特開2008−93530号公報JP 2008-93530 A WO2007/119720号公報WO2007 / 119720

本発明の課題は、高分子凝集剤を溶解する貯留槽において、高分子凝集剤成分である高分子凝集剤溶液の粘性が低い状態で早く移送され、未溶解のまま、あるいは溶解が不完全な状態で高分子凝集剤溶解液移送ラインに移行することがあり、本発明では、高分子凝集剤溶液の粘性が低い状態で早く移送されるのを防ぎ、高分子凝集剤溶液の粘度を最大限に引き出す、簡易で安定した溶解を可能にする溶解装置を提供することである。 The problem of the present invention is that in the storage tank for dissolving the polymer flocculant, the polymer flocculant solution that is the polymer flocculant component is quickly transferred in a low viscosity state and remains undissolved or incompletely dissolved. In the present invention, the polymer flocculant solution transfer line may be transferred, and in the present invention, the polymer flocculant solution is prevented from being transferred quickly when the viscosity is low, and the viscosity of the polymer flocculant solution is maximized. It is an object of the present invention to provide a dissolution apparatus that enables simple and stable dissolution.

上記課題を解決するため本発明者は、鋭意検討した結果、以下に述べる発明に達した。即ち、貯留槽に隔壁として仕切り板を三枚以上設置し、貯留槽内を四つ以上の区画に分割し流路を設けることで高分子凝集剤溶液の粘性が低い状態で早く移送されるのを防ぎ、高分子凝集剤溶液の粘度を最大限に引き出す滞留時間を調節した溶解装置である。 In order to solve the above-mentioned problems, the present inventors have intensively studied and as a result, have reached the invention described below. In other words, by installing three or more partition plates as partition walls in the storage tank, dividing the storage tank into four or more sections and providing flow paths, the polymer flocculant solution can be transferred quickly with low viscosity. Is a dissolution apparatus in which the residence time is adjusted to maximize the viscosity of the polymer flocculant solution.

本発明の溶解装置は、高分子凝集剤溶液の粘性が低い状態で早く移送されることがないため、完全な溶解が可能となるため高分子凝集剤の最大限の効果を発揮させることができ、更には未溶解物が生じないため溶解トラブルが無くなり、簡易で安定した溶解及び効果が達成できる。 Since the dissolution apparatus of the present invention is not transferred quickly when the viscosity of the polymer flocculant solution is low, complete dissolution is possible and the maximum effect of the polymer flocculant can be exhibited. Furthermore, since no undissolved material is produced, there is no problem of dissolution, and simple and stable dissolution and effects can be achieved.

本発明の高分子凝集剤を溶解する溶解装置について説明する。 A dissolution apparatus for dissolving the polymer flocculant of the present invention will be described.

高分子凝集剤は、廃水処理用薬剤、汚泥脱水用薬剤や歩留向上剤や濾水性向上剤等の製紙用添加剤として広範囲に使用され、既に工業的になくてはならない薬剤となっている。現在では分散型高分子凝集剤が主流となっており、その形態としては油中水型エマルジョン、塩水中分散液が汎用されている。これらは、水溶性高分子(ポリマー)から構成されているので水に溶解すると高粘性溶液となるため、原液濃度15〜50質量%を通常、0.05〜0.5質量%程度の濃度に希釈溶解してから排水や汚泥、製紙原料に添加される。そのため高粘性液体を攪拌するため溶解装置が必要であり、より効果的な溶解装置が要望されている。本発明の溶解装置も高分子凝集剤として分散型高分子凝集剤、即ち、油中水型エマルジョン、塩水中分散液タイプを適用する。特に油中水型エマルジョンタイプは溶液の粘性が高く、膨潤物、未溶解物による溶解装置配管の閉塞等のトラブルが生じやすいので本発明の溶解装置を適用するとその効果が顕著である。高分子凝集剤の重量平均分子量は、これまでは、100万〜800万のものが汎用されてきたが、近年では1000万以上のものも使用される様になっている。本発明の溶解装置では特に溶液粘性が高い重量平均分子量が1000万以上のものに適用すると、適用しない場合に比べてより一層、その効果が顕著に発揮される。 Polymer flocculants are widely used as papermaking additives such as wastewater treatment chemicals, sludge dehydration chemicals, yield improvers and drainage improvers, and are already industrially indispensable chemicals. . At present, dispersive polymer flocculants are mainly used, and water-in-oil emulsions and salt-water dispersions are widely used. Since these are composed of water-soluble polymers (polymers), they become highly viscous solutions when dissolved in water. Therefore, the concentration of the stock solution is usually 15 to 50% by mass to a concentration of about 0.05 to 0.5% by mass. After being diluted and dissolved, it is added to wastewater, sludge, and papermaking materials. Therefore, a dissolving device is required to stir the highly viscous liquid, and a more effective dissolving device is desired. The dissolution apparatus of the present invention also applies a dispersion type polymer flocculant, that is, a water-in-oil emulsion or a salt-water dispersion type, as the polymer flocculant. In particular, the water-in-oil emulsion type has a high solution viscosity, and troubles such as clogging of the dissolution apparatus piping due to swelling and undissolved substances are likely to occur. Therefore, the effect is remarkable when the dissolution apparatus of the present invention is applied. So far, the weight average molecular weight of the polymer flocculant has been generally used from 1 million to 8 million, but in recent years, the weight average molecular weight of 10 million or more has been used. In the dissolving apparatus of the present invention, the effect is more remarkably exhibited when applied to one having a high solution viscosity and a weight average molecular weight of 10 million or more as compared with the case where it is not applied.

