JP2015175525A - Exhaust gas flow rectification structure, exhaust heat recovery boiler with this rectification structure and rectification method - Google Patents

Exhaust gas flow rectification structure, exhaust heat recovery boiler with this rectification structure and rectification method Download PDF

Info

Publication number
JP2015175525A
JP2015175525A JP2014049690A JP2014049690A JP2015175525A JP 2015175525 A JP2015175525 A JP 2015175525A JP 2014049690 A JP2014049690 A JP 2014049690A JP 2014049690 A JP2014049690 A JP 2014049690A JP 2015175525 A JP2015175525 A JP 2015175525A
Authority
JP
Japan
Prior art keywords
exhaust gas
rectifying
rectifier
exhaust
rectification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014049690A
Other languages
Japanese (ja)
Other versions
JP6296233B2 (en
Inventor
昌之 関根
Masayuki Sekine
昌之 関根
齋藤 哲
Satoru Saito
哲 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2014049690A priority Critical patent/JP6296233B2/en
Publication of JP2015175525A publication Critical patent/JP2015175525A/en
Application granted granted Critical
Publication of JP6296233B2 publication Critical patent/JP6296233B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas rectification structure capable of reducing load of exhaust gas, an exhaust heat recovery boiler with this rectification structure and a rectification method.SOLUTION: This invention relates to an exhaust gas rectification structure in which exhaust gas from a gas turbine 1 is rectified by a rectifier 8 and guided to a group 7 of heat transfer pipes of an exhaust heat recovery boiler 2. The rectifier 8 has a smaller section than that of an exhaust gas flow passage 6 at its installation position and arranged at a position where at least maximum flow speed portion of the exhaust gas flowing at a section of the exhaust gas flow passage 6 at the arranged position is rectified. It is preferable that the rectifier 8 is arranged at a position where its center becomes the maximum flow speed portion of the exhaust gas.

Description

本発明は、ガスタービンから排出された燃焼排気ガスを排熱回収ボイラへ整流して導く排ガスの整流構造、この整流構造を備えた排熱回収ボイラ及び整流方法に関する。   The present invention relates to an exhaust gas rectification structure that guides combustion exhaust gas discharged from a gas turbine by rectifying the exhaust gas to an exhaust heat recovery boiler, an exhaust heat recovery boiler including the rectification structure, and a rectification method.

一般に、排熱回収ボイラ(HRSG:heat recovery steam generator)は、ガスタービンから排出される高温の燃焼排気ガス(以下、排ガスと略称する)をダクトによって排熱回収ボイラの複数の伝熱管へ導いて排ガスの熱を回収する。そして、この排熱回収ボイラは、回収した熱によって高温の蒸気を発生させて蒸気タービンを回転させている。   Generally, a heat recovery steam generator (HRSG) guides high-temperature combustion exhaust gas (hereinafter referred to as exhaust gas) discharged from a gas turbine to a plurality of heat transfer tubes of the exhaust heat recovery boiler through a duct. The heat of exhaust gas is recovered. The exhaust heat recovery boiler generates high-temperature steam by the recovered heat and rotates the steam turbine.

ここで、ダクトの内部を流れる排ガスは、ガスタービンから導かれた排ガスが旋回流であり一様流でないこと、ガスタービンから導かれる排ガスのダクトへの導入位置、及びダクトの流路断面積が下流側に向かうに従って大きくなっているといったダクトの形状の影響を受けて偏流が生じている。   Here, the exhaust gas flowing inside the duct is that the exhaust gas led from the gas turbine is a swirl flow and is not a uniform flow, the introduction position of the exhaust gas led from the gas turbine to the duct, and the flow path cross-sectional area of the duct A drift occurs due to the influence of the shape of the duct, which becomes larger toward the downstream side.

排熱回収ボイラは、導かれる排ガスに偏流が生じていると複数の伝熱管での熱回収が不安定となり、その結果ボイラ性能が不安定となる。ここで、ガスタービンと排熱回収ボイラをつなぐダクト長を、十分な長さにすれば偏流の影響を抑えることができる。しかし、現状では、プラントのレイアウト上の制約からダクト長を偏流の影響を抑える十分な長さまで確保できない場合が多い。   In the exhaust heat recovery boiler, if there is a drift in the exhaust gas to be guided, heat recovery in the plurality of heat transfer tubes becomes unstable, and as a result, the boiler performance becomes unstable. Here, if the length of the duct connecting the gas turbine and the exhaust heat recovery boiler is set to a sufficient length, the influence of drift can be suppressed. However, at present, there are many cases where the duct length cannot be secured to a sufficient length to suppress the influence of the drift due to constraints on the layout of the plant.

そこで、特許文献1に記載の先行技術では、整流板を排ガスが流れる流路の断面全域に配置し、この整流板によって排ガスを整流させて下流の排熱回収ボイラへ導いている。   Therefore, in the prior art described in Patent Document 1, the rectifying plate is arranged over the entire cross section of the flow path through which the exhaust gas flows, and the exhaust gas is rectified by the rectifying plate and led to the downstream exhaust heat recovery boiler.

