JP2008086980A - Raw water treatment method - Google Patents

Raw water treatment method Download PDF

Info

Publication number
JP2008086980A
JP2008086980A JP2006296987A JP2006296987A JP2008086980A JP 2008086980 A JP2008086980 A JP 2008086980A JP 2006296987 A JP2006296987 A JP 2006296987A JP 2006296987 A JP2006296987 A JP 2006296987A JP 2008086980 A JP2008086980 A JP 2008086980A
Authority
JP
Japan
Prior art keywords
raw water
water
turbidity
flocculant
aggregation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006296987A
Other languages
Japanese (ja)
Inventor
Hitoshi Hatano
倫 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Solid Co Ltd
Original Assignee
Nihon Solid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Solid Co Ltd filed Critical Nihon Solid Co Ltd
Priority to JP2006296987A priority Critical patent/JP2008086980A/en
Publication of JP2008086980A publication Critical patent/JP2008086980A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a residual turbidity of treated water by reducing the consumption of a flocculant even in the case where the turbidity of raw water is low while reducing the dissolving amount of the flocculant. <P>SOLUTION: A flocculation accelerating member is provided in a mixing basin, and the flocculant and raw water are supplied to the mixing basin to treat raw water. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、浄水場或いは工業用水処理場等における原水の処理方法に関する。  The present invention relates to a method for treating raw water in a water purification plant, an industrial water treatment plant or the like.

初期における水処理技術は、欧米では原水硬度や濁質が高いために干渉沈降濃度となり易く、そのため凝集が容易となることから、もっぱら粒子群の干渉沈降を主体とする高速凝集沈殿池により処理されていた。この技術をわが国が導入したが、原水が濁度・硬度とも低いので、凝集フロックを形成する維持管理が極めて困難であった。  In the early stages of water treatment technology, the raw water hardness and turbidity are high in Europe and the United States, and the concentration tends to be interference sedimentation. It was. This technology was introduced by Japan, but the raw water was low in both turbidity and hardness, so that it was extremely difficult to maintain and form aggregated flocs.

我が国の河川水質は、低濁度、低水温、低アルカリの原水が多く、凝集フロックの形成が難易で運転維持管理が難しく凝集不良が生起しやすかったが、その凝集技術の改善がなされないまま、維持管理の容易な単一沈降の傾斜板型横流沈澱池による処理がもっぱら採用されている。  Japan's river water quality is mostly low turbidity, low water temperature, low alkali raw water, and it is difficult to form agglomeration flocs and operation maintenance is difficult, and agglomeration failure is likely to occur, but the agglomeration technology has not been improved. The treatment with a single-sink inclined plate type cross-flow sedimentation basin, which is easy to maintain, is adopted exclusively.

我が国の水源は、前述したように、年間を通じて低濁度、低水温、低アルカリであるために凝集が困難であり、そのため従来においては凝集剤、アルカリ剤の過剰注入をもたらし、その結果処理水中の残留イオンによるアルツハイマー病の問題、微濁質が残留して濾過損失水頭を高め洗浄頻度の増加、浄水池で残留イオンが再溶出する等、凝集剤からもたらされる残留物質が水道水に含有する酸化還元数値を高めている結果、美味しい水になりにくい諸問題が解決されていない。(非特許文献1,2)。この事は、原水に凝集剤を添加し、フロック形成を行うが不良凝集となる事により、残留物質が最期まで残存する事が原因である。  As described above, the water source in Japan is difficult to agglomerate because of its low turbidity, low water temperature, and low alkali throughout the year. As a result, it has conventionally caused excessive injection of a flocculant and an alkali agent. Residual substances derived from coagulants such as Alzheimer's disease due to residual ions, residual turbidity and increased filtration loss water head, increased washing frequency, and re-elution of residual ions in water purification ponds are contained in tap water. As a result of increasing the redox value, various problems that make it difficult to produce delicious water have not been solved. (Non-Patent Documents 1 and 2). This is because the flocculant is added to the raw water and floc formation is performed, but due to poor aggregation, the residual material remains until the end.

非特許文献1「水道協会雑誌」平成16年11月 第73巻第11号(第842号)第2頁〜第10頁)
非特許文献2 第55回全国水道研究発表会講演集(平成16年5月10日発行)第322頁〜323頁
Non-Patent Document 1 “Water Supply Association Magazine” November 2004, Vol. 73, No. 11 (No. 842), pages 2 to 10)
Non-Patent Document 2 The 55th National Waterworks Research Presentation (issued on May 10, 2004) pp. 322-323

そこで本発明者は、これら従来の欠点を解消するために種々研究を重ね、原水の濁度が低い場合においても、凝集剤使用量を減少化させ、浄水中の凝集剤(特にアルミニウム)の低濃度化を計ることができる原水の処理方法を完成するに至った。  Therefore, the present inventor has conducted various studies to eliminate these conventional drawbacks, and even when the turbidity of the raw water is low, the amount of the flocculant used is reduced, and the amount of the flocculant (especially aluminum) in the purified water is reduced. It came to complete the raw water processing method which can measure concentration.

