JP2007303755A - Heat pump type water heater - Google Patents

Heat pump type water heater Download PDF

Info

Publication number
JP2007303755A
JP2007303755A JP2006133444A JP2006133444A JP2007303755A JP 2007303755 A JP2007303755 A JP 2007303755A JP 2006133444 A JP2006133444 A JP 2006133444A JP 2006133444 A JP2006133444 A JP 2006133444A JP 2007303755 A JP2007303755 A JP 2007303755A
Authority
JP
Japan
Prior art keywords
water
refrigerant
heat exchanger
heat
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006133444A
Other languages
Japanese (ja)
Other versions
JP4753791B2 (en
Inventor
Koji Ota
孝二 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006133444A priority Critical patent/JP4753791B2/en
Publication of JP2007303755A publication Critical patent/JP2007303755A/en
Application granted granted Critical
Publication of JP4753791B2 publication Critical patent/JP4753791B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump type water heater capable of dispersing a heating load at two heat pump cycles wherein different refrigerants are circulated. <P>SOLUTION: In this heat pump type water heater X comprising a CO<SB>2</SB>cycle 1 for circulating a CO<SB>2</SB>refrigerant, and a R410A cycle 2 for circulating a R410A refrigerant having properties different from properties of the CO<SB>2</SB>refrigerant, flow rates of the water and refrigerants to each of a water heat exchanger 61 exchanging heat between the CO<SB>2</SB>refrigerant and the water, and a water heat exchanger 62 exchanging heat between the R410A refrigerant and the water are adjusted, and the water flowing out of the water heat exchanger 61 and that from the water heat exchanger 62 join together. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は,圧縮機や膨張器などが設けられたヒートポンプサイクル内に循環する冷媒との熱交換によって水を加熱して給湯するヒートポンプ式給湯機に関し,特に,熱交換効率やエネルギ消費効率などの特性の異なる冷媒を用いた二つのヒートポンプサイクルを具備するヒートポンプ式給湯機に関するものである。   The present invention relates to a heat pump type hot water heater that supplies water by heating water by heat exchange with a refrigerant circulating in a heat pump cycle provided with a compressor, an expander, and the like. The present invention relates to a heat pump type hot water heater having two heat pump cycles using refrigerants having different characteristics.

従来から,圧縮機や膨張器などが設けられたヒートポンプサイクル内に循環する冷媒との熱交換によって水を加熱して給湯するヒートポンプ式給湯機が周知である。前記冷媒は,例えば炭酸ガス冷媒やHFC冷媒などである。
ここに,前記炭酸ガス冷媒は,その冷媒の特性として水を高温(例えば90℃程度)まで加熱することができる。一方,前記HFC冷媒は,冷媒の特性上比較的低温(例えば65℃程度)までしか水を加熱することができない。しかし,例えば空調用機器や温水暖房用機器などに用いた場合,エネルギ消費効率(COP)は,前記炭酸ガス冷媒を用いるよりも前記HFC冷媒を用いる方が優れている。
2. Description of the Related Art Conventionally, a heat pump type hot water heater that supplies water by heating water by heat exchange with a refrigerant circulating in a heat pump cycle provided with a compressor, an expander, and the like is well known. The refrigerant is, for example, a carbon dioxide refrigerant or an HFC refrigerant.
Here, the carbon dioxide refrigerant can heat water to a high temperature (for example, about 90 ° C.) as a characteristic of the refrigerant. On the other hand, the HFC refrigerant can only heat water to a relatively low temperature (for example, about 65 ° C.) due to the characteristics of the refrigerant. However, when used in, for example, air conditioning equipment and hot water heating equipment, the energy consumption efficiency (COP) is superior to using the HFC refrigerant rather than using the carbon dioxide refrigerant.

一方,特許文献1には,CO2冷媒(炭酸ガス冷媒の一例)が用いられたヒートポンプサイクル(以下「CO2サイクル」という)と,R410A冷媒(HFC冷媒の一例)が用いられたヒートポンプサイクル(以下「R410Aサイクル」という)とを併せ持つヒートポンプ式給湯システムが示されている。
さらに,前記特許文献1では,前記R410Aサイクルに温水暖房用の閉回路を接続し,前記R410Aサイクルを給湯及び温水暖房で共用することが提案されている。
特開2005−83585号公報
On the other hand, Patent Document 1 discloses a heat pump cycle (hereinafter referred to as “CO 2 cycle”) using a CO 2 refrigerant (an example of a carbon dioxide gas refrigerant) and a heat pump cycle (an example of an HFC refrigerant) using an R410A refrigerant (an example of an HFC refrigerant). Hereinafter, a heat pump type hot water supply system having both “R410A cycle”) is shown.
Further, Patent Document 1 proposes that a closed circuit for hot water heating is connected to the R410A cycle, and the R410A cycle is shared by hot water supply and hot water heating.
Japanese Patent Laying-Open No. 2005-83585

しかしながら,前記特許文献1に示された前記ヒートポンプ式給湯システムは,前記CO2サイクル及び前記R410Aサイクルのいずれか一方だけが選択的に用いられる構成である。したがって,前記ヒートポンプ式給湯システムにおける加熱能力は,前記CO2サイクル及び前記R410Aサイクルの個々による加熱能力が限界である。即ち,前記ヒートポンプ式給湯システムでは,給湯や温水暖房などに必要な加熱負荷を前記CO2サイクル及び前記R410Aサイクルで分散することができない。
ここで,仮に前記R410Aサイクルにおいて,前記R410A冷媒を給湯用と温水暖房用とに分配することにより,給湯及び温水暖房を同時に行う場合を考える。この場合には,前記R410Aサイクルの加熱能力が給湯及び温水暖房に分散されるため,十分な給湯温度や給湯量,温水暖房性能を得ることができないおそれがある。また,給湯及び温水暖房を同時に行う際にも十分な給湯温度や給湯量,温水暖房性能を得ることができるように前記R410Aサイクルを構成することも考えられるが,この場合には,該R410Aサイクルに係る装置の拡大やコストの増大という問題が生じる。
従って,本発明は上記事情に鑑みてなされたものであり,その目的とするところは,異なる冷媒が循環される二つのヒートポンプサイクルで加熱負荷を分散することのできるヒートポンプ式給湯機を提供することにある。
However, the heat pump hot water supply system disclosed in Patent Document 1 has a configuration in which only one of the CO 2 cycle and the R410A cycle is selectively used. Therefore, the heating capability in the heat pump hot water supply system is limited to the heating capability by each of the CO 2 cycle and the R410A cycle. That is, in the heat pump hot water supply system, the heating load required for hot water supply, hot water heating, or the like cannot be distributed in the CO 2 cycle and the R410A cycle.
Here, suppose that in the R410A cycle, hot water supply and hot water heating are performed simultaneously by distributing the R410A refrigerant for hot water supply and hot water heating. In this case, since the heating capacity of the R410A cycle is distributed to hot water supply and hot water heating, there is a possibility that sufficient hot water supply temperature, hot water supply amount, and hot water heating performance cannot be obtained. In addition, it is conceivable to configure the R410A cycle so that sufficient hot water supply temperature, hot water supply amount, and hot water heating performance can be obtained even when hot water supply and hot water heating are performed at the same time. The problem of expansion of the apparatus which concerns on this and an increase in cost arises.
Accordingly, the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a heat pump type water heater that can disperse the heating load in two heat pump cycles in which different refrigerants are circulated. It is in.

上記目的を達成するために本発明は,第一の冷媒が少なくとも圧縮機及び膨張器を経て循環される第一のヒートポンプサイクルと,前記第一の冷媒と異なる特性を持つ第二の冷媒が少なくとも圧縮機及び膨張器を経て循環される第二のヒートポンプサイクルと,前記第一の冷媒と水との間で熱交換を行う第一の水熱交換器と,前記第二の冷媒と水との間で熱交換を行う第二の水熱交換器と,を備えてなるヒートポンプ式給湯機に適用されるものであって,前記第一の水熱交換器及び前記第二の水熱交換器各々への水の流入量を調整する水流入量調整手段及び/又は前記第一の水熱交換器及び前記第二の水熱交換器各々への冷媒の流入量を調整する冷媒流入量調整手段と,前記第一の水熱交換器及び前記第二の水熱交換器各々から流出した水を合流させる水合流手段もしくは,前記第一の水熱交換器及び前記第二の水熱交換器各々に流入する水を分配させる水分配手段とを備えて構成される。
このように構成された本発明によれば,前記第一の水熱交換器及び前記第二の水熱交換器各々への水や冷媒の流入量を調整することにより,当該ヒートポンプ式給湯機における加熱負荷を前記第一のヒートポンプサイクル及び前記第二のヒートポンプサイクルで分散することができる。即ち,前記第一のヒートポンプサイクル及び前記第二のヒートポンプサイクル各々の加熱能力を合わせて用いることができる。したがって,前記第一のヒートポンプサイクル及び前記第二のヒートポンプサイクル各々の装置サイズの拡大やコストの増大を伴うことなく高い加熱能力やエネルギ消費効率を得ることができる。
To achieve the above object, the present invention provides a first heat pump cycle in which the first refrigerant is circulated through at least a compressor and an expander, and at least a second refrigerant having characteristics different from those of the first refrigerant. A second heat pump cycle that is circulated through a compressor and an expander, a first water heat exchanger that exchanges heat between the first refrigerant and water, and the second refrigerant and water. And a second water heat exchanger that performs heat exchange between the first water heat exchanger and the second water heat exchanger. Water inflow amount adjusting means for adjusting the amount of water flowing into and / or refrigerant inflow amount adjusting means for adjusting the amount of refrigerant flowing into each of the first water heat exchanger and the second water heat exchanger. , The water flowing out from each of the first water heat exchanger and the second water heat exchanger Water merging means or to flow, constituted by a water distribution means for distributing the water flowing into the first water heat exchanger and the second water heat exchanger, respectively.
According to the present invention configured as described above, in the heat pump type hot water heater, by adjusting the amount of water or refrigerant flowing into each of the first water heat exchanger and the second water heat exchanger. The heating load can be distributed in the first heat pump cycle and the second heat pump cycle. That is, the heating capacities of the first heat pump cycle and the second heat pump cycle can be used together. Therefore, high heating capacity and energy consumption efficiency can be obtained without enlarging the device size and cost of each of the first heat pump cycle and the second heat pump cycle.