本発明は、高分子凝集剤溶液を供給する貯留槽を有する溶解装置において、前記貯留槽が、開口部を有する隔壁を三枚以上設置し、貯留槽内を四つ以上の区画に分割していることを特徴とする溶解装置である。貯留槽の形状は特に問わないが、通常は直方体が使用される。隔壁としては仕切り板を使用する。仕切り板の材質は一般的に貯留槽や溶解装置で使用されるステンレス製や鉄製が好ましいが、仕切り板として機能する形状を有するならばプラスチックや木材等、特に問わない。 The present invention provides a dissolution apparatus having a storage tank for supplying a polymer flocculant solution, wherein the storage tank has three or more partition walls having openings, and the storage tank is divided into four or more sections. A melting apparatus. The shape of the storage tank is not particularly limited, but usually a rectangular parallelepiped is used. A partition plate is used as the partition wall. The material of the partition plate is preferably made of stainless steel or iron generally used in a storage tank or a melting apparatus, but is not particularly limited as long as it has a shape that functions as a partition plate.

仕切り板は、開口部を有しており高分子凝集剤溶液の流路となる。開口部の形状は特に問わないが、大きさは仕切り板を上下左右に四等分した場合の一つの領域を超えない大きさが好ましい。四等分した領域の一つの大きさを超えると高分子凝集剤溶液が早く移送されることになり好ましくはない。   The partition plate has an opening and serves as a flow path for the polymer flocculant solution. The shape of the opening is not particularly limited, but the size is preferably a size that does not exceed one region when the partition plate is divided into four parts vertically and horizontally. Exceeding the size of one of the quartered regions is not preferable because the polymer flocculant solution is transferred quickly.

本発明の高分子凝集剤溶液を溶解する貯留槽を有する溶解装置において、下記式(1)及び式(2)を満たす容積滞留時間を有することが好ましい。
式(1):
貯留槽内の有効体積(m)÷高分子凝集剤溶液の供給流量(m/分)>20
式(2):
高分子凝集剤溶液の供給流量(m/分)の値≧貯留槽内の有効体積(m)の値×0.05
ここで、容積滞留時間とは、高分子凝集剤溶液が貯留槽の流入口に移送された時点から貯留槽の流出口から流出されるまでの貯留槽内に滞留する時間である。理論上は、貯留槽内の有効体積(m)÷高分子凝集剤溶液の供給流量(m/分)で表されるが、本発明ではその値が20(分)を超えることが好ましい。
In the dissolution apparatus having the storage tank for dissolving the polymer flocculant solution of the present invention, it is preferable to have a volume residence time that satisfies the following formulas (1) and (2).
Formula (1):
Effective volume in storage tank (m 3 ) ÷ feed rate of polymer flocculant solution (m 3 / min)> 20
Formula (2):
The value of the supply flow rate (m 3 / min) of the polymer flocculant solution ≧ the value of the effective volume (m 3 ) in the storage tank × 0.05
Here, the volume retention time is the time during which the polymer flocculant solution stays in the storage tank from when it is transferred to the storage tank to the outlet of the storage tank. Theoretically, it is represented by the effective volume in the storage tank (m 3 ) ÷ the supply flow rate of the polymer flocculant solution (m 3 / min), but in the present invention, the value is preferably more than 20 (min). .

通常では、高分子凝集剤溶液を実用の流量で流す場合、理論滞留時間よりも短くなる。これは、粘性のある高分子凝集剤溶液、特に油中水型エマルジョンや塩水中分散液は粘性が低い状態で早く移送され易く、貯留槽内では高分子凝集剤が完全に溶解しないと部分的に膨潤、粘性が出ることにより束の様な挙動を取り、移送が速くなることによる。そのため、通常では平均滞留時間が20分を超えることはなく、理論時間よりもかなり短い滞留時間となる。   Normally, when the polymer flocculant solution is flowed at a practical flow rate, it becomes shorter than the theoretical residence time. This is because viscous polymer flocculant solutions, especially water-in-oil emulsions and salt water dispersions, are easy to be transported quickly in a low viscosity state. This is due to the fact that it becomes like a bundle due to swelling and viscosity, and the transfer becomes faster. Therefore, normally, the average residence time does not exceed 20 minutes, and the residence time is considerably shorter than the theoretical time.

