JP2004317020A - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP2004317020A
JP2004317020A JP2003111118A JP2003111118A JP2004317020A JP 2004317020 A JP2004317020 A JP 2004317020A JP 2003111118 A JP2003111118 A JP 2003111118A JP 2003111118 A JP2003111118 A JP 2003111118A JP 2004317020 A JP2004317020 A JP 2004317020A
Authority
JP
Japan
Prior art keywords
heat
heat storage
hot water
water supply
refrigerant circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003111118A
Other languages
Japanese (ja)
Inventor
Kazuhiko Marumoto
一彦 丸本
Takeji Watanabe
竹司 渡辺
Ryuta Kondo
龍太 近藤
Nobuhiko Fujiwara
宣彦 藤原
Tatsumura Mo
立群 毛
Hideki Ono
英樹 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003111118A priority Critical patent/JP2004317020A/en
Publication of JP2004317020A publication Critical patent/JP2004317020A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem of losing reliability of a compressor since the compressor frequently repeats starting-stopping when frequently repeating hot water supply and stopping of the hot water supply in a short time at a little flow rate such as face-washing and hand-washing. <P>SOLUTION: When starting the hot water supply in a hot water supply terminal 10 from a hot water supply circuit 11, hot water is supplied by heating city water 32 by using accumulation heat of a heat accumulator 14. When heat accumulation quantity of the heat accumulator 14 detected by a heat accumulation quantity detecting means 15 becomes a prescribed value or less, by using a heat pump water heater having a refrigerant circuit operation means 16 for operating a refrigerant circuit 6, frequenct starting-stopping of the compressor can be restrained; an abnormal pressure increase in the refrigerant circuit can be restrained; and the reliability of the compressor can be secured. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はヒートポンプ給湯器に関するものである。
【0002】
【従来の技術】
従来のヒートポンプ給湯器は図5に示すように、閉回路に構成される冷媒流路1で圧縮機2、放熱器3、減圧手段4、吸熱器5が接続された冷媒回路6と、放熱器3と熱交換を行う水流路7を備えた熱交換器8と、この水流路7に市水32を供給する給水管9と、前記水流路7とシャワーや蛇口等の給湯端末10とを接続する給湯回路11と、給湯回路11に設け給湯温度を検出する温度センサー12と、圧縮機2の回転数を制御するインバータ13を備え、圧縮機2を温度センサー12の検出温度と設定温度との差に応じてインバータ13の出力周波数を変換するようにしており、従来のヒートポンプ給湯器では設定温度に対して給湯温度が低い場合は圧縮機2の回転数を上げ、給湯温度が高い場合は回転数を下げるように制御するようにしていた(特許文献1参照)。
【0003】
即ち、給湯が開始され設定温度に対して給湯温度が低いと圧縮機2を運転し、給湯が停止され、設定温度に対して給湯温度が高くなると圧縮機2の運転周波数を低下していき最終的に停止させる。
【0004】
【特許文献1】
特開平2−223767号公報(第5図)
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来例の給湯器の構成では、給湯時における給湯負荷が一定ではなく、特に流量は使用者が給湯目的によってさまざまに変化させるために給湯負荷は大きく変ってしまう。例えば家庭用の給湯の場合、シャワーや風呂への湯張りに給湯する場合は10〜20L/minの大流量となるが、台所で食器を洗う場合や洗面への給湯では3〜5L/minと少流量である。また、季節による給水温度の変化によっても給湯負荷は大きく変る。
【0006】
特に、洗顔や手洗いなど少流量で短時間に頻繁な給湯と給湯の停止が繰り返される場合、設定温度に対して給湯温度が低いと必ず圧縮機2を起動し、給湯が停止されると圧縮機2を停止させるため、圧縮機2は頻繁に発停を繰り返すことになる。
【0007】
さらに、給湯が停止されても直ちに圧縮機2を停止するのではなく、圧縮機2の運転周波数を特定の周波数まで下げていき最終的に圧縮機2を停止することになる。給湯は停止されているため、圧縮機2が運転周波数を下げて行き停止するまでの間、放熱器3では放熱ができず余剰の熱が、冷媒回路6内の圧力を上昇させ圧縮機2の許容運転範囲を超えるため、圧縮機2の信頼性を確保できないという問題があった。
【0008】
本発明は、上記従来の課題を解決するもので、圧縮機2の信頼性を確保できるヒートポンプ給湯器を提供することを目的とする。
【0009】
【課題を解決するための手段】
この目的を達成するために本発明のヒートポンプ給湯器は、給湯回路より給湯端末に給湯が開始されると、蓄熱体の蓄熱を利用して市水を加熱して給湯を行い、蓄熱量検知手段により検知した蓄熱体の蓄熱量が所定値以下となった場合、冷媒回路を運転する冷媒回路運転手段を備えた。
【0010】
これによって、少流量の頻繁な給湯に対しては、圧縮機を運転することなく蓄熱体の蓄熱を利用して市水を加熱して給湯するので、圧縮機の頻繁な発停を抑制できる。また、圧縮機は運転されないので、冷媒回路内の圧力上昇を抑制できる。
【0011】
【発明の実施の形態】
本発明の請求項1に記載の発明は、圧縮機と放熱器と減圧手段と吸熱器とを含む冷媒回路と、前記放熱器と熱交換を行う水流路を備えた熱交換器と、前記水流路に市水を供給する給水管と、前記水流路から給湯端末へと通水するように接続する給湯回路と、前記冷媒回路の熱を蓄熱する蓄熱体と、前記蓄熱体の蓄熱量を検知する蓄熱量検知手段と、前記給湯回路より前記給湯端末に給湯が開始されると、前記蓄熱体の蓄熱を利用して市水を加熱して給湯を行い、前記蓄熱量検知手段により検知した前記蓄熱体の蓄熱量が所定値以下となった場合、前記冷媒回路を運転する冷媒回路運転手段を備えたものである。
【0012】
この発明によれば、少流量の頻繁な給湯に対しては、圧縮機を運転することなく蓄熱体の蓄熱を利用して市水を加熱して給湯するので、圧縮機頻繁な発停を抑制できる。また、圧縮機は運転されないので、冷媒回路内の圧力上昇を抑制でき、圧縮機の信頼性を確保できる。
【0013】
本発明の請求項2に記載の発明は、請求項1記載のヒートポンプ給湯装置の構成において、前記冷媒回路が運転され前記給湯端末からの給湯を停止した場合、前記蓄熱運転手段により、前記蓄熱体に前記冷媒回路の熱を蓄熱する停止時蓄熱手段を備えたものである。
