JP2015175580A - Hot water generation device - Google Patents

Hot water generation device Download PDF

Info

Publication number
JP2015175580A
JP2015175580A JP2014054632A JP2014054632A JP2015175580A JP 2015175580 A JP2015175580 A JP 2015175580A JP 2014054632 A JP2014054632 A JP 2014054632A JP 2014054632 A JP2014054632 A JP 2014054632A JP 2015175580 A JP2015175580 A JP 2015175580A
Authority
JP
Japan
Prior art keywords
heat storage
heat
storage material
melting point
latent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014054632A
Other languages
Japanese (ja)
Inventor
達雄 中山
Tatsuo Nakayama
達雄 中山
安藤 智朗
Tomoaki Ando
智朗 安藤
鈴木 基啓
Motohiro Suzuki
基啓 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014054632A priority Critical patent/JP2015175580A/en
Publication of JP2015175580A publication Critical patent/JP2015175580A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

PROBLEM TO BE SOLVED: To store heat efficiently in a thermal storage device using a plurality of latent heat storage materials having different melting points by generated hot water.SOLUTION: A hot water generation device includes a heating medium circuit 4 in which thermal storage means 2 is disposed in which latent heat storage materials (1a, 1b, 1c) and a heating medium exchange heat. The thermal storage means 2 has the plurality of latent heat storage materials (1a, 1b, 1c) having different melting points. The heating medium flows in the thermal storage means from a high melting point side to a low melting side, in a thermal storage operation in which heat is stored in the thermal storage means 2 by the heat owned by the heating medium. In the thermal storage operation, out of the plurality of latent heat storage materials (1a, 1b, 1c), phase change of a first latent heat storage material having a relatively high melting point ends at the same time with or before phase change of a second latent heat storage material having a relatively low melting point. Thus, in the thermal storage operation in which heat is stored by the heat owned by the heating means, the heat owned by the heating medium can be stored in the heating medium without waste from a high temperature range to a low temperature range.

Description

本発明は、蓄熱手段を備えた温水生成装置に関するものである。   The present invention relates to a hot water generating apparatus provided with heat storage means.

従来、蓄熱装置として、異なる融点を持つ複数の潜熱蓄熱材を用い、蓄熱材を融点が高いものから低いものに、順に配置した蓄熱装置が知られている(例えば、特許文献1参照)。   Conventionally, as a heat storage device, there is known a heat storage device in which a plurality of latent heat storage materials having different melting points are used, and the heat storage materials are arranged in order from a high melting point to a low one (for example, see Patent Document 1).

この蓄熱装置は、蓄熱時には、流体を融点の高い蓄熱材から融点の低い蓄熱材へと流す。よって、蓄熱装置の内部で流体が蓄熱材に放熱し、流体の温度が低下しても、下流側の蓄熱材の融点が低いので、流体と蓄熱材の蓄熱温度との温度差を所定温度差に保つことができる。その結果、蓄熱装置の蓄熱量を増大させることができる。   This heat storage device flows fluid from a heat storage material having a high melting point to a heat storage material having a low melting point during heat storage. Therefore, even if the fluid radiates heat to the heat storage material inside the heat storage device and the temperature of the fluid decreases, the melting point of the downstream heat storage material is low, so the temperature difference between the fluid and the heat storage temperature of the heat storage material is the predetermined temperature difference. Can be kept in. As a result, the heat storage amount of the heat storage device can be increased.

また、この蓄熱装置は、放熱時、すなわち熱利用時には、流体を融点の低い蓄熱材から融点の高い蓄熱材へと流して所定温度の流体を生成する。よって、蓄熱材の内部で流体が蓄熱材から吸熱し、流体の温度が上昇しても、下流側の蓄熱材の融点が高いので、流体と蓄熱材の蓄熱温度との温度差を一定に保つことができる。その結果、流体の吸熱量を増大させることができる。   Further, this heat storage device generates a fluid having a predetermined temperature by flowing a fluid from a heat storage material having a low melting point to a heat storage material having a high melting point during heat dissipation, that is, when using heat. Therefore, even if the fluid absorbs heat from the heat storage material inside the heat storage material and the temperature of the fluid rises, the melting point of the heat storage material on the downstream side is high, so the temperature difference between the fluid and the heat storage temperature of the heat storage material is kept constant. be able to. As a result, the amount of heat absorbed by the fluid can be increased.

さらに、従来、蓄熱装置を用いた温水生成装置として、蓄熱装置に加えてヒートポンプ熱源を備えたものがある(例えば、特許文献2参照)。   Furthermore, there is a conventional hot water generator using a heat storage device that includes a heat pump heat source in addition to the heat storage device (see, for example, Patent Document 2).

この温水生成装置は、蓄熱時には、ヒートポンプ熱源にて加熱した熱媒体を、高温蓄熱材、低温蓄熱材の順に流通させ、蓄熱材への蓄熱を行う。また、熱利用時には、熱媒体を低温蓄熱材、高温蓄熱材の順に流通させ、熱媒体を加熱する。加熱された熱媒体は、給湯端末などに供給される。   During the heat storage, this hot water generating device distributes the heat medium heated by the heat pump heat source in the order of the high-temperature heat storage material and the low-temperature heat storage material to store heat in the heat storage material. Moreover, at the time of heat utilization, a heat medium is distribute | circulated in order of a low temperature heat storage material and a high temperature heat storage material, and a heat medium is heated. The heated heat medium is supplied to a hot water supply terminal or the like.

特開昭58−33097号公報JP 58-33097 A 特許第3903804号公報Japanese Patent No. 3903804

しかしながら、従来の構成では、蓄熱時に、融点の低い蓄熱材の相変化が終了した時点で、融点の高い蓄熱材の相変化が終了していない場合がある。このような場合で、さらに融点の高い蓄熱材への蓄熱を行うと、融点の低い蓄熱材への蓄熱を行うことができず、蓄熱時の熱交換効率が低下してしまうという課題を有していた。   However, in the conventional configuration, the phase change of the heat storage material having a high melting point may not be completed when the phase change of the heat storage material having a low melting point is completed. In such a case, if heat storage to a heat storage material having a higher melting point is performed, heat storage to the heat storage material having a lower melting point cannot be performed, and the heat exchange efficiency during heat storage is reduced. It was.

本発明は、上記課題を解決するもので、融点が異なる複数の潜熱蓄熱材を用いて蓄熱手段を構成する場合に、蓄熱時の熱交換効率を向上させることが可能な温水生成装置を提供することを目的とする。   This invention solves the said subject, and provides a warm water production | generation apparatus which can improve the heat exchange efficiency at the time of thermal storage, when comprising a thermal storage means using the several latent heat storage material from which melting | fusing point differs. For the purpose.

前記従来の課題を解決するために、本発明の温水生成装置は、潜熱蓄熱材と熱媒体とが熱交換する蓄熱手段が配設された熱媒体回路を備え、前記蓄熱手段は、融点の異なる複数の潜熱蓄熱材を有し、前記熱媒体は、前記熱媒体が保有する熱によって前記蓄熱手段に蓄熱
する蓄熱運転において、前記複数の潜熱蓄熱材のうち融点の低い前記潜熱蓄熱材から融点の高い前記潜熱蓄熱材へと順に熱交換をするように、前記蓄熱手段を流れ、前記蓄熱運転において、前記複数の潜熱蓄熱材のうち、相対的に融点の高い第1潜熱蓄熱材の相変化が、相対的に融点の低い第2潜熱蓄熱材の相変化と同時またはそれよりも前に終了することを特徴とするものである。
In order to solve the above-mentioned conventional problems, the hot water generator of the present invention includes a heat medium circuit in which a heat storage means for exchanging heat between the latent heat storage material and the heat medium is provided, and the heat storage means has different melting points. In the heat storage operation in which the heat medium stores heat in the heat storage means by the heat held by the heat medium, the heat medium has a melting point from the latent heat storage material having a low melting point among the plurality of latent heat storage materials. In the heat storage operation, the phase change of the first latent heat storage material having a relatively high melting point out of the plurality of latent heat storage materials is performed in the heat storage operation so as to sequentially exchange heat with the high latent heat storage material. The phase change of the second latent heat storage material having a relatively low melting point is completed at the same time or before the phase change.

これにより、熱媒体の保有する熱によって蓄熱する蓄熱運転において、熱媒体が保有する熱を高温域から低温域まで無駄なく熱媒体に蓄熱することができる。   Thereby, in the heat storage operation for storing heat with the heat held by the heat medium, the heat held by the heat medium can be stored in the heat medium without waste from the high temperature range to the low temperature range.