本発明方法によれば、凝集剤使用量の減少化、濾過損失水頭の減少(濾過閉鎖)、藻類の多量発生時における凝集不良によるかび臭の防止、浄水中の凝集剤(特にアルミニウム)の低濃度化、スラッジの高濃度化、脱水処理総量の減少、発生土の減量化等の種々の効果が得られる。  According to the method of the present invention, the amount of coagulant used is reduced, the head of filtration loss is reduced (filter closure), the mold odor is prevented due to poor aggregation when a large amount of algae are generated, and the concentration of the coagulant (especially aluminum) in clean water is low. Various effects are obtained such as slagging, increasing sludge concentration, reducing the total amount of dewatering treatment, and reducing the amount of generated soil.

本発明は、混和池に凝集促進体を設け、該混和池に凝集剤と原水を供給して処理することを特徴とする原水の処理方法である。
次に図面を参照しながら本発明を説明するが、本発明は、以下の説明のみに限定されるものではない。
The present invention is a raw water treatment method characterized in that a coagulation promoter is provided in a mixing pond, and the coagulant and raw water are supplied to the mixing pond for treatment.
Next, the present invention will be described with reference to the drawings, but the present invention is not limited to the following description.

図1は、本発明の原水の処理方法を模式的に示した処理装置の一例である。
1は混和池、2は凝集促進体、3はフロック形成池、4は沈澱池、5はフラッシュミキサー、6はパドル式攪拌装置、7は水流傾斜板を示す。
混和池1のフラッシュミキサー5は、回転することで原水と凝集剤を急速攪拌する。フロック形成池3のパドル式攪拌装置6は、駆動することで緩速攪拌をする。
混和池1には、その上部に凝集促進体の軸をステー8に支枢して、固定および回動自由に支持する。ステー8の支枢部に設けられたストッパー(図示せず)を締めると固定され、緩めることにより、手動や電動または水流で凝集促進体2は回転する。図1における凝集促進体2は、混和池1内の流れの抵抗体であり、平板あるいは平板を非線形(螺旋形)に捻られたものから構成されるプレート型羽体であるが、その他の羽根体としては、図2に示す、板体縁部に抵抗体9を設けたもの、図3のように羽根が波板状のもの、図4に示すようにブラシ体のもの、図5に示すような板部を非線形に捻られたもの、図6に示す丸羽根状のもの、図7に示すリンボン羽根状、図8に示す二重丸羽根状、図9に示す切子羽根状体、図10及び図11に示すパドル羽根状のものが使用できる。
図12は、混和池1及びフロック形成池3が上下迂流式水路10とした場合であり、混和池1及びフロック形成池3に凝集促進体2を装備し、図1のフラッシュミキサー5及びパドル式攪拌装置6等の回転駆動を装備しない原水の処理装置の一例であり、水の流れによって原水と凝集剤を急速攪拌および緩速攪拌するものである。
FIG. 1 is an example of a treatment apparatus schematically showing the raw water treatment method of the present invention.
1 is a mixing pond, 2 is an agglomeration accelerator, 3 is a floc formation pond, 4 is a sedimentation basin, 5 is a flash mixer, 6 is a paddle type stirring device, and 7 is a water flow inclined plate.
The flash mixer 5 in the mixing basin 1 rotates rapidly to stir the raw water and the flocculant. The paddle type stirring device 6 in the flock formation pond 3 is driven to perform slow stirring.
In the mixing basin 1, the shaft of the aggregation promoting body is pivotally supported by the stay 8 at the upper part thereof, and is supported so as to be fixed and freely rotatable. When a stopper (not shown) provided at the support portion of the stay 8 is tightened, the stopper is fixed and loosened, so that the agglomeration promoting body 2 rotates manually, electrically, or by a water flow. The aggregation promoter 2 in FIG. 1 is a flow resistor in the mixing basin 1 and is a plate-type wing formed of a flat plate or a non-linear (spiral) twist of a flat plate. The body shown in FIG. 2 is provided with a resistor 9 at the edge of the plate body, the blade is corrugated as shown in FIG. 3, the brush body is shown in FIG. 4, and the body is shown in FIG. Such a non-linearly twisted plate portion, a round blade shape shown in FIG. 6, a limbon blade shape shown in FIG. 7, a double round blade shape shown in FIG. 8, a face blade shape shown in FIG. 10 and the paddle blade shape shown in FIG. 11 can be used.
FIG. 12 shows a case where the mixing basin 1 and the floc-forming pond 3 are formed as an up-down diverted water channel 10, and the mixing pond 1 and the flock-forming pond 3 are equipped with the aggregation accelerator 2, and the flash mixer 5 and the paddle in FIG. This is an example of a raw water treatment device that is not equipped with a rotational drive, such as the type stirring device 6, and rapidly and slowly stirs the raw water and the flocculant by the flow of water.