【0014】
この発明によれば、圧縮機が運転中に給湯を停止した場合、停止時蓄熱手段により圧縮機が停止するまでの余剰の熱は蓄熱体への蓄熱に利用できる。即ち、冷媒回路内余剰の熱は蓄熱体へ放熱できるので、冷媒回路内の圧力上昇を抑制、制御できるので圧縮機の信頼性を確保できる。
【0015】
本発明の請求項3に記載の発明は、請求項2記載のヒートポンプ給湯装置の構成において、前記吸熱器の着霜を検知する着霜検知手段を有し、前記冷媒回路が運転され前記給湯端末からの出湯を停止し前記着霜検知手段により前記吸熱器に着霜が検知された場合、前記吸熱器の除霜運転を行う停止時除霜手段を備えたものである。
【0016】
この発明によれば、圧縮機が運転中に給湯を停止した場合には停止時除霜手段により圧縮機が停止するまでの余剰の熱は除霜に利用できる。即ち、冷媒回路内の余剰の熱を、吸熱器に付着した霜へ放熱して霜を溶かすので、冷媒回路内の圧力上昇を抑制、制御できるので圧縮機の信頼性を確保できる。
【0017】
本発明の請求項4に記載の発明は、請求項3記載のヒートポンプ給湯装置の構成において、前記市水の温度を検知する水温検知手段と、検知された市水の温度に基づいて前記冷媒回路を運転して蓄熱すべき前記蓄熱体の蓄熱量を算出する水温蓄熱量演算手段を備えたものである。
【0018】
この発明によれば、市水の温度変化によって、冷媒回路を運転すべき蓄熱量が変化する。即ち、市水温度が高なると水温蓄熱演算手段は冷媒回路の運転を開始する蓄熱体に蓄積される蓄熱量をより小さく演算するので、蓄熱体の熱を利用して行われる給湯の時間が長くなり、冷媒回路の運転回数は減少するので圧縮機の発停回数も少なくなり、圧縮機頻繁な発停をより一層抑制できるので、圧縮機の信頼性を確保できる。
【0019】
本発明の請求項5に記載の発明は、請求項3記載のヒートポンプ給湯装置の構成において、外気温度を検知する外気温度検知手段と、検知された外気温度に基づいて前記冷媒回路を運転して蓄熱すべき前記蓄熱体の蓄熱量を算出する外気温蓄熱量演算手段を備えたものである。
【0020】
即ち、外気温度が高なると外気温蓄熱演算手段は冷媒回路の運転を開始する蓄熱体に蓄積される蓄熱量をより小さく演算するので、蓄熱体の熱を利用して行われる給湯の時間が長くなり、冷媒回路の運転回数は減少するので圧縮機の発停回数も少なくなり、圧縮機頻繁な発停をより一層抑制できるので、圧縮機の信頼性を確保できる。
【0021】
本発明の請求項6に記載の発明は、請求項1〜5に記載の発明において、冷媒回路には、圧力が臨界圧力以上となる冷媒が使用したものである。
【0022】
この発明によれば、熱交換器の放熱器を流れる冷媒は、圧縮機で臨界圧力以上に加圧されているので、熱交換器の水流路の流水により熱を奪われて温度低下しても凝縮することがない。したがって熱交換器全域で冷媒と水とに温度差を形成しやすくなり、高温の湯が得られ、かつ熱交換効率を高くできる。
【0023】
【実施例】
以下本発明の実施例について、図面を参照しながら説明する。なお、従来例および各実施例において、同じ構成、同じ動作をする部分については同一符号を付与し、詳細な説明を省略する。
【0024】
(実施例1)
図1は本発明の第1の実施例に係る瞬間加熱式のヒートポンプ給湯器の構成を示す模式図である。図1において、14は、冷媒回路6により作り出した熱を蓄熱する蓄熱体であり、蓄熱材としてはマグネシアクリンカなどの固体物質でも良く、その場合には、蓄熱体14内に通水することで、蓄熱材の熱を水に付加するために熱交換する。また、水そのものを蓄熱材として利用しても良い。本実施例では蓄熱材を水として説明を行う。
【0025】
15は、蓄熱体14の蓄熱量を検知する蓄熱量検知手段であり、蓄熱体14表面の温度をサーミスタ等の温度検知装置で検知し、その温度とサーミスタ取り付け位置から算出した容量から蓄熱体14内の蓄熱量を検知する。16は冷媒回路6を運転する冷媒回路運転手段である。30は給水管9に水を送り出すポンプ、31は市水32の圧力を調整する減圧器、33は水流路7と給湯回路11及び蓄熱体14の水路を切り換える三方弁である。34は三方弁33で混合された湯温が設定温度より高い場合に市水32と混合して設定温度に調整する混合弁であり、これらの部品で出湯回路35を形成している。
【0026】
冷媒回路6は、例えば炭酸ガス(CO2)を冷媒として使用し、高圧側の冷媒圧力が冷媒の臨界圧以上となる超臨界ヒートポンプサイクルを使用している。
【0027】
また、圧縮機2は、それぞれに内蔵する電動モータ(図示しない)によって駆動され、吸引した冷媒を臨界圧力まで圧縮して吐出する。減圧手段4はステッピングモータ(図示しない)により駆動する絞り弁で、冷媒流路抵抗を制御している。
【0028】
水流路7に市水32を直接供給する給水管9と、水流路7から出湯される湯をシャワーや蛇口等の給湯端末10へ通水させるための給湯回路11が接続されている。
【0029】
放熱器3は、冷媒流路の流れ方向と水流路7の流れ方向を対向流とし、各流路間を熱移動が容易になるように密着して構成している。この構成により冷媒流路と水流路7の伝熱が均一化し、熱交換効率がよくなる。また、高温の出湯も可能になる。36は吸熱器5に設けられた送風機で、吸熱器5に大気熱を供給するように送風する。
【0030】
24は冷媒回路6で加熱された水回路7を通った温水の温度を検知する給湯温度センサーである。25は蓄熱体14への蓄熱終了を検知するためのサーミスタ等の温度検知センサーであり、圧縮機2の周波数降下から停止までの時間を見込んで設置位置を決定して蓄熱体14表面に設置された畜熱停止センサーである。
【0031】
図1に示す実施例において、給湯端末10の利用が検知されると、蓄熱量検知手段15は蓄熱体14の蓄熱量を検知する。検知した蓄熱量が所定の量より大きい場合には三方弁33を通して蓄熱体14内の湯を混合弁34に送り込み、減圧器31で適切な圧力に減圧された市水32と混合して設定温度の湯となって給湯端末10から給湯される。この時には、冷媒回路6は運転されない。
【0032】
また、さらに給湯端末10からの給湯中に蓄熱量検知手段15が所定の蓄熱量より小さいことを検知すると、冷媒回路運転手段16により冷媒回路6の運転を開始する。
【0033】
冷媒回路6及び出湯回路35では、減圧手段4は絞りの状態にあり、ポンプ9は停止している。この状態で、送風装置36が回転し、圧縮機2が作動する。冷媒回路6において、圧縮機2より吐出された高温高圧のガス冷媒は、放熱器3に流入する。
【0034】
放熱器3では、減圧器31で減圧された市水32が水回路7に給水管9を通して供給され、市水32は高温のガス冷媒と熱交換して加熱されて温水となり、一方、冷媒は低温のガス状態となる。その後、冷媒は減圧弁4に流入する。冷媒が減圧手段4を通過することによって、低温低圧の液、ガスの二相状態となり吸熱器5に流入する。
【0035】
吸熱器5内で、冷媒は送風装置36によって吸い込まれた外気からの熱を吸収する。外気熱を吸収した冷媒は、蒸発ガス化し圧縮機2に流入する。このサイクルが繰り返される。
【0036】
この時、混合弁34は市水32からの供給を停止して行き、また三方弁33は冷媒回路6で加熱された水回路7の温水と蓄熱体14から供給される湯を適温となるよう混合して給湯端末10より給湯する。
【0037】
冷媒回路6では設定温度と給湯温度センサー24で検知した給湯温度の差が大きいと、圧縮機回転数を上昇させて冷媒回路6の出力を大きくし、三方弁33は蓄熱体14からの出湯回路を閉止していき冷媒回路6単独で給湯端末10からの給湯を試みる。
【0038】
給湯端末10からの給湯負荷が冷媒回路6単独運転での出力範囲より大きい場合には三方弁33を通して蓄熱体14の湯と混合して、必要であれば混合弁34を通して市水32と混合して給湯端末10から給湯する。このようにして、冷媒回路6と出湯回路35を用いて給湯が行われる。
【0039】
一方、給湯端末10からの給湯の利用が終了したことが検知された場合について次に示す。先ず、給湯端末10からの給湯の利用が終了したことが検知されると、蓄熱量検知手段15は蓄熱体14の蓄熱量を検知する。そして、検知した蓄熱量が所定の量より大きい場合には給湯端末10の利用終了と共に、冷媒回路6と出湯回路35は共に動作せずそのままの状態を維持する。
一方、検知した蓄熱量が所定の量より小さい場合には、停止時蓄熱手段17により蓄熱体14への蓄熱が行われる。三方弁33を水回路7と蓄熱体14とを連通するよう設定し、ポンプ30を動作すると共に、先述した動作により冷媒回路6の運転を行う。