具体的には,当該ヒートポンプ式給湯機における加熱負荷に応じて前記第一の水熱交換器及び前記第二の水熱交換器各々への水や冷媒の流入量を調整することで,該加熱負荷に必要な加熱能力を得ることが可能である。
例えば,前記第二の冷媒と室内空気との間で熱交換を行う室内空気熱交換器を備える構成では,該室内空気熱交換器の稼働の有無や設定温度などによって,前記第二の冷媒が循環される前記第二のヒートポンプサイクルの加熱負荷が異なる。そこで,前記室内空気熱交換器の稼働状況に応じて前記第一の水熱交換器及び前記第二の水熱交換器各々への水や冷媒の流入量を調整することが考えられる。これにより,例えば前記第二のヒートポンプサイクルにおいて,給湯と前記室内空気熱交換器による室内空気の冷暖房とを同時に行う場合に,その給湯の加熱負荷を前記第一のヒートポンプサイクル及び前記第二のヒートポンプサイクルで分散することができ,十分な給湯温度や給湯量,冷暖房性能を得ることができる。
また,前記第一の水熱交換器や前記第二の水熱交換器から吐出された温水を熱媒体に用いる,例えば床暖房装置や風呂追焚回路などの加熱手段を備える構成でも同様に,前記加熱手段の稼働状況に応じて前記第一の水熱交換器及び前記第二の水熱交換器各々への水や冷媒の流入量を調整すればよい。
Specifically, by adjusting the amount of water or refrigerant flowing into each of the first water heat exchanger and the second water heat exchanger according to the heating load in the heat pump type hot water heater, It is possible to obtain the heating capacity necessary for the load.
For example, in a configuration including an indoor air heat exchanger for exchanging heat between the second refrigerant and room air, the second refrigerant may vary depending on whether the indoor air heat exchanger is operating or at a set temperature. The heating load of the second heat pump cycle to be circulated is different. Therefore, it is conceivable to adjust the amount of water or refrigerant flowing into each of the first water heat exchanger and the second water heat exchanger according to the operation status of the indoor air heat exchanger. Thus, for example, in the second heat pump cycle, when hot water supply and indoor air cooling and heating by the indoor air heat exchanger are performed simultaneously, the heating load of the hot water supply is set to the first heat pump cycle and the second heat pump. It can be dispersed in a cycle, and sufficient hot water supply temperature, hot water supply amount, and air conditioning performance can be obtained.
Similarly, in the configuration including heating means such as a floor heating device or a bath remedy circuit, the hot water discharged from the first water heat exchanger or the second water heat exchanger is used as a heat medium. What is necessary is just to adjust the inflow amount of water and a refrigerant | coolant to each of said 1st water heat exchanger and said 2nd water heat exchanger according to the operating condition of the said heating means.

ところで,前記第一のヒートポンプサイクルを用いた場合と前記第二のヒートポンプサイクルを用いた場合とでは,前記第一の冷媒や前記第二の冷媒と室外空気との間で熱交換を行う室外空気熱交換器が配設された室外の空気温度が同じであっても,前記第一の冷媒と前記第二の冷媒との特性の差により,エネルギ消費効率に優劣が生じる。
そこで,前記室外空気熱交換器が配設された室外の空気温度を検出し,その温度に応じて前記第一の水熱交換器及び前記第二の水熱交換器各々への水や冷媒の流入量を調整することが望ましい。例えば,検出された室外の空気温度におけるエネルギ消費効率の高い方のヒートポンプサイクルに設けられた水熱交換器に水を多く流入させることにより高いエネルギ消費効率を得ることができる。
By the way, in the case of using the first heat pump cycle and the case of using the second heat pump cycle, outdoor air that performs heat exchange between the first refrigerant and the second refrigerant and outdoor air. Even if the outdoor air temperature in which the heat exchanger is disposed is the same, the energy consumption efficiency is superior or inferior due to the difference in characteristics between the first refrigerant and the second refrigerant.
Therefore, the temperature of the outdoor air in which the outdoor air heat exchanger is disposed is detected, and water and refrigerant to each of the first water heat exchanger and the second water heat exchanger are detected according to the temperature. It is desirable to adjust the inflow. For example, high energy consumption efficiency can be obtained by causing a large amount of water to flow into the water heat exchanger provided in the heat pump cycle having the higher energy consumption efficiency at the detected outdoor air temperature.

本発明によれば,前記第一の水熱交換器及び前記第二の水熱交換器各々への水や冷媒の流入量を調整することにより,当該ヒートポンプ式給湯機における加熱負荷を前記第一のヒートポンプサイクル及び前記第二のヒートポンプサイクルで分散することができる。即ち,前記第一のヒートポンプサイクル及び前記第二のヒートポンプサイクル各々の加熱能力を合わせて用いることができる。したがって,前記第一のヒートポンプサイクル及び前記第二のヒートポンプサイクル各々の装置サイズの拡大やコストの増大を伴うことなく高い加熱能力やエネルギ消費効率を得ることができる。
さらに,前記第一の冷媒や前記第二の冷媒と室外空気との間で熱交換を行う室外空気熱交換器が配設された室外の空気温度などに応じて,前記第一の水熱交換器及び前記第二の水熱交換器各々への水や冷媒の流入量を調整すれば,より高いエネルギ消費効率で運用することが可能となる。
According to the present invention, the heating load in the heat pump type hot water heater is adjusted by adjusting the inflow amount of water and refrigerant into each of the first water heat exchanger and the second water heat exchanger. The heat pump cycle and the second heat pump cycle can be dispersed. That is, the heating capacities of the first heat pump cycle and the second heat pump cycle can be used together. Therefore, high heating capacity and energy consumption efficiency can be obtained without enlarging the device size and cost of each of the first heat pump cycle and the second heat pump cycle.
Further, the first water heat exchange is performed according to an outdoor air temperature in which an outdoor air heat exchanger for exchanging heat between the first refrigerant or the second refrigerant and the outdoor air is disposed. It is possible to operate with higher energy consumption efficiency by adjusting the amount of water and refrigerant flowing into the water heater and the second water heat exchanger.

以下添付図面を参照しながら,本発明の実施の形態について説明し,本発明の理解に供する。尚,以下の実施の形態は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の実施の形態に係るヒートポンプ式給湯機Xの概略構成図である。
図1に示すように,前記ヒートポンプ式給湯機Xは,炭酸ガス冷媒の一例であるCO2冷媒が循環されるヒートポンプサイクル1(第一のヒートポンプサイクルの一例,以下「CO2サイクル1」という)と,HFC冷媒の一例であるR410A冷媒が循環されるヒートポンプサイクル2(第二のヒートポンプサイクルの一例,以下「R410Aサイクル2」という)と,水熱交換器61(第一の水熱交換器の一例),水熱交換器62(第二の水熱交換器の一例)と,水流量調整弁63(水合流手段の一例)と,流水経路30a〜30kと,室外空気熱交換器13と,貯湯タンク31と,循環ポンプ34と,流水切換弁41〜45と,風呂追焚回路7(加熱手段の一例)と,を備えて概略構成されている。また,前記ヒートポンプ式給湯機Xは,CPUやRAM,ROMなどを有してなり,当該ヒートポンプ式給湯機Xを統括的に制御する不図示の制御部を備えている。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings so that the present invention can be understood. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.
FIG. 1 is a schematic configuration diagram of a heat pump type hot water heater X according to the embodiment of the present invention.
As shown in FIG. 1, the heat pump type hot water heater X has a heat pump cycle 1 in which a CO 2 refrigerant that is an example of a carbon dioxide refrigerant is circulated (an example of a first heat pump cycle, hereinafter referred to as “CO 2 cycle 1”). A heat pump cycle 2 in which an R410A refrigerant, which is an example of an HFC refrigerant, is circulated (an example of a second heat pump cycle, hereinafter referred to as “R410A cycle 2”), and a water heat exchanger 61 (of the first water heat exchanger). An example), a water heat exchanger 62 (an example of a second water heat exchanger), a water flow rate adjusting valve 63 (an example of water merging means), flowing water paths 30a to 30k, an outdoor air heat exchanger 13, A hot water storage tank 31, a circulation pump 34, flowing water switching valves 41 to 45, and a bath remedy circuit 7 (an example of a heating unit) are schematically configured. The heat pump water heater X includes a CPU, a RAM, a ROM, and the like, and includes a control unit (not shown) that controls the heat pump water heater X in an integrated manner.

ここに,前記CO2冷媒は,前記R410A冷媒と異なる特性を持ち,冷媒の特性として水を高温(90℃程度)まで加熱することができるが,エネルギ消費効率(COP)が比較的低い。そのため,前記CO2サイクル1は主に,後述する貯湯運転に用いられる。
また,前記R410A冷媒は,前記CO2冷媒と異なる特性を持ち,CO2冷媒に比べて水を低温(65℃程度)までしか加熱することができないが,エネルギ消費効率(COP)は高いので,比較的低い沸上げ温度に適している。そのため,前記R410Aサイクル2は主に,後述する瞬間給湯運転に用いられる。
なお,前記R410A冷媒の他の例としては,例えばR407C/E,R404A,R507A,R134a等がある。また,前記ヒートポンプ式給湯機Xに用いられる二つの異なる冷媒は,炭酸ガス冷媒及びHFC冷媒に限られるものではなく,熱交換効率やエネルギ消費効率などの特性が異なる二つの冷媒を用いればよい。
Here, the CO 2 refrigerant has different characteristics from the R410A refrigerant and can heat water to a high temperature (about 90 ° C.) as a characteristic of the refrigerant, but has a relatively low energy consumption efficiency (COP). Therefore, the CO 2 cycle 1 is mainly used in the hot water storage operation to be described later.
Furthermore, the R410A refrigerant has the CO 2 refrigerant and different characteristics, but can only heat the water compared to the CO 2 refrigerant to a low temperature (about 65 ° C.), since the energy consumption efficiency (COP) is high, Suitable for relatively low boiling temperatures. Therefore, the R410A cycle 2 is mainly used for an instantaneous hot water supply operation described later.
Other examples of the R410A refrigerant include R407C / E, R404A, R507A, and R134a. Further, the two different refrigerants used in the heat pump type hot water heater X are not limited to the carbon dioxide refrigerant and the HFC refrigerant, and two refrigerants having different characteristics such as heat exchange efficiency and energy consumption efficiency may be used.