凝集促進体2を構成する素材としては、金属類、硬質合成樹脂等からなる剛性素材或いは、ゴム、軟質合成樹脂等からなる柔性素材のいずれも使用し得る。  As a material constituting the aggregation promoter 2, any of a rigid material made of metals, hard synthetic resin, or the like, or a flexible material made of rubber, soft synthetic resin, or the like can be used.

凝集促進体2には、ドラバイト、トルマリン等の電気石を塗布または含有させることもできる。ドラバイト、トルマリン等の電気石を塗布または含有させることで、電磁波により水分子を細粒化(クラスター)することができる。このことは水素イオン濃度を高かめ、原水の酸化還元電位を低下させ、凝集剤や濁質等の物質の親和性を増加させ、混和性を高め、凝集が良好に行われる。  The agglomeration promoter 2 may be coated or contained with tourmaline such as drabite or tourmaline. By applying or containing tourmaline such as drabite and tourmaline, water molecules can be finely divided (clustered) by electromagnetic waves. This increases the hydrogen ion concentration, lowers the oxidation-reduction potential of the raw water, increases the affinity of substances such as flocculants and turbidity, enhances miscibility, and achieves good aggregation.

これらの凝集促進体2は、混和池1中に1個又は2個以上設置することができ、その設置方法も、並列的に複数列設けてもよい。またこれらの凝集促進体2は、固定されていても手動や電動等の適当な駆動手段によって強制的に回動等させてもよく、さらには凝集促進体2の構造によっては水流の流れによって自転させることもできる。  One or two or more of these aggregation promoters 2 can be installed in the mixing basin 1, and the installation method may be provided in a plurality of rows in parallel. These agglomeration promoters 2 may be fixed or forcibly rotated by appropriate driving means such as manual operation or electric drive. Furthermore, depending on the structure of the agglomeration promoter 2, rotation may be caused by the flow of water. It can also be made.

凝集促進体2は、可動させることで、混和池1の運転を止めることなく付着堆積する粒子を簡単に洗浄することもできる。
更に、混和池1の攪拌を助成する為に凝集促進体2を強制的に回動等行うことも出来る。
By moving the agglomeration promoting body 2, it is possible to easily wash the particles deposited and deposited without stopping the operation of the mixing basin 1.
Furthermore, in order to assist the stirring of the mixing basin 1, the aggregation promoter 2 can be forcibly rotated.

また凝集促進体の他の態様としては、ネット状平板、スダレ状平板等の板状体が挙げられ、これらは、混和池内に、横方向、斜方向に可動(摺動)するように一列または複数列設置すればよい。さらに揺れたり、振動する構造の凝集促進体も好適に使用することができる。  Further, as other embodiments of the aggregation promoter, there are plate-like bodies such as a net-like flat plate and a slid-like flat plate, which are arranged in a row or so as to move (slide) in the lateral direction and the oblique direction in the mixing pond. Multiple rows may be installed. Further, an agglomeration promoter having a structure that shakes or vibrates can be suitably used.

次に本発明の処理方法について図1を参照しながら説明する。
凝集促進や良好なフロック形成には、粒子が存在する要素が凝集には欠かせない。凝集促進体2を設けた混和池1に凝集剤と原水とを供給することによって、原水濁度が低くても、形成したフロックは、凝集促進体2の近傍に干渉沈降しながら停滞し、原水中に濁質があることと同じ効果を表す。凝集促進体2前後でアトラクター(引き込み)領域による粒子相互干渉の残存フロックが停滞することにより、フロック形成や濁質との凝集が早く、良好なフロックとなる。
Next, the processing method of the present invention will be described with reference to FIG.
In order to promote aggregation and to form favorable flocs, the elements in which particles are present are indispensable for aggregation. By supplying the flocculant and the raw water to the mixing basin 1 provided with the aggregation accelerator 2, the flocs that have formed are stagnating in the vicinity of the aggregation accelerator 2 while interfering with sedimentation, even if the raw water turbidity is low. It shows the same effect as turbidity in water. The remaining flocs of particle mutual interference due to the attractor (retraction) region stagnate before and after the aggregation accelerator 2, so that floc formation and flocculation with turbidity are fast, resulting in good flocs.

この事は、混和池1の攪拌効果を高める凝集促進体2が、混和池1内でフラッシュミキサー5の攪拌機中央部と壁面近くに設置された凝集促進体2では異なる流れが生じることから、粒子濃度が異なり、凝集促進体2の近傍に種フロックとなって漂い、原水濁度が低くとも常に混和池1内の凝集促進体2近傍には何らかの濁度が存在する環境を形成できることを発見した。  This is because the aggregation promoter 2 that enhances the stirring effect of the mixing basin 1 produces different flows in the aggregation promoter 2 installed in the mixing pond 1 near the central part of the stirrer of the flash mixer 5 and the wall surface. It was found that the environment where some turbidity exists in the vicinity of the aggregation promoter 2 in the mixing basin 1 can be formed even if the concentration is different, the seed floc drifts in the vicinity of the aggregation promoter 2 and the raw water turbidity is low. .

凝集促進体2は混和池1内の流れの抵抗体であることで、混和池1中央部の流れと異なり、抵抗体近傍は、カオスチック(混沌)に多様な流れが生じる。多様な流れは、原水の濁質や形成したフロックを集め、接触・付着し合い良好なフロックとなる。この良好なフロックは種フロックとなって原水中に漂い、クリプトスポリジウムや珪藻類等の付着除去を促進する。  The aggregation promoter 2 is a flow resistor in the mixing basin 1 and, unlike the flow in the central portion of the mixing basin 1, various flows are generated in the vicinity of the resistor in a chaotic manner. Diverse flows collect the turbidity of raw water and formed flocs, and contact and adhere to each other, resulting in good flocs. This good floc becomes a seed floc and floats in the raw water, promoting the removal of Cryptosporidium and diatoms.

凝集促進体2は、流水中の水路や、混和池1、フロック形成池3等に設けることによっても乱流域をつくり、フロックを相互干渉して濃度を高めることが出来る。このように凝集促進体2を設けることによって従来ワンパスで接触沈降していた粒子を、凝集促進体2で再接触・付着させる効果を有する。  The aggregation promoter 2 can also create a turbulent flow region by providing it in a water channel in flowing water, the mixing pond 1, the flock formation pond 3, etc., and can increase the concentration by interfering with the flock. By providing the aggregation promoter 2 in this way, the particles that have been contact-settled by conventional one-pass have the effect of recontacting and adhering with the aggregation promoter 2.

従来は攪拌機単独で速度の強弱のみの運転であったが、本発明方法によれば凝集粒子の集合と接触が流れの攪拌の場にある事によって、粒子付着やアトラクターなどにより、粒子が停滞して、良好な凝集フロックを形成し、初期の目的である清澄分離効果を得ることが出来る。  Conventionally, only the stirrer was operated with only the strength of the speed, but according to the method of the present invention, the aggregation and contact of the agglomerated particles are in the flow stirring field, so that the particles are stagnated due to particle adhesion or attractor. As a result, a good flocculation floc can be formed, and the clarification and separation effect which is the initial purpose can be obtained.

混和池1、フロック形成池3、沈殿池4、上下迂流式水路10、蛇行式迂流式水路、流水路等に凝集促進体2を設置する事によって、凝集フロックが干渉沈降濃度で集合し、全量流下せず一部が凝集促進体2の背後に停滞し、混和池1又はフロック形成池3、沈殿池4内、流路等に活性フロックとして残っているので、再接触効果が得られる。
この事は、原水中に濁質があると凝集性が容易である事の証明である。
By installing the aggregation promoter 2 in the mixing basin 1, the flock formation pond 3, the sedimentation basin 4, the up-and-down diverted water channel 10, the meandering diverted water channel, and the flowing water channel, the agglomerated flocs gather at the interference sedimentation concentration. In this case, the entire amount does not flow down, but a part of the stagnation stays behind the agglomeration promoting body 2 and remains as active floc in the mixing basin 1 or the floc formation basin 3, the sedimentation basin 4, the flow path, etc. .
This is a proof that cohesion is easy if there is turbidity in the raw water.

何故、粒子に拘るかに就いては、濾過前の沈澱池4の処理水は濁度1mg/l以下である、その水に2mg/l〜3mg/lの薬注を行って、マイクロフロックと云われるほどの微細粒子でありながら、濾過床のアンスラサイト・珪砂・玉砂利などで濾過するとクリプトスポリジウムや珪藻類等が除去されているのは、前述濾過床の粒子表面に凝集剤が付着した効果である。
このように凝集剤は、固形粒子表面に付着しフロックを生成する。
The reason why the particles are concerned is that the treated water in the sedimentation basin 4 before filtration has a turbidity of 1 mg / l or less, and a chemical injection of 2 mg / l to 3 mg / l is performed on the water. Although it is so fine as to say, Cryptosporidium, diatoms, etc. are removed by filtration with anthracite, silica sand, or gravel on the filter bed, because the flocculant has adhered to the particle surface of the filter bed. It is.
Thus, the flocculant adheres to the surface of the solid particles and generates floc.

本発明に使用する凝集剤としては、硫酸バンド等のアルミ系凝集剤、硫酸第二鉄、塩化鉄等の鉄系凝集剤、ポリ塩化アルミニウム(以下PACという)、ポリシリカ鉄等のポリマータイプ凝集剤、ポリ硫酸鉄等の無機系凝集剤の他に、例えば食品や医薬・香粧品分野で広く利用されているCMC(カルボキシルメチルセルロースナトリウム・カルボキシルメチルセルロースカルシウム)は高粘性・高エーテル化度の物が多いが、粘性とエーテル化度が低いCMCを添加することにより、架橋凝集が起こりフロックの肥大化により、沈殿速度を高める架橋凝集剤が用いられる。この凝集剤は複数を混合して使用しても良い。
これらの凝集剤の濃度として例えばPACを使用する場合は酸化アルミニウム(Al)として10%〜11%含有するものが使用できる。これらの凝集剤溶液と原水との混合割合は、原水の濁度にもよるが一般的に原水に対し凝集剤溶液を10mg/l〜100mg/lの割合で混合することが好ましい。
Examples of the flocculant used in the present invention include aluminum flocculants such as a sulfate band, iron flocculants such as ferric sulfate and iron chloride, polymer type flocculants such as polyaluminum chloride (hereinafter referred to as PAC), and polysilica iron. In addition to inorganic flocculants such as polyiron sulfate, CMC (carboxymethylcellulose sodium / carboxylmethylcellulose calcium), which is widely used in the fields of foods, pharmaceuticals and cosmetics, is often highly viscous and highly etherified. However, by adding CMC having a low viscosity and a low degree of etherification, cross-linking agglomeration occurs, and a cross-linking aggregating agent that increases the precipitation rate due to the increase in flocs is used. A plurality of these flocculants may be used in combination.
For example, when PAC is used as the concentration of these flocculants, those containing 10% to 11% as aluminum oxide (Al 3 O 2 ) can be used. The mixing ratio of these flocculant solution and raw water depends on the turbidity of the raw water, but generally it is preferable to mix the flocculant solution with the raw water at a ratio of 10 mg / l to 100 mg / l.

本発明方法の他の態様として、沈澱池に沈降しフロック化された微粒子体を含有する水溶液(以下スラリーという)を用い、スラリーと凝集剤を混合したものと原水とを供給して処理する方法も採用することができる。
前記のように少量のスラリーと直接凝集剤とを混合することで、模擬活性凝集体(以下プレフロックという)を生成させ、このプレフロックと原水とを供給し処理するものである。スラリーは、水分母が少量で、粒子密度が高く、凝集剤と原水の混合割合に比べて、少量のスラリーと直接凝集剤とを混合することで粒子密度が高い中に高濃度な凝集剤が存在し、物理・電気化学的な模擬凝集が瞬時に起こり、プレフロックを生成させるものである。
また、スラリーと原水の使用比率は原水に対してスラリーに含有する微粒子体を2mg/l〜500mg/lの範囲使用することが好ましい。スラリー中の微粒子体濃度は通常0.03重量%〜10重量%、特に0.1重量%〜5重量%の範囲が好ましい。凝集剤と原水の使用比率は一般的に原水に対し、例えばPACを使用する場合は凝集剤溶液を10mg/l〜100mg/lの範囲使用することが好ましい。
また、本発明において粉末または顆粒の粒子体と粉末または顆粒の凝集剤を混合した物に水を加え、原水に供給して処理する方法も採用することができる。粉末または顆粒の粒子体としては、ゼオライト、ベントナイト、カオリン、焼成ドラバイト、炭酸カルシウム、消石灰、石灰、粉末酸化チタン、粉末貝殻、砂、天日乾燥された汚泥等が挙げられる。この粒子体は単独で使用しても良い。
As another embodiment of the method of the present invention, an aqueous solution (hereinafter referred to as a slurry) containing fine particles that have settled and flocked in a sedimentation basin is used, and a mixture of the slurry and a flocculant and raw water are supplied for treatment. Can also be adopted.
As described above, a small amount of slurry and a coagulant are directly mixed to produce a simulated active aggregate (hereinafter referred to as preflock), and this preflock and raw water are supplied and processed. The slurry has a small amount of moisture mother and a high particle density. Compared to the mixing ratio of the flocculant and raw water, the slurry has a high concentration of flocculant while the particle density is high by directly mixing the flocculant with the flocculant. It exists, and physical and electrochemical simulated agglomeration occurs instantaneously to generate pre-floc.
The use ratio of the slurry and raw water is preferably 2 mg / l to 500 mg / l of fine particles contained in the slurry with respect to the raw water. The concentration of fine particles in the slurry is usually in the range of 0.03% to 10% by weight, particularly 0.1% to 5% by weight. The use ratio of the flocculant and the raw water is generally preferably 10 mg / l to 100 mg / l of the flocculant solution with respect to the raw water.
In the present invention, a method of adding water to a mixture of powder or granule particles and a powder or granule flocculant and supplying the mixture to raw water can also be employed. Examples of powder or granule particles include zeolite, bentonite, kaolin, calcined drabite, calcium carbonate, slaked lime, lime, powdered titanium oxide, powdered shell, sand, and sun-dried sludge. This particle may be used alone.

本発明方法の他の態様として、温水と凝集剤を混合したものと原水とを供給して処理する方法も採用することができる。寒冷地においては原水温度が低下するほど、凝集フロックの形成が難易で運転維持管理が難しく凝集不良が生起しやすかったが、温水と凝集剤を混合することで、凝集剤をフロック化され易い状態(以下模擬フロックという)にし、この模擬フロックと原水とを供給し処理するものである。使用される温水の温度としては14℃〜50℃の範囲が好ましい。  As another embodiment of the method of the present invention, a method of supplying a raw water and treating it with a mixture of warm water and a flocculant can also be employed. In cold regions, the lower the raw water temperature, the more difficult it is to form agglomeration flocs, which makes it difficult to maintain and manage, making it difficult for agglomeration to occur. (Hereinafter referred to as simulated flock), and this simulated flock and raw water are supplied and processed. The temperature of the hot water used is preferably in the range of 14 ° C to 50 ° C.

試験例
効果を確認する為にジャーテスタにより行い、原水に凝集剤を加えたものと、少量のスラリーを直接凝集剤と混合・攪拌した後、原水に加えたものをそれぞれ、急速攪拌、緩速攪拌、静置2分後と10分後の濁度と、静置10分後のアルミニウム濃度を測定する。
更に、静置10分後の処理水をろ過し、濁度とアルミニウム濃度を測定する。
急速攪拌は120rpmを2分間行い混和池を再現する試験方法で、緩速攪拌は60rpmを10分間行いフロック形成池を再現する試験方法、静置2分後は沈殿池内を再現する試験方法、静置10分後の処理水は沈殿池処理水を再現する試験方法である。ろ過は自然平衡型でアンスラサイトと砂の二層ろ過方式を採用し、ろ過処理水とした。
尚、ビーカーには図5に示す形状の凝集促進体を装着したものと装着しないもので試験を行う。ビーカーに凝集促進体を装着したものは静置2分後および10分後にビーカー中央部と凝集促進体の背面部の上澄水をサイホンで給水サンプリングし、ビーカーに凝集促進体を装着しないものは静置2分後および10分後にビーカー中央部の上澄水をサイホンで給水サンプリングした。
凝集促進体は、60cmとし、3個装着した。
試験1
凝集促進体を装着したビーカーに原水(濁度5mg/l)3lを用意し、PACを20mg/l加え、急速攪拌を行い、続いて緩速攪拌を行う。緩速攪拌後、静置2分後に給水サンプリングし濁度を測定する。更に静置10分後に同様にサンプリングして濁度とアルミニウム濃度を測定する。静置10分後のビーカー中央部の上澄水をろ過し濁度とアルミニウム濃度を測定する。
試験2
試験1で用いたと同じ凝集促進体を装着したビーカーに原水(濁度10mg/l)3lを用意し、スラリー20mg/lをPAC20mg/lと混合・攪拌し、原液に加え、急速攪拌を行い、続いて緩速攪拌を行う。緩速攪拌後、静置2分後に給水サンプリングし濁度を測定する。更に静置10分後に同様にサンプリングして濁度とアルミニウム濃度を測定する。静置10分後のビーカー中央部の上澄水をろ過し濁度とアルミニウム濃度を測定する。
試験3(試験1の比較例)
凝集促進体を装着しないビーカーに原水(濁度5mg/l)3lを用意し、PACを20mg/l加え、急速攪拌を行い、続いて緩速攪拌を行う。緩速攪拌後、静置2分後に給水サンプリングし濁度を測定する。更に静置10分後に同様にサンプリングして濁度とアルミニウム濃度を測定する。静置10分後のビーカー中央部の上澄水をろ過し濁度とアルミニウム濃度を測定する。
次に処理水の濁度、アルミニウム濃度(以下Al濃度と称す)の測定結果を示せば下記の通りである。
Test example To confirm the effect, a jar tester was used, and the raw water was added with a flocculant, and a small amount of slurry was mixed and stirred directly with the flocculant, and then added to the raw water. Stirring, the turbidity after 2 minutes and 10 minutes of standing, and the aluminum concentration after 10 minutes of standing are measured.
Furthermore, the treated water after 10 minutes of standing is filtered, and turbidity and aluminum concentration are measured.
Rapid stirring is a test method that reproduces the mixing pond at 120 rpm for 2 minutes, slow stirring is a test method that reproduces the floc-forming pond at 60 rpm for 10 minutes, a test method that reproduces the inside of the sedimentation basin after 2 minutes of standing, The treated water after 10 minutes is a test method that reproduces the settling basin treated water. Filtration was a natural equilibrium type and adopted a two-layer filtration system of anthracite and sand to obtain filtered water.
The beaker is tested with and without the aggregation promoter having the shape shown in FIG. Samples with a coagulation promoter attached to a beaker were sampled after 2 minutes and 10 minutes of standing, and the supernatant of the beaker and the back of the coagulation promoter were siphoned. The supernatant water in the center of the beaker was sampled with a siphon after 2 minutes and 10 minutes after placing.
Aggregation promoters were 60 cm 2 and three were attached.
Test 1
Prepare 3 l of raw water (turbidity 5 mg / l) in a beaker equipped with a coagulation accelerator, add 20 mg / l of PAC, perform rapid stirring, and then perform slow stirring. After slow stirring, sample the water supply after 2 minutes of standing and measure the turbidity. Further, 10 minutes after standing, sampling is performed in the same manner to measure turbidity and aluminum concentration. The supernatant water in the center of the beaker after standing for 10 minutes is filtered to measure turbidity and aluminum concentration.
Test 2
Prepare 3 l of raw water (turbidity 10 mg / l) in a beaker equipped with the same aggregation promoter as used in Test 1, mix and stir 20 mg / l of slurry with PAC 20 mg / l, add to the stock solution, perform rapid stirring, Subsequently, slow stirring is performed. After slow stirring, sample the water supply after 2 minutes of standing and measure the turbidity. Further, 10 minutes after standing, sampling is performed in the same manner to measure turbidity and aluminum concentration. The supernatant water in the center of the beaker after 10 minutes of standing is filtered to measure turbidity and aluminum concentration.
Test 3 (Comparative example of Test 1)
Prepare 3 l of raw water (turbidity 5 mg / l) in a beaker without a coagulation promoter, add 20 mg / l of PAC, stir rapidly, and then slowly stir. After slow stirring, sample the water supply after 2 minutes of standing and measure the turbidity. Further, 10 minutes after standing, sampling is performed in the same manner to measure turbidity and aluminum concentration. The supernatant water in the center of the beaker after 10 minutes of standing is filtered to measure turbidity and aluminum concentration.
Next, the measurement results of the turbidity of treatment water and the aluminum concentration (hereinafter referred to as Al concentration) are as follows.

Figure 2008086980
試験の結果では、試験1と試験3を比べると凝集促進体を装着した方が、処理水の清澄化に優れ濁度およびアルミニウム濃度が低く、凝集促進体の背面部に凝集フロック粒子が停滞し濁度及びアルミニウム濃度が高い。
凝集促進体を設置することで、原水濁度が低くても、凝集促進体近くに濁質や凝集フロック粒子が干渉沈降しながら停滞し接触付着し、凝集フロック粒子を肥大化し、均一化させ、良好なフロックを作り、沈澱池において沈降を促進し、清澄化に優れている。
Figure 2008086980
As a result of the test, comparing the test 1 and the test 3, when the coagulation accelerator is attached, the clarification of the treated water is excellent and the turbidity and the aluminum concentration are low, and the aggregated floc particles are stagnated on the back surface of the coagulation promoter. High turbidity and aluminum concentration.
By installing an agglomeration promoter, even if the raw water turbidity is low, turbidity and agglomerated floc particles are stuck and contacted while interfering with sedimentation near the agglomeration promoter, and the aggregated floc particles are enlarged and homogenized. Creates good flocs, promotes sedimentation in the sedimentation basin and excels in clarification.

本発明の処理方法を行うための処理装置の一例を示した縦断面図The longitudinal cross-sectional view which showed an example of the processing apparatus for performing the processing method of this invention 凝集促進体の側面図Side view of aggregation promoter 凝集促進体の側面図Side view of aggregation promoter 凝集促進体の側面図Side view of aggregation promoter 凝集促進体の側面図Side view of aggregation promoter 凝集促進体の側面図Side view of aggregation promoter 凝集促進体の側面図Side view of aggregation promoter 凝集促進体の側面図Side view of aggregation promoter 凝集促進体の側面図Side view of aggregation promoter 凝集促進体の側面図Side view of aggregation promoter 凝集促進体の側面図Side view of aggregation promoter 本発明の処理方法を行うための処理装置の一例を示した縦断面図The longitudinal cross-sectional view which showed an example of the processing apparatus for performing the processing method of this invention

符号の説明Explanation of symbols

1 混和池
2 凝集促進体
3 フロック形成池
4 沈澱池
1 Mixing Pond 2 Aggregation Promoter 3 Flock Formation Pond 4 Sedimentation Pond

Claims (3)

混和池に凝集促進体を設け、該混和池に凝集剤と原水とを供給して処理することを特徴とする原水の処理方法。  A raw water treatment method comprising: providing a coagulation promoter in a mixing pond and supplying the coagulant and raw water to the mixing pond. スラリーが混合された凝集剤を使用する請求項1記載の処理方法。  The processing method according to claim 1, wherein a flocculant mixed with the slurry is used. 凝集促進体が固定または回転可能である請求項1または請求項2記載の処理方法。  The processing method according to claim 1, wherein the aggregation promoter is fixed or rotatable.
JP2006296987A 2006-10-04 2006-10-04 Raw water treatment method Pending JP2008086980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006296987A JP2008086980A (en) 2006-10-04 2006-10-04 Raw water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006296987A JP2008086980A (en) 2006-10-04 2006-10-04 Raw water treatment method

Publications (1)

Publication Number Publication Date
JP2008086980A true JP2008086980A (en) 2008-04-17

Family

ID=39371686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006296987A Pending JP2008086980A (en) 2006-10-04 2006-10-04 Raw water treatment method

Country Status (1)

Country Link
JP (1) JP2008086980A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010247117A (en) * 2009-04-20 2010-11-04 Nippon Solid Co Ltd Treatment method for raw water
WO2013062199A1 (en) * 2011-10-26 2013-05-02 Bkt Co., Ltd. Filtering apparatus having fixed-type chaos-flow inducer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005013844A (en) * 2003-06-25 2005-01-20 Sinto Brator Co Ltd Scum floatation separation apparatus
JP2005177602A (en) * 2003-12-19 2005-07-07 Ebara Corp Method of mixing flocculant, mixing vessel and method and apparatus for treating rain-water-including sewage using the mixing method and vessel
JP2005199248A (en) * 2004-01-15 2005-07-28 Nippon Solid Co Ltd Raw water treatment process
JP2005211822A (en) * 2004-01-30 2005-08-11 Furukawa:Kk Waste liquid treatment system
JP2005319444A (en) * 2004-05-10 2005-11-17 Nippon Solid Co Ltd Method for treating water to be treated

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005013844A (en) * 2003-06-25 2005-01-20 Sinto Brator Co Ltd Scum floatation separation apparatus
JP2005177602A (en) * 2003-12-19 2005-07-07 Ebara Corp Method of mixing flocculant, mixing vessel and method and apparatus for treating rain-water-including sewage using the mixing method and vessel
JP2005199248A (en) * 2004-01-15 2005-07-28 Nippon Solid Co Ltd Raw water treatment process
JP2005211822A (en) * 2004-01-30 2005-08-11 Furukawa:Kk Waste liquid treatment system
JP2005319444A (en) * 2004-05-10 2005-11-17 Nippon Solid Co Ltd Method for treating water to be treated

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010247117A (en) * 2009-04-20 2010-11-04 Nippon Solid Co Ltd Treatment method for raw water
WO2013062199A1 (en) * 2011-10-26 2013-05-02 Bkt Co., Ltd. Filtering apparatus having fixed-type chaos-flow inducer

Similar Documents

Publication Publication Date Title
ES2775507T3 (en) Improved weighted clarification method
JP2011230038A (en) Water treatment apparatus
JP2015085252A (en) Water treatment method and apparatus
CN108751374A (en) A kind of high-effective gas Heisui River precipitation separation device
JP2008086980A (en) Raw water treatment method
JP4523731B2 (en) Water treatment equipment
JP4516152B1 (en) Coagulation precipitation treatment method
US20100102007A1 (en) Process for Treatment of Sewage Waste Water
KR100313187B1 (en) Rapid mixing coagulant system for treating wastewater and method thereof
JP4111880B2 (en) Aggregation precipitation apparatus and control method thereof
JP3715615B2 (en) Flocculant for wastewater treatment
JP7074406B2 (en) Drug addition amount control device and drug addition amount control method
JP2005199248A (en) Raw water treatment process
JP2013198865A (en) Flocculating, precipitating and filtering system
CN109650665A (en) A kind of energy-saving and emission-reducing town sewage treatment system
CN208964606U (en) A kind of high-effective gas Heisui River precipitation separation device
JP5711692B2 (en) Water treatment method by stirring control
Lin et al. Flocculation mechanism by a novel combined aluminum–ferrous–starch flocculant (CAFS)
JP3854471B2 (en) Water purification equipment
JP6598065B2 (en) Polluted water treatment method
JP6492981B2 (en) Water treatment apparatus and water treatment method
JP6798867B2 (en) Wastewater treatment method and wastewater treatment equipment
JPH11114318A (en) Flocculating device for sludge or the like
JPH06262183A (en) Treatment of muddy water treatment device
JP5775690B2 (en) Solid-liquid separation method with decolorization function of septic tank treated water and apparatus for carrying it out

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090810

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110412