実開平6−6901号公報Japanese Utility Model Publication No. 6-6901

しかしながら、近年、ガスタービンの高出力化に伴って排ガスの流量が増大し、排ガスの流速も大きくなっている。このような状況で整流板を排ガスが流れる流路の断面全域に配置すると、排ガスによる負荷が大きくなり、その大きな負荷に耐えられる設計が求められる結果、その条件を満たそうとするとコストアップにつながっていた。   However, in recent years, the flow rate of exhaust gas has increased and the flow rate of exhaust gas has increased as the output of gas turbines has increased. If the rectifying plate is placed in the entire cross-section of the flow path through which the exhaust gas flows in such a situation, the load due to the exhaust gas becomes large, and a design that can withstand the large load is required. It was.

そこで、本発明は、排ガスによる負荷を低減し得る排ガスの整流構造、この整流構造を備えた排熱回収ボイラ及び整流方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide an exhaust gas rectifying structure capable of reducing a load caused by exhaust gas, an exhaust heat recovery boiler including the rectifying structure, and a rectifying method.

本発明は、ガスタービンからの排ガスを整流体によって整流して排熱回収ボイラの伝熱管群へ導く排ガスの整流構造において、前記整流体は、配置位置における排ガスの流路断面の大きさよりも小さく、前記配置位置における排ガスの流路断面を流れる排ガスのうち少なくとも最大流速部分を整流する位置に配置されたことを特徴としている。   The present invention provides an exhaust gas rectifying structure that rectifies exhaust gas from a gas turbine by a rectifier and guides the exhaust gas to a heat transfer tube group of an exhaust heat recovery boiler, wherein the rectifier is smaller than a size of a cross section of the exhaust gas in the arrangement position. In the exhaust gas flowing through the cross section of the exhaust gas at the arrangement position, the exhaust gas is arranged at a position where at least the maximum flow velocity portion is rectified.

前記整流体は、その中心が排ガスの最大流速部分となるような位置に配置されていることが好ましい。   It is preferable that the rectifying body is disposed at a position such that the center thereof is the maximum flow velocity portion of the exhaust gas.

前記整流体は、大きさの異なる複数の整流体を備え、前記複数の整流体は、排ガスの流れ方向に沿って配置されるとともに、高さ及び幅が下流に向かって大きくなるように配置することができる。   The rectifier includes a plurality of rectifiers having different sizes, and the plurality of rectifiers are arranged along a flow direction of the exhaust gas, and are arranged so that a height and a width increase toward a downstream side. be able to.

前記整流体は、大きさの異なる複数の整流体を備え、前記複数の整流体は、排ガスの流れ方向に沿って配置されるとともに、排ガスの流れ方向に沿って視た際に排ガスの最大流速部分を中心に外側へ向かうほど重なり部分が減少するように配置することができる。   The rectifier includes a plurality of rectifiers of different sizes, and the plurality of rectifiers are arranged along the flow direction of the exhaust gas, and the maximum flow velocity of the exhaust gas when viewed along the flow direction of the exhaust gas It can arrange | position so that an overlapping part may decrease, so that it goes outside centering on a part.

排熱回収ボイラは、前記排ガスの整流構造を備えることが好ましい。   The exhaust heat recovery boiler preferably includes the exhaust gas rectifying structure.

ガスタービンからの排ガスを整流体によって整流して排熱回収ボイラの伝熱管群へ導く排ガスの整流方法において、排ガスは最大流速部分を含む一部が整流体によって整流され残部が整流体を介さずに下流に流されることを特徴としている。   In the exhaust gas rectification method that rectifies the exhaust gas from the gas turbine by the rectifier and leads it to the heat transfer tube group of the exhaust heat recovery boiler, the exhaust gas is partially rectified by the rectifier and the remainder does not go through the rectifier. It is characterized by being flowed downstream.

本発明の排ガスの整流構造、この整流構造を備えた排熱回収ボイラ及び整流方法によれば、排ガスによる負荷を低減できる。   According to the exhaust gas rectifying structure, the exhaust heat recovery boiler including the rectifying structure, and the rectifying method of the present invention, the load due to the exhaust gas can be reduced.

(A)は、本発明の整流構造の実施例一を示す側面図である。(B)は、図1(A)のIB−IB矢視図である。(A) is a side view showing an embodiment 1 of the rectifying structure of the present invention. (B) is an IB-IB arrow line view of Drawing 1 (A). (A)は、本発明の整流構造の実施例二を示す側面図である。(B)は、図2(A)のIIB−IIB矢視図である。(A) is a side view showing a second embodiment of the rectifying structure of the present invention. (B) is the IIB-IIB arrow directional view of FIG. 2 (A).

以下、本発明を実施するための形態の例一(以下、実施例一と略称する)を、図1を参照しながら説明する。図1(A)は、本発明の整流構造の実施例一を示す側面図である。図1(B)は、図1(A)のIB−IB矢視図であり、実施例一の整流構造を上流側から視た様子を示す正面図である。   Hereinafter, an example of an embodiment for carrying out the present invention (hereinafter abbreviated as Example 1) will be described with reference to FIG. FIG. 1A is a side view showing a first embodiment of the rectifying structure of the present invention. FIG. 1B is a IB-IB arrow view of FIG. 1A, and is a front view showing a state where the rectifying structure of the first embodiment is viewed from the upstream side.