前記流水経路30aは,給水口から前記貯湯タンク31,前記循環ポンプ34,前記流水切換弁41を経て流水経路30cに続く水の流通経路であり,前記流水経路30bは,給水口或いは流水経路30hから前記流水切換弁41を経て流水経路30cに続く水の流通経路である。
また,前記流水経路30cは,前記流水切換弁41から,前記水熱交換器61が配設された流水経路30d及び前記水熱交換器62が配設された流水経路30eに続く水の流通経路である。
そして,前記水熱交換器61から流出した前記流水経路30d上の水と,前記水熱効果に62から流出した前記流水経路30e上の水とは,前記水流量調整弁63で合流され,給湯口に続く流水経路30fに流入する。後述すように,前記ヒートポンプ式給湯機Xでは,前記水流量調整弁63で合流される前記流水経路30d上の水及び前記流水経路30e上の水の割合,即ち前記水熱交換器61及び前記水熱交換器62各々への水の流入量が前記制御部によって調整される。なお,本実施の形態では,前記水流量調整弁63が,前記水熱交換器61及び前記水熱交換器62の後段に設けられている場合について説明するが,前記水流量調整弁63が,前記水熱交換器61及び前記水熱交換器62の前段に設けられることも他の実施例として考えられる。この場合,前記水流量調整弁63により前記水熱交換器61及び前記水熱交換器62各々へ水が分配されて流入されることになり,該水流量調整弁63が水分配手段に相当する。
また,前記流水経路30fは,該流水経路30f上に設けられた流水切換弁42,44,45により,前記貯湯タンク31に続く流水経路30g,前記風呂追焚回路7の後述する風呂追焚用熱交換器72が設けられた流水経路30h,前記風呂追焚回路7の後述する浴槽74へ続く流水経路30iと接続されている。したがって,前記制御部によって前記流水切換弁42,44,45が制御されることにより,前記流水経路30f上の水は,前記貯湯タンク31や前記風呂追焚用熱交換器72,前記浴槽74に供給される。
なお,前記流水経路30jは,前記貯湯タンク31から前記流水切換弁43を経て給湯口に続く水の流通経路,前記流通経路30kは,給水口から前記流水切換弁43を経て給湯口に続く水の流通経路である。
The flowing water path 30a is a water distribution path that continues from the water supply port through the hot water storage tank 31, the circulation pump 34, and the flowing water switching valve 41 to the flowing water path 30c, and the flowing water path 30b is a water supply port or flowing water path 30h. To the water flow path 30c through the water flow switching valve 41 and the water flow path 30c.
In addition, the flowing water path 30c is a flow path of water following the flowing water switching valve 41, the flowing water path 30d in which the water heat exchanger 61 is disposed, and the flowing water path 30e in which the water heat exchanger 62 is disposed. It is.
Then, the water on the flowing water path 30d that has flowed out of the water heat exchanger 61 and the water on the flowing water path 30e that has flowed out of 62 due to the hydrothermal effect are merged by the water flow rate adjustment valve 63, and hot water supply It flows into the flowing water path 30f following the mouth. As will be described later, in the heat pump type water heater X, the ratio of the water on the flowing water path 30d and the water on the flowing water path 30e joined by the water flow rate adjusting valve 63, that is, the water heat exchanger 61 and the water The amount of water flowing into each of the water heat exchangers 62 is adjusted by the control unit. In the present embodiment, the case where the water flow rate adjustment valve 63 is provided in the subsequent stage of the water heat exchanger 61 and the water heat exchanger 62 will be described. Another embodiment is also conceivable to be provided upstream of the water heat exchanger 61 and the water heat exchanger 62. In this case, water is distributed and introduced into each of the water heat exchanger 61 and the water heat exchanger 62 by the water flow rate adjusting valve 63, and the water flow rate adjusting valve 63 corresponds to water distributing means. .
Further, the flowing water path 30f is used for a bath remedy to be described later of the flowing water path 30g following the hot water storage tank 31 and the bath remedy circuit 7 by flowing water switching valves 42, 44, 45 provided on the flowing water path 30f. A flowing water path 30 h provided with a heat exchanger 72 and a flowing water path 30 i that leads to a bathtub 74 described later of the bath chase circuit 7 are connected. Therefore, the flowing water switching valves 42, 44, 45 are controlled by the control unit, so that the water on the flowing water path 30 f is transferred to the hot water storage tank 31, the bath-heating heat exchanger 72, and the bathtub 74. Supplied.
The flowing water path 30j is a water distribution path from the hot water storage tank 31 through the flowing water switching valve 43 to the hot water supply port, and the distribution path 30k is water from the water supply port through the flowing water switching valve 43 to the hot water supply port. Is a distribution channel.

前記水熱交換器61では,前記CO2サイクル1に循環されるCO2冷媒と,前記流水経路30d上を流れる水との間で熱交換が行われ,前記水熱交換器62では,前記R410Aサイクル2に循環されるR410A冷媒と,前記流水経路30e上を流れる水との間で熱交換が行われる。
また,前記室外空気熱交換器13は,前記CO2サイクル1に循環されるCO2冷媒や前記R410Aサイクル2に循環されるR410A冷媒と室外空気との間で熱交換を行うことにより該CO2冷媒や該R410A冷媒を加熱或いは冷却するものである。
In the water heat exchanger 61, heat exchange is performed between the CO 2 refrigerant circulated in the CO 2 cycle 1 and the water flowing on the flowing water path 30d. In the water heat exchanger 62, the R410A is exchanged. Heat exchange is performed between the R410A refrigerant circulated in cycle 2 and the water flowing on the flowing water path 30e.
Further, the outdoor air heat exchanger 13, the CO 2 by performing heat exchange between the R410A refrigerant and the outside air that is circulated to the CO 2 cycle CO 2 refrigerant and the R410A cycle 2 to be circulated to 1 The refrigerant and the R410A refrigerant are heated or cooled.

当該ヒートポンプ式給湯機Xでは,前記制御部(不図示)によって前記各構成要素が制御されることにより,給水口から供給された水を前記水熱交換器61や前記水熱交換器62によって加熱して給湯口から直接給湯する瞬間給湯運転や,前記貯湯タンク31から供給された水を前記水熱交換器61や前記水熱交換器62によって加熱して前記貯湯タンク31に還流する貯湯運転などが行われる。
具体的に,前記瞬間給湯運転では,前記流水切換弁41及び42が前記制御部によって制御されることにより,前記給水口から供給された水が前記流水経路30b,30c,30e,30f,前記給湯口の順に流通する。
これにより,前記水熱交換器62で加熱された温水が前記給湯口から給湯される。なお,このとき前記水流量調整弁63は,前記流水経路30eから前記流水経路30fへ水を流入させ,前記流水経路30dから前記流水経路30fへの水の流入を遮断するように前記制御部によって制御される。但し,後述するように,例えば冷暖房が同時運転される場合には,前記制御部によって前記水流量調整弁63が制御されることにより,前記流水経路30cから前記流水経路30d,30eへの水の流入量が調整される。
In the heat pump type water heater X, each component is controlled by the control unit (not shown), so that the water supplied from the water supply port is heated by the water heat exchanger 61 or the water heat exchanger 62. Then, an instantaneous hot water supply operation in which hot water is supplied directly from the hot water supply port, a hot water storage operation in which the water supplied from the hot water storage tank 31 is heated by the water heat exchanger 61 or the water heat exchanger 62 and returned to the hot water storage tank 31. Is done.
Specifically, in the instantaneous hot water supply operation, the flowing water switching valves 41 and 42 are controlled by the control unit, so that the water supplied from the water supply port flows into the flowing water paths 30b, 30c, 30e, 30f, and the hot water supply. Distributes in the order of mouth.
Thereby, the hot water heated by the water heat exchanger 62 is supplied from the hot water supply port. At this time, the water flow rate adjustment valve 63 causes the controller to allow water to flow from the water flow path 30e to the water flow path 30f and to block water flow from the water flow path 30d to the water flow path 30f. Be controlled. However, as will be described later, for example, when cooling and heating are simultaneously performed, the water flow rate adjusting valve 63 is controlled by the control unit, so that water flowing from the water flow path 30c to the water flow paths 30d and 30e is controlled. The inflow is adjusted.

ここで,前記瞬間給湯運転が開始してからの一定時間は,前記水熱交換器62による加熱量が十分得られない。そのため,前記瞬間給湯運転の開始からある程度の時間が経過するまでの間は,前記貯湯タンク31に貯留された温水が,前記流水経路30jを経て流水切換弁43において,前記給水口から前記流水経路30kを経て供給される水と混合されて温度調節された後,前記給湯口に供給される。これにより,前記給湯口から瞬時に温水を給湯することが可能である。そして,前記水熱交換器62によって水を十分に加熱することが可能となった時点で,前記貯湯タンク31からの給水は停止され,その後は前記瞬間給湯運転が行われる。なお,前記貯湯タンク31に貯留された高温の温水を前記給水口から供給される水と混合することなく,そのまま給湯することも可能である。   Here, a sufficient amount of heating by the water heat exchanger 62 cannot be obtained for a certain period of time after the start of the instantaneous hot water supply operation. Therefore, until a certain amount of time has elapsed from the start of the instantaneous hot water supply operation, the hot water stored in the hot water storage tank 31 passes through the flowing water path 30j and flows from the water supply port to the flowing water path. After being mixed with water supplied through 30k and adjusted in temperature, it is supplied to the hot water supply port. Thereby, hot water can be instantaneously supplied from the hot water supply port. When the water heat exchanger 62 can sufficiently heat the water, the water supply from the hot water storage tank 31 is stopped, and thereafter the instantaneous hot water supply operation is performed. In addition, it is also possible to supply hot water as it is, without mixing the hot water stored in the hot water storage tank 31 with the water supplied from the water supply port.

また,前記貯湯運転では,前記制御部によって前記循環ポンプ34が駆動され,前記流水切換弁41及び42が制御されることにより,前記貯湯タンク31から供給された水が前記流水経路30a,30c,30d,30f,前記貯湯タンク31の順に温水が循環される。
これにより,前記水熱交換器61で加熱された温水が前記貯湯タンク31に貯留される。なお,このとき前記水流量調整弁63は,前記流水経路30dから前記流水経路30fへ水を流入させ,前記流水経路30eから前記流水経路30fへの水の流入を遮断するように前記制御部によって制御される。但し,後述するように,例えば冷暖房が同時運転される場合には,前記制御部によって前記水流量調整弁63が制御されることにより,前記流水経路30cから前記流水経路30d,30eへの水の流入量が調整される。
Further, in the hot water storage operation, the circulation pump 34 is driven by the control unit, and the flowing water switching valves 41 and 42 are controlled so that the water supplied from the hot water storage tank 31 flows into the flowing water paths 30a, 30c, Hot water is circulated in the order of 30d, 30f and the hot water storage tank 31.
Thereby, the hot water heated by the water heat exchanger 61 is stored in the hot water storage tank 31. At this time, the water flow rate adjustment valve 63 causes the controller to allow water to flow from the flowing water path 30d to the flowing water path 30f and to block water from flowing from the flowing water path 30e to the flowing water path 30f. Be controlled. However, as will be described later, for example, when cooling and heating are simultaneously performed, the water flow rate adjusting valve 63 is controlled by the control unit, so that water flowing from the water flow path 30c to the water flow paths 30d and 30e is controlled. The inflow is adjusted.

ここで,前記風呂追焚回路7について説明する。
前記風呂追焚回路7は,前記流水経路30h上に設けられた風呂追焚用熱交換器72及び循環ポンプ71と,前記流水経路30i上に設けられた浴槽74と,該浴槽74,前記風呂追焚用熱交換器72及び循環ポンプ73を順に接続する風呂水追焚経路75と,を有して構成されている。
前記風呂追焚回路7では,前記制御部によって前記流水切換弁45が制御されることにより,前記水熱交換器61や前記水熱交換器62で加熱されて前記流水経路30f上を流れる温水が前記浴槽74に供給される。
また,前記風呂追焚回路7では,前記制御部によって前記循環ポンプ71及び前記循環ポンプ73が駆動され,前記流水切換弁44が制御されることにより,前記流水切換弁44から前記風呂追焚用熱交換器72に流入する水と,前記浴槽74から前記風呂水追焚経路75を経て前記風呂追焚用熱交換器72流入する水との間で熱交換が行われる。即ち,前記風呂追焚回路7では,前記水熱交換器61や前記水熱交換器62で加熱されて前記流水経路30f上を流れる温水を熱媒体として,前記浴槽74に貯留された水が加熱(追い焚き)される。なお,前記風呂追焚回路7に換えて,床暖房装置や浴室乾燥機などの加熱手段を用いることも他の実施例として考えられる。
Here, the bath chase circuit 7 will be described.
The bath remedy circuit 7 includes a bath remedy heat exchanger 72 and a circulation pump 71 provided on the flowing water path 30h, a bathtub 74 provided on the flowing water path 30i, the bathtub 74, the bath It has a bath water remedy path 75 for connecting the remedy heat exchanger 72 and the circulation pump 73 in order.
In the bath remedy circuit 7, the flowing water switching valve 45 is controlled by the control unit, so that the hot water heated by the water heat exchanger 61 and the water heat exchanger 62 and flowing on the flowing water path 30f is supplied. It is supplied to the bathtub 74.
Further, in the bath remedy circuit 7, the circulation pump 71 and the circulation pump 73 are driven by the control unit, and the running water switching valve 44 is controlled. Heat exchange is performed between the water flowing into the heat exchanger 72 and the water flowing from the bathtub 74 through the bath water retreating path 75 into the bath recuperation heat exchanger 72. That is, in the bath memory circuit 7, the water stored in the bathtub 74 is heated by using the hot water heated by the water heat exchanger 61 and the water heat exchanger 62 and flowing on the flowing water path 30 f as a heat medium. (I will be chased). It is also possible to use heating means such as a floor heating device or a bathroom dryer in place of the bath remedy circuit 7 as another embodiment.