分散型高分子凝集剤は、粉末型高分子凝集剤に比べて溶解性が改善し、溶解に関しては効率が高くなったものであるが、水と混合、溶解し粘度が一定になり、凝集剤としての効果を十分に発現させるには滞留時間が20分を超える必要が有る。20分を下回ると未溶解あるいは溶解が不十分であり、凝集剤の効果が最大限に発揮されない。   Dispersion-type polymer flocculants have improved solubility compared to powder-type polymer flocculants, and have higher efficiency in terms of dissolution, but are mixed with water and dissolved to make the viscosity constant. In order to fully exhibit the effect as described above, the residence time needs to exceed 20 minutes. If it is less than 20 minutes, it is undissolved or insufficiently dissolved, and the effect of the flocculant is not exhibited to the maximum.

高分子凝集剤溶液の供給流量を減少させることで、20分を超える滞留時間を取ることはできるが、高分子凝集剤溶解液を対象物に供給する量が決定されているので供給流量を減少させることは添加対象物を含有する工程の効率が低下するため好ましくはない。そのため、ある一定量の供給流量が必要となる。そのために、本発明では、式(2)の高分子凝集剤溶液の供給流量(m/分)の値≧貯留槽内の有効体積(m)の値×0.05を満たすことが好ましい。例えば、貯留槽内の有効体積が100mでの時は、高分子凝集剤溶液の供給流量は5m/分となる。この数値は、本発明の分野において実用されている貯留槽の有効体積と高分子凝集剤の供給流量の範囲であり、式(1)及び式(2)を満たすことで、ある程度の量の高分子凝集剤溶液の供給流量で最大限に溶解性能を発揮することが可能となる。本発明では、貯槽内に開口部を有する隔壁として仕切り板を設置することで粘性が低い状態で早く移送されることを減らし、滞留時間を長くすることで高分子凝集剤溶液の粘性を引き出す。粘性を引き出すこと、即ち最大限に溶解されることになり最大限の効果を発揮する。更に開口部を有する仕切り板を三枚以上設置し、この内、平行に隣接する二枚の仕切り板の開口部が、互いに対角上に設置すると溶解効果が向上する。対角上に設置するということは、仕切り板を上下左右に四等分した領域において、開口部が仕切り板の下部の左の領域にある時は、同一方向から見てその隣接する仕切り板の上部の右の領域に開口部があることを意味する。この高分子凝集剤溶液の流れは層流であり高分子が切断されることなく移送され溶解性が向上することになる。 By reducing the supply flow rate of the polymer flocculant solution, it is possible to take a residence time of more than 20 minutes, but the supply flow rate is reduced because the amount of supply of the polymer flocculant solution to the target is determined. This is not preferable because the efficiency of the step containing the addition target is reduced. Therefore, a certain amount of supply flow rate is required. Therefore, in this invention, it is preferable to satisfy the value of the supply flow rate (m 3 / min) of the polymer flocculant solution of formula (2) ≧ the effective volume (m 3 ) value in the storage tank × 0.05. . For example, when the effective volume in the storage tank is 100 m 3 , the supply flow rate of the polymer flocculant solution is 5 m 3 / min. This numerical value is the range of the effective volume of the storage tank and the supply flow rate of the polymer flocculant that are practically used in the field of the present invention. By satisfying the equations (1) and (2), a certain amount of high It is possible to maximize dissolution performance with the supply flow rate of the molecular flocculant solution. In the present invention, by installing a partition plate as a partition wall having an opening in the storage tank, it is possible to reduce early transfer in a low viscosity state, and to extend the residence time to draw out the viscosity of the polymer flocculant solution. It draws out the viscosity, that is, it is dissolved to the maximum and exhibits the maximum effect. Furthermore, when three or more partition plates having openings are installed, and the openings of two partition plates adjacent in parallel are installed diagonally to each other, the melting effect is improved. Installing diagonally means that when the partition is divided into four parts vertically and horizontally, when the opening is in the left region below the partition plate, the adjacent partition plates are viewed from the same direction. It means that there is an opening in the upper right region. The flow of the polymer flocculant solution is a laminar flow, and the polymer is transferred without being cut and the solubility is improved.

仕切り板の底部は、完全に貯留槽の側面部に接している方が好ましいが、仕切り板の縦方向全長(高さ)の一割以下であるならば、隙間があっても本発明の効果は発揮される。例えば、仕切り板の高さが1mならば隙間は10cm以下ならばあっても差し支えない。   Although it is preferable that the bottom of the partition plate is completely in contact with the side surface of the storage tank, the effect of the present invention can be achieved even if there is a gap as long as it is less than 10% of the total length (height) in the vertical direction of the partition plate Is demonstrated. For example, if the height of the partition plate is 1 m, the gap may be 10 cm or less.