ガスタービン1は、燃焼ガスで回転させられ、軸方向に対して500℃以上である高温の燃焼排気ガス(以下、排ガスと略称する)を排出する。ガスタービン1は、例えば、排ガスの流速が100(m/s)を超える高出力のガスタービンである。排ガスは、直進性を有した旋回流であり、旋回中心部分が最も流速が早く、旋回中心から離れるほど流速が遅くなっている。   The gas turbine 1 is rotated by combustion gas, and discharges high-temperature combustion exhaust gas (hereinafter abbreviated as exhaust gas) that is 500 ° C. or higher with respect to the axial direction. The gas turbine 1 is, for example, a high-power gas turbine in which the exhaust gas flow velocity exceeds 100 (m / s). The exhaust gas is a swirl flow having straightness, and the flow velocity is the fastest at the swivel center portion, and the flow velocity is slowed away from the swivel center.

ダクト3は、ガスタービン1からの排ガスを排熱回収ボイラ2へ導く流路である。そして、その形状は、流路断面積がガスタービン1から排熱回収ボイラ2へ向かうに従って大きくなる末広がりの形状となっている。また、ダクト3の入口は、ダクト3の幅方向の中央の位置であって、高さ方向の中央から下に外れた位置に形成されている。ダクト3の入口は、その開口中心がガスタービン1の軸線を通るような位置に形成されている。   The duct 3 is a flow path that guides exhaust gas from the gas turbine 1 to the exhaust heat recovery boiler 2. The shape of the flow path is such that the cross-sectional area of the flow path increases from the gas turbine 1 toward the exhaust heat recovery boiler 2. In addition, the entrance of the duct 3 is formed at a position in the center in the width direction of the duct 3 and deviated downward from the center in the height direction. The inlet of the duct 3 is formed at a position such that the opening center passes through the axis of the gas turbine 1.

排熱回収ボイラ2は、ボイラケーシング5を備えている。このボイラケーシング5は、一端側がダクト3の出口に接続され、他端側が図示しないダクト又は煙突に接続される。このボイラケーシング5は、ダクト3とで排ガスの流路6を構成する。   The exhaust heat recovery boiler 2 includes a boiler casing 5. The boiler casing 5 has one end connected to the outlet of the duct 3 and the other end connected to a duct or chimney not shown. The boiler casing 5 forms an exhaust gas flow path 6 with the duct 3.

そして、このボイラケーシング5の内部には、複数の伝熱管がボイラケーシング5から吊られて伝熱管群7を構成する。この伝熱管群7は、ダクト3を介して導かれたガスタービン1からの高温の排ガスと熱交換して蒸気を発生させる。伝熱管群7と熱交換して温度が下がった排ガスは、煙突から大気へ放出される。   In the boiler casing 5, a plurality of heat transfer tubes are suspended from the boiler casing 5 to constitute a heat transfer tube group 7. The heat transfer tube group 7 generates steam by exchanging heat with the high-temperature exhaust gas from the gas turbine 1 guided through the duct 3. The exhaust gas whose temperature has been reduced by heat exchange with the heat transfer tube group 7 is discharged from the chimney to the atmosphere.

次に、整流体8を説明する。ダクト3を流れるガスタービン1からの排ガスは、ガスタービン1から排出された時点で一様流でなく、更にダクト形状の影響を受けて偏流が生じている。整流体8は、このような偏流が生じた排ガスを整流させる矩形状の板であり、例えば、整流面8aに対して複数の貫通孔が形成された多孔板である。この整流面8aは、偏流が生じた排ガスを複数の貫通孔で整流する。   Next, the rectifier 8 will be described. The exhaust gas from the gas turbine 1 flowing through the duct 3 is not uniform when it is discharged from the gas turbine 1, and further drifted due to the influence of the duct shape. The rectifying body 8 is a rectangular plate that rectifies the exhaust gas in which such drift has occurred, and is, for example, a perforated plate in which a plurality of through holes are formed in the rectifying surface 8a. The rectifying surface 8a rectifies the exhaust gas in which the drift has occurred with a plurality of through holes.

整流体8は、鉄骨の枠組み10に取り付けられてダクト3の内部に配置される。この整流体8は、配置位置における排ガスの流路6の断面の大きさよりも小さくなっており、整流面8aがダクト3の流路断面の一部を覆うように配置される。   The rectifying body 8 is attached to the steel frame 10 and disposed inside the duct 3. The rectifying body 8 is smaller than the cross-sectional size of the exhaust gas flow path 6 at the arrangement position, and is arranged so that the rectifying surface 8 a covers a part of the flow path cross section of the duct 3.

実施例一では、排ガスの流路6における幅方向の両側、高さ方向の上下における四つの領域に整流体8が配置されない無抵抗の領域を作り、その領域では、排ガスを、整流体8を通さずにそのまま下流の伝熱管群7へ流している。   In Example 1, non-resistance regions in which the rectifier 8 is not disposed are formed in four regions on both sides in the width direction and in the upper and lower sides of the exhaust gas flow path 6. Without passing, it flows directly to the downstream heat transfer tube group 7.

ここで、ダクト3の流路断面の一部とは、例えば、整流体8が配置される位置に流路全域を覆う仮想板を配置した際に、この仮想板に最大抗力が発生する箇所を中心として最大抗力の10%以上の抗力を受ける範囲のことをいう。   Here, a part of the cross section of the flow path of the duct 3 is, for example, a place where the maximum drag is generated in the virtual plate when the virtual plate covering the entire flow path is disposed at the position where the rectifier 8 is disposed. The center is the range that receives a drag of 10% or more of the maximum drag.

整流体8は、配置位置における排ガスの流路6の断面を流れる排ガスのうち少なくとも最大流速部分を整流する位置に配置される。そして、この整流体8は、その中心が排ガスの最大流速部分に位置するように配置されていることが好ましい。ここで、排ガスの最大流速部分は、ガスタービン1の軸線上に位置している。   The rectifier 8 is disposed at a position where at least the maximum flow velocity portion of the exhaust gas flowing through the cross section of the exhaust gas flow path 6 at the arrangement position is rectified. And it is preferable that this rectification | straightening body 8 is arrange | positioned so that the center may be located in the maximum flow velocity part of waste gas. Here, the maximum flow velocity portion of the exhaust gas is located on the axis of the gas turbine 1.

実施例一の排ガスの整流構造によれば、整流体8は、配置位置における排ガスの流路6の断面の大きさよりも小さくなっている。また、整流体8は、配置位置における排ガスの流路6の断面を流れる排ガスのうち少なくとも最大流速部分を整流する位置に配置されている。したがって、整流体8の配置位置における排ガスの流路6の断面を流れる排ガスは、最大流速部分を含む一部の排ガスが整流体8によって整流され、残部の排ガスが整流体8を介さずにそのまま下流に流される。   According to the exhaust gas rectifying structure of the first embodiment, the rectifier 8 is smaller than the cross-sectional size of the exhaust gas flow path 6 at the arrangement position. The rectifying body 8 is disposed at a position for rectifying at least the maximum flow velocity portion of the exhaust gas flowing through the cross section of the exhaust gas flow path 6 at the arrangement position. Therefore, in the exhaust gas flowing through the cross section of the exhaust gas flow path 6 at the position where the rectifying body 8 is disposed, a part of the exhaust gas including the maximum flow velocity portion is rectified by the rectifying body 8, and the remaining exhaust gas is not passed through the rectifying body 8. Flowed downstream.

これによって、実施例一の排ガスの整流構造は、先行技術のダクト3の流路断面全域に多孔板を配置して全ての排ガスを整流する構成と比較し、排ガスによる負荷を低減でき、また、ガスタービン1の背圧を低下できる。   Thereby, the exhaust gas rectifying structure of Example 1 can reduce the load due to the exhaust gas as compared with the configuration in which a perforated plate is arranged in the entire flow path cross section of the duct 3 of the prior art to rectify all the exhaust gas, The back pressure of the gas turbine 1 can be reduced.

また、実施例一の排ガスの整流構造によれば、整流体8は、その中心が排ガスの最大流速部分となるような位置に配置されている。ここで、排ガスは、最大流速部分から離れるに従って流速が低下する旋回流である。このため、整流体8は、排ガスの偏流を効率良く低減できる。   Further, according to the exhaust gas rectifying structure of the first embodiment, the rectifying body 8 is arranged at a position such that the center thereof is the maximum flow velocity portion of the exhaust gas. Here, the exhaust gas is a swirling flow whose flow velocity decreases as the distance from the maximum flow velocity portion increases. For this reason, the rectifier 8 can efficiently reduce the drift of the exhaust gas.

また、実施例一の排ガスの整流構造を備えた排熱回収ボイラ2によれば、整流体8を有した排ガスの整流構造によって排ガスが整流されるので、伝熱管群7での熱回収が安定し、その結果、ボイラ性能が安定する。   Further, according to the exhaust heat recovery boiler 2 having the exhaust gas rectifying structure of the first embodiment, the exhaust gas is rectified by the exhaust gas rectifying structure having the rectifier 8, so that heat recovery in the heat transfer tube group 7 is stable. As a result, the boiler performance is stabilized.

また、実施例一の排ガスの整流方法によれば、排ガスは、最大流速部分を含む一部が整流体8によって整流され残部が整流体8を介さずに下流に流される。これによって、実施例一の排ガスの整流方法は、先行技術のダクト3の流路断面全域に多孔板を配置して全ての排ガスを整流する構成と比較し、排ガスによる負荷を低減でき、また、ガスタービン1の背圧を低下できる。   Further, according to the exhaust gas rectification method of the first embodiment, a part of the exhaust gas including the maximum flow velocity portion is rectified by the rectifier 8, and the remaining part flows downstream without the rectifier 8. Thereby, the exhaust gas rectification method of Example 1 can reduce the load due to the exhaust gas as compared with the configuration in which the perforated plate is arranged in the entire flow path cross-section of the duct 3 of the prior art to rectify all the exhaust gas, The back pressure of the gas turbine 1 can be reduced.