次に,前記CO2サイクル1及び前記R410Aサイクル2各々の構成について説明する。
前記CO2サイクル1は,圧縮機11,前記水熱交換器61,膨張器12,前記室外空気熱交換器13及び前記圧縮機11を順に接続する冷媒循環経路10を有して構成されている。前記冷媒循環経路10では,前記制御部(不図示)によって前記圧縮機11が駆動されることにより,前記CO2冷媒が図示する矢印方向に循環される。これにより,前記CO2サイクル1では,前記圧縮機11において圧縮して吐出された高温高圧の前記CO2冷媒が,前記水熱交換器61において前記流水経路30d上を流れる水と熱交換されて冷却された後,前記膨張器12において膨張する。その後,前記膨張器12で膨張した低温低圧の前記CO2冷媒は,前記室外空気熱交換器13において室外空気と熱交換されて吸熱し気化した後,再度前記圧縮機11に流入する。なお,前記水熱交換器61における前記CO2冷媒と水との流通方向が反対であるため,該CO2冷媒と水との熱交換は効率的に行われる。
Next, the configuration of each of the CO 2 cycle 1 and the R410A cycle 2 will be described.
The CO 2 cycle 1 includes a refrigerant circulation path 10 that connects the compressor 11, the water heat exchanger 61, the expander 12, the outdoor air heat exchanger 13, and the compressor 11 in order. . In the refrigerant circulation path 10, the CO 2 refrigerant is circulated in the direction of the arrow shown in the figure by driving the compressor 11 by the control unit (not shown). Thereby, in the CO 2 cycle 1, the high-temperature and high-pressure CO 2 refrigerant compressed and discharged in the compressor 11 is heat-exchanged with the water flowing on the flowing water path 30d in the water heat exchanger 61. After cooling, it expands in the expander 12. Thereafter, the low-temperature and low-pressure CO 2 refrigerant expanded in the expander 12 is heat-exchanged with the outdoor air in the outdoor air heat exchanger 13 to absorb heat and vaporize, and then flows into the compressor 11 again. In addition, since the flow direction of the CO 2 refrigerant and water in the water heat exchanger 61 is opposite, heat exchange between the CO 2 refrigerant and water is performed efficiently.

一方,前記R410Aサイクル2は,前記R410A冷媒が循環される冷媒循環経路81〜83を有して構成されている。
前記冷媒循環経路81は,圧縮機21,四方弁24,冷媒切換弁51,52,前記水熱交換器62,膨張器22a,冷媒切換弁53,54,前記室外空気熱交換器13,冷媒切換弁56,前記四方弁24及び前記圧縮機21を順に接続するものである。
前記冷媒循環経路81では,前記圧縮機21において圧縮して吐出された高温高圧の前記R410A冷媒が,前記四方弁24及び前記冷媒切換弁51,52を経て前記水熱交換器62に達する。そして,前記R410A冷媒は,前記水熱交換器62において前記流水経路30e上を流れる水と熱交換されて冷却される。その後,前記R410A冷媒は,前記膨張器22aにおいて膨張する。そして,前記膨張器22aで膨張した低温低圧の前記R410A冷媒は,前記冷媒切換弁53,54を経て前記室外空気熱交換器13において室外空気と熱交換されて吸熱し気化した後,前記冷媒切換弁56,前記四方弁24を経て再度前記圧縮機21に流入する。
前記R410Aサイクル2では,前記のように前記R410A冷媒が前記冷媒循環経路81に循環されることにより,前記流水経路30e上を矢印方向に流れる水が,前記水熱交換器62における前記R410A冷媒との熱交換によって65℃程度まで加熱される。なお,前記水熱交換器62における前記R410A冷媒と水との流通方向が反対であるため,該R410A冷媒と水との熱交換は効率的に行われる。
On the other hand, the R410A cycle 2 includes refrigerant circulation paths 81 to 83 through which the R410A refrigerant is circulated.
The refrigerant circulation path 81 includes the compressor 21, the four-way valve 24, the refrigerant switching valves 51 and 52, the water heat exchanger 62, the expander 22a, the refrigerant switching valves 53 and 54, the outdoor air heat exchanger 13, and the refrigerant switching. The valve 56, the four-way valve 24, and the compressor 21 are connected in order.
In the refrigerant circulation path 81, the high-temperature and high-pressure R410A refrigerant compressed and discharged by the compressor 21 reaches the water heat exchanger 62 via the four-way valve 24 and the refrigerant switching valves 51 and 52. The R410A refrigerant is cooled by exchanging heat with water flowing on the flowing water path 30e in the water heat exchanger 62. Thereafter, the R410A refrigerant expands in the expander 22a. The low-temperature and low-pressure R410A refrigerant expanded in the expander 22a is heat-exchanged with the outdoor air in the outdoor air heat exchanger 13 through the refrigerant switching valves 53 and 54, and then absorbed and vaporized. It flows into the compressor 21 again through the valve 56 and the four-way valve 24.
In the R410A cycle 2, as described above, the R410A refrigerant is circulated through the refrigerant circulation path 81, so that the water flowing in the direction of the arrow on the flowing water path 30e becomes the R410A refrigerant in the water heat exchanger 62. It is heated to about 65 ° C. by heat exchange. In addition, since the flow direction of the R410A refrigerant and water in the water heat exchanger 62 is opposite, heat exchange between the R410A refrigerant and water is performed efficiently.

また,前記冷媒循環経路82は,前記圧縮機21,前記四方弁24,前記冷媒切換弁56,52,前記水熱交換器62,前記膨張器22a,前記冷媒切換弁53,55,室内空気熱交換器4,前記冷媒切換弁51,前記四方弁24及び前記圧縮機21を順に接続するものである。前記冷媒循環経路82は,例えば給湯と冷房とを同時に行う場合に用いられる。
前記室内空気熱交換器4は,室内の冷暖房を行う空気調和機(不図示)に設けられ,前記R410Aサイクル2に循環される前記R410A冷媒と室内空気との間で熱交換を行うことにより室内空気を加熱或いは冷却するものである。
前記冷媒循環経路82では,前記圧縮機21において圧縮して吐出された高温高圧の前記R410A冷媒が,前記四方弁24及び前記冷媒切換弁56,52を経て前記水熱交換器62に達する。そして,前記R410A冷媒は,前記水熱交換器62において前記流水経路30e上を流れる水と熱交換されて冷却される。その後,前記R410A冷媒は,前記膨張器22aにおいて膨張する。そして,前記膨張器22aで膨張した低温低圧の前記R410A冷媒は,前記冷媒切換弁53,55を経て前記室内空気熱交換器4において室内空気と熱交換されて吸熱し気化した後,前記冷媒切換弁51,前記四方弁24を経て再度前記圧縮機21に流入する。
前記R410Aサイクル2では,前記のように前記R410A冷媒が前記冷媒循環経路82に循環されることにより,前記流水経路30e上を矢印方向に流れる水が,前記水熱交換器62における前記R410A冷媒との熱交換によって65℃程度まで加熱される。なお,前記水熱交換器62における前記R410A冷媒と水との流通方向が反対であるため,該R410A冷媒と水との熱交換は効率的に行われる。
また,前記室内空気熱交換器4では,前記R410A冷媒と室内空気との間の熱交換より室内空気が冷却されるため,室内の冷房が実現される。即ち,前記冷媒循環経路82では,前記室外空気熱交換器13を用いることなく,前記室内空気熱交換器4における冷房の排熱を利用して給湯を行うことが可能である。
The refrigerant circulation path 82 includes the compressor 21, the four-way valve 24, the refrigerant switching valves 56 and 52, the water heat exchanger 62, the expander 22a, the refrigerant switching valves 53 and 55, and indoor air heat. The exchanger 4, the refrigerant switching valve 51, the four-way valve 24, and the compressor 21 are connected in order. The refrigerant circulation path 82 is used, for example, when hot water supply and cooling are performed simultaneously.
The indoor air heat exchanger 4 is provided in an air conditioner (not shown) that heats and cools the room indoors, and performs heat exchange between the R410A refrigerant circulated in the R410A cycle 2 and room air. Air is heated or cooled.
In the refrigerant circulation path 82, the high-temperature and high-pressure R410A refrigerant compressed and discharged by the compressor 21 reaches the water heat exchanger 62 through the four-way valve 24 and the refrigerant switching valves 56 and 52. The R410A refrigerant is cooled by exchanging heat with water flowing on the flowing water path 30e in the water heat exchanger 62. Thereafter, the R410A refrigerant expands in the expander 22a. The low-temperature and low-pressure R410A refrigerant expanded in the expander 22a is heat-exchanged with the indoor air in the indoor air heat exchanger 4 through the refrigerant switching valves 53 and 55, and absorbs and vaporizes. It flows into the compressor 21 again through the valve 51 and the four-way valve 24.
In the R410A cycle 2, the R410A refrigerant is circulated through the refrigerant circulation path 82 as described above, so that the water flowing in the direction of the arrow on the flowing water path 30e becomes the R410A refrigerant in the water heat exchanger 62. It is heated to about 65 ° C. by heat exchange. In addition, since the flow direction of the R410A refrigerant and water in the water heat exchanger 62 is opposite, heat exchange between the R410A refrigerant and water is performed efficiently.
Further, in the indoor air heat exchanger 4, the indoor air is cooled by the heat exchange between the R410A refrigerant and the indoor air, so that the indoor cooling is realized. That is, in the refrigerant circulation path 82, hot water can be supplied using the exhaust heat of the cooling in the indoor air heat exchanger 4 without using the outdoor air heat exchanger 13.

