JP2005177602A - Method of mixing flocculant, mixing vessel and method and apparatus for treating rain-water-including sewage using the mixing method and vessel - Google Patents

Method of mixing flocculant, mixing vessel and method and apparatus for treating rain-water-including sewage using the mixing method and vessel Download PDF

Info

Publication number
JP2005177602A
JP2005177602A JP2003421919A JP2003421919A JP2005177602A JP 2005177602 A JP2005177602 A JP 2005177602A JP 2003421919 A JP2003421919 A JP 2003421919A JP 2003421919 A JP2003421919 A JP 2003421919A JP 2005177602 A JP2005177602 A JP 2005177602A
Authority
JP
Japan
Prior art keywords
flocculant
mixing
water
treated
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003421919A
Other languages
Japanese (ja)
Inventor
Sakae Komita
栄 小三田
Hirotoshi Hinuma
宏年 日沼
Ken Suzuki
建 鈴木
Tomokazu Fujihashi
知一 藤橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Tokyo Metropolitan Government
Original Assignee
Ebara Corp
Tokyo Metropolitan Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Tokyo Metropolitan Government filed Critical Ebara Corp
Priority to JP2003421919A priority Critical patent/JP2005177602A/en
Publication of JP2005177602A publication Critical patent/JP2005177602A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of mixing a flocculant and a mixing vessel which have ease of maintenance and permit uniform mixture without occurrence of a shunting flow and a method and an apparatus for treating rain-water-including sewage. <P>SOLUTION: The vessel has a turning flowing passage, an inlet for water 1 to be treated and a means of adding an inorganic flocculant 3 at the inlet portion of the passage, and a means of adding an organic polymer flocculant in the middle portion of the passage. The passage has means 4 and 7 setting the average flow rate of the to-be-treated water to be 0.18 m/s or higher for 3 s just after the addition of a flocculant and means 5 and 8 adjusting the average flow rate of the to-be-treated water to between 0.03 m/s and 0.18 m/s. The means setting the average flow rate to be 0.18 m/s or higher operates by making the cross-section of the passage or putting a baffle or an orifice plate in the passage. A solid-liquid separator is connected with the vessel to form an apparatus for treating rain-water-including sewage. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、雨水混入下水の処理に係り、特に、下水処理場やポンプ場などにおける合流式下水道の雨天時の下水及び簡易処理水等への凝集剤の混合方法と混合槽及びそれを用いた雨水混入下水の処理方法と装置に関する。   The present invention relates to the treatment of sewage mixed with rainwater, and in particular, a method and a mixing tank for mixing a flocculant into sewage in a rainy day of a combined sewer in a sewage treatment plant, a pumping station, etc. The present invention relates to a method and apparatus for treating sewage mixed with rainwater.

被処理水に含まれる懸濁物質(以下、SSと記載する)を分離する方法のうち、凝集分離処理は、被処理水に凝集剤を添加してSSを凝集させた後に、沈降分離、ろ過分離、あるいは浮上分離する処理方法であり、それぞれ凝集沈殿処理、凝集ろ過処理、凝集浮上処理と呼ばれている。これらの処理において重要な操作は、無機凝集剤の混合操作であり、有機系高分子凝集剤を用いる場合には、有機系高分子凝集剤の混合操作も重要である。
無機凝集剤として鉄塩やアルミニウム塩を用いる場合、鉄イオンやアルミニウムイオンが、被処理水中で水酸化物を形成する反応速度は大きい。このため、凝集を効果的に行うには、水酸化物が形成される前に、凝集剤を被処理水中に急速かつ均一に拡散させる必要がある。更に、水酸化物形成の後、水酸化物同士の会合・合体の機会を多くしてマイクロフロックの形成を促進するために、均一な混合を行う必要がある。
Of the methods for separating suspended substances (hereinafter referred to as SS) contained in the water to be treated, the coagulation separation treatment is performed by adding a flocculant to the water to be treated to aggregate SS, followed by sedimentation separation and filtration. It is the processing method which isolate | separates or floats, and is called the coagulation precipitation process, the coagulation filtration process, and the coagulation flotation process, respectively. An important operation in these treatments is a mixing operation of an inorganic flocculant, and when an organic polymer flocculant is used, an operation of mixing an organic polymer flocculant is also important.
When an iron salt or aluminum salt is used as the inorganic flocculant, the reaction rate at which iron ions or aluminum ions form hydroxides in the water to be treated is high. For this reason, in order to effectively perform aggregation, it is necessary to diffuse the flocculant rapidly and uniformly in the water to be treated before the hydroxide is formed. Furthermore, after forming the hydroxide, it is necessary to perform uniform mixing in order to increase the opportunities for association and coalescence of the hydroxides and promote the formation of micro flocs.