以下、本発明を実施するための形態の例二(以下、実施例二と略称する)を、図2を参照しながら説明する。図2(A)は、本発明の排ガスの整流構造における実施例二を示す側面図である。図2(B)は、図2(A)のIIB−IIB矢視図であり、実施例二の整流構造を上流側から視た様子を示す正面図である。   Hereinafter, Example 2 (hereinafter abbreviated as Example 2) of an embodiment for carrying out the present invention will be described with reference to FIG. FIG. 2A is a side view showing Example 2 in the exhaust gas rectifying structure of the present invention. FIG. 2B is a front view of the rectifying structure of Example 2 as viewed from the upstream side, as viewed from the arrow IIB-IIB in FIG.

なお、実施例二の排ガスの整流構造は、補助整流体18を除き、その基本的構成が上記実施例一の排ガスの整流構造と同様であるため、上記実施例一と同様の構成には同一の符号を付し、上記実施例一の説明と重複することになる説明を省略する。   The exhaust gas rectifying structure of Example 2 is the same as that of Example 1 because the basic configuration of the exhaust gas rectifying structure is the same as that of Example 1 except for the auxiliary rectifier 18. The description which overlaps with description of the said Example 1 is abbreviate | omitted.

実施例二の排ガスの整流構造は、整流体8と、この整流体8よりも小さい補助整流体18を備えている。この大きさの異なる整流体8と補助整流体18は、例えば、排ガスに抵抗を発生させることで排ガスを整流させるメッシュである。   The exhaust gas rectifying structure according to the second embodiment includes a rectifying body 8 and an auxiliary rectifying body 18 smaller than the rectifying body 8. The rectifier 8 and the auxiliary rectifier 18 having different sizes are, for example, meshes that rectify the exhaust gas by generating resistance in the exhaust gas.

そして、整流体8と補助整流体18は、排ガスの流れ方向に沿って整流体8が補助整流体18よりも下流側に配置されるとともに、排ガスの流れ方向に沿って視た際に排ガスの最大流速部分を含む部分で整流体8と補助整流体18が重なり合い、中心から外側へ外れた位置では重ならないように配置されている。   The rectifier 8 and the auxiliary rectifier 18 are disposed on the downstream side of the auxiliary rectifier 18 along the flow direction of the exhaust gas, and when the rectifier 8 and the auxiliary rectifier 18 are viewed along the flow direction of the exhaust gas, The rectifying body 8 and the auxiliary rectifying body 18 overlap each other at a portion including the maximum flow velocity portion, and are arranged so as not to overlap at a position deviating from the center to the outside.

実施例二では、例えば、整流体8が配置される位置に、流路全域を覆う仮想板を配置した際に、この仮想板に最大抗力が発生する箇所を中心として最大抗力の70%以上の抗力が発生する範囲において整流体8と補助整流体18が重なるように配置し、最大抗力の25%以上の抗力、且つ、最大抗力の70%未満の抗力が発生する範囲を、整流体8のみで整流するように配置する。   In Example 2, for example, when a virtual plate that covers the entire flow path is disposed at a position where the rectifying body 8 is disposed, 70% or more of the maximum drag is centered on a location where the maximum drag is generated on the virtual plate. The rectifier 8 and the auxiliary rectifier 18 are arranged so as to overlap in the range where the drag is generated, and the range where the drag of 25% or more of the maximum drag and less than 70% of the maximum drag is generated is only the rectifier 8. It arranges so that it may rectify with.

実施例二の排ガスの整流構造によれば、整流体8と補助整流体18は、排ガスの流れ方向に沿って配置されるとともに、高さ及び幅が下流に向かって大きくなる。   According to the exhaust gas rectifying structure of the second embodiment, the rectifier 8 and the auxiliary rectifier 18 are arranged along the flow direction of the exhaust gas, and the height and width increase toward the downstream.

すなわち、実施例二の排ガスの整流構造は、排ガスの最大流速部分を整流体8と補助整流体18で整流し、最大流速部分よりも流速が遅くなる部分を下流側に配置された整流体8のみで整流する。このため、実施例一と比較して排ガスの流速に応じて効率的に排ガスを整流できる。   That is, in the exhaust gas rectifying structure of Example 2, the maximum flow velocity portion of the exhaust gas is rectified by the rectifier 8 and the auxiliary rectifier 18, and the portion where the flow velocity is slower than the maximum flow velocity portion is arranged on the downstream side. Just rectify. For this reason, compared with Example 1, exhaust gas can be efficiently rectified according to the flow rate of exhaust gas.

なお、本発明の排ガスの整流構造、この整流構造を備えた排熱回収ボイラ及び整流方法は、上述の実施例にのみ限定されない。例えば、整流体8がダクト3の内部に配置される構成で説明したがこれに限定されない。整流体8は、ガスタービン1と伝熱管群7の間における流路であれば何処でもよく、例えば、ボイラケーシング5に配置しても良い。   The exhaust gas rectifying structure, the exhaust heat recovery boiler including the rectifying structure, and the rectifying method of the present invention are not limited to the above-described embodiments. For example, although the description has been given of the configuration in which the rectifying body 8 is disposed inside the duct 3, the present invention is not limited to this. The rectifier 8 may be anywhere as long as it is a flow path between the gas turbine 1 and the heat transfer tube group 7. For example, the rectifier 8 may be disposed in the boiler casing 5.

また、本発明の排ガスの整流構造、この整流構造を備えた排熱回収ボイラ及び整流方法では、ダクト3の入口がダクト3の幅方向の中央の位置であって高さ方向の中央から下に外れた位置に形成され、ダクト3の入口の開口中心がガスタービン1の軸線を通るような位置に形成されている構成で説明したがこれに限定されない。例えば、ダクト3の入口は、ダクト3の幅方向と高さ方向における中央位置に形成されていたり、幅方向の左右に外れていたり、高さ方向の上に外れていても良い。また、ダクト3の入口の開口中心は、ガスタービン1の軸線から外れていても良い。   Further, in the exhaust gas rectifying structure of the present invention, the exhaust heat recovery boiler and the rectifying method provided with the rectifying structure, the inlet of the duct 3 is located at the center in the width direction of the duct 3 and downward from the center in the height direction. Although it demonstrated in the structure formed in the position which deviated and the opening center of the inlet_port | entrance of the duct 3 passes along the axis line of the gas turbine 1, it is not limited to this. For example, the entrance of the duct 3 may be formed at a central position in the width direction and the height direction of the duct 3, may be off to the left or right in the width direction, or may be off on the height direction. Further, the opening center of the inlet of the duct 3 may be off the axis of the gas turbine 1.

また、本発明の排ガスの整流構造、この整流構造を備えた排熱回収ボイラ及び整流方法では、排ガスの流路6における幅方向の両側、高さ方向の上下のそれぞれに整流体8が配置されない領域を作り、その領域では、排ガスを、整流体8を通さずにそのまま下流の伝熱管群7へ流す構成で説明したがこの構成に限定されない。整流体8が配置されない領域は、幅方向の左右両端、高さ方向の上下の四つのうち少なくとも一つの領域が排ガスをそのまま下流に流すようになっていれば良い。   Further, in the exhaust gas rectifying structure of the present invention, the exhaust heat recovery boiler and the rectifying method provided with the rectifying structure, the rectifying bodies 8 are not disposed on both sides of the exhaust gas flow path 6 in the width direction and above and below in the height direction. Although the region has been described and the exhaust gas flows directly to the downstream heat transfer tube group 7 without passing through the rectifier 8 in that region, the present invention is not limited to this configuration. The region where the rectifying body 8 is not disposed may be such that at least one of the left and right ends in the width direction and the upper and lower portions in the height direction flow the exhaust gas downstream as it is.

また、実施例二の排ガスの整流構造では、整流体8と補助整流体18の二つで説明したがこれに限定されない。例えば、整流体は三つ以上で、この三つ以上の整流体が、排ガスの流れ方向に沿って下流側ほど大きな整流体が配置されるとともに、排ガスの流れ方向に沿って視た際に排ガスの最大流速部分を中心に外側へ向かうほど重なり部分が減少するように配置する構成でも良い。   In the exhaust gas rectifying structure of the second embodiment, the rectifying body 8 and the auxiliary rectifying body 18 have been described. However, the present invention is not limited to this. For example, there are three or more rectifiers, and the three or more rectifiers are arranged such that a larger rectifier is arranged on the downstream side along the flow direction of the exhaust gas, and the exhaust gas when viewed along the flow direction of the exhaust gas. A configuration may be adopted in which the overlapping portion decreases toward the outside with the maximum flow velocity portion as the center.

また、整流体について、実施例一の構成で多孔板を、実施例二の構成でメッシュを用いることを例示したがこれに限定されない。実施例一の構成でメッシュ、実施例二の構成で多孔板を用いても良い。   Moreover, about the rectifying body, although using the porous plate with the structure of Example 1 and using the mesh with the structure of Example 2 was illustrated, it is not limited to this. A mesh may be used in the configuration of Example 1, and a porous plate may be used in the configuration of Example 2.

また、実施例二の排ガスの整流構造、この整流構造を備えた排熱回収ボイラ及び整流方法では、整流体8と補助整流体18がともにメッシュであることを例示したがこれに限定されない。一方がメッシュで他方が多孔板であっても良い。   Further, in the exhaust gas rectifying structure of Example 2, the exhaust heat recovery boiler and the rectifying method provided with this rectifying structure, the rectifier 8 and the auxiliary rectifier 18 are both illustrated as meshes, but the present invention is not limited thereto. One may be a mesh and the other may be a perforated plate.

また、整流体の形状について、矩形を例示したがこれに限定されず、円形などであっても良い。実施例二の排ガスの整流構造、この整流構造を備えた排熱回収ボイラ及び整流方法において、整流体の形状が円形の場合は、径が下流に向かって大きくなる。   Moreover, although the rectangle was illustrated about the shape of the rectifier, it is not limited to this, A circle etc. may be sufficient. In the exhaust gas rectification structure of Example 2, the exhaust heat recovery boiler and the rectification method provided with this rectification structure, when the shape of the rectifier is circular, the diameter increases toward the downstream.

また、実施例二の排ガスの整流構造、この整流構造を備えた排熱回収ボイラ及び整流方法
において、大きさの異なる複数の整流体は、排ガスの流れ方向に沿って配置されるとともに、排ガスの流れ方向に沿って視た際に排ガスの最大流速部分を中心に外側へ向かうほど重なり部分が減少するように配置するようにしても良い。すなわち、排ガスの流れ方向に沿って、高さ及び幅が下流に向かって大きくなる配置に限らず、高さ及び幅が下流に向かって小さくなる配置でも良いし、大きさ順に整列されていなくても良い。このような配置によれば、排ガスの流路に合わせて柔軟な整流体の配置が可能となる。
Further, in the exhaust gas rectification structure of Example 2, the exhaust heat recovery boiler and the rectification method provided with the rectification structure, the plurality of rectifiers having different sizes are arranged along the flow direction of the exhaust gas, You may make it arrange | position so that an overlap part may reduce, so that it goes outside centering on the maximum flow velocity part of waste gas when it sees along a flow direction. That is, the arrangement is not limited to the arrangement in which the height and width increase toward the downstream side along the flow direction of the exhaust gas, and the arrangement may be such that the height and width decrease toward the downstream, and are not arranged in order of size. Also good. According to such an arrangement, a flexible rectifying body can be arranged in accordance with the flow path of the exhaust gas.

本発明の排ガスの整流構造、この整流構造を備えた排熱回収ボイラ及び整流方法は、本発明の要旨を逸脱しない範囲内において種々変更できる。   The exhaust gas rectifying structure, the exhaust heat recovery boiler including the rectifying structure, and the rectifying method of the present invention can be variously modified without departing from the gist of the present invention.

1 ガスタービン
2 排熱回収ボイラ
6 排ガスの流路
7 伝熱管群
8 整流体
18 補助整流体
DESCRIPTION OF SYMBOLS 1 Gas turbine 2 Exhaust heat recovery boiler 6 Exhaust gas flow path 7 Heat transfer tube group 8 Rectifier 18 Auxiliary rectifier

Claims (6)

ガスタービンからの排ガスを整流体によって整流して排熱回収ボイラの伝熱管群へ導く排ガスの整流構造において、
前記整流体は、配置位置における排ガスの流路断面の大きさよりも小さく、前記配置位置における排ガスの流路断面を流れる排ガスのうち少なくとも最大流速部分を整流する位置に配置されたことを特徴とする排ガスの整流構造。
In the exhaust gas rectification structure that rectifies the exhaust gas from the gas turbine by the rectifier and leads it to the heat transfer tube group of the exhaust heat recovery boiler,
The rectifying body is smaller than a size of a flow passage cross section of the exhaust gas at the arrangement position, and is arranged at a position for rectifying at least a maximum flow velocity portion of the exhaust gas flowing through the flow passage cross section of the exhaust gas at the arrangement position. Exhaust gas rectification structure.
前記整流体は、中心が排ガスの最大流速部分となるような位置に配置されていることを特徴とする請求項1に記載の排ガスの整流構造。   The exhaust gas rectifying structure according to claim 1, wherein the rectifying body is disposed at a position such that a center thereof is a maximum flow velocity portion of the exhaust gas. 前記整流体は、大きさの異なる複数の整流体を備え、
前記複数の整流体は、排ガスの流れ方向に沿って配置されるとともに、高さ及び幅が下流に向かって大きくなるように配置されたことを特徴とする請求項2に記載の排ガスの整流構造。
The rectifier comprises a plurality of rectifiers of different sizes,
The exhaust gas rectifying structure according to claim 2, wherein the plurality of rectifying bodies are arranged along a flow direction of the exhaust gas, and are arranged so that a height and a width thereof increase toward a downstream side. .
前記整流体は、大きさの異なる複数の整流体を備え、
前記複数の整流体は、排ガスの流れ方向に沿って配置されるとともに、排ガスの流れ方向に沿って視た際に排ガスの最大流速部分を中心に外側へ向かうほど重なり部分が減少するように配置されたことを特徴とする請求項2に記載の排ガスの整流構造。
The rectifier comprises a plurality of rectifiers of different sizes,
The plurality of rectifiers are arranged along the flow direction of the exhaust gas, and arranged so that the overlapping portion decreases toward the outside centering on the maximum flow velocity portion of the exhaust gas when viewed along the flow direction of the exhaust gas. The exhaust gas rectifying structure according to claim 2, wherein
請求項1〜4のいずれか一項に記載の前記排ガスの整流構造を備えたことを特徴とする排熱回収ボイラ。   An exhaust heat recovery boiler comprising the exhaust gas rectifying structure according to any one of claims 1 to 4. ガスタービンからの排ガスを整流体によって整流して排熱回収ボイラの伝熱管群へ導く排ガスの整流方法において、排ガスは最大流速部分を含む一部が整流体によって整流され残部が整流体を介さずに下流に流されることを特徴とする排ガスの整流方法。   In the exhaust gas rectification method that rectifies the exhaust gas from the gas turbine by the rectifier and leads it to the heat transfer tube group of the exhaust heat recovery boiler, the exhaust gas is partially rectified by the rectifier and the remainder does not go through the rectifier. An exhaust gas rectification method, wherein the exhaust gas is caused to flow downstream.
JP2014049690A 2014-03-13 2014-03-13 Exhaust gas rectification structure, exhaust heat recovery boiler equipped with this rectification structure, and rectification method Active JP6296233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014049690A JP6296233B2 (en) 2014-03-13 2014-03-13 Exhaust gas rectification structure, exhaust heat recovery boiler equipped with this rectification structure, and rectification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014049690A JP6296233B2 (en) 2014-03-13 2014-03-13 Exhaust gas rectification structure, exhaust heat recovery boiler equipped with this rectification structure, and rectification method

Publications (2)

Publication Number Publication Date
JP2015175525A true JP2015175525A (en) 2015-10-05
JP6296233B2 JP6296233B2 (en) 2018-03-20

Family

ID=54254877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014049690A Active JP6296233B2 (en) 2014-03-13 2014-03-13 Exhaust gas rectification structure, exhaust heat recovery boiler equipped with this rectification structure, and rectification method

Country Status (1)

Country Link
JP (1) JP6296233B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020003192A (en) * 2018-06-29 2020-01-09 三菱日立パワーシステムズ株式会社 Exhaust heat recovery boiler

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185391U (en) * 1986-05-19 1987-11-25
JPH0425911U (en) * 1990-06-26 1992-03-02
JPH066901U (en) * 1992-06-17 1994-01-28 石川島播磨重工業株式会社 Gas uneven flow prevention device for exhaust heat recovery boiler
JP2000304201A (en) * 1999-04-21 2000-11-02 Babcock Hitachi Kk Coal fired boiler
US20070044475A1 (en) * 2005-08-23 2007-03-01 Stefan Leser Exhaust gas guide of a gas turbine and method for mixing the exhaust gas of the gas turbine
JP2010216749A (en) * 2009-03-18 2010-09-30 Mitsubishi Heavy Ind Ltd Heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185391U (en) * 1986-05-19 1987-11-25
JPH0425911U (en) * 1990-06-26 1992-03-02
JPH066901U (en) * 1992-06-17 1994-01-28 石川島播磨重工業株式会社 Gas uneven flow prevention device for exhaust heat recovery boiler
JP2000304201A (en) * 1999-04-21 2000-11-02 Babcock Hitachi Kk Coal fired boiler
US20070044475A1 (en) * 2005-08-23 2007-03-01 Stefan Leser Exhaust gas guide of a gas turbine and method for mixing the exhaust gas of the gas turbine
JP2010216749A (en) * 2009-03-18 2010-09-30 Mitsubishi Heavy Ind Ltd Heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020003192A (en) * 2018-06-29 2020-01-09 三菱日立パワーシステムズ株式会社 Exhaust heat recovery boiler
JP7090492B2 (en) 2018-06-29 2022-06-24 三菱重工業株式会社 Exhaust heat recovery boiler

Also Published As

Publication number Publication date
JP6296233B2 (en) 2018-03-20

Similar Documents

Publication Publication Date Title
KR101277001B1 (en) Heat exchanger
US9033656B2 (en) Exhaust system for steam turbine
CN103438746B (en) Elliptical tube H-shaped fin heat exchanger for waste heat recovery
JP2013142532A5 (en)
CN208244456U (en) A kind of guiding device
JP6296233B2 (en) Exhaust gas rectification structure, exhaust heat recovery boiler equipped with this rectification structure, and rectification method
CN104613809B (en) A kind of economizer built-in chimney flue exhaust gas volumn diverter control system
CN103306754A (en) Exhaust diffuser for a turbine
CN103968402A (en) Flue gas denitrification system of coal-fired unit
JP2013189883A (en) Thermal power generation plant
CN209348413U (en) The guiding device of SCR denitration device
CN214501310U (en) Water-cooled wall device and boiler
JP2015212584A (en) Exhaust heat recovery boiler
JP2005140370A (en) Exhaust heat recovery boiler
CN218479962U (en) Rectifying piece for volute of fan system, fan system and air draft equipment
JP5615325B2 (en) Exhaust gas economizer
CN202092105U (en) Sealing mechanism for sealing rear wall exhaust tube and suspension tube water-cooling wall penetrated by smoke deflecting corner water-cooling wall
CN204227444U (en) Flue gas low-temperature cooling blast deflector
US20190145284A1 (en) Exhaust channel of microturbine engine
CN203687012U (en) Steam bypass structure of sulphuric acid production high temperature superheater
CN203797683U (en) Flue gas denitration system of coal-fired unit
TWI755567B (en) Denitrification device
JPH066901U (en) Gas uneven flow prevention device for exhaust heat recovery boiler
CN109870049B (en) Flow stabilizing mechanism in blast furnace gas heat exchanger
JP6356999B2 (en) Waste heat recovery boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180206

R151 Written notification of patent or utility model registration

Ref document number: 6296233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151