一方,前記冷媒循環経路83は,前記圧縮機21,前記四方弁24,前記冷媒切換弁51,前記室内空気熱交換器4,冷媒切換弁55,膨張器22b,冷媒切換弁54,前記室外空気熱交換器13,前記冷媒切換弁56,前記四方弁24及び前記圧縮機21を順に接続するものである。
前記R410Aサイクル2では,前記R410A冷媒が前記冷媒循環経路83において図示する実線矢印方向に循環されることにより暖房運転が行われ,図示する破線矢印方向に循環されることにより冷房運転が行われる。以下,具体的に説明する。
(1)暖房運転について
ユーザにより前記ヒートポンプ式給湯機Xに対して,不図示の操作部から暖房運転の開始が要求されると,該ヒートポンプ式給湯機Xでは,前記制御部(不図示)によって前記圧縮機21及び前記四方弁24が制御され,前記R410Aサイクル2の冷媒循環経路83において前記R410A冷媒の実線矢印方向の循環が開始される。このとき,前記四方弁24内部では図示する実線経路が確立されている。
具体的には,前記圧縮機21において圧縮して吐出された高温高圧の前記R410A冷媒が,前記四方弁24及び前記冷媒切換弁51を経て前記室内空気熱交換器4に達する。そして,前記R410A冷媒は,前記室内空気熱交換器4において室内の空気と熱交換されて冷却される。その後,前記R410A冷媒は,前記冷媒切換弁55を経て前記膨張器22bにおいて膨張する。そして,前記膨張器22bにおいて膨張した低温低圧の前記R410A冷媒は,前記冷媒切換弁54を経て前記室外空気熱交換器13において室外空気と熱交換されて吸熱し気化した後,前記四方弁24を経て再度前記圧縮機21に流入する。
前記R410Aサイクル2では,前記のように前記R410A冷媒が前記冷媒循環経路83において実線矢印方向に循環されることにより,室内の空気が,前記室内空気熱交換器4における前記R410A冷媒との熱交換によって加熱される。即ち,前記ヒートポンプ式給湯機Xによって暖房が実現される。
On the other hand, the refrigerant circulation path 83 includes the compressor 21, the four-way valve 24, the refrigerant switching valve 51, the indoor air heat exchanger 4, the refrigerant switching valve 55, the expander 22b, the refrigerant switching valve 54, and the outdoor air. The heat exchanger 13, the refrigerant switching valve 56, the four-way valve 24, and the compressor 21 are connected in order.
In the R410A cycle 2, the R410A refrigerant is circulated in the direction of the solid arrow shown in the refrigerant circulation path 83 to perform the heating operation, and the refrigerant is circulated in the direction of the broken arrow to show the cooling operation. This will be specifically described below.
(1) Heating operation When the user requests the heat pump water heater X to start a heating operation from an operation unit (not shown), in the heat pump water heater X, the control unit (not shown) The compressor 21 and the four-way valve 24 are controlled, and circulation of the R410A refrigerant in the direction of the solid arrow in the refrigerant circulation path 83 of the R410A cycle 2 is started. At this time, the illustrated solid line path is established inside the four-way valve 24.
Specifically, the high-temperature and high-pressure R410A refrigerant compressed and discharged by the compressor 21 reaches the indoor air heat exchanger 4 through the four-way valve 24 and the refrigerant switching valve 51. The R410A refrigerant is cooled by heat exchange with indoor air in the indoor air heat exchanger 4. Thereafter, the R410A refrigerant expands in the expander 22b through the refrigerant switching valve 55. The low-temperature and low-pressure R410A refrigerant expanded in the expander 22b is subjected to heat exchange with the outdoor air in the outdoor air heat exchanger 13 through the refrigerant switching valve 54, and absorbs and vaporizes the refrigerant. Then, it flows into the compressor 21 again.
In the R410A cycle 2, the R410A refrigerant is circulated in the direction of the solid arrow in the refrigerant circulation path 83 as described above, so that indoor air exchanges heat with the R410A refrigerant in the indoor air heat exchanger 4. Heated by. That is, heating is realized by the heat pump type hot water heater X.

(2)冷房運転について
また,ユーザにより前記ヒートポンプ式給湯機Xに対して,不図示の操作部から冷房運転の開始が要求されると,該ヒートポンプ式給湯機Xでは,前記制御部(不図示)によって前記圧縮機21及び前記四方弁24が制御され,前記R410Aサイクル2の冷媒循環経路83において前記R410A冷媒の破線矢印方向の循環が開始される。このとき,前記四方弁24内部では図示する破線経路が確立されている。
具体的には,前記圧縮機21において圧縮して吐出された高温高圧の前記R410A冷媒が,前記四方弁24,前記冷媒切換弁56を経て前記室外空気熱交換器13に達する。そして,前記R410A冷媒は,前記室外空気熱交換器13において室外空気と熱交換されて冷却される。その後,前記R410A冷媒は,前記冷媒切換弁54を経て前記膨張器22bにおいて膨張する。そして,前記膨張器22bにおいて膨張した低温低圧の前記R410A冷媒は,前記冷媒切換弁55を経て前記室内空気熱交換器4において室内空気と熱交換されて吸熱し気化した後,前記前記冷媒切換弁51,前記四方弁24を経て再度前記圧縮機21に流入する。
前記R410Aサイクル2では,前記のように前記R410A冷媒が前記冷媒循環経路83において破線矢印方向に循環されることにより,室内の空気が,前記室内空気熱交換器4における前記R410A冷媒との熱交換によって冷却される。即ち,前記ヒートポンプ式給湯機Xによって冷房が実現される。
(2) Cooling operation When the user requests the heat pump water heater X to start the cooling operation from an operation unit (not shown), the heat pump water heater X has the control unit (not shown). ), The compressor 21 and the four-way valve 24 are controlled, and the circulation of the R410A refrigerant in the direction of the broken line arrow is started in the refrigerant circulation path 83 of the R410A cycle 2. At this time, the illustrated broken line path is established inside the four-way valve 24.
Specifically, the high-temperature and high-pressure R410A refrigerant compressed and discharged by the compressor 21 reaches the outdoor air heat exchanger 13 through the four-way valve 24 and the refrigerant switching valve 56. The R410A refrigerant is cooled by exchanging heat with outdoor air in the outdoor air heat exchanger 13. Thereafter, the R410A refrigerant expands in the expander 22b via the refrigerant switching valve 54. The low-temperature and low-pressure R410A refrigerant expanded in the expander 22b is heat-exchanged with the indoor air in the indoor air heat exchanger 4 through the refrigerant switching valve 55 to absorb heat and vaporize, and then the refrigerant switching valve. 51, it flows into the compressor 21 again through the four-way valve 24.
In the R410A cycle 2, the R410A refrigerant is circulated in the refrigerant circulation path 83 in the direction of the broken line arrow as described above, so that the indoor air exchanges heat with the R410A refrigerant in the indoor air heat exchanger 4. Cooled by. That is, cooling is realized by the heat pump type hot water heater X.

ところで,前述したように,仮に従来装置(例えば,特許文献1参照)において,前記R410Aサイクルだけを用いて瞬間給湯と暖房とを同時に行うことを考えた場合には,前記R410Aサイクルの加熱能力が十分に高いものでなければ,十分な給湯温度や給湯量,暖房性能などを得ることができないという課題が生じる。一方,十分な給湯温度や給湯量,冷暖房性能などを得るためには,前記R410Aサイクル2に係る装置の拡大やコストの増大などの問題が伴う。
しかし,前記ヒートポンプ式給湯機Xでは,前記水熱交換器61及び前記水熱交換器62各々からの水を合流させる前記水流量調整弁63が設けられており,当該ヒートポンプ式給湯機Xにおける前記室内空気熱交換器4の稼働の有無や冷暖房設定温度などの稼働状況に応じて,前記水熱交換器61及び前記水熱交換器62各々への水の流入量が前記制御部によって調整される。これにより,前記R410Aサイクル2に係る装置の拡大やコストの増大を伴うことなく,十分な給湯温度や給湯量,冷暖房性能などを得ることができる。以下,この点について詳説する。
By the way, as described above, in the conventional apparatus (for example, refer to Patent Document 1), when it is considered that instantaneous water heating and heating are performed simultaneously using only the R410A cycle, the heating capacity of the R410A cycle is as follows. If it is not high enough, the subject that sufficient hot-water supply temperature, hot-water supply amount, heating performance, etc. cannot be obtained will arise. On the other hand, in order to obtain a sufficient hot-water supply temperature, hot-water supply amount, air-conditioning performance, and the like, there are problems such as the expansion of the apparatus related to the R410A cycle 2 and the increase in cost.
However, in the heat pump type hot water heater X, the water flow rate adjusting valve 63 that joins water from each of the water heat exchanger 61 and the water heat exchanger 62 is provided. The amount of water flowing into each of the water heat exchanger 61 and the water heat exchanger 62 is adjusted by the control unit according to whether the indoor air heat exchanger 4 is in operation or the operation status such as the air conditioning setting temperature. . Thereby, sufficient hot-water supply temperature, hot-water supply amount, air-conditioning performance, etc. can be obtained, without enlarging the apparatus which concerns on the said R410A cycle 2, and the increase in cost. This point will be described in detail below.

(1)暖房と瞬間給湯との同時運転について
暖房と瞬間給湯との同時運転時,前記R410Aサイクル2では,前記制御部(不図示)によって前記圧縮機21,前記四方弁24及び前記冷媒切換弁51〜56が制御されることにより,前記R410A冷媒が図1に示す実線矢印方向に循環される。
具体的には,前記冷媒循環経路81では,前記R410A冷媒が,圧縮機21,四方弁24,冷媒切換弁51,冷媒切換弁52,水熱交換器62,膨張器22a,冷媒切換弁53,冷媒切換弁54,室外空気熱交換器13,冷媒切換弁56,四方弁24,圧縮機21の順に循環される。これにより,前記水熱交換器62において前記流水経路30b上を流れる水が加熱される。
一方,前記冷媒循環経路83では,前記R410A冷媒が,圧縮機21,四方弁24,冷媒切換弁51,室内空気熱交換器4,冷媒切換弁55,膨張器22b,冷媒切換弁54,室外空気熱交換器13,冷媒切換弁56,四方弁24,圧縮機21の順に循環される。これにより,前記室内空気熱交換器4において室内空気が加熱されて暖房が行われる。
このように,前記R410Aサイクル5では,前記冷媒切換弁51で前記R410A冷媒を分配することによって暖房と瞬間給湯とが同時に行われる。
(1) Simultaneous operation of heating and instantaneous hot water supply During simultaneous operation of heating and instantaneous hot water supply, in the R410A cycle 2, the control unit (not shown) performs the compressor 21, the four-way valve 24, and the refrigerant switching valve. By controlling 51 to 56, the R410A refrigerant is circulated in the direction of the solid arrow shown in FIG.
Specifically, in the refrigerant circulation path 81, the R410A refrigerant is converted into the compressor 21, the four-way valve 24, the refrigerant switching valve 51, the refrigerant switching valve 52, the water heat exchanger 62, the expander 22a, the refrigerant switching valve 53, The refrigerant switching valve 54, the outdoor air heat exchanger 13, the refrigerant switching valve 56, the four-way valve 24, and the compressor 21 are circulated in this order. Thereby, the water flowing on the flowing water path 30b is heated in the water heat exchanger 62.
On the other hand, in the refrigerant circulation path 83, the R410A refrigerant flows into the compressor 21, four-way valve 24, refrigerant switching valve 51, indoor air heat exchanger 4, refrigerant switching valve 55, expander 22b, refrigerant switching valve 54, outdoor air. The heat exchanger 13, the refrigerant switching valve 56, the four-way valve 24, and the compressor 21 are circulated in this order. Thereby, in the said indoor air heat exchanger 4, indoor air is heated and heating is performed.
Thus, in the R410A cycle 5, heating and instantaneous hot water supply are performed simultaneously by distributing the R410A refrigerant by the refrigerant switching valve 51.