本発明の高分子凝集剤を溶解する溶解装置を図1に基づいて説明する。又、図1を上部より俯瞰したものが図2である。図1中の1は、高分子凝集剤溶液流入口であり、高分子凝集剤が溶解水と混合された状態で貯留槽の区画1に供給ポンプにより移送されてくる。通常は上方向から移送されてくるが、横方向でも良いし、底面部からでも良い。貯留槽上方部の横方向、あるいは貯留槽下方部の横方向、貯留槽中部の横方向から移送されてきても良い。次いで、2の仕切り板A中の3の開口部Aを通じて区画2に移送される。開口部Aの位置は、高分子凝集剤溶液を供給する位置からの直線距離が最も長い領域に開口部を有することが好ましい。 A dissolving apparatus for dissolving the polymer flocculant of the present invention will be described with reference to FIG. FIG. 2 is an overhead view of FIG. Reference numeral 1 in FIG. 1 denotes a polymer flocculant solution inlet, and the polymer flocculant is transferred to the storage tank section 1 by a supply pump in a state of being mixed with dissolved water. Usually, it is transported from above, but it may be lateral or from the bottom. You may transfer from the horizontal direction of the storage tank upper part, the horizontal direction of the storage tank lower part, or the horizontal direction of the storage tank middle part. Subsequently, it is transferred to the partition 2 through the three openings A in the two partition plates A. The position of the opening A preferably has an opening in a region where the linear distance from the position where the polymer flocculant solution is supplied is the longest.

更に4の仕切り板B中の5の開口部Bを通過し、区画3に移送される。この時、開口部Bは、開口部Aに対して対角上に位置すると効果が向上するので好ましい。その後、6の仕切り板C中の7の開口部Cを通過する。この時も、開口部Bが貯留槽の上部にある時は、貯留槽の下部にあることが好ましい。四番目の区画において、高分子凝集剤溶液流出口から高分子凝集剤溶解液添加ラインへ移送され対象物に添加される。図1では、仕切り板C中の開口部Cが下部にあるので四番目の区画に有する高分子凝集剤流出口は上部にある。開口部と次の開口部の位置関係は、上部の次は下部、下部の次は上部という順番が好ましい。   Further, it passes through five openings B in the four partition plates B and is transferred to the section 3. At this time, it is preferable that the opening B is positioned diagonally with respect to the opening A because the effect is improved. Then, it passes through 7 openings C in 6 partition plates C. Also at this time, when the opening B is in the upper part of the storage tank, it is preferable to be in the lower part of the storage tank. In the fourth section, the polymer is transferred from the polymer flocculant solution outlet to the polymer flocculant solution addition line and added to the object. In FIG. 1, since the opening part C in the partition plate C is in the lower part, the polymer flocculant outlet port in the fourth compartment is in the upper part. The positional relationship between the opening and the next opening is preferably in the order of the lower part next to the upper part and the upper part next to the lower part.

本発明の効果を得るには、仕切り板は三枚必要であり、貯留槽は、四つの区画に分割されることになる。これにより平均滞留時間は20分を超える様になる。平均滞留時間60分以上となると粘度が一定となるため大幅な効果の向上は望めなくなる。仕切り板が四枚で区画が五つの場合、五番目の区画から高分子凝集剤溶液が流出される。   In order to obtain the effect of the present invention, three partition plates are necessary, and the storage tank is divided into four sections. As a result, the average residence time exceeds 20 minutes. When the average residence time is 60 minutes or more, the viscosity becomes constant, so that a significant improvement in effect cannot be expected. When there are four partition plates and five compartments, the polymer flocculant solution flows out from the fifth compartment.

本発明においては、貯留槽内に攪拌機を設置しても良い、攪拌機による撹拌により一層溶解を促進するためである。撹拌機の撹拌シェアについては強すぎると高分子鎖が切断されることになるので好ましくはなく、現場の溶解状況によって任意に調整する。   In the present invention, a stirrer may be installed in the storage tank in order to further promote dissolution by stirring with a stirrer. If the stirring share of the stirrer is too strong, the polymer chain is broken, which is not preferable, and is arbitrarily adjusted depending on the on-site dissolution status.

又、高分子凝集剤溶液を本発明の溶解装置に流入する前にインラインミキサーに通過させても良い。インラインミキサーと本発明の溶解装置を組み合わせることで溶解効果が促進される場合があり、現場条件によって好適に使用される。インラインミキサーと本発明の溶解装置を併用することで、溶解時の撹拌に掛かる動力が必要なく電力消費が抑制され経済的である。   Alternatively, the polymer flocculant solution may be passed through an in-line mixer before flowing into the dissolution apparatus of the present invention. The dissolution effect may be promoted by combining the in-line mixer and the dissolution apparatus of the present invention, which is preferably used depending on the field conditions. By using the in-line mixer and the dissolution apparatus of the present invention in combination, the power required for stirring at the time of dissolution is not required, and power consumption is suppressed, which is economical.

本発明の溶解装置の前に撹拌機の付いた溶解槽で一次溶解しても良く、更に溶解槽が二つ以上あっても良い。本発明は溶解を促進するための貯留槽を有する溶解装置であり、本発明自体で高分子凝集剤を溶解する必要はなく溶解条件に応じて適宜に使用される。   Primary dissolution may be performed in a dissolution tank equipped with a stirrer before the dissolution apparatus of the present invention, and two or more dissolution tanks may be provided. The present invention is a dissolution apparatus having a storage tank for promoting dissolution, and the present invention itself does not need to dissolve the polymer flocculant, and is used as appropriate according to the dissolution conditions.