【0040】
ポンプ30により蓄熱体14内の低温の水を吸い込み給水管9を通して、水回路7に送られる。水回路7では冷媒回路6によって加熱され湯が三方弁33を通して蓄熱体14に送られる。この循環を繰り返すことにより、蓄熱体14に湯が蓄熱される。蓄熱停止センサー25により検知された温度が所定の温度を超えると圧縮機2は徐々に周波数を低下させていき停止する。
【0041】
以上の様に、少流量の頻繁な給湯に対しては、圧縮機2を運転することなく蓄熱体14の蓄熱を利用して市水を加熱して給湯するので、圧縮機2頻繁な発停を抑制できる。また、圧縮機2は運転されないので、冷媒回路6内の圧力上昇を抑制できる。
【0042】
また、圧縮機2が運転中に給湯を停止した場合、停止時蓄熱手段17により圧縮機2が停止するまでの余剰の熱は蓄熱体14への蓄熱に利用できる。即ち、冷媒回路6内余剰の熱は蓄熱体14へ放熱できるので、冷媒回路6内の圧力上昇を抑制、制御できるので圧縮機2の信頼性を確保できる。
【0043】
なお、前記蓄熱量の「所定の量」の所定値は可変であり、蓄熱体14に蓄えることの出来る最大の蓄熱量の10%〜50%に設定することが出来る。つまり、最大蓄熱量の30%に所定値を設定した場合、最大蓄熱量の30%以上では冷媒回路6と出湯回路35は共に動作せずそのままの状態を維持する。そして、30%より小さくなると、停止時蓄熱手段17により蓄熱体14への蓄熱が行われるように動作する。
【0044】
実施例1では圧力が臨界圧力以上となる超臨界ヒートポンプサイクルとしたが、もちろん一般の臨界圧力以下のヒートポンプサイクルでもよい。またこの場合、冷媒としてはフロンガス、アンモニア、ハイドロカーボン系の冷媒(HC冷媒)等を用いてもかまわない。
【0045】
(実施例2)
図2本発明の実施例2おけるヒートポンプ給湯器の構成図である。尚、実施例1の給湯器と同一構造のものは同一符号を付与し、説明を省略する。
【0046】
18は吸熱器5への着霜を検知するための着霜検知センサー、19は冷媒回路6が運転され田場合に、給湯端末10からの出湯を停止し着霜検知手段18により吸熱器5に着霜が検知された場合、吸熱器5の除霜運転を行う停止時除霜手段である。
【0047】
以上の構成において、その動作、作用について説明する。ここでは本発明の特長である冷媒回路6が運転され、給湯端末10からの給湯の利用が終了したことが検知された場合について示す。
【0048】
給湯端末10からの給湯の利用が終了したことが検知されると、先ず着霜検知手段18は吸熱器5に着霜があるかどうかを検知する。
【0049】
ここでは、着霜の検知には吸熱器5の温度を測定し所定温度以下となる時間が所定時間続いた場合、着霜しているとの検知手段を用いている。
【0050】
着霜を検知した場合には、停止時除霜手段19は吸熱器5の除霜を完了後、冷媒回路6を停止する。
【0051】
即ち、圧縮機2及び送風装置36を運転したまま減圧手段4を給湯時の設定開度より大きくすることにより、減圧手段4を通った冷媒温度が上昇する事になり、着霜している霜の温度より高い冷媒が吸熱器5を通過する事により、霜は冷媒より熱を吸熱して溶け除霜される。一定時間の除霜運転を行った後、除霜を終了する。
【0052】
除霜終了後、蓄熱量検知手段15は蓄熱体14の蓄熱量を検知し、検知した蓄熱量が所定の量より小さい場合には、停止時蓄熱手段17により蓄熱体14への蓄熱が行われる。
【0053】
検知した蓄熱量が所定の量より大きい場合には圧縮機2は除霜を行いながら徐々に周波数を低減していき停止する。
【0054】
以上の様に、圧縮機2が運転中に給湯を停止した場合には停止時除霜手段19により圧縮機2が停止するまでの余剰の熱は除霜に利用できる。即ち、冷媒回路6内の余剰の熱を、吸熱器5に付着した霜へ放熱して霜を溶かすので、冷媒回路6内の圧力上昇を抑制、制御できるので圧縮機2の信頼性を確保できる。
【0055】
(実施例3)
図3は本発明の実施例3におけるヒートポンプ式給湯装置の構成図である。尚、実施例2の給湯装置と同一構造のものは同一符号を付与し、説明を省略する。
【0056】
20は市水32の温度を検知する水温検知手段である。21は水温検知手段20で検知された水温に応じて蓄熱体14の蓄熱量を市水32温度が高いと蓄熱量を小さくし、市水32温度が低いと蓄熱量を大きく演算する演算する水温蓄熱量演算手段である。
【0057】
以上の構成において、その動作、作用について説明する。給湯端末10からの給湯が開始されると蓄熱量検知手段15は蓄熱体14の蓄熱量を検知する。そして、水温検知手段20で検知された市水32温度より水温蓄熱量演算手段21により求めた蓄熱量が蓄熱量検知手段15により検知した蓄熱量より小さいと、冷媒回路6は運転されず、大きいと冷媒回路運転手段16により冷媒回路6を運転する。
【0058】
以上の様に、市水32の温度変化によって、冷媒回路6を運転すべき蓄熱量が変化する。即ち、市水32温度が高なると水温蓄熱演算手段21は冷媒回路6の運転を開始する蓄熱体14に蓄積される蓄熱量をより小さく演算するので、蓄熱体14の熱を利用して行われる給湯の時間が長くなり、冷媒回路6の運転回数は減少するので圧縮機2の発停回数も少なくなり、圧縮機2頻繁な発停をより一層抑制できるので、圧縮機2の信頼性を確保できる。
【0059】
(実施例4)
図4は本発明の実施例4におけるヒートポンプ式給湯装置の構成図である。尚、実施例2の給湯装置と同一構造のものは同一符号を付与し、説明を省略する。
【0060】
22は外気温度を検知する外気温検知手段である。23は外気温度検知手段22で検知された外気温度に応じて蓄熱体14の蓄熱量を外気温度が高いと蓄熱量を小さくし、外気温度が低いと蓄熱量を大きく演算する演算する外気温蓄熱量演算手段である。
【0061】
以上の構成において、その動作、作用について説明する。給湯端末10からの給湯が開始されると蓄熱量検知手段15は蓄熱体14の蓄熱量を検知する。そして、外気温検知手段22で検知された外気温度より外気温蓄熱量演算手段23により求めた蓄熱量が蓄熱量検知手段15により検知した蓄熱量より小さいと、冷媒回路6は運転されず、大きいと冷媒回路運転手段16により冷媒回路6を運転する。
【0062】
以上の様に、外気温度変化によって、冷媒回路6を運転すべき蓄熱量が変化する。即ち、外気温度が高なると外気温蓄熱演算手段23は冷媒回路6の運転を開始する蓄熱体14に蓄積される蓄熱量をより小さく演算するので、蓄熱体14の熱を利用して行われる給湯の時間が長くなり、冷媒回路6の運転回数は減少するので圧縮機2の発停回数も少なくなり、圧縮機2頻繁な発停をより一層抑制できるので、圧縮機2の信頼性を確保できる。
【0063】
【発明の効果】
以上の様に本発明によれば、圧縮機頻繁な発停を抑制できると共に、冷媒回路内の異常な圧力上昇を抑制でき、圧縮機の信頼性を確保できる。
【図面の簡単な説明】
【図1】本発明によるヒートポンプ給湯器の実施例1における回路図
【図2】本発明によるヒートポンプ給湯器の実施例2における回路図
【図3】本発明によるヒートポンプ給湯器の実施例3における回路図
【図4】本発明によるヒートポンプ給湯器の実施例4における回路図
【図5】従来のヒートポンプ給湯器の構成図
【符号の説明】
1 冷媒流路
2 圧縮機
3 放熱器
4 減圧手段
5 吸熱器
6 冷媒回路
7 水流路
8 熱交換器
9 給水管
10 給湯端末
11 給湯回路
14 蓄熱体
15 蓄熱量検知手段
16 冷媒回路運転手段
17 停止時蓄熱手段
18 着霜検知手段
19 停止時除霜手段
20 水温検知手段
21 水温蓄熱量演算手段
22 外気温検知手段
23 外気温蓄熱量演算手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat pump water heater.
[0002]
[Prior art]