ここで,前述したように,瞬間給湯だけが行われる場合には,前記流水経路30cから流れる水が,前記水熱交換器62が配設された前記流水経路30eだけに流入するように前記水流量調整弁63が前記制御部によって制御される。この場合には,前記R410Aサイクル2の加熱負荷は,瞬間給湯運転だけであるため,十分な給湯温度や給湯量を得ることができる。
しかし,瞬間給湯と暖房とが同時に実行される場合には,前記R410Aサイクル2の加熱能力が分散して用いられるため,十分な給湯温度や給湯量を得ることができないおそれがある。
そこで,瞬間給湯と暖房とを同時に実行する場合には,前記制御部によって前記圧縮機11の駆動が制御されて,前記CO2サイクル1における前記CO2冷媒の循環が開始される。そして,前記水流量調整弁63が前記制御部によって制御されることにより,前記流水経路30cから流れる水が前記水熱交換器61及び前記水熱交換器62各々に流入される。このとき,前記水熱交換器61及び前記水熱交換器62各々への水の流入量は,前記制御部によって前記水流量調整弁63が制御されることにより,瞬間給湯と暖房とに必要な加熱負荷,例えば給湯温度や給湯量,暖房設定温度などを得ることができるように予め定められた量に調整される。ここに,かかる調整処理を実行するときの前記制御部が水流入量調整手段に相当する。
これにより,前記水熱交換器61でCO2冷媒との熱交換により加熱された温水と,前記水熱交換器62でR410A冷媒との熱交換により加熱された温水とが,前記水流量調整弁63で合流して前記流水経路30fに流れることになる。ここで,前記水熱交換器61において前記CO2冷媒と熱交換によって加熱された温水は高温であるため,前記流水経路30f上では,十分な給湯温度や給湯量の温水を得ることができる。
Here, as described above, when only the hot water supply is performed, the water flowing from the flowing water path 30c flows into only the flowing water path 30e in which the water heat exchanger 62 is disposed. The flow rate adjusting valve 63 is controlled by the control unit. In this case, since the heating load of the R410A cycle 2 is only the instantaneous hot water supply operation, a sufficient hot water supply temperature and amount of hot water can be obtained.
However, when instantaneous hot water supply and heating are performed simultaneously, the heating capacity of the R410A cycle 2 is used in a distributed manner, so that there is a possibility that sufficient hot water supply temperature and hot water supply amount cannot be obtained.
Therefore, when the instantaneous hot water supply and the heating are performed simultaneously, the drive of the compressor 11 is controlled by the control unit, and the circulation of the CO 2 refrigerant in the CO 2 cycle 1 is started. The water flow rate adjusting valve 63 is controlled by the control unit, so that water flowing from the flowing water path 30c flows into the water heat exchanger 61 and the water heat exchanger 62, respectively. At this time, the amount of water flowing into each of the water heat exchanger 61 and the water heat exchanger 62 is necessary for instantaneous hot water supply and heating by controlling the water flow rate adjusting valve 63 by the control unit. It is adjusted to a predetermined amount so that a heating load, for example, a hot water supply temperature, a hot water supply amount, a heating set temperature, and the like can be obtained. Here, the control unit when executing the adjustment process corresponds to the water inflow amount adjusting means.
As a result, the water flow rate adjustment valve is configured so that the hot water heated by heat exchange with the CO 2 refrigerant in the water heat exchanger 61 and the hot water heated by heat exchange with the R410A refrigerant in the water heat exchanger 62 are converted into the water flow rate adjusting valve. At 63, they merge and flow into the flowing water path 30f. Here, since the hot water heated by heat exchange with the CO 2 refrigerant in the water heat exchanger 61 is high temperature, it is possible to obtain sufficient hot water supply temperature and hot water supply amount on the flowing water path 30f.

(2)冷房と瞬間給湯の同時運転について
冷房と瞬間給湯との同時運転時,前記R410Aサイクル2では,前記制御部(不図示)によって前記圧縮機21,前記四方弁24及び前記冷媒切換弁51〜56が制御されることにより,前記R410A冷媒が図1に示す破線矢印方向に循環される。
具体的には,前記冷媒循環経路81では,前記R410A冷媒が,圧縮機21,四方弁24,冷媒切換弁56,52,水熱交換器62,膨張器22a,冷媒切換弁53,冷媒切換弁55,室内空気熱交換器4,冷媒切換弁51,四方弁24,圧縮機21の順に循環される。これにより,前記水熱交換器62において前記流水経路30b上を流れる水が加熱される。
一方,前記冷媒循環経路83では,前記R410A冷媒が,圧縮機21,四方弁24,冷媒切換弁56,室外空気熱交換器13,冷媒切換弁54,膨張器22b,冷媒切換弁55,室内空気熱交換器4,冷媒切換弁51,四方弁24,圧縮機21の順に循環される。これにより,前記室内空気熱交換器4において室内空気が冷却されて冷房が行われる。
このように,前記R410Aサイクル2では,前記冷媒切換弁56で前記R410A冷媒を分配することによって冷房と瞬間給湯とが同時に行われる。
(2) Simultaneous operation of cooling and instantaneous hot water supply During simultaneous operation of cooling and instantaneous hot water supply, in the R410A cycle 2, the control unit (not shown) causes the compressor 21, the four-way valve 24, and the refrigerant switching valve 51 to operate. By controlling .about.56, the R410A refrigerant is circulated in the direction of the broken arrow shown in FIG.
Specifically, in the refrigerant circulation path 81, the R410A refrigerant is converted into the compressor 21, the four-way valve 24, the refrigerant switching valves 56 and 52, the water heat exchanger 62, the expander 22a, the refrigerant switching valve 53, and the refrigerant switching valve. 55, the indoor air heat exchanger 4, the refrigerant switching valve 51, the four-way valve 24, and the compressor 21 are circulated in this order. Thereby, the water flowing on the flowing water path 30b is heated in the water heat exchanger 62.
On the other hand, in the refrigerant circulation path 83, the R410A refrigerant flows into the compressor 21, the four-way valve 24, the refrigerant switching valve 56, the outdoor air heat exchanger 13, the refrigerant switching valve 54, the expander 22b, the refrigerant switching valve 55, the indoor air. The heat exchanger 4, the refrigerant switching valve 51, the four-way valve 24, and the compressor 21 are circulated in this order. As a result, the indoor air heat exchanger 4 cools the room air by cooling it.
As described above, in the R410A cycle 2, the refrigerant switching valve 56 distributes the R410A refrigerant so that cooling and instantaneous hot water supply are performed simultaneously.

ここで,前述したように,瞬間給湯だけが行われる場合には,十分な給湯温度や給湯量を得ることができるが,瞬間給湯と冷房とが同時に実行される場合には,前記R410Aサイクル2の加熱能力が分散して用いられるため,十分な給湯温度や給湯量を得ることができないおそれがある。
そこで,瞬間給湯と冷房とを同時に実行する場合には,前記制御部によって前記圧縮機11の駆動が制御されて,前記CO2サイクル1における前記CO2冷媒の循環が開始される。そして,前記水流量調整弁63が前記制御部によって制御されることにより,前記流水経路30cから流れる水が前記水熱交換器61及び前記水熱交換器62各々に流入される。このとき,前記水熱交換器61及び前記水熱交換器62各々への水の流入量は,前記制御部によって前記水流量調整弁63が制御されることにより,瞬間給湯と冷房とに必要な加熱負荷,例えば給湯温度や給湯量,冷房設定温度などを得ることができるように予め定められた量に調整される。ここに,かかる調整処理を実行するときの前記制御部が水流入量調整手段に相当する。
これにより,前記水熱交換器61でCO2冷媒との熱交換により加熱された温水と,前記水熱交換器62でR410A冷媒との熱交換により加熱された温水とが,前記水流量調整弁63で合流して前記流水経路30fに流れることになり,前記流水経路30f上では,十分な給湯温度や給湯量の温水を得ることができる。
以上説明したように,前記ヒートポンプ式給湯機Xでは,該ヒートポンプ式給湯機Xにおける加熱負荷に応じて,前記水熱交換器61及び前記水熱交換器62への水の流入量を調整して,前記CO2サイクル1及び前記R410Aサイクル2の加熱能力を合わせて用いることにより,効率的な運用を行うことが可能となる。したがって,前記R410Aサイクル2に係る装置の拡大やコストの増大を防止することができる。
Here, as described above, when only instantaneous hot water supply is performed, a sufficient hot water supply temperature and hot water supply amount can be obtained. However, when instantaneous hot water supply and cooling are performed simultaneously, the R410A cycle 2 is performed. Since the heating capacity is distributed and used, there is a possibility that sufficient hot water supply temperature and amount of hot water supply cannot be obtained.
Therefore, when the instantaneous hot water supply and the cooling are performed simultaneously, the controller 11 controls the drive of the compressor 11 and the circulation of the CO 2 refrigerant in the CO 2 cycle 1 is started. The water flow rate adjusting valve 63 is controlled by the control unit, so that water flowing from the flowing water path 30c flows into the water heat exchanger 61 and the water heat exchanger 62, respectively. At this time, the amount of water flowing into each of the water heat exchanger 61 and the water heat exchanger 62 is necessary for instantaneous hot water supply and cooling by controlling the water flow rate adjusting valve 63 by the control unit. It is adjusted to a predetermined amount so that a heating load, for example, a hot water supply temperature, a hot water supply amount, a cooling set temperature, and the like can be obtained. Here, the control unit when executing the adjustment process corresponds to the water inflow amount adjusting means.
As a result, the water flow rate adjustment valve is configured so that the hot water heated by heat exchange with the CO 2 refrigerant in the water heat exchanger 61 and the hot water heated by heat exchange with the R410A refrigerant in the water heat exchanger 62 are converted into the water flow rate adjusting valve. At 63, the water flows and flows into the flowing water path 30f. On the flowing water path 30f, it is possible to obtain hot water having a sufficient hot water supply temperature and a hot water supply amount.
As described above, in the heat pump type hot water heater X, the amount of water flowing into the water heat exchanger 61 and the water heat exchanger 62 is adjusted according to the heating load in the heat pump type hot water heater X. , By using the heating capacities of the CO 2 cycle 1 and the R410A cycle 2 in combination, efficient operation can be performed. Therefore, it is possible to prevent the apparatus related to the R410A cycle 2 from being expanded and the cost from being increased.

ところで,前記ヒートポンプ式給湯機Xにおける前記CO2サイクル1のエネルギ消費効率と,前記R410Aサイクル2のエネルギ消費効率の優劣は,前記室外空気熱交換器13が配設された室外の空気温度に影響される。換言すれば,前記室外空気熱交換器13において前記CO2冷媒や前記R410A冷媒が室外空気から吸熱する温度に応じて,前記CO2サイクル1のエネルギ消費効率と前記R410Aサイクル2のエネルギ消費効率の優劣は異なることになる。
そこで,前記室外空気熱交換器13に,該室外空気熱交換器13が配設された室外の空気温度を検出する温度センサ(室外空気温度検出手段の一例)を設けておき,該温度センサによって検出された温度に応じて,前記水熱交換器61及び前記水熱交換器62各々への水の流入量を調整することが望ましい。
具体的には,前記室外空気熱交換器13が配設された室外の空気温度に応じて,エネルギ消費効率が高い方のヒートポンプサイクルを判定し,その判定された方のヒートポンプサイクルだけに水を流入させるか,或いは両方のヒートポンプサイクルを用いる場合には,エネルギ消費効率の高い方のヒートポンプサイクルに水が多く流入するように制御すればよい。これにより,前記ヒートポンプ式給湯機Xにおけるエネルギ消費効率を向上させることができる。
By the way, the superiority of the energy consumption efficiency of the CO 2 cycle 1 and the energy consumption efficiency of the R410A cycle 2 in the heat pump type water heater X affects the outdoor air temperature where the outdoor air heat exchanger 13 is disposed. Is done. In other words, the energy consumption efficiency of the CO 2 cycle 1 and the energy consumption efficiency of the R410A cycle 2 according to the temperature at which the CO 2 refrigerant or the R410A refrigerant absorbs heat from the outdoor air in the outdoor air heat exchanger 13. The superiority and inferiority will be different.
Therefore, the outdoor air heat exchanger 13 is provided with a temperature sensor (an example of the outdoor air temperature detecting means) for detecting the outdoor air temperature where the outdoor air heat exchanger 13 is disposed. It is desirable to adjust the amount of water flowing into each of the water heat exchanger 61 and the water heat exchanger 62 according to the detected temperature.
Specifically, the heat pump cycle with higher energy consumption efficiency is determined according to the outdoor air temperature where the outdoor air heat exchanger 13 is disposed, and water is supplied only to the determined heat pump cycle. In the case of using both heat pump cycles, it is sufficient to control so that a large amount of water flows into the heat pump cycle having the higher energy consumption efficiency. Thereby, the energy consumption efficiency in the said heat pump type hot water heater X can be improved.