本発明によれば、融点の異なる複数の潜熱蓄熱材を有する蓄熱手段を用いた温水生成装置において、蓄熱手段に効率よく蓄熱することができる。   ADVANTAGE OF THE INVENTION According to this invention, in the warm water production | generation apparatus using the thermal storage means which has several latent-heat thermal storage materials from which melting | fusing point differs, it can be efficiently stored in a thermal storage means.

本発明の実施の形態1における温水生成装置の概略構成図Schematic block diagram of the hot water generator in Embodiment 1 of the present invention 同温水生成装置における蓄熱運転時の高融点蓄熱材の入口温度及び低融点蓄熱材の出口温度の変化を示すグラフThe graph which shows the change of the inlet temperature of the high melting point heat storage material and the outlet temperature of the low melting point heat storage material at the time of heat storage operation in the hot water generator

第1の発明は、潜熱蓄熱材と熱媒体とが熱交換する蓄熱手段が配設された熱媒体回路を備え、前記蓄熱手段は、融点の異なる複数の潜熱蓄熱材を有し、前記熱媒体は、前記熱媒体が保有する熱によって前記蓄熱手段に蓄熱する蓄熱運転において、前記複数の潜熱蓄熱材のうち融点の低い前記潜熱蓄熱材から融点の高い前記潜熱蓄熱材へと順に熱交換をするように、前記蓄熱手段を流れ、前記蓄熱運転において、前記複数の潜熱蓄熱材のうち、相対的に融点の高い第1潜熱蓄熱材の相変化が、相対的に融点の低い第2潜熱蓄熱材の相変化と同時またはそれよりも前に終了することを特徴とする温水生成装置である。   1st invention is equipped with the heat-medium circuit by which the heat storage means with which a latent-heat heat storage material and a heat medium exchange heat | fever was arrange | positioned, The said heat storage means has several latent heat storage materials from which melting | fusing point differs, The said heat medium In the heat storage operation for storing heat in the heat storage means by the heat held by the heat medium, heat exchange is sequentially performed from the latent heat storage material having a low melting point to the latent heat storage material having a high melting point among the plurality of latent heat storage materials. As described above, in the heat storage operation, the phase change of the first latent heat storage material having a relatively high melting point is a second latent heat storage material having a relatively low melting point among the plurality of latent heat storage materials. It is a warm water generator characterized by ending at the same time as or before the phase change.

これにより、熱媒体の保有する熱によって蓄熱する蓄熱運転において、熱媒体が保有する熱を高温域から低温域まで無駄なく熱媒体に蓄熱することができる。その結果、融点の異なる複数の潜熱蓄熱材を有する蓄熱手段を用いた温水生成装置において、蓄熱手段に効率よく蓄熱することができる。   Thereby, in the heat storage operation for storing heat with the heat held by the heat medium, the heat held by the heat medium can be stored in the heat medium without waste from the high temperature range to the low temperature range. As a result, in the hot water generator using the heat storage means having a plurality of latent heat storage materials having different melting points, heat can be efficiently stored in the heat storage means.

第2の発明は、特に第1の発明において、前記第1潜熱蓄熱材の蓄熱容量をQh、前記第2潜熱蓄熱材の蓄熱容量をQlとし、前記加熱運転における、前記第1潜熱蓄熱材と前記熱媒体との単位時間当たりの熱交換量をPh、前記第2潜熱蓄熱材と前記熱媒体との単位時間当たりの熱交換量をPlとしたとき、Qh/Ph≦Ql/Plであることを特徴とするものである。   The second invention is the first invention, in particular, in the first invention, the heat storage capacity of the first latent heat storage material is Qh, the heat storage capacity of the second latent heat storage material is Ql, and the first latent heat storage material in the heating operation When the heat exchange amount per unit time with the heat medium is Ph, and the heat exchange amount per unit time between the second latent heat storage material and the heat medium is Pl, Qh / Ph ≦ Ql / Pl. It is characterized by.

ここで、蓄熱材の蓄熱容量は、潜熱蓄熱材の潜熱比熱と重量との積である。また、潜熱蓄熱材と熱媒体との間の単位時間当たりの熱交換量は、潜熱蓄熱材と熱媒体との間の伝熱面積、及び、潜熱蓄熱材の入口の熱媒体の温度と出口の熱媒体の温度との温度差により決定される。したがって、蓄熱運転における熱媒体の流量に応じて、蓄熱手段の仕様を、Qh/Ph≦Ql/Plを満足するように決定することができる。   Here, the heat storage capacity of the heat storage material is a product of the latent heat specific heat and the weight of the latent heat storage material. The amount of heat exchange per unit time between the latent heat storage material and the heat medium is the heat transfer area between the latent heat storage material and the heat medium, and the temperature of the heat medium at the inlet of the latent heat storage material and the outlet temperature. It is determined by the temperature difference from the temperature of the heat medium. Therefore, according to the flow rate of the heat medium in the heat storage operation, the specification of the heat storage means can be determined so as to satisfy Qh / Ph ≦ Ql / Pl.

その結果、蓄熱時(蓄熱運転)において、熱媒体が保有する熱を高温域から低温域まで無駄なく熱媒体に蓄熱することができる。その結果、融点の異なる複数の潜熱蓄熱材を有する蓄熱手段を用いた温水生成装置において、蓄熱手段に効率よく蓄熱することができる。   As a result, at the time of heat storage (heat storage operation), the heat held by the heat medium can be stored in the heat medium without waste from the high temperature region to the low temperature region. As a result, in the hot water generator using the heat storage means having a plurality of latent heat storage materials having different melting points, heat can be efficiently stored in the heat storage means.

なお、潜熱蓄熱材と熱媒体との間の単位時間当たりの熱交換量は、当該潜熱蓄熱材の融
点と、それよりも下流側の潜熱蓄熱材の融点との温度差によって決定されてもよい。
The amount of heat exchange per unit time between the latent heat storage material and the heat medium may be determined by the temperature difference between the melting point of the latent heat storage material and the melting point of the latent heat storage material downstream of the latent heat storage material. .

以下本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって、本発明が限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. Note that the present invention is not limited to the present embodiment.

(実施の形態1)
図1は、本実施の形態における温水生成装置の構成図である。この温水生成装置は、熱媒体として水が循環する熱媒体回路4と、熱媒体を加熱する加熱手段8とを備えている。また、熱媒体回路4には、融点が異なる複数の潜熱蓄熱材(1a、1b、1c)を有する蓄熱手段2が設けられている。蓄熱手段2と熱媒体とが熱交換することで、蓄熱手段2への蓄熱、及び、熱媒体の加熱が行われる。この温水生成装置は、熱媒体回路4を構成する給水配管12から供給された水を加熱手段8および/または蓄熱手段2によって加熱して温水を生成することができる。生成された温水は、蓄熱手段2への蓄熱に用いることができる。また、生成された温水は、熱媒体回路4を構成する給湯配管13から、カラン、浴槽、暖房端末等の熱利用端末に供給される。
(Embodiment 1)
FIG. 1 is a configuration diagram of a hot water generator in the present embodiment. This hot water generator includes a heat medium circuit 4 in which water circulates as a heat medium, and heating means 8 for heating the heat medium. The heat medium circuit 4 is provided with heat storage means 2 having a plurality of latent heat storage materials (1a, 1b, 1c) having different melting points. By heat exchange between the heat storage means 2 and the heat medium, heat storage to the heat storage means 2 and heating of the heat medium are performed. This hot water generating device can generate hot water by heating the water supplied from the water supply pipe 12 constituting the heat medium circuit 4 by the heating means 8 and / or the heat storage means 2. The generated warm water can be used for heat storage in the heat storage means 2. The generated hot water is supplied from a hot water supply pipe 13 constituting the heat medium circuit 4 to a heat utilization terminal such as a currant, a bathtub, or a heating terminal.

本実施の形態における加熱手段8は、圧縮機7、熱媒体熱交換器3、減圧手段(膨張弁)5、熱源側熱交換器6が順に冷媒配管で環状に接続されて構成されたヒートポンプ装置である。熱媒体熱交換器3は、冷媒が流れる冷媒流路(図示せず)と熱媒体が流れる熱媒体流路(図示せず)とを備えている。熱媒体熱交換器3において、冷媒流路を流れる冷媒と熱媒体流路を流れる熱媒体とが熱交換を行う。熱源側熱交換器6は、蒸発器として機能する。本実施の形態において、熱源側熱交換器6は、ヒートポンプ装置を流れる冷媒と空気とが熱交換する空気熱交換器である。本実施の形態の加熱手段8は、熱源側熱交換器6に送風するためのファン(図示せず)を備えている。冷媒としては、二酸化炭素やHFC冷媒が用いられる。   The heating means 8 in the present embodiment includes a compressor 7, a heat medium heat exchanger 3, a pressure reducing means (expansion valve) 5, and a heat source side heat exchanger 6 that are sequentially connected in an annular shape with a refrigerant pipe. It is. The heat medium heat exchanger 3 includes a refrigerant flow path (not shown) through which the refrigerant flows and a heat medium flow path (not shown) through which the heat medium flows. In the heat medium heat exchanger 3, the refrigerant flowing through the refrigerant flow path and the heat medium flowing through the heat medium flow path perform heat exchange. The heat source side heat exchanger 6 functions as an evaporator. In the present embodiment, the heat source side heat exchanger 6 is an air heat exchanger in which heat is exchanged between the refrigerant flowing through the heat pump device and the air. The heating means 8 of the present embodiment includes a fan (not shown) for sending air to the heat source side heat exchanger 6. As the refrigerant, carbon dioxide or HFC refrigerant is used.

なお、加熱手段8としては、熱媒体を加熱する機能を有するものであればヒートポンプ装置に限られない。加熱手段8には、例えば、燃焼機や電気ヒータを用いることができる。   The heating unit 8 is not limited to a heat pump device as long as it has a function of heating a heat medium. For the heating means 8, for example, a combustor or an electric heater can be used.

熱媒体回路4は、蓄熱手段2、熱媒体熱交換器3、流量調整手段(10、11)が水配管(12〜15)によって接続されて構成されている。熱媒体回路4は、一端から水道管から水が流入する給水配管12と、一端から浴槽やカラン等の給湯端末(図示せず)、または、床暖房パネル等の暖房端末(図示せず)等の熱利用端末に温水を供給する給湯配管13とを備えている。さらに、熱媒体回路4は、熱媒体熱交換器3が配設される加熱配管14と、蓄熱手段2が配設される蓄熱配管15とを備えている。   The heat medium circuit 4 is configured by connecting the heat storage means 2, the heat medium heat exchanger 3, and the flow rate adjusting means (10, 11) through water pipes (12 to 15). The heat medium circuit 4 includes a water supply pipe 12 through which water flows from a water pipe from one end, a hot water supply terminal (not shown) such as a bathtub and a curan, or a heating terminal (not shown) such as a floor heating panel from one end. And a hot water supply pipe 13 for supplying warm water to the heat utilization terminal. Furthermore, the heat medium circuit 4 includes a heating pipe 14 in which the heat medium heat exchanger 3 is disposed, and a heat storage pipe 15 in which the heat storage means 2 is disposed.

給水配管12の他端は、第1流量調整手段10に接続されている。第1流量調整手段10には、加熱配管14の一端と蓄熱配管15の一端とが接続されている。給湯配管13の他端は、第2流量調整手段11に接続されている。第2流量調整手段11には、加熱配管14の他端と蓄熱配管15の他端とが接続されている。これにより、給水配管12と給湯配管13との間で、熱媒体熱交換器3と蓄熱手段2とは並列に配置される。また、加熱配管14と蓄熱配管15とは、流量調整手段(10、11)を介して環状に接続されて蓄熱回路を形成する。蓄熱回路には、熱媒体を循環させるポンプ(図示せず)が設けられる。ポンプは蓄熱回路のうち、第1流量調整手段10と熱媒体熱交換器3との間の加熱配管14に設けられていることが好ましい。   The other end of the water supply pipe 12 is connected to the first flow rate adjusting means 10. One end of the heating pipe 14 and one end of the heat storage pipe 15 are connected to the first flow rate adjusting means 10. The other end of the hot water supply pipe 13 is connected to the second flow rate adjusting means 11. The second flow rate adjusting means 11 is connected to the other end of the heating pipe 14 and the other end of the heat storage pipe 15. Thereby, between the water supply piping 12 and the hot water supply piping 13, the heat-medium heat exchanger 3 and the heat storage means 2 are arrange | positioned in parallel. The heating pipe 14 and the heat storage pipe 15 are connected in a ring shape through the flow rate adjusting means (10, 11) to form a heat storage circuit. The heat storage circuit is provided with a pump (not shown) for circulating the heat medium. It is preferable that the pump is provided in the heating pipe 14 between the first flow rate adjusting means 10 and the heat medium heat exchanger 3 in the heat storage circuit.

第1流量調整手段10は、給水配管12、加熱配管14、蓄熱配管15を流れる水の流量を調整する。また、第2流量調整弁11は、加熱配管14、蓄熱配管15、給湯配管13を流れる水の流量を調整する。本実施の形態では、第1流量調整手段10及び第2流量
調整手段11として、流量調整弁を用いている。
The first flow rate adjusting means 10 adjusts the flow rate of water flowing through the water supply pipe 12, the heating pipe 14, and the heat storage pipe 15. The second flow rate adjusting valve 11 adjusts the flow rate of water flowing through the heating pipe 14, the heat storage pipe 15, and the hot water supply pipe 13. In the present embodiment, flow rate adjusting valves are used as the first flow rate adjusting means 10 and the second flow rate adjusting means 11.

蓄熱手段2は、融点が異なる複数の潜熱蓄熱材(1a、1b、1c)と、熱媒体が流れる熱媒体流路を有し、熱媒体と潜熱蓄熱材(1a、1b、1c)とが熱交換を行うものである。蓄熱手段2が保有する熱量により、熱媒体を加熱することができる。また、加熱された熱媒体によって蓄熱手段2に蓄熱することができる。   The heat storage means 2 has a plurality of latent heat storage materials (1a, 1b, 1c) having different melting points and a heat medium passage through which the heat medium flows, and the heat medium and the latent heat storage materials (1a, 1b, 1c) are heated. Exchange. The heat medium can be heated by the amount of heat held by the heat storage means 2. Moreover, the heat storage means 2 can store heat with the heated heat medium.

本実施の形態の蓄熱手段2は、融点が異なる3つの潜熱蓄熱材(1a、1b、1c)を有している。潜熱蓄熱材(1a、1b、1c)としては、例えば、チオ硫酸ナトリウム5水和物、酢酸ナトリウム3水和物、硫酸ナトリウム10水和物、硫酸ナトリウムn水和物(但し、n:整数、n>10)を用いることができる。なお、チオ硫酸ナトリウム5水和物の融点は48℃、硫酸ナトリウム10水和物の融点は32℃である。なお、蓄熱手段2は、少なくとも融点の異なる2つの潜熱蓄熱材を用いて構成されていればよく、融点の異なる3つ以上の潜熱蓄熱材を用いて構成されていてもよい。なお、熱利用端末へと湯水を供給する温水生成装置として用いる場合、潜熱蓄熱材1aとして、融点が58℃の酢酸ナトリウム3水和物を用いることが好ましい。   The heat storage means 2 of the present embodiment has three latent heat storage materials (1a, 1b, 1c) having different melting points. As the latent heat storage material (1a, 1b, 1c), for example, sodium thiosulfate pentahydrate, sodium acetate trihydrate, sodium sulfate decahydrate, sodium sulfate n-hydrate (where n is an integer, n> 10) can be used. The melting point of sodium thiosulfate pentahydrate is 48 ° C., and the melting point of sodium sulfate decahydrate is 32 ° C. The heat storage means 2 may be configured using at least two latent heat storage materials having different melting points, and may be configured using three or more latent heat storage materials having different melting points. In addition, when using as a warm water production | generation apparatus which supplies hot water to a heat | fever utilization terminal, it is preferable to use sodium acetate trihydrate whose melting | fusing point is 58 degreeC as the latent heat storage material 1a.

3つの潜熱蓄熱材は、最も融点の高い高融点潜熱蓄熱材1aが第2流量調整弁11側に、最も融点の低い低融点潜熱蓄熱材1cが第1流量調整弁10側に配置されている。高融点蓄熱材1aと低融点蓄熱材1cとの間には、高融点蓄熱材1aよりも融点が低く、低融点蓄熱材1cよりも融点が高い、中融点蓄熱材1bが配置されている。すなわち、融点の異なる複数の潜熱蓄熱材(1a、1b、1c)は、融点の高いものから低いものに順に配置されている。これにより、熱媒体は、融点が異なる複数の潜熱蓄熱材(1a、1b、1c)を融点の順に流れる。   Of the three latent heat storage materials, the high melting point latent heat storage material 1a having the highest melting point is arranged on the second flow rate adjustment valve 11 side, and the low melting point latent heat storage material 1c having the lowest melting point is arranged on the first flow rate adjustment valve 10 side. . Between the high melting point heat storage material 1a and the low melting point heat storage material 1c, an intermediate melting point heat storage material 1b having a melting point lower than that of the high melting point heat storage material 1a and higher than that of the low melting point heat storage material 1c is disposed. That is, the plurality of latent heat storage materials (1a, 1b, 1c) having different melting points are arranged in order from the one having a high melting point to the one having a low melting point. Thereby, a heat medium flows through the several latent heat storage material (1a, 1b, 1c) from which melting | fusing point differs in order of melting | fusing point.

次に、温水生成装置の動作について説明する。この温水生成装置は、加熱手段8で水を加熱して温水を生成し、生成された温水によって蓄熱手段15に蓄熱する蓄熱運転を実行することができる。また、この温水生成装置は、温水を生成する複数の加熱運転を実行することができる。複数の加熱運転は、蓄熱手段15によって水を加熱する第1加熱運転、加熱手段8と蓄熱手段15との双方を用いて水を加熱する第2加熱運転を含む。   Next, the operation of the hot water generator will be described. This hot water generator can perform a heat storage operation in which water is heated by the heating means 8 to generate hot water, and the heat storage means 15 is stored with the generated hot water. Moreover, this warm water production | generation apparatus can perform the some heating operation which produces | generates warm water. The plurality of heating operations include a first heating operation in which water is heated by the heat storage means 15 and a second heating operation in which water is heated using both the heating means 8 and the heat storage means 15.

蓄熱運転において、制御装置(図示せず)は、図1の破線矢印の方向に水が流れるように第1流量調整弁10と第2流量調整弁11を制御する。これにより、水は、加熱配管14と蓄熱配管15とが環状に接続された蓄熱回路を循環する。   In the heat storage operation, the control device (not shown) controls the first flow rate adjustment valve 10 and the second flow rate adjustment valve 11 so that water flows in the direction of the broken line arrow in FIG. Thereby, water circulates through the heat storage circuit in which the heating pipe 14 and the heat storage pipe 15 are annularly connected.

また、蓄熱運転において、制御装置は、圧縮機7、減圧手段5、ファンを制御して、熱媒体熱交換器3に高温高圧の冷媒を供給する。   In the heat storage operation, the control device controls the compressor 7, the decompression unit 5, and the fan to supply the high-temperature and high-pressure refrigerant to the heat medium heat exchanger 3.

熱媒体熱交換器3で高温高圧の冷媒と熱交換して生成された温水は、加熱配管14を流れ、第2流量調整弁11を介して蓄熱配管15に流入する。蓄熱配管15を流れる温水は、蓄熱手段2において、高融点蓄熱材1a、中融点蓄熱材1b、低融点蓄熱材1cと順に熱交換する。これにより、それぞれの潜熱蓄熱材(1a、1b、1c)に蓄熱が行われる。蓄熱手段2を流れる間に潜熱蓄熱材(1a、1b、1c)に放熱して温度が低下した水は、第1流量調整弁を介して加熱配管14に流入し、熱媒体熱交換器3にて、再度加熱され温水となる。以上のような動作が繰り返されることで蓄熱手段への蓄熱が行われる。   Hot water generated by heat exchange with the high-temperature and high-pressure refrigerant in the heat medium heat exchanger 3 flows through the heating pipe 14 and flows into the heat storage pipe 15 via the second flow rate adjustment valve 11. In the heat storage means 2, the hot water flowing through the heat storage pipe 15 exchanges heat with the high melting point heat storage material 1a, the medium melting point heat storage material 1b, and the low melting point heat storage material 1c in this order. Thereby, heat storage is performed on each latent heat storage material (1a, 1b, 1c). The water whose temperature has decreased due to heat radiation to the latent heat storage materials (1a, 1b, 1c) while flowing through the heat storage means 2 flows into the heating pipe 14 via the first flow rate adjusting valve, and enters the heat medium heat exchanger 3. Then, it is heated again to become hot water. The heat storage to the heat storage means is performed by repeating the above operation.

蓄熱手段2に蓄熱された熱を用いて水を加熱し、温水を生成する第1加熱運転において、制御装置は、図1の実践矢印の方向に水が流れるように、第1流量調整弁10と第2流量調整弁11とを制御する。これにより、水は、給水配管12、蓄熱配管15、給湯配管13を順に流れる。蓄熱配管15を流れる水は、蓄熱手段2において、低融点蓄熱材1c
、中融点蓄熱材1b、高融点蓄熱材1aと順に熱交換して加熱される。蓄熱手段2で加熱されて生成された温水は、第2流量調整弁11を介して給湯配管13へと流れ、熱利用端末へと供給される。
In the first heating operation in which water is heated using the heat stored in the heat storage means 2 to generate hot water, the control device controls the first flow rate adjusting valve 10 so that the water flows in the direction of the practical arrow in FIG. And the second flow rate adjusting valve 11 are controlled. Thereby, water flows through the water supply pipe 12, the heat storage pipe 15, and the hot water supply pipe 13 in this order. The water flowing through the heat storage pipe 15 is converted into the low melting point heat storage material 1c in the heat storage means 2.
The medium melting point heat storage material 1b and the high melting point heat storage material 1a are sequentially heat-exchanged and heated. The hot water generated by being heated by the heat storage means 2 flows to the hot water supply pipe 13 via the second flow rate adjusting valve 11 and is supplied to the heat utilization terminal.

加熱手段8と蓄熱手段15との双方を用いて水を加熱し、温水を生成する第2加熱運転において、制御装置は、図1の一点鎖線矢印の方向に水が流れるように第1流量調整弁10と第2流量調整弁とを制御する。これにより、給水配管12を流れた水は、加熱配管14と蓄熱配管15との双方に分岐して流れる。加熱配管14を流れる水は加熱手段8で加熱されて温水となり、蓄熱配管15を流れる水は蓄熱手段で加熱されて温水となる。加熱手段8で生成された温水と、蓄熱手段2で生成された温水とは、第2流量調整手段11で混合され、給湯配管13に流入する。   In the second heating operation in which water is heated using both the heating means 8 and the heat storage means 15 to generate hot water, the control device adjusts the first flow rate so that the water flows in the direction of the one-dot chain line arrow in FIG. The valve 10 and the second flow rate adjustment valve are controlled. Thereby, the water flowing through the water supply pipe 12 branches and flows into both the heating pipe 14 and the heat storage pipe 15. The water flowing through the heating pipe 14 is heated by the heating means 8 to become warm water, and the water flowing through the heat storage pipe 15 is heated by the heat storage means to become warm water. The hot water generated by the heating means 8 and the hot water generated by the heat storage means 2 are mixed by the second flow rate adjusting means 11 and flow into the hot water supply pipe 13.

ここで、複数の潜熱蓄熱材(1a、1b、1c)のそれぞれは、蓄熱運転及び第1加熱運転において、水の流れ方向に対して上流側の潜熱蓄熱材の相変化が下流側の潜熱蓄熱材の相変化よりも前に終了するように構成されている。   Here, in each of the plurality of latent heat storage materials (1a, 1b, 1c), in the heat storage operation and the first heating operation, the phase change of the latent heat storage material on the upstream side with respect to the flow direction of water is the latent heat storage on the downstream side. It is configured to finish before the phase change of the material.

すなわち、蓄熱運転において、複数の潜熱蓄熱材(1a、1b、1c)のそれぞれは、融点の低い潜熱蓄熱材の相変化が、融点の高い潜熱蓄熱材の相変化と同時またはそれよりも後に終了するように構成されている。また、第1加熱運転において、複数の潜熱蓄熱材(1a、1b、1c)のそれぞれは、融点の高い潜熱蓄熱材の相変化が、融点の低い潜熱蓄熱材の相変化と同時またはそれよりも後に終了するように構成されている。また、第2加熱運転において、複数の潜熱蓄熱材(1a、1b、1c)のそれぞれは、融点の高い潜熱蓄熱材の相変化が、融点の低い潜熱蓄熱材の相変化と同時またはそれよりも後に終了するように構成されている。   That is, in the heat storage operation, each of the plurality of latent heat storage materials (1a, 1b, 1c) finishes at the same time as or after the phase change of the latent heat storage material having a low melting point. Is configured to do. Further, in the first heating operation, each of the plurality of latent heat storage materials (1a, 1b, 1c) has the phase change of the latent heat storage material having a high melting point at the same time as or more than the phase change of the latent heat storage material having a low melting point. It is configured to end later. Further, in the second heating operation, each of the plurality of latent heat storage materials (1a, 1b, 1c) has a phase change of the latent heat storage material having a high melting point at the same time as or more than the phase change of the latent heat storage material having a low melting point. It is configured to end later.

具体的には、複数の潜熱蓄熱材(1a、1b、1c)は、蓄熱運転及び第1加熱運転において、下記の数式1を満たすように構成されている。   Specifically, the plurality of latent heat storage materials (1a, 1b, 1c) are configured to satisfy the following formula 1 in the heat storage operation and the first heating operation.

ここで、n:水の流れ方向においてn番目に配置された潜熱蓄熱材、ρ:潜熱蓄熱材の密度kg/L、V:潜熱蓄熱材の容量L、ΔH:潜熱蓄熱材の単位重量当たりの潜熱kJ/kg、G:水の重量流量kg/h、Cp:水の比熱kJ/(kg・K)、Ti:潜熱蓄熱材の入口の水温℃、To:潜熱蓄熱材の出口の水温℃である。なお、蓄熱手段2において、潜熱蓄熱材(1a、1b、1c)は、順にならんで配置されている。したがって、n番目の潜熱蓄熱材の出口温度Tonとn+1番目の潜熱蓄熱材の入口温度Tin+1は等しくなる。 Here, n: latent heat storage material arranged nth in the flow direction of water, ρ: density of latent heat storage material kg / L, V: capacity L of latent heat storage material, ΔH: per unit weight of latent heat storage material Latent heat kJ / kg, G: Weight flow rate of water kg / h, Cp: Specific heat of water kJ / (kg · K), Ti: Water temperature at the inlet of the latent heat storage material, To: Water temperature at the outlet of the latent heat storage material is there. In the heat storage means 2, the latent heat storage materials (1a, 1b, 1c) are arranged in order. Therefore, the outlet temperature Ton of the nth latent heat storage material is equal to the inlet temperature Tin + 1 of the n + 1th latent heat storage material.

潜熱蓄熱材の潜熱ΔHと重量ρVとの積は、蓄熱材の蓄熱容量Qを示す。また、水の重量流量Gと水の比熱Cp、及び、潜熱蓄熱材の入口の水の温度(入口温度)と出口の水の温度(出口温度)との温度差Ti−Toの積は、熱媒体と潜熱蓄熱材の間の単位時間当たりの熱交換量Pを示す。なお、潜熱蓄熱材と熱媒体との単位時間当たりの熱交換量は、潜熱蓄熱材と熱媒体との間の伝熱面積や、潜熱蓄熱材の材料及び熱媒体流路の形状によって調整できる。   The product of the latent heat ΔH and the weight ρV of the latent heat storage material indicates the heat storage capacity Q of the heat storage material. The product of the weight flow rate G of water, the specific heat Cp of water, and the temperature difference Ti-To between the temperature of the water at the inlet of the latent heat storage material (inlet temperature) and the temperature of the water at the outlet (outlet temperature) A heat exchange amount P per unit time between the medium and the latent heat storage material is shown. The amount of heat exchange per unit time between the latent heat storage material and the heat medium can be adjusted by the heat transfer area between the latent heat storage material and the heat medium, the material of the latent heat storage material, and the shape of the heat medium flow path.

以上から、数式1の左辺及び右辺は、潜熱蓄熱材の蓄熱容量Qを単位時間当たりの熱交
換量Pで除した値であって、潜熱蓄熱材の相変化が終了するまでの時間を示している。数式1を満たすことにより、蓄熱手段2において隣接する2つの潜熱蓄熱材は、蓄熱手段2を流れる水の流れ方向に対して、上流側の相変化が先に終了する。蓄熱手段2を構成する潜熱蓄熱材のそれぞれを、数式1の関係を満たすように構成すると、融点の異なる複数の潜熱蓄熱材(1a、1b、1c)の相変化が、水の流れ方向に対して上流側から順に終了していく。これにより、各潜熱蓄熱材の蓄熱量を有効に使用しながら、蓄熱運転及び第1加熱運転を実行することができる。
From the above, the left side and the right side of Equation 1 are values obtained by dividing the heat storage capacity Q of the latent heat storage material by the heat exchange amount P per unit time, and indicate the time until the phase change of the latent heat storage material ends. Yes. By satisfying Equation 1, the upstream phase change of the two latent heat storage materials adjacent to each other in the heat storage means 2 ends first with respect to the flow direction of the water flowing through the heat storage means 2. When each of the latent heat storage materials constituting the heat storage means 2 is configured to satisfy the relationship of Formula 1, the phase change of the plurality of latent heat storage materials (1a, 1b, 1c) having different melting points And finish in order from the upstream side. Thereby, the heat storage operation and the first heating operation can be performed while effectively using the heat storage amount of each latent heat storage material.

ここで、隣接した2つの潜熱蓄熱材において、融点の高い方の第1潜熱蓄熱材の蓄熱容量をQh、融点の低い方の第2潜熱蓄熱材の蓄熱容量をQlとする。また、蓄熱運転又は第1加熱運転での、第1潜熱蓄熱材と水との単位時間当たりの熱交換量をPh、第2潜熱蓄熱材と水との単位時間当たりの熱交換量をPlとする。蓄熱運転においては、Qh/Ph≦Ql/Plが成り立つことが好ましい。これにより、本実施の形態の温水生成装置では、蓄熱運転において、低融点蓄熱材1cの融解時間が最も長くなる。また、第1加熱運転においては、Ql/Pl≦Qh/Phが成り立つことが好ましい。これにより、本実施の形態の温水生成装置では、第1加熱運転において、高融点蓄熱材1aの凝固時間が最も長くなる。   Here, in two adjacent latent heat storage materials, the heat storage capacity of the first latent heat storage material with the higher melting point is Qh, and the heat storage capacity of the second latent heat storage material with the lower melting point is Ql. In addition, the heat exchange amount per unit time between the first latent heat storage material and water in the heat storage operation or the first heating operation is Ph, and the heat exchange amount per unit time between the second latent heat storage material and water is Pl. To do. In the heat storage operation, it is preferable that Qh / Ph ≦ Ql / Pl. Thereby, in the hot water production | generation apparatus of this Embodiment, in heat storage operation, the melting time of the low melting-point heat storage material 1c becomes the longest. In the first heating operation, it is preferable that Ql / Pl ≦ Qh / Ph. Thereby, in the warm water generating apparatus of this Embodiment, the solidification time of the high melting-point heat storage material 1a becomes the longest in a 1st heating operation.

なお、3つ以上の潜熱蓄熱材(1a、1b、1c)を用いて蓄熱手段2を構成した場合には、水の流れ方向に対して最も下流側の潜熱蓄熱材よりも上流側の潜熱蓄熱材を、下記の数式を満たすように構成してもよい。   In the case where the heat storage means 2 is configured using three or more latent heat storage materials (1a, 1b, 1c), the latent heat storage upstream of the latent heat storage material on the most downstream side with respect to the flow direction of water. You may comprise material so that the following numerical formula may be satisfy | filled.

ここで、Tm:潜熱蓄熱材の融点℃である。すなわち、潜熱蓄熱材の潜熱ΔHと重量ρVとの積は、蓄熱材の蓄熱容量Qを示す。また、水の重量流量Gと水の比熱Cp、及び、潜熱蓄熱材の融点の温度差の積は、熱媒体と潜熱蓄熱材の間の単位時間当たりの熱交換量P´を示す。以上から、数式2の左辺及び右辺は、潜熱蓄熱材の蓄熱容量Qを単位時間当たりの熱交換量P´で除した値であって、潜熱蓄熱材の相変化が終了するまでの時間を示している。 Here, Tm is the melting point of the latent heat storage material. That is, the product of the latent heat ΔH and the weight ρV of the latent heat storage material indicates the heat storage capacity Q of the heat storage material. Further, the product of the weight flow rate G of water, the specific heat Cp of water, and the temperature difference between the melting points of the latent heat storage materials indicates the heat exchange amount P ′ per unit time between the heat medium and the latent heat storage materials. From the above, the left side and the right side of Formula 2 are values obtained by dividing the heat storage capacity Q of the latent heat storage material by the heat exchange amount P ′ per unit time, and indicate the time until the phase change of the latent heat storage material ends. ing.

上記数式1又は数式2の条件を満足するために、本実施の形態の蓄熱手段2は、高融点蓄熱材1aとして、融点58℃の酢酸ナトリウム3水和物を用いた。また、中融点蓄熱材1bとして、融点32℃の硫酸ナトリウム10水和物を用いた。さらに、低融点蓄熱材1cとして、融点20℃の硫酸ナトリウム10水和物と添加剤との混合物を用いた。また、潜熱蓄熱材の総体積を1としたとき、高融点蓄熱材1a、中融点蓄熱材1b、低融点蓄熱材1cが占める体積割合を、それぞれ、38vol%、38vol%、24vol%とした。また、高融点蓄熱材1aの蓄熱容量Qaは約264kJ/kg、中融点蓄熱材1bの蓄熱容量Qbと低融点蓄熱材1cの蓄熱容量Qcは約251kJ/kgとした。   In order to satisfy the condition of the above formula 1 or 2, the heat storage means 2 of the present embodiment uses sodium acetate trihydrate having a melting point of 58 ° C. as the high melting point heat storage material 1a. Further, sodium sulfate decahydrate having a melting point of 32 ° C. was used as the intermediate melting point heat storage material 1b. Furthermore, a mixture of sodium sulfate decahydrate having a melting point of 20 ° C. and an additive was used as the low melting point heat storage material 1c. Further, when the total volume of the latent heat storage material is 1, the volume ratios occupied by the high melting point heat storage material 1a, the middle melting point heat storage material 1b, and the low melting point heat storage material 1c are 38 vol%, 38 vol%, and 24 vol%, respectively. The heat storage capacity Qa of the high melting point heat storage material 1a was about 264 kJ / kg, the heat storage capacity Qb of the medium melting point heat storage material 1b and the heat storage capacity Qc of the low melting point heat storage material 1c were about 251 kJ / kg.

図2は、上記蓄熱手段2を用いて蓄熱運転を行い、蓄熱完了後に放熱運転(第1加熱運転)に切り替えた場合の温度変化を示す。なお、蓄熱運転は、蓄熱手段2の高融点蓄熱材1aに流入する水の入口温度を90℃とし、低融点蓄熱材1cから流出する水の出口温度が60℃に達するまで行い、第一加熱運転は低融点蓄熱材1cに流入する水の入口温度を10℃とし、高融点蓄熱材1aから流出する水の温度が40℃になるまで行った。   FIG. 2 shows the temperature change when the heat storage operation is performed using the heat storage means 2 and the heat storage operation is switched to the heat radiation operation (first heating operation) after the heat storage is completed. The heat storage operation is performed until the inlet temperature of the water flowing into the high melting point heat storage material 1a of the heat storage means 2 is 90 ° C. and the outlet temperature of the water flowing out from the low melting point heat storage material 1c reaches 60 ° C. The operation was performed until the inlet temperature of the water flowing into the low melting point heat storage material 1c was 10 ° C. and the temperature of the water flowing out from the high melting point heat storage material 1a was 40 ° C.

蓄熱時には、次のような温度変化を示す。まず、蓄熱運転時に最も上流側となる高融点蓄熱材1aが、湯水の流入とともに顕熱蓄熱しながら温度上昇するので高融点蓄熱材1aの出口温度も上昇していく。高融点蓄熱材1aが潜熱蓄熱領域に入ると温度上昇がなくなるので、高融点蓄熱材1aの上流側から潜熱領域に入り、やがて高融点蓄熱材1a全体が潜熱蓄熱領域に入ると温度変化がなくなるため、高融点蓄熱材1aの出口温度の上昇もなくなる。このとき蓄熱が効率よく進んでいれば、高融点蓄熱材1aの出口温度は高融点蓄熱材1aの融点と同等になる。さらに蓄熱が進むと、高融点蓄熱材1aは、相変化が終了して(時刻Th1)、潜熱蓄熱領域から顕熱蓄熱領域に入り、上流側から再び温度上昇し始め、それに伴い高融点蓄熱材1aの出口温度も上昇する。   During heat storage, the following temperature changes are shown. First, since the high melting point heat storage material 1a which is the most upstream during the heat storage operation rises in temperature while storing sensible heat with the inflow of hot water, the outlet temperature of the high melting point heat storage material 1a also rises. When the high melting point heat storage material 1a enters the latent heat storage region, the temperature does not increase, so the temperature change disappears when the entire high melting point heat storage material 1a enters the latent heat storage region. Therefore, there is no increase in the outlet temperature of the high melting point heat storage material 1a. At this time, if the heat storage proceeds efficiently, the outlet temperature of the high melting point heat storage material 1a becomes equal to the melting point of the high melting point heat storage material 1a. When the heat storage further proceeds, the high melting point heat storage material 1a ends the phase change (time Th1), enters the sensible heat storage region from the latent heat storage region, and begins to rise in temperature from the upstream side. The outlet temperature of 1a also increases.

中融点蓄熱材1bも、高融点蓄熱材1aと同様の過程を経るが、中融点蓄熱材1bに流入する熱媒体(水)は、高融点蓄熱材1aへの放熱後の水であるため、その温度(入口温度)は、高融点蓄熱材1aの出口温度に応じて徐々に上昇する。したがって、中融点蓄熱材1bが、潜熱領域に到達するのは、高融点蓄熱材1a全体が潜熱蓄熱領域に到達した後である。よって、その間、中融点蓄熱材1bの顕熱蓄熱領域での温度上昇速度は小さい。その後、中融点蓄熱材1bは、潜熱蓄熱領域へと移行し、出口温度が一定となる。その後、再び顕蓄熱領域に入り、温度上昇していくが、高融点蓄熱材1aよりも相変化が終了(時刻Tm1)する時間は遅い。   The medium melting point heat storage material 1b goes through the same process as the high melting point heat storage material 1a, but the heat medium (water) flowing into the medium melting point heat storage material 1b is water after heat dissipation to the high melting point heat storage material 1a. The temperature (inlet temperature) gradually increases according to the outlet temperature of the high melting point heat storage material 1a. Therefore, the intermediate melting point heat storage material 1b reaches the latent heat region after the entire high melting point heat storage material 1a reaches the latent heat storage region. Therefore, during that period, the temperature increase rate in the sensible heat storage region of the medium melting point heat storage material 1b is small. Thereafter, the intermediate melting point heat storage material 1b moves to the latent heat storage region, and the outlet temperature becomes constant. Then, although it enters into a sensible heat storage area again and temperature rises, the time for a phase change to complete | finish (time Tm1) is later than the high melting-point heat storage material 1a.

低融点蓄熱材1cについても同様に、潜熱蓄熱領域へと移行するのは、中融点蓄熱材1bが潜熱蓄熱領域へと移行した後である。また、低融点蓄熱材1cの相変化が終了(時刻Tl1)するのは、中融点蓄熱材1bの相変化が終了するよりも後になる。   Similarly, the low melting point heat storage material 1c shifts to the latent heat storage region after the intermediate melting point heat storage material 1b shifts to the latent heat storage region. In addition, the phase change of the low melting point heat storage material 1c ends (time Tl1) after the phase change of the medium melting point heat storage material 1b ends.

その結果、低融点蓄熱材側1cの出口における熱媒体(水)の温度は、潜熱領域での蓄熱が完了する約90分まで低融点蓄熱材1cの融点程度の温度に保たれる。その後、低融点蓄熱材1cの相変化が終了すると低融点蓄熱材1cの出口の熱媒体(水)の温度が上昇し始め、低融点蓄熱材1cの出口の熱媒体の温度が60℃に到達して蓄熱が完了する。なお、蓄熱運転終了時において、低融点蓄熱材1cの出口温度が60℃以上となっているのは、ポンプを停止させて熱媒体回路4内の熱媒体(水)の循環を停止させても、多少量の熱媒体(水)がさらに循環し、また、低融点蓄熱材1cが設けられた蓄熱配管15の流路内に熱媒体が残存するので、熱交換が行われるためである。 蓄熱過程において、低融点蓄熱材1cより、中融点蓄熱材1bまたは高融点蓄熱材1aが融解(相変化)する時間が長ければ、蓄熱手段2の低融点蓄熱材1cの出口温度が低融点蓄熱材1cの融点と同等の温度から上昇した後、中融点蓄熱材1bまたは高融点蓄熱材1aの融点と同等の温度で温度上昇勾配が緩くなるという現象が見られるはずであり、この結果は、蓄熱手段低融点側出口温度が低融点蓄熱材1cの融点とほぼ同等の温度の状態を長く保つことができていることを示している。   As a result, the temperature of the heat medium (water) at the outlet of the low melting point heat storage material side 1c is maintained at a temperature about the melting point of the low melting point heat storage material 1c until the heat storage in the latent heat region is completed for about 90 minutes. Thereafter, when the phase change of the low melting point heat storage material 1c is completed, the temperature of the heat medium (water) at the outlet of the low melting point heat storage material 1c starts to rise, and the temperature of the heat medium at the outlet of the low melting point heat storage material 1c reaches 60 ° C. And heat storage is completed. At the end of the heat storage operation, the outlet temperature of the low melting point heat storage material 1c is 60 ° C. or higher even if the pump is stopped and the circulation of the heat medium (water) in the heat medium circuit 4 is stopped. This is because a certain amount of the heat medium (water) is further circulated and the heat medium remains in the flow path of the heat storage pipe 15 provided with the low melting point heat storage material 1c, so that heat exchange is performed. In the heat storage process, the outlet temperature of the low-melting-point heat storage material 1c of the heat storage means 2 is low-melting-point heat storage if the time during which the medium-melting-point heat storage material 1b or the high-melting-point heat storage material 1a is melted (phase change) is longer than the low-melting-point heat storage material 1c. After rising from a temperature equivalent to the melting point of the material 1c, a phenomenon that the temperature rising gradient becomes gentle at a temperature equivalent to the melting point of the medium melting point heat storage material 1b or the high melting point heat storage material 1a should be seen. This shows that the heat storage means low-melting-point-side outlet temperature can be kept at a temperature substantially equal to the melting point of the low-melting-point heat storage material 1c for a long time.

これにより、図2に示すように、高融点蓄熱材1a、中融点蓄熱材1b、低融点蓄熱材1cの相変化が終了時刻Th1、Tm1、Tl1はこの順に並ぶ。   Thereby, as shown in FIG. 2, the phase changes of the high melting point heat storage material 1a, the middle melting point heat storage material 1b, and the low melting point heat storage material 1c end in the order of Th1, Tm1, and Tl1.

一方、放熱時、すなわち、湯を生成する加熱運転時には、蓄熱運転時とは逆に低融点蓄熱材1c側から高融点蓄熱材1aへと順に熱媒体を流通させる。一般に温水使用時には需要に応じた流量で水を流通させるので、流量を蓄熱時の10倍としている。   On the other hand, at the time of heat dissipation, that is, in the heating operation for generating hot water, the heat medium is circulated in order from the low melting point heat storage material 1c side to the high melting point heat storage material 1a, contrary to the heat storage operation. Generally, when hot water is used, water is circulated at a flow rate according to demand, so the flow rate is 10 times that during heat storage.

この時、まず低融点蓄熱材1cが急激に放熱して潜熱領域に入る。そのため、低融点蓄熱材1cの出口温度は急激に低下する。潜熱領域に入ると温度勾配が小さくなり、相変化が終了(時刻Tl2)すると、再び顕熱領域となって急激な温度低下が始まる。   At this time, first, the low melting point heat storage material 1c abruptly dissipates heat and enters the latent heat region. Therefore, the outlet temperature of the low-melting-point heat storage material 1c rapidly decreases. When entering the latent heat region, the temperature gradient becomes small, and when the phase change is completed (time Tl2), the region becomes the sensible heat region again and a rapid temperature decrease starts.

中融点蓄熱材1bには低融点蓄熱材1cの放熱によって加熱された水が流入するので、
その温度低下は低融点蓄熱材1cよりも緩やかとなる。その後、低融点蓄熱材1cより遅れて潜熱領域に入る。低融点蓄熱材1cによる水への放熱があるので、潜熱領域(相変化)の終了(時刻Tm2)も低融点蓄熱材1cの相変化よりも遅い。その後、再び顕熱領域となって温度が低下する。
Since the water heated by the heat radiation of the low melting point heat storage material 1c flows into the middle melting point heat storage material 1b,
The temperature drop is more gradual than the low melting point heat storage material 1c. Then, it enters into the latent heat region later than the low melting point heat storage material 1c. Since there is heat dissipation to water by the low melting point heat storage material 1c, the end of the latent heat region (phase change) (time Tm2) is also later than the phase change of the low melting point heat storage material 1c. Thereafter, the temperature falls again to the sensible heat region.

高融点蓄熱材1aには低融点蓄熱材1c及び中融点蓄熱材1bによる放熱によって温度上昇した水が流入するため、その温度低下はさらに遅くなる。したがって、潜熱領域(相変化)の終了(時刻Th2)も、時刻Tm2よりも遅い。その後、再び顕熱領域となって温度が低下する。   Since the water whose temperature has risen due to heat radiation by the low melting point heat storage material 1c and the middle melting point heat storage material 1b flows into the high melting point heat storage material 1a, the temperature drop is further delayed. Therefore, the end of latent heat region (phase change) (time Th2) is also later than time Tm2. Thereafter, the temperature falls again to the sensible heat region.

このように、蓄熱手段4の高融点蓄熱材1aの出口温度を、高融点蓄熱材1aの融点以上の温度に長く保つことができる。よって、熱利用端末に湯水を長い時間供給できる。   Thus, the exit temperature of the high melting point heat storage material 1a of the heat storage means 4 can be kept long at a temperature equal to or higher than the melting point of the high melting point heat storage material 1a. Therefore, hot water can be supplied to the heat utilization terminal for a long time.

以上のように、本発明の温水生成装置は、蓄熱手段2の水の流れ方向に対して、上流側の潜熱蓄熱材から順に相変化が終了するように構成される。   As described above, the hot water generator of the present invention is configured such that the phase change is finished in order from the upstream latent heat storage material with respect to the direction of water flow of the heat storage means 2.

したがって、蓄熱運転において、複数の潜熱蓄熱材(1a、1b、1c)のうち、最も融点の低い潜熱蓄熱材1cの相変化が最後に終了する。これにより、熱媒体の保有する熱によって蓄熱する蓄熱運転において、熱媒体が保有する熱を高温域から低温域まで無駄なく熱媒体に蓄熱することができる。その結果、融点の異なる複数の潜熱蓄熱材(1a、1b、1c)を有する蓄熱手段4を用いた温水生成装置において、蓄熱手段4に効率よく蓄熱することができる
また、蓄熱運転において、蓄熱手段2から流出する水の温度を低く保つことができる。よって、加熱手段(ヒートポンプ装置)8に流入する水の温度を低く保ちことができる。その結果、熱媒体熱交換器3におけるエンタルピー差を増大させることができ、COPが向上する。
Therefore, in the heat storage operation, the phase change of the latent heat storage material 1c having the lowest melting point among the plurality of latent heat storage materials (1a, 1b, 1c) ends last. Thereby, in the heat storage operation for storing heat with the heat held by the heat medium, the heat held by the heat medium can be stored in the heat medium without waste from the high temperature range to the low temperature range. As a result, in the hot water generator using the heat storage means 4 having a plurality of latent heat storage materials (1a, 1b, 1c) having different melting points, the heat storage means 4 can efficiently store heat. The temperature of the water flowing out from 2 can be kept low. Therefore, the temperature of the water flowing into the heating means (heat pump device) 8 can be kept low. As a result, the enthalpy difference in the heat medium heat exchanger 3 can be increased, and COP is improved.

また、第1加熱運転において、複数の潜熱蓄熱材のうち、最も融点の高い潜熱蓄熱材1aの相変化が最後に終了する。これにより、低融点の潜熱蓄熱材(1b、1c)が保有する潜熱を使い切ることができる。よって、蓄熱手段2に蓄熱された熱量を効率よく利用することができる。その結果、熱利用端末に対して、最後まで温度の高い湯水を供給することができる。なお、第2加熱運転においても、第1加熱運転と同様に、複数の潜熱蓄熱材のうち、最も融点の高い潜熱蓄熱材1aの相変化が最後に終了するように構成されていることが好ましい。   In the first heating operation, the phase change of the latent heat storage material 1a having the highest melting point among the plurality of latent heat storage materials ends last. Thereby, the latent heat which low-melting-point latent heat storage material (1b, 1c) can be used up. Therefore, the amount of heat stored in the heat storage means 2 can be used efficiently. As a result, hot water with a high temperature can be supplied to the heat utilization terminal. In the second heating operation, similarly to the first heating operation, it is preferable that the phase change of the latent heat storage material 1a having the highest melting point among the plurality of latent heat storage materials is finished last. .

なお、本実施の形態においては、蓄熱運転及び第1加熱運転において、蓄熱手段2の水の流れ方向に対して、上流側から下流側に向かって順に相変化が終了するように構成している。しかしながら、少なくとも、最も下流側の潜熱蓄熱材の相変化が、最後に終了するように構成されていればよい。よって、融点が異なる3つ以上の潜熱蓄熱材を用いて蓄熱手段2を構成した場合には、少なくとも、最も下流側の2つの潜熱蓄熱材の間で、数式1の関係が満たされるように構成されていればよい。   In the present embodiment, in the heat storage operation and the first heating operation, the phase change is completed in order from the upstream side to the downstream side with respect to the water flow direction of the heat storage means 2. . However, at least the phase change of the most downstream latent heat storage material may be configured to end last. Therefore, in the case where the heat storage means 2 is configured using three or more latent heat storage materials having different melting points, at least the relationship between Formula 1 is satisfied between the two most downstream latent heat storage materials. It only has to be done.

本発明にかかる温水生成装置は、潜熱蓄熱材を用いた蓄熱手段から効率よく熱を取り出して利用することができるので、家庭用、業務用の給湯装置、温水暖房装置として適用することができる。   The hot water generator according to the present invention can be used by efficiently extracting heat from the heat storage means using the latent heat storage material, and thus can be applied as a domestic or commercial hot water supply device or a hot water heater.

1a 高融点蓄熱材
1b 中融点蓄熱材
1c 低融点蓄熱材
2 蓄熱手段
3 熱媒体熱交換器
4 熱媒体回路
5 減圧手段(膨張弁)
6 熱源側熱交換器
7 圧縮機
8 加熱手段(ヒートポンプ装置)
10 第1流量調整手段
11 第2流量調整手段
12 給水配管
13 給湯配管
14 加熱配管
15 蓄熱配管
1a High melting point heat storage material 1b Medium melting point heat storage material 1c Low melting point heat storage material 2 Heat storage means 3 Heat medium heat exchanger 4 Heat medium circuit 5 Pressure reducing means (expansion valve)
6 Heat source side heat exchanger 7 Compressor 8 Heating means (heat pump device)
DESCRIPTION OF SYMBOLS 10 1st flow volume adjustment means 11 2nd flow volume adjustment means 12 Water supply piping 13 Hot water supply piping 14 Heating piping 15 Thermal storage piping

Claims (2)

潜熱蓄熱材と熱媒体とが熱交換する蓄熱手段が配設された熱媒体回路を備え、
前記蓄熱手段は、融点の異なる複数の潜熱蓄熱材を有し、前記熱媒体は、前記熱媒体が保有する熱によって前記蓄熱手段に蓄熱する蓄熱運転において、前記複数の潜熱蓄熱材のうち融点の低い前記潜熱蓄熱材から融点の高い前記潜熱蓄熱材へと順に熱交換をするように、前記蓄熱手段を流れ、
前記蓄熱運転において、前記複数の潜熱蓄熱材のうち、相対的に融点の高い第1潜熱蓄熱材の相変化が、相対的に融点の低い第2潜熱蓄熱材の相変化と同時またはそれよりも前に終了することを特徴とする温水生成装置。
A heat medium circuit provided with heat storage means for exchanging heat between the latent heat storage material and the heat medium,
The heat storage means has a plurality of latent heat storage materials having different melting points, and the heat medium has a melting point of the plurality of latent heat storage materials in a heat storage operation in which heat is stored in the heat storage means by heat held by the heat medium. Flowing through the heat storage means so as to exchange heat sequentially from the low latent heat storage material to the latent heat storage material having a high melting point,
In the heat storage operation, the phase change of the first latent heat storage material having a relatively high melting point among the plurality of latent heat storage materials is simultaneous with or more than the phase change of the second latent heat storage material having a relatively low melting point. A hot water generator characterized by being terminated before.
前記第1潜熱蓄熱材の蓄熱容量をQh、前記第2潜熱蓄熱材の蓄熱容量をQlとし、
前記加熱運転における、前記第1潜熱蓄熱材と前記熱媒体との単位時間当たりの熱交換量をPh、前記第2潜熱蓄熱材と前記熱媒体との単位時間当たりの熱交換量をPlとしたとき、
Qh/Ph≦Ql/Plであることを特徴とする請求項1に記載の温水生成装置。
The heat storage capacity of the first latent heat storage material is Qh, the heat storage capacity of the second latent heat storage material is Ql,
In the heating operation, the heat exchange amount per unit time between the first latent heat storage material and the heat medium is Ph, and the heat exchange amount per unit time between the second latent heat storage material and the heat medium is Pl. When
The hot water generating device according to claim 1, wherein Qh / Ph ≦ Ql / Pl.
JP2014054632A 2014-03-18 2014-03-18 Hot water generation device Pending JP2015175580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014054632A JP2015175580A (en) 2014-03-18 2014-03-18 Hot water generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014054632A JP2015175580A (en) 2014-03-18 2014-03-18 Hot water generation device

Publications (1)

Publication Number Publication Date
JP2015175580A true JP2015175580A (en) 2015-10-05

Family

ID=54254925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014054632A Pending JP2015175580A (en) 2014-03-18 2014-03-18 Hot water generation device

Country Status (1)

Country Link
JP (1) JP2015175580A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017161192A (en) * 2016-03-11 2017-09-14 パナソニックIpマネジメント株式会社 Heat storage device and hot water generation device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086386A (en) * 1983-10-14 1985-05-15 Matsushita Electric Ind Co Ltd Heat accumulating device
JPH04236095A (en) * 1991-01-16 1992-08-25 Toshiba Corp Heat accumulating device
JPH11311454A (en) * 1998-04-28 1999-11-09 Taikisha Ltd Latent heat storage type heat source system
JP2004317020A (en) * 2003-04-16 2004-11-11 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2012007796A (en) * 2010-06-24 2012-01-12 Panasonic Corp Heat storage system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086386A (en) * 1983-10-14 1985-05-15 Matsushita Electric Ind Co Ltd Heat accumulating device
JPH04236095A (en) * 1991-01-16 1992-08-25 Toshiba Corp Heat accumulating device
JPH11311454A (en) * 1998-04-28 1999-11-09 Taikisha Ltd Latent heat storage type heat source system
JP2004317020A (en) * 2003-04-16 2004-11-11 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2012007796A (en) * 2010-06-24 2012-01-12 Panasonic Corp Heat storage system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017161192A (en) * 2016-03-11 2017-09-14 パナソニックIpマネジメント株式会社 Heat storage device and hot water generation device

Similar Documents

Publication Publication Date Title
JP6244553B2 (en) Heat storage device and hot water generator provided with the same
JP4937052B2 (en) Hot water storage water heater
JP2015175581A (en) Hot water generation device
JP2008309428A (en) Flow rate control device of heat source system and flow rate control method of heat source system
JP2009074750A (en) Hot water supply system
KR101156465B1 (en) Air-conditioning and heating equipment using sea water and deep sea water source heat pump and method for controlling the same
JP6689801B2 (en) Solar air conditioning system
JP2015175580A (en) Hot water generation device
JP2018170194A (en) Fuel cell system
JP5575184B2 (en) Heating system
JP5589664B2 (en) Hot water storage water heater
JP4957026B2 (en) Heat pump heat supply system
JP2018155453A (en) Water heating system
JP2007303755A (en) Heat pump type water heater
JP2015117856A (en) Hot water storage water heater
WO2016098263A1 (en) Heat exchanger and heat pump type hot water generating device using same
JP5178142B2 (en) Hot water storage water heater
JP5982636B2 (en) Heat pump water heater
JP5533397B2 (en) Hot water storage water heater
GB2525856A (en) A thermal store and water storage cylinder designed to enhance the performance of a CO2 heat pump
KR101335278B1 (en) Dual cycle heat pump system
JP2013213596A (en) Heat pump water heater
JP2009127999A (en) Storage type hot water supply apparatus
JP2010032112A (en) Hot water supply device
KR102350060B1 (en) Heating Device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160519

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180130