As shown in FIG. 5, a conventional heat pump water heater has a refrigerant circuit 6 in which a compressor 2, a radiator 3, a decompression means 4, and a heat absorber 5 are connected in a refrigerant flow path 1 formed in a closed circuit, and a radiator. A heat exchanger 8 having a water flow path 7 for exchanging heat with the heat exchanger 3, a water supply pipe 9 for supplying city water 32 to the water flow path 7, and a connection between the water flow path 7 and a hot water supply terminal 10 such as a shower or a faucet. A hot water supply circuit 11, a temperature sensor 12 provided in the hot water supply circuit 11 for detecting a hot water supply temperature, and an inverter 13 for controlling the number of revolutions of the compressor 2. The output frequency of the inverter 13 is converted according to the difference. In the conventional heat pump water heater, the rotation speed of the compressor 2 is increased when the hot water temperature is lower than the set temperature, and the rotation speed is higher when the hot water temperature is higher. To control to lower the number Which was (see Patent Document 1).
[0003]
That is, when the hot water supply is started and the hot water supply temperature is lower than the set temperature, the compressor 2 is operated, the hot water supply is stopped, and when the hot water supply temperature becomes higher than the set temperature, the operating frequency of the compressor 2 is reduced and the final operation is continued. Stop.
[0004]
[Patent Document 1]
JP-A-2-223767 (FIG. 5)
[0005]
[Problems to be solved by the invention]
However, in the configuration of the above-described conventional water heater, the hot water supply load at the time of hot water supply is not constant, and particularly, since the user varies the flow rate variously depending on the purpose of hot water supply, the hot water supply load greatly changes. For example, in the case of hot water for home use, a large flow rate of 10 to 20 L / min is required when hot water is supplied to a shower or bath, but 3 to 5 L / min when washing dishes in a kitchen or supplying hot water to a wash surface. Low flow rate. The hot water supply load also changes greatly due to seasonal changes in the water supply temperature.
[0006]
In particular, when hot water supply and frequent hot water supply stoppage are repeated in a short time at a small flow rate such as face washing and hand washing, the compressor 2 is always started when the hot water supply temperature is lower than the set temperature, and when the hot water supply is stopped, the compressor 2 is started. In order to stop the compressor 2, the compressor 2 repeatedly starts and stops.
[0007]
Further, even if the hot water supply is stopped, the compressor 2 is not stopped immediately, but the operating frequency of the compressor 2 is reduced to a specific frequency, and finally the compressor 2 is stopped. Since the hot water supply is stopped, the radiator 3 cannot release heat and the excess heat increases the pressure in the refrigerant circuit 6 until the compressor 2 lowers the operating frequency until the compressor 2 stops operating. There is a problem that the reliability of the compressor 2 cannot be ensured because the allowable operating range is exceeded.
[0008]
The present invention has been made to solve the above-mentioned conventional problems, and has as its object to provide a heat pump water heater that can ensure the reliability of the compressor 2.
[0009]
[Means for Solving the Problems]
In order to achieve this object, the heat pump water heater according to the present invention is configured such that when hot water is supplied to a hot water supply terminal from a hot water supply circuit, city water is heated by using heat storage of a heat storage body to perform hot water supply, and a heat storage amount detection unit. And a refrigerant circuit operating means for operating the refrigerant circuit when the heat storage amount of the heat storage body detected by the method becomes equal to or less than a predetermined value.
[0010]
Thus, for frequent hot water supply with a small flow rate, the city water is heated and hot water is supplied using the heat storage of the heat storage body without operating the compressor, so that frequent start / stop of the compressor can be suppressed. Further, since the compressor is not operated, the pressure increase in the refrigerant circuit can be suppressed.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention according to claim 1 of the present invention is directed to a heat exchanger including a refrigerant circuit including a compressor, a radiator, a decompression unit, and a heat sink, a heat exchanger including a water flow path for performing heat exchange with the radiator, and A water supply pipe for supplying city water to the road, a hot water supply circuit connected so as to pass water from the water flow path to the hot water supply terminal, a heat storage element for storing heat of the refrigerant circuit, and a heat storage amount of the heat storage element is detected. When the hot water supply to the hot water supply terminal is started from the hot water supply circuit, the hot water is heated by using the heat storage of the heat storage body to perform hot water supply, and the heat storage amount detected by the heat storage amount detection means. When the heat storage amount of the heat storage body becomes equal to or less than a predetermined value, a refrigerant circuit operating means for operating the refrigerant circuit is provided.
[0012]
According to the present invention, for frequent hot water supply with a small flow rate, the city water is heated by using the heat storage of the heat storage body without operating the compressor, and hot water is supplied. it can. Further, since the compressor is not operated, the pressure increase in the refrigerant circuit can be suppressed, and the reliability of the compressor can be ensured.
[0013]
According to a second aspect of the present invention, in the configuration of the heat pump hot water supply apparatus according to the first aspect, when the refrigerant circuit is operated and hot water supply from the hot water supply terminal is stopped, the heat storage element is operated by the heat storage operation means. And a stop heat storage means for storing heat of the refrigerant circuit.
[0014]
According to the present invention, when the hot water supply is stopped during the operation of the compressor, the surplus heat until the compressor stops by the stop heat storage means can be used for storing heat in the heat storage body. That is, since the excess heat in the refrigerant circuit can be radiated to the heat storage body, the pressure increase in the refrigerant circuit can be suppressed and controlled, so that the reliability of the compressor can be ensured.
[0015]
According to a third aspect of the present invention, in the configuration of the heat pump hot water supply apparatus according to the second aspect, the hot water supply terminal further includes frost detection means for detecting frost formation of the heat absorber, and the refrigerant circuit is operated to operate the refrigerant circuit. And a stop-time defrosting means for performing a defrosting operation of the heat absorber when the frost detection is detected by the frost detection means.
[0016]
According to the present invention, when the hot water supply is stopped during the operation of the compressor, the surplus heat until the compressor stops by the stop-time defrosting means can be used for defrosting. That is, since excess heat in the refrigerant circuit is radiated to frost adhering to the heat absorber to melt the frost, a pressure increase in the refrigerant circuit can be suppressed and controlled, so that the reliability of the compressor can be secured.
[0017]
According to a fourth aspect of the present invention, in the configuration of the heat pump hot water supply apparatus according to the third aspect, a water temperature detecting means for detecting a temperature of the city water, and the refrigerant circuit based on the detected temperature of the city water. And a water temperature heat storage amount calculating means for calculating the heat storage amount of the heat storage body to be stored by operating the heat storage device.
[0018]
According to the present invention, the amount of heat stored to operate the refrigerant circuit changes according to the temperature change of the city water. That is, when the city water temperature increases, the water temperature heat storage calculating means calculates a smaller amount of heat stored in the heat storage to start the operation of the refrigerant circuit, so that the time of hot water supply using the heat of the heat storage is longer. In other words, the number of operations of the refrigerant circuit is reduced, so that the number of times of starting and stopping of the compressor is also reduced, and frequent starting and stopping of the compressor can be further suppressed, so that the reliability of the compressor can be ensured.
[0019]
According to a fifth aspect of the present invention, in the configuration of the heat pump hot water supply apparatus according to the third aspect, an outside air temperature detecting means for detecting an outside air temperature, and operating the refrigerant circuit based on the detected outside air temperature. An external temperature heat storage amount calculating means for calculating a heat storage amount of the heat storage body to be stored.
[0020]
In other words, when the outside air temperature increases, the outside air temperature heat storage calculating means calculates the amount of heat stored in the heat storage that starts the operation of the refrigerant circuit, so that the time of hot water supply performed using the heat of the heat storage is long. In other words, the number of operations of the refrigerant circuit is reduced, so that the number of times of starting and stopping of the compressor is also reduced, and frequent starting and stopping of the compressor can be further suppressed, so that the reliability of the compressor can be ensured.
[0021]
According to a sixth aspect of the present invention, in the first to fifth aspects, the refrigerant circuit uses a refrigerant whose pressure is equal to or higher than a critical pressure.
[0022]
According to the present invention, the refrigerant flowing through the radiator of the heat exchanger is pressurized to a critical pressure or higher by the compressor. Does not condense. Therefore, it becomes easy to form a temperature difference between the refrigerant and the water in the entire region of the heat exchanger, so that high-temperature hot water can be obtained and the heat exchange efficiency can be increased.
[0023]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the conventional example and each embodiment, the same reference numerals are given to portions having the same configuration and the same operation, and detailed description will be omitted.
[0024]
(Example 1)
FIG. 1 is a schematic diagram showing a configuration of an instantaneous heating type heat pump water heater according to a first embodiment of the present invention. In FIG. 1, reference numeral 14 denotes a heat storage unit that stores heat generated by the refrigerant circuit 6. The heat storage material may be a solid substance such as magnesia clinker. In that case, water is passed through the heat storage unit 14. Then, heat exchange is performed to add heat of the heat storage material to the water. Further, water itself may be used as a heat storage material. In the present embodiment, description will be made on the assumption that the heat storage material is water.
[0025]
Numeral 15 is a heat storage amount detecting means for detecting the heat storage amount of the heat storage unit 14, which detects the temperature of the surface of the heat storage unit 14 by a temperature detecting device such as a thermistor, and calculates the heat storage unit 14 from the temperature and the capacity calculated from the thermistor mounting position. Detects the amount of heat stored inside. Reference numeral 16 denotes a refrigerant circuit operating unit that operates the refrigerant circuit 6. Reference numeral 30 denotes a pump for sending water to the water supply pipe 9, reference numeral 31 denotes a decompressor for adjusting the pressure of city water 32, and reference numeral 33 denotes a three-way valve for switching the water flow path 7, the hot water supply circuit 11, and the water path of the heat storage unit 14. Reference numeral 34 denotes a mixing valve which mixes with the city water 32 and adjusts the temperature to a set temperature when the temperature of the hot water mixed by the three-way valve 33 is higher than the set temperature. These components form a tapping circuit 35.
[0026]
The refrigerant circuit 6 uses, for example, a supercritical heat pump cycle in which carbon dioxide gas (CO2) is used as a refrigerant and the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure of the refrigerant.
[0027]
The compressor 2 is driven by an electric motor (not shown) incorporated therein, and compresses the sucked refrigerant to a critical pressure and discharges the compressed refrigerant. The pressure reducing means 4 is a throttle valve driven by a stepping motor (not shown), and controls the refrigerant flow path resistance.
[0028]
A water supply pipe 9 for directly supplying city water 32 to the water flow path 7 and a hot water supply circuit 11 for passing hot water from the water flow path 7 to a hot water supply terminal 10 such as a shower or a faucet are connected.
[0029]
The radiator 3 is configured such that the flow direction of the coolant flow path and the flow direction of the water flow path 7 are opposed to each other, and are closely adhered between the flow paths so that heat transfer is facilitated. With this configuration, the heat transfer between the coolant channel and the water channel 7 is made uniform, and the heat exchange efficiency is improved. In addition, hot water can be supplied. Reference numeral 36 denotes a blower provided in the heat absorber 5, which blows air so as to supply atmospheric heat to the heat absorber 5.
[0030]
Reference numeral 24 denotes a hot water supply temperature sensor for detecting the temperature of hot water passing through the water circuit 7 heated by the refrigerant circuit 6. Reference numeral 25 denotes a temperature detection sensor such as a thermistor for detecting the end of heat storage in the heat storage unit 14, which is set on the surface of the heat storage unit 14 by determining an installation position in consideration of a time from a frequency drop of the compressor 2 to a stop. It is a heat stop sensor.
[0031]
In the embodiment shown in FIG. 1, when the use of the hot water supply terminal 10 is detected, the heat storage amount detection unit 15 detects the heat storage amount of the heat storage body 14. If the detected heat storage amount is larger than the predetermined amount, the hot water in the heat storage unit 14 is sent to the mixing valve 34 through the three-way valve 33 and mixed with the city water 32 reduced to an appropriate pressure by the decompressor 31 to set the temperature. Hot water is supplied from the hot water supply terminal 10. At this time, the refrigerant circuit 6 is not operated.
[0032]
Further, when the heat storage amount detecting means 15 detects that the heat storage amount is smaller than the predetermined heat storage amount during the hot water supply from the hot water supply terminal 10, the refrigerant circuit operating means 16 starts the operation of the refrigerant circuit 6.
[0033]
In the refrigerant circuit 6 and the tapping circuit 35, the pressure reducing means 4 is in a throttle state, and the pump 9 is stopped. In this state, the blower 36 rotates, and the compressor 2 operates. In the refrigerant circuit 6, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 3.
[0034]
In the radiator 3, the city water 32 decompressed by the decompressor 31 is supplied to the water circuit 7 through the water supply pipe 9, and the city water 32 is heated by exchanging heat with a high-temperature gas refrigerant to become hot water. It becomes a low temperature gas state. After that, the refrigerant flows into the pressure reducing valve 4. When the refrigerant passes through the decompression means 4, the refrigerant enters a two-phase state of a low-temperature and low-pressure liquid and gas and flows into the heat absorber 5.
[0035]
In the heat absorber 5, the refrigerant absorbs heat from the outside air sucked by the blower 36. The refrigerant that has absorbed the outside air heat is vaporized and gasified and flows into the compressor 2. This cycle is repeated.
[0036]
At this time, the mixing valve 34 stops the supply from the city water 32, and the three-way valve 33 adjusts the temperature of the hot water of the water circuit 7 heated by the refrigerant circuit 6 and the hot water supplied from the heat storage unit 14 to an appropriate temperature. The water is mixed and supplied from the hot water supply terminal 10.
[0037]
In the refrigerant circuit 6, if the difference between the set temperature and the hot water temperature detected by the hot water temperature sensor 24 is large, the compressor speed is increased to increase the output of the refrigerant circuit 6, and the three-way valve 33 is connected to the hot water circuit from the heat storage unit 14. Is closed, and an attempt is made to supply hot water from the hot water supply terminal 10 using the refrigerant circuit 6 alone.
[0038]
When the hot water supply load from the hot water supply terminal 10 is larger than the output range of the refrigerant circuit 6 alone, the hot water is mixed with the hot water of the heat storage unit 14 through the three-way valve 33 and, if necessary, with the city water 32 through the mixing valve 34. Hot water from the hot water supply terminal 10. In this way, hot water is supplied using the refrigerant circuit 6 and the tapping circuit 35.
[0039]
On the other hand, a case where it is detected that the use of hot water from hot water supply terminal 10 has been completed is described below. First, when it is detected that the use of hot water from hot water supply terminal 10 has been completed, heat storage amount detecting means 15 detects the heat storage amount of heat storage body 14. When the detected amount of heat storage is larger than the predetermined amount, the refrigerant circuit 6 and the tapping circuit 35 are not operated and are maintained as they are when the use of the hot water supply terminal 10 is completed.
On the other hand, when the detected amount of heat storage is smaller than the predetermined amount, the heat storage unit 14 stores heat in the heat storage unit 14 by the stop-time heat storage unit 17. The three-way valve 33 is set so that the water circuit 7 communicates with the heat storage unit 14, the pump 30 is operated, and the refrigerant circuit 6 is operated by the above-described operation.
[0040]
Low-temperature water in the heat storage unit 14 is sucked by the pump 30 and sent to the water circuit 7 through the water supply pipe 9. In the water circuit 7, the hot water heated by the refrigerant circuit 6 is sent to the heat storage unit 14 through the three-way valve 33. Hot water is stored in the heat storage unit 14 by repeating this circulation. When the temperature detected by the heat storage stop sensor 25 exceeds a predetermined temperature, the compressor 2 gradually lowers the frequency and stops.
[0041]
As described above, for frequent hot water supply with a small flow rate, the city water is heated by using the heat storage of the heat storage body 14 without operating the compressor 2 to supply hot water. Can be suppressed. Further, since the compressor 2 is not operated, an increase in pressure in the refrigerant circuit 6 can be suppressed.
[0042]
Further, when the hot water supply is stopped during the operation of the compressor 2, the surplus heat until the compressor 2 stops by the stop heat storage means 17 can be used for the heat storage in the heat storage body 14. That is, since excess heat in the refrigerant circuit 6 can be radiated to the heat storage body 14, a pressure increase in the refrigerant circuit 6 can be suppressed and controlled, so that the reliability of the compressor 2 can be ensured.
[0043]
The predetermined value of the “predetermined amount” of the heat storage amount is variable, and can be set to 10% to 50% of the maximum heat storage amount that can be stored in the heat storage body 14. That is, when a predetermined value is set to 30% of the maximum heat storage amount, when the heat storage amount is 30% or more, the refrigerant circuit 6 and the tapping circuit 35 do not operate and maintain the state. When it becomes smaller than 30%, the operation is performed such that the heat storage unit 17 stores heat in the heat storage unit 14 by the stop-time heat storage unit 17.
[0044]
Although the supercritical heat pump cycle in which the pressure is equal to or higher than the critical pressure is used in the first embodiment, a heat pump cycle in which the pressure is equal to or lower than a general critical pressure may be used. In this case, the refrigerant may be a fluorocarbon gas, ammonia, a hydrocarbon-based refrigerant (HC refrigerant), or the like.
[0045]
(Example 2)
2 is a configuration diagram of a heat pump water heater in Embodiment 2 of the present invention. The same components as those of the water heater of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
[0046]
Reference numeral 18 denotes a frost detection sensor for detecting frost formation on the heat absorber 5. Reference numeral 19 denotes a stoppage of hot water from the hot water supply terminal 10 when the refrigerant circuit 6 is operated, and the frost detection means 18 controls the heat absorber 5. This is a stop-time defrosting unit that performs a defrosting operation of the heat absorber 5 when frost formation is detected.
[0047]
The operation and operation of the above configuration will be described. Here, a case will be described in which the refrigerant circuit 6, which is a feature of the present invention, is operated and it is detected that the use of hot water from the hot water terminal 10 has been completed.
[0048]
When it is detected that the use of hot water from the hot water supply terminal 10 has been completed, first, the frost detection means 18 detects whether or not the heat absorber 5 has frost.
[0049]
Here, the detection of frost is performed by measuring the temperature of the heat absorber 5 and detecting the frost formation when the temperature becomes equal to or lower than the predetermined temperature for a predetermined time.
[0050]
When the frost formation is detected, the stop time defrosting means 19 stops the refrigerant circuit 6 after completing the defrosting of the heat absorber 5.
[0051]
That is, by making the pressure reducing means 4 larger than the set opening degree at the time of hot water supply while operating the compressor 2 and the blowing device 36, the temperature of the refrigerant passing through the pressure reducing means 4 increases, and the frosted frost is formed. Is passed through the heat absorber 5, the frost absorbs heat from the refrigerant and is melted and defrosted. After performing the defrosting operation for a predetermined time, the defrosting is ended.
[0052]
After the completion of the defrosting, the heat storage amount detecting means 15 detects the heat storage amount of the heat storage body 14, and when the detected heat storage amount is smaller than the predetermined amount, the heat storage in the heat storage body 14 is performed by the stop-time heat storage means 17. .
[0053]
If the detected amount of stored heat is larger than the predetermined amount, the compressor 2 gradually reduces the frequency while defrosting and stops.
[0054]
As described above, when the hot water supply is stopped while the compressor 2 is operating, the surplus heat until the compressor 2 is stopped by the stop time defrosting means 19 can be used for defrosting. That is, the excess heat in the refrigerant circuit 6 is radiated to the frost adhering to the heat absorber 5 to melt the frost, so that the pressure increase in the refrigerant circuit 6 can be suppressed and controlled, so that the reliability of the compressor 2 can be secured. .
[0055]
(Example 3)
Third Embodiment FIG. 3 is a configuration diagram of a heat pump hot water supply apparatus according to a third embodiment of the present invention. The same components as those of the hot water supply device according to the second embodiment are denoted by the same reference numerals, and description thereof will be omitted.
[0056]
Reference numeral 20 denotes a water temperature detecting means for detecting the temperature of the city water 32. Reference numeral 21 denotes a water temperature for calculating the heat storage amount of the heat storage unit 14 according to the water temperature detected by the water temperature detection means 20 when the city water 32 temperature is high, the heat storage amount is small, and when the city water 32 temperature is low, the heat storage amount is large. This is a heat storage amount calculation unit.
[0057]
The operation and operation of the above configuration will be described. When hot water supply from hot water supply terminal 10 is started, heat storage amount detecting means 15 detects the heat storage amount of heat storage body 14. When the heat storage amount obtained by the water temperature heat storage amount calculating means 21 is smaller than the heat storage amount detected by the heat storage amount detecting means 15 from the city water 32 temperature detected by the water temperature detecting means 20, the refrigerant circuit 6 is not operated and is large. The refrigerant circuit 6 is operated by the refrigerant circuit operating means 16.
[0058]
As described above, the amount of heat storage for operating the refrigerant circuit 6 changes according to the temperature change of the city water 32. In other words, when the temperature of the city water 32 rises, the water temperature heat storage calculating means 21 calculates the amount of heat stored in the heat storage 14 that starts the operation of the refrigerant circuit 6 smaller, so that the operation is performed using the heat of the heat storage 14. Since the time of hot water supply becomes longer and the number of operations of the refrigerant circuit 6 decreases, the number of times of starting and stopping of the compressor 2 also decreases, and the frequent starting and stopping of the compressor 2 can be further suppressed, so that the reliability of the compressor 2 is secured. it can.
[0059]
(Example 4)
FIG. 4 is a configuration diagram of a heat pump hot water supply apparatus according to Embodiment 4 of the present invention. The same components as those of the hot water supply device according to the second embodiment are denoted by the same reference numerals, and description thereof will be omitted.
[0060]
22 is an outside air temperature detecting means for detecting the outside air temperature. Reference numeral 23 denotes an outside air heat storage for calculating the amount of heat stored in the heat storage unit 14 in accordance with the outside air temperature detected by the outside air temperature detecting means 22 when the outside air temperature is high and decreasing the amount of heat storage when the outside air temperature is low. It is an amount calculating means.
[0061]
The operation and operation of the above configuration will be described. When hot water supply from hot water supply terminal 10 is started, heat storage amount detecting means 15 detects the heat storage amount of heat storage body 14. If the amount of heat stored by the outside air heat storage amount calculation unit 23 is smaller than the amount of heat storage detected by the outside air temperature detection unit 15 from the outside air temperature detected by the outside air temperature detection unit 22, the refrigerant circuit 6 is not operated and is large. The refrigerant circuit 6 is operated by the refrigerant circuit operating means 16.
[0062]
As described above, the amount of heat storage for operating the refrigerant circuit 6 changes according to the change in the outside air temperature. That is, when the outside air temperature increases, the outside air heat storage calculating means 23 calculates the amount of heat stored in the heat storage 14 that starts the operation of the refrigerant circuit 6 smaller, so that hot water supply using the heat of the heat storage 14 is performed. , The number of operations of the refrigerant circuit 6 is reduced, so that the number of times the compressor 2 is started and stopped is also reduced, and the frequent start and stop of the compressor 2 can be further suppressed, so that the reliability of the compressor 2 can be secured. .
[0063]
【The invention's effect】
As described above, according to the present invention, frequent start / stop of the compressor can be suppressed, and abnormal pressure rise in the refrigerant circuit can be suppressed, and reliability of the compressor can be ensured.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of a heat pump water heater according to a first embodiment of the present invention. FIG. 2 is a circuit diagram of a heat pump water heater according to a second embodiment of the present invention. FIG. FIG. 4 is a circuit diagram of a heat pump water heater according to a fourth embodiment of the present invention. FIG. 5 is a configuration diagram of a conventional heat pump water heater.
DESCRIPTION OF SYMBOLS 1 Refrigerant flow path 2 Compressor 3 Radiator 4 Decompression means 5 Heat sink 6 Refrigerant circuit 7 Water flow path 8 Heat exchanger 9 Water supply pipe 10 Hot water supply terminal 11 Hot water supply circuit 14 Heat storage unit 15 Heat storage amount detection means 16 Refrigerant circuit operation means 17 Stop Heat storage means 18 frost detection means 19 defrosting means at stop 20 water temperature detection means 21 water temperature heat storage amount calculation means 22 outside air temperature detection means 23 outside air heat storage amount calculation means

Claims (6)

圧縮機と放熱器と減圧手段と吸熱器とを含む冷媒回路と、前記放熱器と熱交換を行う水流路を備えた熱交換器と、前記水流路に水を供給する給水管と、前記水流路から給湯端末へと通水するように接続する給湯回路と、前記冷媒回路の熱を蓄熱する蓄熱体と、前記蓄熱体の蓄熱量を検知する蓄熱量検知手段と、前記給湯回路より前記給湯端末に給湯が開始されると、前記蓄熱体の蓄熱を利用し水を加熱して給湯を行い、前記蓄熱量検知手段により検知した前記蓄熱体の蓄熱量が所定値以下となった場合、前記冷媒回路を運転する冷媒回路運転手段を備えたヒートポンプ給湯器。A refrigerant circuit including a compressor, a radiator, a decompression unit, and a heat absorber; a heat exchanger including a water flow path that performs heat exchange with the radiator; a water supply pipe that supplies water to the water flow path; A hot water supply circuit connected so as to pass water from a road to a hot water supply terminal, a heat storage unit that stores heat of the refrigerant circuit, a heat storage amount detection unit that detects a heat storage amount of the heat storage unit, and the hot water supply unit that receives the hot water from the hot water supply circuit. When hot water supply to the terminal is started, the hot water is supplied by heating the water using the heat storage of the heat storage body, and when the heat storage amount of the heat storage body detected by the heat storage amount detection unit is equal to or less than a predetermined value, A heat pump water heater comprising a refrigerant circuit operating means for operating a refrigerant circuit. 冷媒回路が運転され給湯端末からの給湯を停止した場合、蓄熱運転手段により、蓄熱体に前記冷媒回路の熱を蓄熱する停止時蓄熱手段を備えた請求項1記載のヒートポンプ給湯器。2. The heat pump water heater according to claim 1, wherein when the refrigerant circuit is operated and hot water supply from the hot water supply terminal is stopped, the heat storage operation means includes stop heat storage means for storing heat of the refrigerant circuit in a heat storage body. 3. 吸熱器の着霜を検知する着霜検知手段を有し、冷媒回路が運転され給湯端末からの出湯を停止した時に前記着霜検知手段により前記吸熱器に着霜が検知された場合、前記吸熱器の除霜運転を行う停止時除霜手段を備えた請求項1または2記載のヒートポンプ給湯器。A frost detection means for detecting frost formation on the heat absorber, wherein when the refrigerant circuit is operated to stop hot water from the hot water supply terminal, frost formation is detected on the heat absorber by the frost detection means; The heat pump water heater according to claim 1 or 2, further comprising a stop-time defrosting means for performing a defrosting operation of the water heater. 市水の温度を検知する水温検知手段と、検知された市水の温度に基づいて冷媒回路を運転して蓄熱すべき前記蓄熱体の蓄熱量を算出する水温蓄熱量演算手段を備えた請求項1〜3いずれか1項に記載のヒートポンプ給湯器。Water temperature detection means for detecting the temperature of city water, and water temperature heat quantity calculation means for operating a refrigerant circuit based on the detected temperature of the city water to calculate the heat storage quantity of the heat storage element to be stored. The heat pump water heater according to any one of claims 1 to 3. 外気温度を検知する外気温度検知手段と、検知された外気温度に基づいて冷媒回路を運転して蓄熱すべき蓄熱体の蓄熱量を算出する外気温蓄熱量演算手段を備えた請求項1〜3いずれか1項に記載のヒートポンプ給湯器。An outside air temperature detecting means for detecting an outside air temperature, and an outside air heat storage amount calculating means for operating a refrigerant circuit based on the detected outside air temperature to calculate a heat storage amount of a heat storage body to be stored. The heat pump water heater according to claim 1. 冷媒回路は、冷媒の圧力が臨界圧力以上となる超臨界ヒートポンプサイクルであり、前記臨界圧力以上に昇圧された冷媒により熱交換器の水流路の流水を加熱することを特徴とする請求項1〜5いずれか1項に記載のヒートポンプ給湯器。The refrigerant circuit is a supercritical heat pump cycle in which the pressure of the refrigerant is equal to or higher than the critical pressure, and heats the flowing water in the water flow path of the heat exchanger with the refrigerant pressurized to the critical pressure or higher. 5. The heat pump water heater according to any one of 5.
JP2003111118A 2003-04-16 2003-04-16 Heat pump water heater Pending JP2004317020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003111118A JP2004317020A (en) 2003-04-16 2003-04-16 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003111118A JP2004317020A (en) 2003-04-16 2003-04-16 Heat pump water heater

Publications (1)

Publication Number Publication Date
JP2004317020A true JP2004317020A (en) 2004-11-11

Family

ID=33471759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003111118A Pending JP2004317020A (en) 2003-04-16 2003-04-16 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP2004317020A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113845A (en) * 2005-10-20 2007-05-10 Hitachi Housetec Co Ltd Mist device
JP2015175581A (en) * 2014-03-18 2015-10-05 パナソニックIpマネジメント株式会社 Hot water generation device
JP2015175580A (en) * 2014-03-18 2015-10-05 パナソニックIpマネジメント株式会社 Hot water generation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113845A (en) * 2005-10-20 2007-05-10 Hitachi Housetec Co Ltd Mist device
JP2015175581A (en) * 2014-03-18 2015-10-05 パナソニックIpマネジメント株式会社 Hot water generation device
JP2015175580A (en) * 2014-03-18 2015-10-05 パナソニックIpマネジメント株式会社 Hot water generation device

Similar Documents

Publication Publication Date Title
JP4059616B2 (en) Heat pump water heater
US7856835B2 (en) Hot water supply apparatus
JP4738293B2 (en) Heat pump device and heat pump water heater
EP2980504B1 (en) Hot-water supply device
JP2009036485A (en) Water heater
JP2010243111A (en) Heat pump type water heater
JP2005134070A (en) Heat pump water heater
JP2009063246A (en) Heat pump water heater
JP2005147610A (en) Heat pump water heater
JP2010085004A (en) Heat pump water heater and method for defrosting the heat pump water heater
JP2007139415A (en) Heat pump water heater
JP2004340535A (en) Heat pump water heater
JP2004317020A (en) Heat pump water heater
JP2008224067A (en) Heat pump hot water supply device
JP2009097826A (en) Heat pump hot water supply device
JP2002122362A (en) Heat pump hot water supplier
JP2010071603A (en) Heat pump water heater
JP5151528B2 (en) Heat pump water heater
JP2002213821A (en) Heat-pump water heater
JP2007040555A (en) Heat pump type water heater
JP2014105945A (en) Heat pump type water heater
JP2009085476A (en) Heat pump water heater
JP2009281629A (en) Heat pump water heater
JP2003056907A (en) Heat pump water heater
JP5840062B2 (en) Heat pump type liquid heating device and heat pump type water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060328

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070904