前記実施の形態及び前記実施例1では,前記室内空気熱交換器4の稼働状況に応じて前記水熱交換器61及び前記水熱交換器62への水の流入量を調整する例について説明した。
一方,前記室内空気熱交換器4の稼働状況に応じて前記水熱交換器61及び前記水熱交換器62各々への冷媒の流入量を調整することも他の実施例として考えられる。ここに,かかる調整処理を実行するときの前記制御部が冷媒流入量調整手段に相当する。
具体的には,前記室内空気熱交換器4の稼働状況に応じて,前記圧縮機11や前記圧縮機21の出力を制御することにより,或いは前記膨張器12や前記膨張器22aの開度を調整することによって,前記水熱交換器61及び前記水熱交換器62各々への冷媒の流入量を調整することにより,該水熱交換器61及び前記水熱交換器62における冷媒と水との熱交換効率を変化させることが可能である。
もちろん,前記室内空気熱交換器4の稼働状況に応じて,前記水熱交換器61及び前記水熱交換器62各々への水の流入量及び冷媒の流入量を共に調整してもよい。
In the embodiment and Example 1, an example in which the amount of water flowing into the water heat exchanger 61 and the water heat exchanger 62 is adjusted according to the operation status of the indoor air heat exchanger 4 has been described. .
On the other hand, adjusting the amount of refrigerant flowing into each of the water heat exchanger 61 and the water heat exchanger 62 in accordance with the operating status of the indoor air heat exchanger 4 can be considered as another embodiment. Here, the control unit when executing the adjustment process corresponds to the refrigerant inflow amount adjusting means.
Specifically, the opening degree of the expander 12 or the expander 22a is controlled by controlling the output of the compressor 11 or the compressor 21 according to the operating state of the indoor air heat exchanger 4. By adjusting the amount of refrigerant flowing into each of the water heat exchanger 61 and the water heat exchanger 62, the refrigerant and water in the water heat exchanger 61 and the water heat exchanger 62 are adjusted. It is possible to change the heat exchange efficiency.
Of course, both the inflow amount of water and the inflow amount of refrigerant into each of the water heat exchanger 61 and the water heat exchanger 62 may be adjusted according to the operating state of the indoor air heat exchanger 4.

前記実施の形態では,前記室内空気熱交換器4の稼働状況,即ち冷暖房の運転状況に応じて前記水熱交換器61及び前記水熱交換器62各々への水の流入量や冷媒の流入量を調整する例を説明した。
一方,前記ヒートポンプ式給湯機Xでは,前記室内空気熱交換器4の稼働状況だけではなく,前記風呂追焚回路7の稼働状況によっても加熱負荷が変動する。具体的には,前記風呂追焚回路7において前記浴槽74の水の追い焚きが行われる場合には,前記流水経路30f上に流れる温水が熱媒体として用いられる。そのため,前記風呂追焚回路7における追い焚きや風呂水の供給と給湯や冷暖房とが同時に行われる場合には,当該ヒートポンプ式給湯機Xにおける加熱負荷が大きくなる。そこで,前記風呂追焚回路7の稼働の有無,追い焚きや風呂水の設定温度などの稼働状況に応じて,前記水熱交換器61及び前記水熱交換器62各々への水の流入量や冷媒の流入量を調整することが望ましい。なお,前記風呂追焚回路7に換えて,床暖房装置や浴室乾燥機などの加熱手段を用いる場合にも同様に,該加熱手段の稼働状況に応じて前記水熱交換器61及び前記水熱交換器62各々への水の流入量や冷媒の流入量を調整すればよい。
In the embodiment, the inflow amount of water and the inflow amount of refrigerant into each of the water heat exchanger 61 and the water heat exchanger 62 according to the operating state of the indoor air heat exchanger 4, that is, the operating state of air conditioning. An example of adjusting the above has been described.
On the other hand, in the heat pump type water heater X, the heating load varies depending not only on the operation status of the indoor air heat exchanger 4 but also on the operation status of the bath chase circuit 7. Specifically, when the bath refilling circuit 7 refills the water in the bathtub 74, hot water flowing on the water flow path 30f is used as a heat medium. Therefore, when the reheating and bath water supply and hot water supply and cooling / heating in the bath renewal circuit 7 are performed simultaneously, the heating load in the heat pump type hot water heater X increases. Therefore, the amount of water flowing into each of the water heat exchanger 61 and the water heat exchanger 62 according to the operation status such as the presence / absence of operation of the bath reheating circuit 7 and the setting temperature of the reheating or bath water, It is desirable to adjust the inflow amount of the refrigerant. In the case where a heating means such as a floor heating device or a bathroom dryer is used instead of the bath remedy circuit 7, the water heat exchanger 61 and the water heat are also selected according to the operating status of the heating means. What is necessary is just to adjust the inflow of water and the inflow of refrigerant into each of the exchangers 62.

ここに,図2は,本実施例4に係るヒートポンプ式給湯機X1の概略構成図である。なお,前記ヒートポンプ式給湯機Xと同様の構成要素には同じ符号を付してその説明を省略する。
図2に示すように,本実施例4に係るヒートポンプ式給湯機X1は,循環経路90上に循環されるブライン(不凍液)を熱媒体に用いる床暖房装置9と,前記CO2サイクル1に接続された床暖房用熱交換器64及び膨張器12aと,前記R410Aサイクル2に接続された床暖房用熱交換器65及び膨張器22cと,前記床暖房用熱交換器64及び前記床暖房用熱交換器65から吐出された前記ブラインを合流させるブライン流量調整弁66と,を備えている点で,前記ヒートポンプ式給湯機Xと構成を異にする。なお,前記床暖房装置9に換えて,風呂追焚回路や浴室乾燥機などの加熱手段を用いることも他の実施例として考えられる。
前記水熱交換器64は,前記CO2冷媒とブラインとの間で熱交換器を行うものであり,前記水熱交換器65は,前記R410A冷媒とブラインとの間で熱交換を行うものである。
FIG. 2 is a schematic configuration diagram of the heat pump type water heater X1 according to the fourth embodiment. In addition, the same code | symbol is attached | subjected to the component similar to the said heat pump type water heater X, and the description is abbreviate | omitted.
As shown in FIG. 2, the heat pump type water heater X1 according to the fourth embodiment is connected to the floor heating device 9 that uses brine (antifreeze) circulated on the circulation path 90 as a heat medium and the CO 2 cycle 1. The floor heating heat exchanger 64 and the expander 12a, the floor heating heat exchanger 65 and the expander 22c connected to the R410A cycle 2, the floor heating heat exchanger 64 and the floor heating heat The configuration is different from that of the heat pump type hot water heater X in that it includes a brine flow rate adjustment valve 66 that joins the brine discharged from the exchanger 65. In addition, it is also possible to use heating means such as a bath remedy circuit or a bathroom dryer instead of the floor heating device 9 as another embodiment.
The water heat exchanger 64 performs heat exchange between the CO 2 refrigerant and brine, and the water heat exchanger 65 performs heat exchange between the R410A refrigerant and brine. is there.

このように構成された前記ヒートポンプ式給湯機X1では,前記制御部によって前記ブライン流量調整弁66が制御されることにより,前記床暖房用熱交換器64及び前記床暖房用熱交換器65各々へのブラインの流入量が調整される。また,前記床暖房用熱交換器64への前記CO2冷媒の流入量は,前記制御部によって制御される前記膨張器12aの開度によって調整され,前記床暖房用熱交換器65への前記R410A冷媒の流入量は,前記制御部によって制御される前記膨張器22cの開度によって調整される。 In the heat pump type water heater X1 configured as described above, the brine flow rate adjusting valve 66 is controlled by the control unit, whereby the floor heating heat exchanger 64 and the floor heating heat exchanger 65 are respectively supplied. The amount of brine inflow is adjusted. The amount of the CO 2 refrigerant flowing into the floor heating heat exchanger 64 is adjusted by the opening of the expander 12a controlled by the control unit, and the floor heating heat exchanger 65 is adjusted. The inflow amount of the R410A refrigerant is adjusted by the opening degree of the expander 22c controlled by the control unit.

前記床暖房装置9を備える当該ヒートポンプ式給湯機X1では,該床暖房装置9の稼働状況に応じて,該ヒートポンプ式給湯機X1における加熱負荷が変動する。具体的には,前記床暖房装置9が稼働されている場合には,前記CO2サイクル1や前記R410Aサイクル2の加熱能力が,前記床暖房用熱交換器64,65におけるブラインとの熱交換に利用されるため,当該ヒートポンプ式給湯機X1における加熱負荷が増大する。
したがって,前記ヒートポンプ式給湯機X1では,前記床暖房装置9の稼働状況に応じて,前記水熱交換器61及び前記水熱交換器62各々への水や冷媒の流入量が前記制御部によって調整される。これにより,前記ヒートポンプ式給湯機X1における加熱負荷が大きい場合であっても,前記CO2サイクル1及び前記R410Aサイクル2の加熱能力を併用することで,例えば高い給湯温度や給湯量,冷暖房性能などを得ることや,高いエネルギ消費効率での運用が実現される。
In the heat pump type water heater X1 provided with the floor heating device 9, the heating load in the heat pump type water heater X1 varies depending on the operation status of the floor heating device 9. Specifically, when the floor heating device 9 is in operation, the heating capacity of the CO 2 cycle 1 and the R410A cycle 2 is the heat exchange with the brine in the floor heating heat exchangers 64 and 65. Therefore, the heating load in the heat pump type water heater X1 increases.
Therefore, in the heat pump type hot water heater X1, the amount of water or refrigerant flowing into each of the water heat exchanger 61 and the water heat exchanger 62 is adjusted by the control unit according to the operation status of the floor heating device 9. Is done. Thus, even when the heating load in the heat pump type hot water heater X1 is large, by using the heating capacity of the CO 2 cycle 1 and the R410A cycle 2 in combination, for example, a high hot water supply temperature, a hot water supply amount, air conditioning performance, etc. And operation with high energy consumption efficiency.