本発明の溶解装置の形態として、貯留槽を配管で構成しても良い。配管で構成するとは、配管中に隔壁を三枚以上設置し、開口部を設けて配管内を四つ以上の区画に分割することである。   As a form of the melting apparatus of the present invention, the storage tank may be constituted by piping. Constructing with piping means that three or more partition walls are installed in the piping, an opening is provided, and the inside of the piping is divided into four or more sections.

以下に実施例を挙げて本発明を詳細に説明するが、本発明はこれら実施例により限定されるものではない。 EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples.

(実施例1)有効体積90mの貯留槽を仕切り板で四分割し、本発明の溶解装置を組み立てた。図1に示す。図2は、図1に示した貯留槽において、上部より俯瞰した図である。図の線上の円は、仕切り板の開口部を示している。開口部A、Bの位置は、仕切り板を上下左右に四等分した何れかの領域の範囲内に収まる位置にある。図中X〜Zの場所に電気伝導度センサーを設置し、硫酸アンモニウムをトレーサー物質として、高分子凝集剤溶液流入口に並行して投入し拡散の度合いを測定した。 (Example 1) A storage tank having an effective volume of 90 m 3 was divided into four by a partition plate, and the melting apparatus of the present invention was assembled. As shown in FIG. FIG. 2 is a top view of the storage tank shown in FIG. The circle on the line in the figure indicates the opening of the partition plate. The positions of the openings A and B are positions that fall within the range of any region obtained by dividing the partition plate into four equal parts in the vertical and horizontal directions. An electric conductivity sensor was installed at locations X to Z in the figure, and ammonium sulfate was used as a tracer substance in parallel with the polymer flocculant solution inlet to measure the degree of diffusion.

希釈水と油中水型エマルジョンポリマーA (アクリルアミド/アクリロイルオキシエチルトリメチルアンモニウムクロリド(85/15モル%)共重合体、重量平均分子量1300万、濃度35%)をT字管に200倍希釈となるような比率で注入し、この混合液をラインミキサー(ノリタケ(株)製、商品名:スタティックミキサー)を通し溶解液を得て流入口に導入した。本試験での溶解液供給量は4.5L/分とし、貯留槽が満水になり流出口から溶解液がオーバーフローした時点で、流入口に20質量%硫酸アンモニウム溶液800gを添加、この時点を0分とし、図2のX、Y、Zの位置に設置した電気伝導度センサーで経時的に電気伝導度を測定した。結果を表1に示す。 Diluted water and water-in-oil emulsion polymer A (acrylamide / acryloyloxyethyltrimethylammonium chloride (85/15 mol%) copolymer, weight average molecular weight 13 million, concentration 35%) is diluted 200 times into a T-tube. The mixture was injected at such a ratio, and this mixed solution was passed through a line mixer (trade name: Static Mixer, manufactured by Noritake Co., Ltd.) to obtain a dissolved solution and introduced into the inlet. The solution supply rate in this test was 4.5 L / min. When the storage tank was full and the solution overflowed from the outlet, 800 g of a 20 mass% ammonium sulfate solution was added to the inlet, and this time was 0 minutes. Then, the electrical conductivity was measured over time with an electrical conductivity sensor installed at positions X, Y, and Z in FIG. The results are shown in Table 1.

(表1)
(Table 1)

この装置の理論滞留時間は20分である。結果からも20分後に電気伝導度の値が400mS/m台となり、24分後に値がピークとなり、多くのトレーサー物質が場所Zに到達したことが分かる。 The theoretical residence time of this device is 20 minutes. The results also show that the value of electrical conductivity reached the 400 mS / m level after 20 minutes, the value peaked after 24 minutes, and that many tracer substances reached the location Z.

(比較例1)実施例1で使用した貯留槽において、6の仕切り板Cを除去、図3に示す様にし、実施例1の手順で溶液の拡散状況を確認した。結果を表2に示す。   (Comparative Example 1) In the storage tank used in Example 1, 6 partition plates C were removed, and the diffusion state of the solution was confirmed by the procedure of Example 1 as shown in FIG. The results are shown in Table 2.

(比較例2)実施例1で使用した貯留槽において、2の仕切り板Aの上部に開口部を設け、実施例1の手順で高分子凝集剤溶液の拡散状況を測定した。開口部の位置は、高分子凝集剤溶液が供給される場所から観て、隔壁を上下左右に四等分した右上の領域に該当する。結果を表3に示す。 (Comparative Example 2) In the storage tank used in Example 1, an opening was provided in the upper part of the two partition plates A, and the diffusion state of the polymer flocculant solution was measured by the procedure of Example 1. The position of the opening corresponds to an upper right region obtained by dividing the partition wall into four parts in the vertical and horizontal directions when viewed from the place where the polymer flocculant solution is supplied. The results are shown in Table 3.

(比較例3)実施例1で使用した貯留槽において、4の仕切り板Bの下部に開口部を設け、実施例1の手順で高分子凝集剤溶液の拡散状況を測定した。開口部の位置は、高分子凝集剤溶液が供給される場所から観て、隔壁を上下左右に四等分した左下の領域に該当する。結果を表4に示す。 (Comparative Example 3) In the storage tank used in Example 1, an opening was provided in the lower part of the four partition plates B, and the diffusion state of the polymer flocculant solution was measured by the procedure of Example 1. The position of the opening corresponds to a lower left region obtained by dividing the partition wall into four equal parts vertically and horizontally as viewed from the place where the polymer flocculant solution is supplied. The results are shown in Table 4.

(表2)
(Table 2)

(表3)
(Table 3)

(表4)
(Table 4)

比較例2の仕切り板が少ない場合、比較例3の高分子凝集剤溶液が供給される最初の区画に設けられた隔壁の開口部が、高分子凝集剤溶液を供給する位置からの直線距離が最も長い領域ではない場合、比較例4の平行に隣接する二枚の隔壁の二つの開口部が、各隔壁を上下左右に四等分した領域において対角上に位置しない場合は、その間を粘性が低い状態で早く移送され、理論滞留時間より短い時間で流出口に到達してしまう。いずれの比較例においても電気伝導度400mS/m台の値は20分より短い時間で測定され、ピーク値も20分より短い時間であった。又、比較例2〜4では30分まで測定しても400mS/mを超える値は測定されなかった。 When the partition plate of Comparative Example 2 is small, the opening of the partition provided in the first section to which the polymer flocculant solution of Comparative Example 3 is supplied has a linear distance from the position where the polymer flocculant solution is supplied. In the case where it is not the longest region, if the two openings of the two partition walls adjacent in parallel in Comparative Example 4 are not located diagonally in the region where each partition wall is divided into four equal parts vertically and horizontally, there is a viscosity between them. Is quickly transferred in a low state, and reaches the outlet in a time shorter than the theoretical residence time. In any of the comparative examples, the value of electrical conductivity in the range of 400 mS / m was measured in a time shorter than 20 minutes, and the peak value was also shorter than 20 minutes. In Comparative Examples 2 to 4, a value exceeding 400 mS / m was not measured even when measured up to 30 minutes.

(実施例2)油中水型エマルジョンポリマーA(アクリルアミド/アクリロイルオキシトリエチルアンモニウムクロリド(85/15モル%)共重合体、重量平均分子量1300万、濃度35%)を、実施例1で使用した溶解設備(図1及び図2)を用いて実施例1と同条件で溶解した。図2の数字で示した場所Zでサンプリングした溶液を製紙原料の歩留向上剤として、ブリット式ダイナミックジャーテスターを用いた歩留率の測定試験を行なった。200メッシュワイヤー使用。使用製紙原料は、固形分濃度0.75質量%で、軽質炭酸カルシウム等Ash分として47.3%対固形分濃度含有するPPC用紙抄造原料を用いた。製紙原料の物性値は、pH7.96、Whatman No.41濾紙濾過液のミューテック社製PCD−03型を使用したカチオン要求量は、12.5μeq/Lである。ブリット式ダイナミックジャーテスターの攪拌回転数は800rpmに設定した。 (Example 2) Water-in-oil emulsion polymer A (acrylamide / acryloyloxytriethylammonium chloride (85/15 mol%) copolymer, weight average molecular weight 13 million, concentration 35%) was dissolved in Example 1 It melt | dissolved on the same conditions as Example 1 using the apparatus (FIG.1 and FIG.2). Using the solution sampled at the location Z indicated by the numbers in FIG. 2 as a yield improver for the papermaking raw material, a yield measurement test using a britt dynamic jar tester was performed. Use 200 mesh wire. The papermaking raw material used was a PPC paper-making raw material having a solid content concentration of 0.75% by mass and containing 47.3% as an Ash component such as light calcium carbonate with respect to the solid content concentration. The physical properties of the papermaking raw material are pH 7.96, Whatman No. The required amount of cation using a PCD-03 model of 41 filter paper filtrate manufactured by Mutech is 12.5 μeq / L. The stirring rotation speed of the Brit type dynamic jar tester was set to 800 rpm.

対製紙原料固形分に対して150ppm添加し、攪拌回転数800rpmで30秒間攪拌後、濾液を採取しADVANTEC、No.2濾紙にて濾過後、SSを測定、総歩留率を測定後、濾紙を525℃で2時間灰化し、灰分歩留率を測定した。結果を表5に示す。 After adding 150 ppm to the solid content of the paper raw material and stirring for 30 seconds at 800 rpm with stirring, the filtrate was collected and ADVANTEC, No. After filtration with two filter papers, SS was measured, and the total yield was measured. Then, the filter paper was ashed at 525 ° C. for 2 hours, and the ash yield was measured. The results are shown in Table 5.

(比較例4)実施例2と同様に油中水型エマルジョンポリマーAを、実施例1で使用した溶解設備を用いて同条件で溶解した。図2の数字で示した場所X、Yでサンプリングした溶液について実施例と同条件で歩留率測定試験を実施した。結果を表5に示す。   (Comparative Example 4) In the same manner as in Example 2, the water-in-oil emulsion polymer A was dissolved under the same conditions using the dissolution equipment used in Example 1. A yield measurement test was performed on the solution sampled at the locations X and Y indicated by the numbers in FIG. 2 under the same conditions as in the example. The results are shown in Table 5.

(表5)
(Table 5)

流出口付近の場所Zの高分子凝集剤溶液を使用した方が、場所X、Yの高分子凝集剤溶液を使用したものよりも歩留効果が大きく向上することが確認できた。






















It was confirmed that the yield effect was greatly improved by using the polymer flocculant solution at the location Z near the outlet than the polymer flocculant solution at the locations X and Y.






















本発明の溶解装置のフローシート図である。1から高分子凝集剤溶液が流入し、破線に沿って移送され、8の流出口から流出し、高分子凝集剤溶解液添加ラインを通過し、対象物に添加される。It is a flow sheet figure of the dissolution device of the present invention. The polymer flocculant solution flows in from 1, is transferred along the broken line, flows out from the outlet 8, passes through the polymer flocculant solution addition line, and is added to the object. 図1を上部より俯瞰した図である。仕切り板上の丸印は開口部を示す。It is the figure which looked down at FIG. 1 from the upper part. A circle on the partition indicates an opening. 本発明の範囲外の溶解装置を上部より俯瞰した図である。It is the figure which looked down at the melt | dissolution apparatus outside the range of this invention from the upper part.

1 高分子凝集剤溶液流入口
2 仕切り板A
3 開口部A
4 仕切り板B
5 開口部B
6 仕切り板C
7 開口部C
8 高分子凝集剤溶液流出口
9 高分子凝集剤溶解液添加ライン
1 Polymer flocculant solution inlet 2 Partition plate A
3 opening A
4 Partition B
5 opening B
6 Partition plate C
7 Opening C
8 Polymer flocculant solution outlet 9 Polymer flocculant solution addition line

Claims (6)

高分子凝集剤溶液を供給する貯留槽を有する溶解装置において、前記貯留槽が、開口部を有する隔壁を三枚以上設置し、貯留槽内を四つ以上の区画に分割していることを特徴とする溶解装置。 In a dissolution apparatus having a storage tank for supplying a polymer flocculant solution, the storage tank has three or more partition walls having openings, and the storage tank is divided into four or more sections. A melting device. 前記貯留槽に高分子凝集剤溶液が供給される最初の区画に設けられた隔壁の開口部が、隔壁を上下左右に四等分した領域において、高分子凝集剤溶液を供給する位置からの直線距離が最も長い領域に開口部を有することを特徴とする請求項1に記載の溶解装置。 A straight line from the position where the polymer flocculant solution is supplied in the region where the partition opening provided in the first section where the polymer flocculant solution is supplied to the storage tank is divided into four parts vertically and horizontally. The melting apparatus according to claim 1, further comprising an opening in an area having the longest distance. 前記開口部を有する隔壁において、平行に隣接する二枚の隔壁の二つの開口部が、各隔壁を上下左右に四等分した領域において対角上の領域に位置することを特徴とする請求項1に記載の溶解装置。 2. The partition having the opening, wherein two openings of two partition walls adjacent in parallel are located in diagonal regions in a region obtained by dividing each partition into four parts vertically and horizontally. 2. The dissolution apparatus according to 1. 前記貯留槽を有する溶解装置において、下記式(1)及び式(2)を満たす容積滞留時間を有することを特徴とする請求項1〜3の何れかに記載の溶解装置。
式(1):
貯留槽内の有効体積(m)÷高分子凝集剤溶液の供給流量(m/分)>20
式(2):
高分子凝集剤溶液の供給流量(m/分)の値≧貯留槽内の有効体積(m)の値×0.05
The dissolution apparatus according to any one of claims 1 to 3, wherein the dissolution apparatus having the storage tank has a volume residence time that satisfies the following expressions (1) and (2).
Formula (1):
Effective volume in storage tank (m 3 ) ÷ feed rate of polymer flocculant solution (m 3 / min)> 20
Formula (2):
The value of the supply flow rate (m 3 / min) of the polymer flocculant solution ≧ the value of the effective volume (m 3 ) in the storage tank × 0.05
前記高分子凝集剤の形態が、油中水型エマルジョンであることを特徴とする請求項1、2あるいは4に記載の溶解装置。 The dissolution apparatus according to claim 1, 2 or 4, wherein the polymer flocculant is a water-in-oil emulsion. 前記高分子凝集剤溶液を供給する貯留槽に移送する前に高分子凝集剤溶液をインラインミキサーに通過させることを特徴とする請求項1に記載の溶解装置。











The dissolution apparatus according to claim 1, wherein the polymer flocculant solution is passed through an in-line mixer before being transferred to the storage tank for supplying the polymer flocculant solution.











JP2014055704A 2014-03-19 2014-03-19 Polymer flocculant dissolving device Active JP6242002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014055704A JP6242002B2 (en) 2014-03-19 2014-03-19 Polymer flocculant dissolving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014055704A JP6242002B2 (en) 2014-03-19 2014-03-19 Polymer flocculant dissolving device

Publications (2)

Publication Number Publication Date
JP2015178054A true JP2015178054A (en) 2015-10-08
JP6242002B2 JP6242002B2 (en) 2017-12-06

Family

ID=54262511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014055704A Active JP6242002B2 (en) 2014-03-19 2014-03-19 Polymer flocculant dissolving device

Country Status (1)

Country Link
JP (1) JP6242002B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108479442A (en) * 2018-06-05 2018-09-04 武汉静铭科技有限公司 A kind of integrated liquid mixing arrangement

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4988790A (en) * 1972-12-26 1974-08-24
JPS5087564U (en) * 1973-12-15 1975-07-25
JP2004057908A (en) * 2002-07-26 2004-02-26 Tacmina Corp Stirrer and polymer flocculant solution feed system
JP2005177602A (en) * 2003-12-19 2005-07-07 Ebara Corp Method of mixing flocculant, mixing vessel and method and apparatus for treating rain-water-including sewage using the mixing method and vessel
JP2008093530A (en) * 2006-10-10 2008-04-24 Yoshikawa:Kk Flocculant-dissolving device
JP2008173543A (en) * 2007-01-17 2008-07-31 Hymo Corp Diluted liquid of water-in-oil type dispersion liquid, method for preparing the same, and method for using the same
JP2009082826A (en) * 2007-09-28 2009-04-23 Hitachi Plant Technologies Ltd Coagulating apparatus
JP2011167651A (en) * 2010-02-22 2011-09-01 Hymo Corp Treatment method of sewage sludge
JP2011194348A (en) * 2010-03-23 2011-10-06 Hymo Corp Sludge dewatering method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4988790A (en) * 1972-12-26 1974-08-24
JPS5087564U (en) * 1973-12-15 1975-07-25
JP2004057908A (en) * 2002-07-26 2004-02-26 Tacmina Corp Stirrer and polymer flocculant solution feed system
JP2005177602A (en) * 2003-12-19 2005-07-07 Ebara Corp Method of mixing flocculant, mixing vessel and method and apparatus for treating rain-water-including sewage using the mixing method and vessel
JP2008093530A (en) * 2006-10-10 2008-04-24 Yoshikawa:Kk Flocculant-dissolving device
JP2008173543A (en) * 2007-01-17 2008-07-31 Hymo Corp Diluted liquid of water-in-oil type dispersion liquid, method for preparing the same, and method for using the same
JP2009082826A (en) * 2007-09-28 2009-04-23 Hitachi Plant Technologies Ltd Coagulating apparatus
JP2011167651A (en) * 2010-02-22 2011-09-01 Hymo Corp Treatment method of sewage sludge
JP2011194348A (en) * 2010-03-23 2011-10-06 Hymo Corp Sludge dewatering method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108479442A (en) * 2018-06-05 2018-09-04 武汉静铭科技有限公司 A kind of integrated liquid mixing arrangement

Also Published As

Publication number Publication date
JP6242002B2 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
US20210102125A1 (en) Enhanced Techniques for Dewatering Thick Fine Tailings
CA2864159C (en) Rapidly inverting water-in-oil polymer emulsions
US7762340B2 (en) Installation for enhanced oil recovery using water soluble polymers, method for implementing same
TWI729084B (en) Aggregation sedimentation device
US20080053916A1 (en) Method For Coagulating And Dewatering Sludge With Use Of Polymer Coagulant And Method For Coagulating And Percipitating Waste Water With Use Of Polymer Coagulant
CN104176788B (en) A kind of degreaser for oil field binary combination flooding produced sewerage and preparation method thereof
JP2017121601A (en) Coagulation method and coagulation device
US20100170856A1 (en) Improvement separation of solids from liquids by the use of quick inverting and dispersing flocculants
KR101606845B1 (en) Processing Equipment For Muddy Water
JP6242002B2 (en) Polymer flocculant dissolving device
JP2016032811A (en) Processing method and processing apparatus of sludge
JP5142210B2 (en) Sludge dewatering method
JP2013248584A (en) Method for treating drainage
Heiderscheidt et al. Optimisation of chemical purification conditions for direct application of solid metal salt coagulants: Treatment of peatland-derived diffuse runoff
JP5882608B2 (en) Method and apparatus for dewatering organic sludge
JP6813277B2 (en) Sludge dewatering equipment
CN105060446A (en) Organic macromolecular flocculating agent for polymer-bearing sewage and preparation method for organic macromolecular flocculating agent
JP5149469B2 (en) Method for dissolving yield improver for paper process made of water-soluble polymer
JP5954687B2 (en) Waste water treatment apparatus and waste water treatment method
WO2016006419A1 (en) Clumping method and clumping device
JP3633726B2 (en) Sludge treatment method
CN106430349A (en) Chemical adding optimization method during wastewater treatment by wet desulphurization and triple-tank method
US20140014591A1 (en) Passive chemical dosing and mixing apparatus and method
JP6318872B2 (en) Muddy water treatment method
CN107188334A (en) Waste emulsified mixture processing method and processing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171106

R150 Certificate of patent or registration of utility model

Ref document number: 6242002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250