一方、高分子凝集剤の混合においては、凝集剤溶解液の粘度が高いため、凝集剤を被処理水中に均一拡散させると同時に凝集剤とマイクロフロックとの会合・合体を行うために、添加直後に急速に撹拌混合する必要がある。更に、マイクロフロック同士を会合・合体させてフロックの生長を促進するために、均一な混合を行う必要がある。
下水を含有する水の処理においても、同様の理由から凝集剤の混合操作は重要である。混合を機械撹拌で行うと、下水に含まれる毛髪などが撹拌機インペラに巻き付いたり、機械的動作部での故障の可能性があるなど、維持管理性が煩雑になる。また、短絡流が生じ凝集不良が生じる場合がある。一方、迂流式混合は、無機凝集剤が均一に拡散された後のマイクロフロック形成に適用されているが、損失水頭が大きいという理由で、無機凝集剤添加後の拡散を目的とした混合や、高分子凝集剤の混合には適用されていない。
「水処理管理便覧」(水処理管理便覧編集委員会編1998年)p.128−129 「水道施設設計指針」(日本水道協会、2000)p.186−190
On the other hand, in the mixing of the polymer flocculant, since the viscosity of the flocculant solution is high, the flocculant is uniformly diffused in the water to be treated, and at the same time, the flocculant and the micro floc are associated and coalesced. It is necessary to stir and mix rapidly. Further, in order to promote the growth of flocs by associating and combining the micro flocs, it is necessary to perform uniform mixing.
In the treatment of water containing sewage, the mixing operation of the flocculant is important for the same reason. When mixing is performed by mechanical stirring, the maintenance and management are complicated, such as the hair contained in the sewage wraps around the stirrer impeller and the mechanical operating unit may be broken. Moreover, a short circuit flow may occur and a cohesion failure may occur. On the other hand, the bypass mixing is applied to the formation of micro flocs after the inorganic flocculant is uniformly diffused, but because of the large head loss, mixing for the purpose of diffusion after addition of the inorganic flocculant or It is not applied to the mixing of polymer flocculants.
“Water Treatment Management Handbook” (Water Treatment Management Handbook Editorial Committee, 1998) p. 128-129 “Water Supply Facility Design Guidelines” (Japan Waterworks Association, 2000) p. 186-190

本発明、上記従来技術の問題点を解消し、雨水を含有する下水の凝集処理において、維持管理を容易にし、敷地を有効に利用し、短絡流を生じることがなく均一な混合を行い、フロックの生長を促進して清澄な処理水を得ることができる凝集剤の混合方法と混合槽及びそれを用いた雨水混入下水の処理方法と装置を提供することを課題とする。   The present invention solves the above-mentioned problems of the prior art, facilitates maintenance management in the sewage agglomeration treatment containing rainwater, effectively uses the site, performs uniform mixing without causing short-circuit flow, and floc It is an object of the present invention to provide a coagulant mixing method, a mixing tank, and a rainwater-mixed sewage treatment method and apparatus using the coagulant that can promote the growth of water and obtain clear treated water.

上記課題を解決するために、本発明では、迂流式流路によって、被処理水に無機凝集剤を添加混合後、有機系高分子凝集剤を添加混合する凝集剤の混合方法において、前記迂流式流路による各凝集剤の混合は、該各凝集剤の添加直後から一定時間の流速を、その後の流速よりも速くすることによって、該一定時間内に該凝集剤を被処理水中に十分に拡散することを特徴とする凝集剤の混合方法としたものである。
前記凝集剤の混合方法において、前記迂流式流路による各凝集剤の混合は、該各凝集剤の添加直後から少なくとも3秒間は、被処理水の平均流速を0.18m/秒以上とし、その後は被処理水の平均流速を0.03m/秒以上〜0.18/秒未満とすることを特徴とする凝集剤の混合方法としたものである。
また、本発明では、前記凝集剤の混合方法により、雨水混入下水に凝集剤を添加混合処理した後に、固液分離する雨水混入下水の処理方法としたものである。
In order to solve the above-mentioned problems, the present invention provides a method for mixing a flocculant in which an organic flocculant is added and mixed after adding an inorganic flocculant to water to be treated by a bypass flow path. Mixing of each flocculant by the flow type flow path is carried out by setting the flow rate for a certain time immediately after the addition of each flocculant to be higher than the subsequent flow rate so that the flocculant is sufficiently contained in the treated water within the certain time. This is a method for mixing a flocculant characterized by diffusing into a solid.
In the flocculant mixing method, the flocculant is mixed by the bypass flow channel at an average flow rate of water to be treated of 0.18 m / sec or more for at least 3 seconds immediately after the addition of the flocculant, Thereafter, the coagulant mixing method is characterized in that the average flow rate of the water to be treated is 0.03 m / second or more and less than 0.18 / second.
Moreover, in this invention, it is set as the processing method of the rainwater mixed sewage which solid-liquid-separates, after adding and mixing the flocculant to the rainwater mixed sewage by the mixing method of the said flocculant.

さらに、本発明では、迂流式流路を有し、該流路の入口部に、被処理水の流入口と無機凝集剤の添加手段とを有し、該流路の中間部に、有機系高分子凝集剤の添加手段を有する凝集剤混合槽において、前記迂流式流路は、前記各凝集剤の添加直後から一定時間の流速を、その後の流速よりも速くする手段を有することを特徴とする凝集剤混合槽としたものである。
前記凝集剤混合槽において、添加直後から一定時間の流速を、その後の流速よりも速くする手段は、該流路の断面積を狭くするか、該流路に邪魔板又はオリフィス板を設置するのがよく、また、前記迂流式流路は、前記各凝集剤の添加直後から少なくとも3秒間は、被処理水の平均流速を0.18m/秒以上とする手段と、その後は、被処理水の平均流速を0.03m/秒以上〜0.18/秒未満に調整する手段とを有するのがよい。
また、本発明では、雨水混入下水を被処理水とする前記凝集剤混合槽と、該混合槽からの混合処理水を固液分離する手段とを有する雨水混入下水の処理装置としたものである。
Furthermore, the present invention has a bypass flow path, and has an inlet for the water to be treated and a means for adding an inorganic flocculant at the inlet of the flow path, and an organic coagulant at the middle of the flow path. In the flocculant mixing tank having the addition means of the system polymer flocculant, the bypass flow path has means for increasing the flow rate for a certain time immediately after the addition of the respective flocculants to be higher than the subsequent flow rate. This is a characteristic flocculant mixing tank.
In the flocculant mixing tank, the means for increasing the flow rate for a certain time immediately after the addition to the subsequent flow rate is to narrow the cross-sectional area of the flow channel or install a baffle plate or an orifice plate in the flow channel. In addition, the bypass flow path includes a means for setting the average flow rate of the water to be treated to 0.18 m / second or more for at least 3 seconds immediately after the addition of each of the flocculants, and thereafter the water to be treated. It is good to have a means to adjust the average flow velocity of 0.03 m / sec or more to less than 0.18 / sec.
Moreover, in this invention, it is set as the processing apparatus of the rainwater mixed sewage which has the said flocculant mixing tank which makes rainwater mixed sewage to-be-processed water, and a means to solid-liquid-separate the mixed treated water from this mixing tank. .

本発明のによれば、下水を含有する水の凝集処理において、維持管理性に優れ、敷地を有効に利用し、短絡流を生じることがなく均一な混合を行うことができ、フロックの生長を促進し、清澄な処理水を安定して提供できる。   According to the present invention, in the coagulation treatment of water containing sewage, it is excellent in maintenance and management, can effectively use the site, can perform uniform mixing without causing a short circuit flow, and increase the growth of flocs. Promote and provide clean treated water stably.

本発明は、被処理水への無機凝集剤と高分子凝集剤のどちらの混合においても迂流式混合を用いる。更に、凝集剤添加直後から一定時間後までの被処理水の平均流速を速くして、添加直後の凝集剤を急速に拡散させる。その後、マイクロフロックの形成促進やフロックの生長促進に有効な範囲で平均流速を遅くし、均一な混合を行う。
凝集剤添加直後に被処理水中へ凝集剤を急速に拡散させるために、凝集剤添加直後から少なくても3秒間の平均流速を0.18m/秒以上とする。その後、均一な混合を行うことによって、無機凝集剤混合でのマイクロフロックの形成促進と有機系高分子凝集剤混合でのフロックの生長を促進させ、かつ損失水頭を低く抑えるため、平均流速を0.03m/秒以上〜0.18m/秒未満とする。
The present invention uses bypass mixing in mixing both the inorganic flocculant and the polymer flocculant into the water to be treated. Furthermore, the average flow rate of the water to be treated from immediately after the addition of the flocculant to after a certain time is increased, and the flocculant immediately after the addition is rapidly diffused. Thereafter, the average flow rate is reduced within a range effective for promoting the formation of micro flocs and the growth of flocs, and uniform mixing is performed.
In order to rapidly diffuse the flocculant into the water to be treated immediately after the addition of the flocculant, the average flow rate for 3 seconds at least immediately after the addition of the flocculant is set to 0.18 m / second or more. Thereafter, uniform mixing is performed to promote the formation of micro flocs in the inorganic flocculant mixture and the growth of flocs in the organic polymer flocculant mixture, and to keep the loss head low. 0.03 m / second or more and less than 0.18 m / second.

本発明では、無機凝集剤と有機系高分子凝集剤のどちらの混合においても迂流式混合を採用し、被処理水を迂流式混合槽に導入し、無機凝集剤を添加した後、凝集剤添加直後から少なくても3秒間の平均流速を0.18m/秒以上とし、その後の平均流速を0.03m/秒以上〜0.18m/秒未満とする。その後、有機系高分子凝集剤を添加し、無機凝集剤の混合と同様に、凝集剤添加直後から少なくても3秒間の平均流速を0.18m/秒以上とし、その後の平均流速を0.03m/秒以上〜0.18m/秒未満とする。
また、本発明では、凝集剤添加直後から少なくても3秒間の流速を速くする手段として、流路面積を狭くする、邪魔板を設置する、オリフィス板を設置する、などの水流撹拌を用いる。
In the present invention, bypass mixing is adopted in both the mixing of the inorganic flocculant and the organic polymer flocculant, the water to be treated is introduced into the bypass mixing tank, the inorganic flocculant is added, and then the flocculant is added. At least 3 seconds after the addition of the agent, the average flow velocity for 3 seconds is set to 0.18 m / second or more, and the subsequent average flow velocity is set to 0.03 m / second or more and less than 0.18 m / second. Thereafter, an organic polymer flocculant is added, and the average flow velocity for at least 3 seconds is set to 0.18 m / second or more immediately after the addition of the flocculant, and the average flow velocity after that is set to 0. 03 m / sec or more and less than 0.18 m / sec.
In the present invention, as a means for increasing the flow rate for at least 3 seconds immediately after the addition of the flocculant, water flow agitation such as narrowing the flow path area, installing a baffle plate, or installing an orifice plate is used.

次に、本発明を図面に基づいて詳細に説明する。図1は本発明で用いる上下迂流式混合槽の概略構成図であり、凝集剤添加直後の流路断面積を狭くした一例である。
原水1を迂流式混合槽2へ導入し、流入部分で無機凝集剤3を添加し、添加直後に流路4、流路5の順に流す。流路4は流路5よりも断面積が小さく、流路4の平均流速は流路5よりも速くなる。ここで、流路4は平均流速が0.18m/秒以上、滞留時間が3秒以上であり、無機凝集剤の速やかな拡散が行われる。流路5は平均流速が0.03m/秒以上〜0.18m/秒未満であり、マイクロフロックの形成が促進される。流路5を経た後、有機系高分子凝集剤6を添加し、添加直後に流路7、流路8の順に流す。流路7は流路8よりも断面積が小さく、流路7の平均流速は流路8よりも速くなる。ここで、流路7は平均流速が0.18m/秒以上、滞留時間が3秒以上であり、有機系高分子凝集剤の速やかな拡散と同時に凝集剤とマイクロフロックとの会合・合体が行われる。流路8は平均流速が0.03m/秒以上〜0.18m/秒未満であり、マイクロフロック同士を会合・合体させてフロックの生長が促進される。流路8を経た後、生長したフロックを含有する水は迂流式混合槽2から固液分離槽へ流入する。
流路4と流路7は、断面積を小さくする以外にも、図4に示す邪魔板9を設置したり、図5に示すオリフィス板10を設置するなどで、平均流速を0.18m/秒以上とすることができる。
Next, the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram of a vertical detour-type mixing tank used in the present invention, which is an example in which a flow path cross-sectional area immediately after addition of a flocculant is narrowed.
The raw water 1 is introduced into the bypass type mixing tank 2, the inorganic flocculant 3 is added at the inflow portion, and immediately after the addition, the flow path 4 and the flow path 5 are flowed in this order. The channel 4 has a smaller cross-sectional area than the channel 5, and the average flow velocity of the channel 4 is faster than that of the channel 5. Here, the flow path 4 has an average flow rate of 0.18 m / second or more and a residence time of 3 seconds or more, and the inorganic flocculant is rapidly diffused. The flow path 5 has an average flow velocity of 0.03 m / second or more and less than 0.18 m / second, and the formation of micro floc is promoted. After passing through the channel 5, the organic polymer flocculant 6 is added, and immediately after the addition, the channel 7 and the channel 8 are flowed in this order. The channel 7 has a smaller cross-sectional area than the channel 8, and the average flow velocity of the channel 7 is faster than that of the channel 8. Here, the flow path 7 has an average flow rate of 0.18 m / sec or more and a residence time of 3 seconds or more, and the organic polymer flocculant is rapidly diffused and the flocculant and the micro floc are associated and combined. Is called. The channel 8 has an average flow velocity of 0.03 m / sec or more and less than 0.18 m / sec, and the micro flocs are assembled and combined to promote floc growth. After passing through the flow path 8, the water containing the grown floc flows from the bypass mixing tank 2 into the solid-liquid separation tank.
In addition to reducing the cross-sectional area, the flow path 4 and the flow path 7 have an average flow velocity of 0.18 m / min by installing the baffle plate 9 shown in FIG. 4 or the orifice plate 10 shown in FIG. It can be more than a second.

本発明の凝集処理方法に基づいて、図1の迂流式混合槽を用いて処理した実施例を以下に示す。
比較として、従来例である図2の凝集剤を機械撹拌するフロー、図3の凝集剤を迂流式撹拌するフローに従った例を示す。図3では迂流式水路の断面積を一定にし、流速を凝集剤添加後である流路4とその後の流路5、流路7とその後の流路8のどちらも同一にしている。本発明の図1では、凝集剤添加後の流路断面積を狭くして、流速を流路後半よりも速くしている。
機械撹拌である図2では、原水1に対して、無機凝集剤混合槽9で塩化第二鉄を添加して混合し、次に、高分子凝集剤混合槽10でアニオン系高分子凝集剤6を添加して混合する。形成したフロックを含有する水は、高分子凝集剤混合槽10から固液分離槽へ流入する。
一方、図3の迂流式混合槽2の流路は、上下に4往復するものであり、第1流路4上流部に、塩化第二鉄3を添加した後に二往復の流路撹拌を行う。その後、第5流路7上流部にアニオン系高分子凝集剤6を添加し、二往復の流路撹拌を行う。形成したフロックを含有する水は、迂流式混合槽2から固液分離槽へ流入する。
Based on the agglomeration treatment method of the present invention, an example of treatment using the bypass mixing tank of FIG. 1 is shown below.
For comparison, an example according to a flow of mechanically stirring the flocculant of FIG. 2 as a conventional example and a flow of bypassing the flocculant of FIG. 3 is shown. In FIG. 3, the cross-sectional area of the bypass channel is made constant, and the flow rate after adding the flocculant is the same for the flow channel 4 and the subsequent flow channel 5, and the flow channel 7 and the subsequent flow channel 8. In FIG. 1 of the present invention, the cross-sectional area of the flow channel after the addition of the flocculant is narrowed so that the flow rate is faster than the latter half of the flow channel.
In FIG. 2, which is mechanical agitation, ferric chloride is added to and mixed with raw water 1 in an inorganic flocculant mixing tank 9, and then anionic polymer flocculant 6 in a polymer flocculant mixing tank 10. Add and mix. The water containing the formed floc flows from the polymer flocculant mixing tank 10 into the solid-liquid separation tank.
On the other hand, the flow path of the bypass-type mixing tank 2 in FIG. 3 is reciprocated up and down four times, and after adding ferric chloride 3 to the upstream portion of the first flow path 4, two reciprocal flow paths are stirred. Do. Thereafter, the anionic polymer flocculant 6 is added to the upstream portion of the fifth flow path 7 and two reciprocal flow paths are stirred. The water containing the formed floc flows into the solid-liquid separation tank from the bypass mixing tank 2.

本発明である図1の迂流式混合槽2の流路は、上下に4往復するものであり、第1流路4上流部に、塩化第二鉄3を添加した後に二往復の流路撹拌を行う。第1流路4の流路断面積は、第2,3,4流路5よりも小さく、平均流速が0.40m/秒となるようにしている。その後、第5流路7上流部に、アニオン系高分子凝集剤6を添加し、二往復の流路撹拌を行う。第5流路7の流路断面積は、第6、7、8流路8よりも小さく、平均流速が0.40m/秒となるようにしている。図3に比べて、第1流路4と第5流路7の平均流速を速くして、凝集剤添加直後に迅速に拡散が行われるようにしている。一方、第2、3、4流路5と第6、7、8流路8の平均流速を遅くして、凝集剤拡散後のマイクロフロックの形成とフロックの生長を行う。   The flow path of the bypass mixing tank 2 of FIG. 1 according to the present invention reciprocates up and down four times, and after adding ferric chloride 3 to the upstream portion of the first flow path 4, the flow path is reciprocated twice. Stir. The channel cross-sectional area of the first channel 4 is smaller than that of the second, third, and fourth channels 5 so that the average flow velocity is 0.40 m / sec. Thereafter, the anionic polymer flocculant 6 is added to the upstream portion of the fifth flow path 7, and two reciprocal flow paths are stirred. The channel cross-sectional area of the fifth channel 7 is smaller than those of the sixth, seventh, and eighth channels 8 so that the average flow velocity is 0.40 m / sec. Compared to FIG. 3, the average flow velocity of the first flow path 4 and the fifth flow path 7 is increased so that the diffusion is performed immediately after the addition of the flocculant. On the other hand, the average flow velocity of the second, third, fourth flow path 5 and the sixth, seventh, eighth flow path 8 is slowed to form micro flocs after flocculant diffusion and to grow flocs.

本発明と従来法の処理条件と処理成績を表1に示す。原水は、合流式下水道の雨天時下水であり、いずれのフローでも147m/時で処理を行った。いずれの処理においても、無機凝集剤として塩化第二鉄を30mg/L、有機系高分子凝集剤としてアニオン系の凝集剤を1.5mg/L添加した。原水SSは、約150〜300mg/Lであり、同一である。混合時間は、無機凝集剤添加から高分子凝集剤添加までを120秒、高分子凝集剤添加から混合槽流出までを130秒となるようにしている。図2では、無機凝集剤混合槽9の滞留時間が120秒、図1と図3では、第1流路4と第2、3、4流路5との合計滞留時間が120秒である。また、図2では、高分子凝集剤混合槽10の滞留時間が130秒、図1と図3では、第5流路7と第6、7、8流路8との合計滞留時間が130秒である。図3の場合、流路の平均流速は終始0.15m/秒である。これに対して、図1の場合には、第1流路4と第5流路7の平均流速は0.40m/秒、滞留時間は11秒、第2、3、4流路5の平均流速は0.12m/秒、滞留時間は109秒、第6、7、8流路8の平均流速は0.12m/秒、滞留時間は119秒である。 Table 1 shows the processing conditions and processing results of the present invention and the conventional method. The raw water was sewage in the rain of a combined sewer, and was treated at 147 m 3 / hour in any flow. In any treatment, ferric chloride was added at 30 mg / L as an inorganic flocculant, and anionic flocculant was added at 1.5 mg / L as an organic polymer flocculant. The raw water SS is about 150 to 300 mg / L and is the same. The mixing time is 120 seconds from the addition of the inorganic flocculant to the addition of the polymer flocculant, and 130 seconds from the addition of the polymer flocculant to the outflow of the mixing tank. In FIG. 2, the residence time of the inorganic flocculant mixing tank 9 is 120 seconds, and in FIGS. 1 and 3, the total residence time of the first flow path 4 and the second, third, and fourth flow paths 5 is 120 seconds. In FIG. 2, the residence time of the polymer flocculant mixing tank 10 is 130 seconds, and in FIGS. 1 and 3, the total residence time of the fifth flow path 7 and the sixth, seventh and eighth flow paths 8 is 130 seconds. It is. In the case of FIG. 3, the average flow velocity of the flow path is 0.15 m / sec throughout. On the other hand, in the case of FIG. 1, the average flow velocity of the first flow path 4 and the fifth flow path 7 is 0.40 m / second, the residence time is 11 seconds, and the average of the second, third, and fourth flow paths 5. The flow velocity is 0.12 m / second, the residence time is 109 seconds, the average flow velocity of the sixth, seventh and eighth flow paths 8 is 0.12 m / second, and the residence time is 119 seconds.

従来法の機械撹拌では、固液分離処理水SSが20〜58mg/Lであり、処理水水質に幅がある。機械撹拌を行うことで短絡流の割合が大きく、処理水水質が不均一になる。一方、図3の従来法の迂流式撹拌では、固液分離処理水SSが40〜78mg/Lである。短絡流は防止されているが、無機凝集剤添加直後と高分子凝集剤添加直後とにおける拡散操作が不十分であるために、処理水中に懸濁物質が残留している。これらに対して、本発明の迂流式撹拌では、固液分離処理水SSが19〜32mg/Lである。短絡流が防止されると共に、凝集剤添加直後の凝集剤の拡散が迅速かつ十分に行われることによって、清澄な処理水を得ることが出来る。   In the mechanical stirring of the conventional method, the solid-liquid separation treated water SS is 20 to 58 mg / L, and the quality of the treated water is wide. By performing mechanical stirring, the ratio of the short-circuit flow is large, and the quality of the treated water becomes uneven. On the other hand, in the bypass-type stirring of the conventional method of FIG. 3, the solid-liquid separation treated water SS is 40 to 78 mg / L. Although short-circuit flow is prevented, the suspended substance remains in the treated water because the diffusion operation is insufficient immediately after the addition of the inorganic flocculant and immediately after the addition of the polymer flocculant. On the other hand, in the bypass stirring of the present invention, the solid-liquid separation treated water SS is 19 to 32 mg / L. A short-circuit flow is prevented, and the flocculant is diffused immediately and sufficiently immediately after addition of the flocculant, whereby clear treated water can be obtained.

Figure 2005177602
Figure 2005177602

本発明の迂流式混合槽の一例を示す断面構成図。The cross-sectional block diagram which shows an example of the bypass type mixing tank of this invention. 従来の凝集剤を機械撹拌する混合槽の断面構成図。Sectional block diagram of the mixing tank which mechanically stirs the conventional flocculant. 従来の迂流水路の断面積を一定にした混合槽の断面構成図。The cross-sectional block diagram of the mixing tank which made the cross-sectional area of the conventional bypass waterway constant. 本発明の邪魔板を設けた迂流式混合槽の断面構成図。The cross-sectional block diagram of the bypass type mixing tank which provided the baffle plate of this invention. 本発明のオリフィス板を設けた迂流式混合槽の断面構成図。The cross-sectional block diagram of the bypass type mixing tank which provided the orifice plate of this invention.

符号の説明Explanation of symbols

1:原水、2:迂流式撹拌槽、3:無機凝集剤、4、5、7、8:流路、6:有機系高分子凝集剤、9:邪魔板、10:オリフィス板   1: Raw water, 2: Detour type stirring tank, 3: Inorganic flocculant, 4, 5, 7, 8: Channel, 6: Organic polymer flocculant, 9: Baffle plate, 10: Orifice plate

Claims (7)

迂流式流路によって、被処理水に無機凝集剤を添加混合後、有機系高分子凝集剤を添加混合する凝集剤の混合方法において、前記迂流式流路による各凝集剤の混合は、該各凝集剤の添加直後から一定時間の流速を、その後の流速よりも速くすることによって、該一定時間内に該凝集剤を被処理水中に十分に拡散することを特徴とする凝集剤の混合方法。 In the mixing method of the flocculant in which the organic polymer flocculant is added and mixed after adding and mixing the inorganic flocculant to the water to be treated by the bypass flow path, the mixing of each flocculant by the bypass flow path is performed by: Mixing of the flocculant characterized by sufficiently diffusing the flocculant into the water to be treated within the predetermined time by making the flow rate for a certain time immediately after the addition of each flocculant higher than the subsequent flow rate Method. 前記迂流式流路による各凝集剤の混合は、該各凝集剤の添加直後から少なくとも3秒間は、被処理水の平均流速を0.18m/秒以上とし、その後は被処理水の平均流速を0.03m/秒以上〜0.18m/秒未満とすることを特徴とする請求項1記載の凝集剤の混合方法。 In the mixing of each flocculant by the bypass channel, the average flow rate of the water to be treated is 0.18 m / sec or more for at least 3 seconds immediately after the addition of each flocculant, and thereafter the average flow rate of the water to be treated. The mixing method of the flocculant according to claim 1, wherein 0.03 m / sec or more and less than 0.18 m / sec. 請求項1又は2記載の凝集剤の混合方法により、雨水混入下水に凝集剤を添加混合処理した後に、固液分離することを特徴とする雨水混入下水の処理方法。 3. A method for treating rainwater-mixed sewage, wherein the flocculant is added to the rainwater-mixed sewage by the mixing method according to claim 1 or 2, followed by solid-liquid separation. 迂流式流路を有し、該流路の入口部に、被処理水の流入口と無機凝集剤の添加手段とを有し、該流路の中間部に、有機系高分子凝集剤の添加手段を有する凝集剤混合槽において、前記迂流式流路は、前記各凝集剤の添加直後から一定時間の流速を、その後の流速よりも速くする手段を有することを特徴とする凝集剤混合槽。 It has a bypass flow path, and has an inlet for the water to be treated and means for adding an inorganic flocculant at the inlet of the flow path, and an organic polymer flocculant in the middle of the flow path. In the flocculant mixing tank having addition means, the bypass flow path has means for increasing the flow rate for a predetermined time immediately after the addition of each of the flocculants to be higher than the subsequent flow rate. Tank. 前記添加直後から一定時間の流速を、その後の流速よりも速くする手段は、該流路の断面積を狭くするか、該流路に邪魔板又はオリフィス板を設置することを特徴とする請求項4記載の凝集剤混合槽。 The means for making the flow rate for a certain time immediately after the addition faster than the subsequent flow rate narrows the cross-sectional area of the flow path, or installs a baffle plate or an orifice plate in the flow path. 4. The flocculant mixing tank according to 4. 前記迂流式流路は、前記各凝集剤の添加直後から少なくとも3秒間は、被処理水の平均流速を0.18m/秒以上とする手段と、その後は、被処理水の平均流速を0.03m/秒以上〜0.18m/秒未満に調整する手段とを有することを特徴とする請求項4記載の凝集剤混合槽。 The bypass type flow path includes means for setting the average flow rate of the water to be treated to 0.18 m / second or more for at least 3 seconds immediately after the addition of the respective flocculants, and thereafter the average flow rate of the water to be treated is 0. The flocculant mixing tank according to claim 4, further comprising a means for adjusting to 0.03 m / second or more and less than 0.18 m / second. 雨水混入下水を被処理水とする請求項4、5又は6記載の凝集剤混合槽と、該混合槽からの混合処理水を固液分離する手段とを有することを特徴とする雨水混入下水の処理装置。 7. A flocculated sewage comprising the flocculant mixing tank according to claim 4, 5 or 6, wherein the rainwater mixed sewage is treated water, and means for solid-liquid separation of the mixed treated water from the mixing tank. Processing equipment.
JP2003421919A 2003-12-19 2003-12-19 Method of mixing flocculant, mixing vessel and method and apparatus for treating rain-water-including sewage using the mixing method and vessel Pending JP2005177602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003421919A JP2005177602A (en) 2003-12-19 2003-12-19 Method of mixing flocculant, mixing vessel and method and apparatus for treating rain-water-including sewage using the mixing method and vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003421919A JP2005177602A (en) 2003-12-19 2003-12-19 Method of mixing flocculant, mixing vessel and method and apparatus for treating rain-water-including sewage using the mixing method and vessel

Publications (1)

Publication Number Publication Date
JP2005177602A true JP2005177602A (en) 2005-07-07

Family

ID=34782946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003421919A Pending JP2005177602A (en) 2003-12-19 2003-12-19 Method of mixing flocculant, mixing vessel and method and apparatus for treating rain-water-including sewage using the mixing method and vessel

Country Status (1)

Country Link
JP (1) JP2005177602A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086980A (en) * 2006-10-04 2008-04-17 Nippon Solid Co Ltd Raw water treatment method
JP2008200646A (en) * 2007-02-22 2008-09-04 Kurita Water Ind Ltd Agitation mixer and flocculation reaction apparatus equipped with it
JP2010214360A (en) * 2009-02-17 2010-09-30 Toshiba Corp Solid separation system
JP2010247117A (en) * 2009-04-20 2010-11-04 Nippon Solid Co Ltd Treatment method for raw water
CN102009014A (en) * 2010-10-08 2011-04-13 天津水工业工程设备有限公司 Device for adding medicament and method of adding medicament
JP2011083709A (en) * 2009-10-15 2011-04-28 Toshiba Corp Solid-liquid separation system
JP2011083707A (en) * 2009-10-15 2011-04-28 Toshiba Corp Solid matter separation system
JP2012217907A (en) * 2011-04-07 2012-11-12 Daiki Engineering Kk Measurement tank and treatment equipment having the same
JP2013049057A (en) * 2012-11-05 2013-03-14 Toshiba Corp Solid-liquid separation system
CN103771570A (en) * 2013-12-04 2014-05-07 南京中电环保股份有限公司 Baffling and converting type grid flocculation reaction device
JP2014140845A (en) * 2014-03-31 2014-08-07 Toshiba Corp Solid-liquid separation system
JP2015178054A (en) * 2014-03-19 2015-10-08 ハイモ株式会社 Polymer coagulant dissolution device
CN105330105A (en) * 2015-10-30 2016-02-17 南京农业大学 Inorganic-organic-microorganism flocculating integrated device
JP2020025919A (en) * 2018-08-10 2020-02-20 栗田工業株式会社 Coagulation/sedimentation apparatus

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086980A (en) * 2006-10-04 2008-04-17 Nippon Solid Co Ltd Raw water treatment method
JP2008200646A (en) * 2007-02-22 2008-09-04 Kurita Water Ind Ltd Agitation mixer and flocculation reaction apparatus equipped with it
JP2010214360A (en) * 2009-02-17 2010-09-30 Toshiba Corp Solid separation system
JP2010247117A (en) * 2009-04-20 2010-11-04 Nippon Solid Co Ltd Treatment method for raw water
JP2011083709A (en) * 2009-10-15 2011-04-28 Toshiba Corp Solid-liquid separation system
JP2011083707A (en) * 2009-10-15 2011-04-28 Toshiba Corp Solid matter separation system
CN102009014A (en) * 2010-10-08 2011-04-13 天津水工业工程设备有限公司 Device for adding medicament and method of adding medicament
JP2012217907A (en) * 2011-04-07 2012-11-12 Daiki Engineering Kk Measurement tank and treatment equipment having the same
JP2013049057A (en) * 2012-11-05 2013-03-14 Toshiba Corp Solid-liquid separation system
CN103771570A (en) * 2013-12-04 2014-05-07 南京中电环保股份有限公司 Baffling and converting type grid flocculation reaction device
JP2015178054A (en) * 2014-03-19 2015-10-08 ハイモ株式会社 Polymer coagulant dissolution device
JP2014140845A (en) * 2014-03-31 2014-08-07 Toshiba Corp Solid-liquid separation system
CN105330105A (en) * 2015-10-30 2016-02-17 南京农业大学 Inorganic-organic-microorganism flocculating integrated device
CN105330105B (en) * 2015-10-30 2017-11-24 南京农业大学 The flocculation integrated device of inorganic-organic microbial
JP2020025919A (en) * 2018-08-10 2020-02-20 栗田工業株式会社 Coagulation/sedimentation apparatus
JP7119745B2 (en) 2018-08-10 2022-08-17 栗田工業株式会社 Coagulating sedimentation equipment

Similar Documents

Publication Publication Date Title
JP2005177602A (en) Method of mixing flocculant, mixing vessel and method and apparatus for treating rain-water-including sewage using the mixing method and vessel
US7323108B1 (en) Combined biological and ballasted flocculation process for treating wastewater
JP2008534258A (en) Method and system for using activated sludge in a stabilized flocculation process to remove BOD and suspended solids
JP2004344778A (en) Method and apparatus for treating rainwater-mixed sewage
EP3221269B1 (en) Improved ballasted clarification method
CN104045209B (en) Cold rolling wastewater treatment process
CA2963306C (en) Water treatment process employing dissolved air flotation to remove suspended solids
JP2004160353A (en) Coagulation reaction device
JP5173538B2 (en) Water treatment method
CN111196664B (en) Wastewater desalting treatment method based on advanced treatment
US9751780B2 (en) Coagulation/flocculation apparatus for the treatment of a hydraulic flow, and implementation process
JP2004290957A (en) Flocculation apparatus
JP2002052302A (en) Liquid processing device
JP3862888B2 (en) Continuous sludge aggregation method
CN216445136U (en) Sewage treatment system for electroplating
JP3922921B2 (en) Coagulation sedimentation equipment
KR101852005B1 (en) An apparatus for water treatment using precipitation and dehydration of sludge and a method for water treatment using thereof
JPH0138523B2 (en)
JP2002282605A (en) Forced circulation type separation device
EP1637205A1 (en) Flocculaing settling device
JP2005034746A (en) Method of preparing coagulant, and water treatment method using the same
JPS5851912A (en) Coagulation of dispersed and suspended particle
CN107324464B (en) Multi-effect separation device and method
JPH04176384A (en) Treatment of drainage
KR101961685B1 (en) An apparatus for water treatment using precipitation and dehydration of sludge and a method for water treatment using thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061214

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090422

A02 Decision of refusal

Effective date: 20090817

Free format text: JAPANESE INTERMEDIATE CODE: A02