本発明の実施の形態に係るヒートポンプ式給湯機Xの概略構成図。1 is a schematic configuration diagram of a heat pump type water heater X according to an embodiment of the present invention. 本発明の実施例4に係るヒートポンプ式給湯機X1の概略構成図。The schematic block diagram of the heat pump type water heater X1 which concerns on Example 4 of this invention.

符号の説明Explanation of symbols

1…ヒートポンプサイクル(第一のヒートポンプサイクルの一例)
2…ヒートポンプサイクル(第二のヒートポンプサイクルの一例)
4…室内空気熱交換器
7…風呂追焚回路(加熱手段の一例)
9…床暖房装置
11,21…圧縮機
12,12a,22a,22b,22c…膨張器
13…室外空気熱交換器
24…四方弁
30a〜30k…流水経路
31…貯湯タンク
41〜45…流水切換弁
51〜56…冷媒切換弁
61…水熱交換器(第一の水熱交換器の一例)
62…水熱交換器(第二の水熱交換器の一例)
63…水流量調整弁(水合流手段の一例)81〜83…冷媒循環経路
1 ... heat pump cycle (an example of a first heat pump cycle)
2 ... Heat pump cycle (an example of a second heat pump cycle)
4 ... Indoor air heat exchanger 7 ... Bath memorial circuit (an example of heating means)
DESCRIPTION OF SYMBOLS 9 ... Floor heating apparatus 11, 21 ... Compressor 12, 12a, 22a, 22b, 22c ... Expander 13 ... Outdoor air heat exchanger 24 ... Four-way valve 30a-30k ... Flow path 31 ... Hot water storage tanks 41-45 ... Flow water switching Valves 51-56 ... Refrigerant switching valve 61 ... Water heat exchanger (an example of a first water heat exchanger)
62 ... Water heat exchanger (an example of a second water heat exchanger)
63 ... Water flow rate adjusting valve (an example of water merging means) 81 to 83 ... Refrigerant circulation path

Claims (6)

第一の冷媒が少なくとも圧縮機及び膨張器を経て循環される第一のヒートポンプサイクルと,前記第一の冷媒と異なる特性を持つ第二の冷媒が少なくとも圧縮機及び膨張器を経て循環される第二のヒートポンプサイクルと,前記第一の冷媒と水との間で熱交換を行う第一の水熱交換器と,前記第二の冷媒と水との間で熱交換を行う第二の水熱交換器と,を備えてなるヒートポンプ式給湯機であって,
前記第一の水熱交換器及び前記第二の水熱交換器各々への水の流入量を調整する水流入量調整手段及び/又は前記第一の水熱交換器及び前記第二の水熱交換器各々への冷媒の流入量を調整する冷媒流入量調整手段と,
前記第一の水熱交換器及び前記第二の水熱交換器各々から流出した水を合流させる水合流手段もしくは,前記第一の水熱交換器及び前記第二の水熱交換器各々に流入する水を分配させる水分配手段と,
を備えてなることを特徴とするヒートポンプ式給湯機。
A first heat pump cycle in which the first refrigerant is circulated through at least the compressor and the expander, and a second refrigerant having characteristics different from the first refrigerant are circulated through at least the compressor and the expander. Two heat pump cycles; a first water heat exchanger that exchanges heat between the first refrigerant and water; and a second water heat that exchanges heat between the second refrigerant and water. A heat pump water heater comprising an exchanger,
Water inflow adjustment means for adjusting the amount of water flowing into each of the first water heat exchanger and the second water heat exchanger and / or the first water heat exchanger and the second water heat. Refrigerant inflow adjustment means for adjusting the amount of refrigerant flowing into each of the exchangers;
Water confluence means for merging water flowing out from each of the first water heat exchanger and the second water heat exchanger, or flows into each of the first water heat exchanger and the second water heat exchanger Water distribution means for distributing water to be discharged;
A heat pump water heater characterized by comprising:
前記第一の冷媒が炭酸ガス冷媒であって,前記第二の冷媒がHFC冷媒である請求項1に記載のヒートポンプ式給湯機。   The heat pump type hot water heater according to claim 1, wherein the first refrigerant is a carbon dioxide refrigerant, and the second refrigerant is an HFC refrigerant. 前記水流入量調整手段及び/又は前記冷媒流入量調整手段が,当該ヒートポンプ式給湯機における加熱負荷に応じて前記流入量を調整するものである請求項1又は2のいずれかに記載のヒートポンプ式給湯機。   The heat pump type according to any one of claims 1 and 2, wherein the water inflow amount adjusting means and / or the refrigerant inflow amount adjusting means adjusts the inflow amount according to a heating load in the heat pump type hot water heater. Water heater. 前記第二の冷媒と室内空気との間で熱交換を行う室内空気熱交換器を更に備えてなり,
前記水流入量調整手段及び/又は前記冷媒流入量調整手段が,前記室内空気熱交換器の稼働状況に応じて前記流入量を調整するものである請求項1〜3のいずれかに記載のヒートポンプ式給湯機。
An indoor air heat exchanger for exchanging heat between the second refrigerant and room air;
The heat pump according to any one of claims 1 to 3, wherein the water inflow amount adjusting means and / or the refrigerant inflow amount adjusting means adjusts the inflow amount according to an operating state of the indoor air heat exchanger. Type water heater.
前記第一の水熱交換器及び/又は前記第二の水熱交換器から吐出された温水を熱媒体に用いる加熱手段を更に備えてなり,
前記水流入量調整手段及び/又は前記冷媒流入量調整手段が,前記加熱手段の稼働状況に応じて前記流入量を調整するものである請求項1〜4のいずれかに記載のヒートポンプ式給湯機。
And further comprising heating means using hot water discharged from the first water heat exchanger and / or the second water heat exchanger as a heat medium,
The heat pump type hot water heater according to any one of claims 1 to 4, wherein the water inflow amount adjusting means and / or the refrigerant inflow amount adjusting means adjusts the inflow amount according to an operating state of the heating means. .
前記第一の冷媒及び/又は前記第二の冷媒と室外空気との間で熱交換を行う室外空気熱交換器と,前記室外空気熱交換器が配設された室外の空気温度を検出する室外空気温度検出手段と,を更に備えてなり,
前記水流入量調整手段及び/又は前記冷媒流入量調整手段が,前記室外空気温度検出手段により検出された室外の空気温度に応じて前記流入量を調整するものである請求項1〜5のいずれかに記載のヒートポンプ式給湯機。
An outdoor air heat exchanger that performs heat exchange between the first refrigerant and / or the second refrigerant and outdoor air, and an outdoor air temperature that detects an outdoor air temperature in which the outdoor air heat exchanger is disposed. Air temperature detecting means, and
The said inflow amount adjusting means and / or the said refrigerant | coolant inflow amount adjusting means adjust the said inflow amount according to the outdoor air temperature detected by the said outdoor air temperature detection means. The heat pump type hot water heater described in Crab.
JP2006133444A 2006-05-12 2006-05-12 Heat pump water heater Expired - Fee Related JP4753791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006133444A JP4753791B2 (en) 2006-05-12 2006-05-12 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006133444A JP4753791B2 (en) 2006-05-12 2006-05-12 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2007303755A true JP2007303755A (en) 2007-11-22
JP4753791B2 JP4753791B2 (en) 2011-08-24

Family

ID=38837833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006133444A Expired - Fee Related JP4753791B2 (en) 2006-05-12 2006-05-12 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP4753791B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116454A1 (en) * 2009-03-30 2010-10-14 三菱電機株式会社 Fluid heating system and method, and fluid heating control system, control device and control method
CN101975450A (en) * 2010-11-03 2011-02-16 上海理工大学 Air source heat pump water heater
CN102506502A (en) * 2011-10-19 2012-06-20 广东美的暖通设备限公司 Heat-accumulation-type cascade-cycle water heating machine and control method thereof
WO2012165425A1 (en) * 2011-05-31 2012-12-06 東芝キヤリア株式会社 Heating system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233010A (en) * 2003-01-31 2004-08-19 Daikin Ind Ltd Heat pump type water heater
JP2004340533A (en) * 2003-05-19 2004-12-02 Matsushita Electric Ind Co Ltd Heat pump water heater air conditioner
JP2005083585A (en) * 2003-09-04 2005-03-31 Mitsubishi Electric Corp Heat pump-type hot water supply system
JP2006125722A (en) * 2004-10-28 2006-05-18 Hitachi Home & Life Solutions Inc Heat pump hot water supply heating system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233010A (en) * 2003-01-31 2004-08-19 Daikin Ind Ltd Heat pump type water heater
JP2004340533A (en) * 2003-05-19 2004-12-02 Matsushita Electric Ind Co Ltd Heat pump water heater air conditioner
JP2005083585A (en) * 2003-09-04 2005-03-31 Mitsubishi Electric Corp Heat pump-type hot water supply system
JP2006125722A (en) * 2004-10-28 2006-05-18 Hitachi Home & Life Solutions Inc Heat pump hot water supply heating system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116454A1 (en) * 2009-03-30 2010-10-14 三菱電機株式会社 Fluid heating system and method, and fluid heating control system, control device and control method
JP5132813B2 (en) * 2009-03-30 2013-01-30 三菱電機株式会社 Fluid heating system, fluid heating method, fluid heating control system, control apparatus, and control method
US9500376B2 (en) 2009-03-30 2016-11-22 Mitsubishi Electric Corporation Fluid heating system, fluid heating method, fluid heating control system, control apparatus, and control method
CN101975450A (en) * 2010-11-03 2011-02-16 上海理工大学 Air source heat pump water heater
CN101975450B (en) * 2010-11-03 2012-10-24 上海理工大学 Air source heat pump water heater
WO2012165425A1 (en) * 2011-05-31 2012-12-06 東芝キヤリア株式会社 Heating system
CN102506502A (en) * 2011-10-19 2012-06-20 广东美的暖通设备限公司 Heat-accumulation-type cascade-cycle water heating machine and control method thereof

Also Published As

Publication number Publication date
JP4753791B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
JP4599910B2 (en) Water heater
US10197306B2 (en) Heat pump system, heat pump unit using the same, and method for controlling multiple functional modes thereof
JP2007232282A (en) Heat pump type water heater
JP2007178091A (en) Heat pump water heater
JP3966889B2 (en) Heat pump water heater
JP2010025503A (en) Heat pump air conditioning system
JP2005249319A (en) Heat pump hot water supply air-conditioner
JP4890320B2 (en) Heat pump hot water supply system
JP4753791B2 (en) Heat pump water heater
KR101117032B1 (en) Heat pump system having cascade heat exchange
JP2015215117A (en) Heat pump type air cooling device
JP4749228B2 (en) Heat pump water heater
JP2007178090A (en) Heat pump-type water heater
JP5176474B2 (en) Heat pump water heater
JP2003021428A (en) Heat pump type water heater
JP2004044948A (en) Air conditioner
JP4455518B2 (en) Heat pump water heater
JP2008014520A (en) Heat pump type water heater
JP5741256B2 (en) Hot water storage water heater
JP4344044B2 (en) Hot water type air conditioner
JP2009109061A (en) Heat pump type air conditioning device comprising heating panel
JP4372762B2 (en) Heat pump water heater
JP2010032112A (en) Hot water supply device
JP2007333335A (en) Hot water storage type hot water supply heating apparatus
JP2006162086A (en) Heat pump water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110201

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110314

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110329

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4753791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees