JP2015172846A - 画像処理装置、機器制御システム、および画像処理プログラム - Google Patents

画像処理装置、機器制御システム、および画像処理プログラム Download PDF

Info

Publication number
JP2015172846A
JP2015172846A JP2014048217A JP2014048217A JP2015172846A JP 2015172846 A JP2015172846 A JP 2015172846A JP 2014048217 A JP2014048217 A JP 2014048217A JP 2014048217 A JP2014048217 A JP 2014048217A JP 2015172846 A JP2015172846 A JP 2015172846A
Authority
JP
Japan
Prior art keywords
subject
distance
image
search range
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014048217A
Other languages
English (en)
Inventor
伊藤 雅彦
Masahiko Ito
雅彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2014048217A priority Critical patent/JP2015172846A/ja
Publication of JP2015172846A publication Critical patent/JP2015172846A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Image Analysis (AREA)

Abstract

【課題】物体の検出精度の向上を図ると共に、検出した物体の識別を可能とする。
【解決手段】デンス視差生成部12が、ステレオカメラ部1からのステレオ画像から、画素毎に距離情報を備えたデンス視差画像を生成する。ヒストグラム生成部15は、デンス視差画像上をx方向またはy方向に視差情報を投票することでヒストグラムを生成する。範囲決定部16は、ヒストグラムから、各距離に存在する立体物の探索範囲を決定する。識別部17は、決定された探索範囲のデンス視差画像を、決定された探索範囲の視差情報を閾値として用いて2値化する。そして、識別部17は、立体物の形状、白領域の割合、および白領域の重心の位置等から立体物を識別する。
【選択図】図2

Description

本発明は、画像処理装置、機器制御システム、および画像処理プログラムに関する。
近年、車載カメラで撮影された画像を用いて物体認識を行い、この物体認識結果に基づいて運転支援を行う運転支援システムが知られている。具体的には、車載カメラで撮影された画像から前方の障害物を認識し、自車両に対して衝突の危険性があるときに、自動的にブレーキ制御を行うAEBSが知られている。AEBSは、「Advanced Emergency Braking System(自動緊急ブレーキシステム)」の略記である。また、運転者がアクセル操作を行わなくても、予め設定された一定の走行速度で自動走行し、車載カメラで撮影された画像から前方に他の車両を認識した際に、走行速度を調整して車間距離を維持しながら自動走行を継続するACCSが知られている。ACCSは、「Adaptive Cruise Control System(アダプティブクルーズコントロールシステム)」の略記である。
このような運転支援システムの制御は、車載カメラで撮影された画像から、先行車両等の立体物を正確に検出する必要がある。特許文献1(特開2000−266539号公報)には、車間距離計測の確実性を向上させた車間距離計測装置が開示されている。この車間距離計測装置は、二つの車載カメラによるステレオ画像から距離画像(視差画像)を生成して先行車両の位置を検出する。また、車間距離計測装置は、検出した先行車両位置に、先行車両までの距離をもとに、先行車両の上下端を含む大きさの縦長のウインドウを複数設定する。また、車間距離計測装置は、複数のウインドウ内において、y座標毎の水平エッジのヒストグラムを求める。そして、車間距離計測装置は、エッジのヒストグラムから検出した先行車両上のエッジについて移動ベクトルを計測し、視差から求めた車間距離の変化と適合する方向および大きさの移動ベクトルを示すエッジだけを先行車両のエッジとして選択する。これにより、例えば歩道橋、白線、路面表示等の先行車両以外の強度の強い物体のエッジを誤検出することなく、確実に先行車両のエッジを検出できる。
しかし、特許文献1に開示されている車間距離計測装置は、ステレオ画像から生成したエッジベースの視差画像(物体のエッジ部分の視差情報を有する画像)を用いている。このため、物体の検出精度が低い問題があった。また、エッジベースの視差画像を用いることで物体(立体物)を検出できても、例えば車両,歩行者,標識等の、検出した物体の「識別」を行うことは困難であった。
本発明は、上述の課題に鑑みてなされたものであり、物体の検出精度の向上を図ると共に、検出した物体の識別を可能とする画像処理装置、機器制御システム、および画像処理プログラムの提供を目的とする。
本発明は、上述した課題を解決するための手段として、視点と被写体との間の距離を示す距離情報を画素毎に備えた距離画像から、被写体の探索範囲を決定する範囲決定部と、距離画像上の探索範囲内における被写体の形状から、被写体の識別を行う識別部とを有する。
本発明によれば、物体の検出精度の向上を図ることができるうえ、検出した物体の識別を可能とすることができるという効果を奏する。
図1は、実施の形態の立体物識別装置のハードウェア構成図である。 図2は、実施の形態の立体物識別装置の要部の機能ブロック図である。 図3は、デンスステレオマッチング処理を説明するための図である。 図4は、実施の形態の立体物識別装置のヒストグラム生成部により生成されるVマップおよびUマップを示す図である。 図5は、立体物と、Vマップ上のヒストグラムおよびUマップ上のヒストグラムとの関係を説明するための図である。 図6は、実施の形態の立体物認識装置において、Vマップを走査して探索範囲を決定する流れを示すフローチャートである。 図7は、実施の形態の立体物認識装置において、Uマップを走査して探索範囲を決定する流れを示すフローチャートである。 図8は、実施の形態の立体物認識装置における立体物の識別処理の流れを示すフローチャートである。 図9は、実施の形態の立体物認識装置の立体物の識別時において、デンス視差画像を2値化して生成された2値化画像を示す図である。
以下、本発明に係る画像処理装置、機器制御システム、および画像処理プログラムを適用した実施の形態となる立体物識別装置を、添付図面を参照しながら詳細に説明する。なお、以下、一例として、実施の形態となる立体物識別装置は、車両に設けられており、立体物の識別結果が、AEBSまたはACCS等の運転支援システムの制御に用いられることとして説明を行う。AEBSは、「Advanced Emergency Braking System(自動緊急ブレーキシステム)」の略記である。また、ACCSは、「Adaptive Cruise Control System(アダプティブクルーズコントロールシステム)」の略記である。
まず、図1に、実施の形態の立体物識別装置のハードウェア構成図を示す。この図1に示すように実施の形態の立体物識別装置は、ステレオカメラ部1、CPU2、ROM3、RAM4、HDD5、入出力I/F6、および通信I/F7を有している。CPUは、「Central Processing Unit」の略記である。ROMは、「Read Only Memory」の略記である。RAMは、「Random Access Memory」の略記である。HDDは、「Hard Disk Drive」の略記である。I/Fは、「interface(インターフェース)」の略記である。
ステレオカメラ部1〜通信I/F7は、それぞれバスライン8を介して相互に接続されている。HDD5には、後述するデンス視差画像(dense視差画像)内の立体物(被写体)を認識して識別する画像処理プログラムが記憶されている。なお、画像処理プログラムは、ROM3またはRAM4に記憶してもよい。CPU2は、HDD5に記憶されている画像処理プログラムに従って動作することで、立体物の識別処理を行う。
図2に、HDD5に記憶されている画像処理プログラムに従って動作することで実現されるCPU2の機能ブロック図を示す。この図2に示すように、CPU2は、補正部11、デンス視差生成部12、立体物認識ブロック13として機能する。また、立体物認識ブロック13としては、CPU2は、ヒストグラム生成部15、範囲決定部16、および識別部17として機能する。なお、補正部11、デンス視差生成部12、ヒストグラム生成部15、範囲決定部16、および識別部17は、全部または一部をハードウェアで形成してもよい。
図2に示すように、ステレオカメラ部1は、右カメラ部1aおよび左カメラ部1bを有する。各カメラ部1a,1bは、レンズ(図3の符号19aまたは符号19b)および画像センサ(図3の符号20aまたは符号20b)を備えている。画像センサとしては、例えばCCDイメージセンサまたはCMOSイメージセンサを用いることができる。CCDは、「Charge Coupled Device)」の略記である。また、CMOSは、「Complementary Metal-Oxide Semiconductor」の略記である。各カメラ部1a,1bは、例えば自車両の前方の被写体を撮像することで、それぞれ輝度画像(右輝度画像または左輝度画像)を生成し、補正部11に供給する。
補正部11は、レンズ(図3の符号19aまたは符号19b)の歪みの影響、および各カメラ部1a,1bの設置誤差の影響を各輝度画像から除去する補正等を行い、補正した各輝度画像をデンス視差生成部12に供給する。デンス視差生成部12においては、左右のカメラ部1a,1b間で歪みの差がない画像を用いて、以下に説明するデンスステレオマッチング処理を行うことが好ましい。このため、補正部11による上述の補正は、デンス視差生成部12の前段で行う。
デンス視差生成部12は、補正部11で歪み補正された左右の輝度画像間の画素のズレを算出するデンスステレオマッチング処理を行う。図3を用いてデンスステレオマッチング処理を説明する。この図3は、左右のカメラ部1a,1bで立体物RBを撮像している様子を示している。各カメラ部1a,1bは、レンズ19aまたはレンズ19bと、画像センサ20aまたは画像センサ20bとを備えている。各カメラ部1a,1bの焦点距離は「f」となっている。また、右カメラ部1aと左カメラ部1bとの間の距離(レンズ19aの中心とレンズ19bの中心との間の距離)は、「B」となっている。また、ステレオカメラ部1と立体物RBとの間の距離は、「Z」となっている。また、ステレオカメラ部1と立体物RBとの間の距離「Z」は、視点と被写体との間の距離となっている。
また、各カメラ部1a,1bは物理的に異なる位置から同じ立体物RBを撮像する。このため、右カメラ部1aで撮像された撮像画像GLと、左カメラ部1bで撮像された撮像画像GRとを見比べて分かるように、各撮像画像GL,GR間で画素ズレが発生する。この各撮像画像GL,GR間の各画素のズレ量を視差dとしている。デンス視差生成部12は、各カメラ部1a,1b間の距離Bと、焦点距離fをパラメータとして、「Z=B×(f/d)」の演算を行うことで、視差dをステレオカメラ部1と立体物RBとの間の距離Zに変換する。デンス視差生成部12は、このような演算を画素毎に行い、各画素の座標情報に、算出した各画素の距離情報(視差情報ともいう)を付加して出力する。各画素の座標情報および視差情報は、RAM4に書き込まれる。これにより、RAM4には、座標情報および視差情報を備えた各画素情報が画像のフレーム毎に記憶される。
なお、RAM4に書き込まれる1フレームの各画素情報としては、座標位置およびステレオカメラ部1から立体物の各画素に対応する位置までの距離が分かればよい。このため、例えば立体物に反射したレーダー波を受信するまでの時間で、立体物との間の距離を検出する、いわゆるレーダー測距を画素毎に行い、各画素の座標情報およびレーダー測距で得られた距離情報(=視差情報)を、画素情報としてRAM4に書き込んでもよい。
次に、ヒストグラム生成部15は、デンス視差生成部12で得た距離画像上をx方向またはy方向に視差情報を投票して生成した2次元視差ヒストグラム(以下、単にヒストグラムという)を用いて、各距離に存在する立体物の探索範囲を決定する。具体的には、ヒストグラム生成部15は、RAM4に書き込まれた各フレームの画像毎に、UマップまたはVマップと呼ばれるヒストグラムを生成する。図4に、ヒストグラムの一例を示す。図4の(a)の符号を付した図は、RAM4に書き込まれた各画素の視差情報の並びの一例を示している。また、図4の(b)の符号を付した図は、ヒストグラム生成部15が生成するVマップの一例を示している。また、図4の(c)の符号を付した図は、ヒストグラム生成部15が生成するUマップの一例を示している。
ヒストグラム生成部15は、Vマップを生成する場合、図4の(a)の符号を付した図に示す各視差情報をx方向(横方向=行方向)に走査し、同じ視差情報の数を、縦軸をy方向の位置、横軸を各行の同じ視差情報の数としたヒストグラムにマッピングする。
具体的には、図4の(a)の符号を付した図の例の場合、第1行目の視差情報は、それぞれ「3,2,1,2,3・・・」となっている。なお、「3,2,1,2,3・・・」等の各視差情報の値は、数字が大きいほど、遠い距離であることを示している。例えば、「3」の視差情報の距離は、「2」の視差情報の距離よりも遠い距離であることを示している。ヒストグラム生成部15は、図4の(b)の符号を付した図に示すように、0の視差情報は0個、1の視差情報は1個、2の視差情報は2個、3の視差情報は2個、4の視差情報は0個・・・であることを示す「0,1,2,2,0・・・」の値を、Vマップの第1行目に書き込む。
同様に、図4の(a)の符号を付した図の例の場合、第2行目の視差情報は、それぞれ「2,0,1,3,1・・・」となっている。このため、ヒストグラム生成部15は、図4の(b)の符号を付した図に示すように、0の視差情報は1個、1の視差情報は2個、2の視差情報は1個、3の視差情報は1個、4の視差情報は0個・・・であることを示す「1,2,1,1,0・・・」の値を、Vマップの第2行目に書き込む。
ヒストグラム生成部15は、このように、縦軸をy方向の位置、横軸を各行の同じ視差情報の数としたヒストグラム上に、各視差情報をx方向(横方向)に走査して得た同じ視差情報の数をマッピングしてVマップを生成する。
一方、ヒストグラム生成部15は、Uマップを生成する場合、図4の(a)の符号を付した図に示す各視差情報をy方向(縦方向=列方向)に走査し、同じ視差情報の数を、横軸をx方向の位置、縦軸を各列の同じ視差情報の数としたヒストグラムにマッピングする。
具体的には、図4の(a)の符号を付した図の例の場合、第1列目の視差情報は、それぞれ「3,2,3,2・・・」となっている。このため、ヒストグラム生成部15は、図4の(c)の符号を付した図に示すように、0の視差情報は0個、1の視差情報は0個、2の視差情報は2個、3の視差情報は2個、4の視差情報は0個・・・であることを示す「0,0,2,2,0・・・」の値を、Uマップの第1列目に書き込む。
同様に、図4の(a)の符号を付した図の例の場合、第2列目の視差情報は、それぞれ「2,0,2,4・・・」となっている。このため、ヒストグラム生成部15は、図4の(c)の符号を付した図に示すように、0の視差情報は0個、1の視差情報は0個、2の視差情報は2個、3の視差情報は0個、4の視差情報は1個・・・であることを示す「0,0,2,0,1・・・」の値を、Uマップの第2列目に書き込む。
ヒストグラム生成部15は、このように、横軸をx方向の位置、縦軸を各列の同じ視差情報の数としたヒストグラム上に、各視差情報をy方向(縦方向)に走査して得た同じ視差情報の数をマッピングしてUマップを生成する。
次に、範囲決定部16は、UマップおよびVマップを用いて、立体物が存在する画像上の領域を特定する。具体的には、範囲決定部16は、Vマップを用いて、各視差(各距離)における立体物の存在領域のy方向範囲を決定し、また、Uマップを用いて、各視差(各距離)における立体物の存在領域のx方向範囲を決定する。そして、範囲決定部16は、決定したy方向範囲およびx方向範囲から、各視差における、立体物の画像上の領域を特定する。
図5に、輝度画像に対応するVマップおよびUマップの一例を示す。図5の(a)の符号を付した図が輝度画像の一例である。図5の(b)の符号を付した図が、輝度画像に対応するVマップの一例である。図5の(c)の符号を付した図が、輝度画像に対応するUマップの一例である。図5の(a)の符号を付した図に示す輝度画像の場合、路上を走行する1台の先行車両を撮像した撮像画像の輝度画像である。この輝度画像において、道路の画像は、画像手前の距離が近い部分の面積が大きく、画像奥の距離が遠くなるに連れて、面積が小さくなる画像である。このため、Vマップ上には、道路のヒストグラムとして、図5の(b)の符号を付した図に示すように、距離が遠くなるに連れ、徐々にYの値が小さくなる、右下がりの直線状のヒストグラムが現れる。
これに対して、上述の輝度画像において、車両の位置は、道路上の同じ位置である。すなわち、道路上の車両までの距離は、同じ距離となっている。このため、Vマップ上には、車両のヒストグラムとして、図5の(b)の符号を付した図に示すように、道路のヒストグラムの所定の位置(この例の場合、d0の距離の位置)から徐々にyの値が増加する直線状のヒストグラムが現れる。この車両の直線の長さyB〜yTは、道路の路面からの車両の高さを示している。
一方、上述の輝度画像において、Uマップ上における道路上の車両のヒストグラムは、図5の(c)の符号を付した図に示すように、道路上の車両の位置(この例の場合、d0の距離の位置)から徐々にXの値が増加する直線状のヒストグラムが現れる。この車両の直線の長さxL〜xRは、道路上の車両の幅を示している。
このように、Vマップ上には輝度画像上の立体物の高さを示すヒストグラムが現れる。また、Uマップ上には、輝度画像上の立体物の幅を示すヒストグラムが現れる。範囲決定部16は、Vマップに現れた立体物の高さを示すヒストグラム、および、Uマップに現れた立体物の幅を示すヒストグラムで示される輝度画像上の領域を、立体物の存在領域として特定する。
図6のフローチャートに、範囲決定部16が、Vマップを用いて、各視差(各距離)における立体物の存在領域のy方向範囲を決定する動作の流れを示す。図6のフローチャートにおいては、Vマップにおける視差画像上のy座標位置での視差値dの出現回数を「V(d,y)」と表記している。また、視差値dの範囲は、{d=[10,300]}となっている(10〜300の範囲)。また、y方向画像サイズは、{y=[0,959]}となっている。すなわち、y方向画像サイズは、960となっている。また、視差値dにおけるy方向の探索範囲(sy,ey)をRy(d)={sy,ey}として示している。Ry(d)={sy,ey}の数式のうち、syは、Vマップ上における探索範囲の下端y座標である。また、eyは、Vマップ上における探索範囲の上端y座標である。また、syおよびeyの初期値は、共に「0」である。範囲決定部16は、例えば図4の(b)の符号を付した図に示した出現回数の値を、視差方向(y軸方向に対して直交する方向)に沿って走査することで、Vマップ上における立体物の存在領域を特定する。
範囲決定部16は、視差値dが10以上300以下の範囲内、かつ、y座標値が0行〜959行の範囲で、Vマップ上における立体物の存在領域を特定する。まず、範囲決定部16は、Vマップの0行目のy座標を走査し、ステップS1において、走査したy座標の視差値dの出現回数が10回以上か否か(「V(d,y)>10」の条件を満たすか否か)を判別する。一例ではあるが、視差値dの物体の平面部に位置する画素等が、この「V(d,y)>10」の条件を満たすこととなる。「V(d,y)>10」の条件を満たさない場合でも(ステップS1:No)、Vマップ上における探索範囲の下端y座標である可能性もある。このため、範囲決定部16は、ステップS8に処理を進め、「V(d,y)>10」の条件を満たさない視差値dが、Vマップ上における探索範囲の下端y座標の条件(sy=0)を満たすか否かを判別する。すなわち、このステップS8は、視差値dにおけるy方向の探索範囲下限値syの値が、初期値(0)であるか否かを確認している。例えば、初回処理時等に、Ry(d)が初期値を持っている場合に、この条件を満たすこととなる。
sy=0の条件を満たす場合(ステップS8:Yes)、範囲決定部16はステップS4に処理を進め、走査するy座標を1つインクリメントし(y+1)、ステップS5に処理を進める。ステップS5では、範囲決定部16が、走査するy座標を1つインクリメントすることで、y座標の探索範囲外となったか否かを判別する(y<960を満たすか否かを判別する)。走査するy座標を1つインクリメントしても、y座標の探索範囲内であると判別した場合(ステップS5:Yes)、範囲決定部16は、ステップS1に処理を戻す。そして、この例の場合、範囲決定部16は、ステップS1において、走査するVマップのy座標を0行目から1行目に移行し、視差値dの出現回数が10回以上か否か(「V(d,y)>10」の条件を満たすか否か)を判別する。これにより、ステップS8において、y方向の探索範囲の下端値が初期値(sy=0)であると判別される場合は(ステップS8:Yes)、y座標の値が上限の960となるまでの間(ステップS5)、走査するy座標が1つずつインクリメントされて移行し(ステップS4)、各行のy座標毎に、視差値dが「V(d,y)>10」の条件を満たすか否かが判別される。
次に、走査するy座標を1つインクリメントすることで、y座標の探索範囲外となった場合(ステップS5:No)、ステップS6に処理が進む。ステップS6では、範囲決定部16が、視差値dを、次の値に移行させ(d←d+1)、ステップS7に処理を進める。ステップS7では、範囲決定部16が、視差値dの値を、次の値に移行させることで、視差値dが上限値の300以下か否かを判別する(d<300)。視差値dが、300よりも大きな値となったものと判別した場合(ステップS7:No)、{d=[10,300]}の範囲の走査が完了したことを意味するため、範囲決定部16は、図6のフローチャートの全処理を終了する。これに対して、視差値dが300以下の値であると判別した場合(ステップS7:Yes)、範囲決定部16は、ステップS10に処理を進め、走査を行うy座標の行を0行目にリセットし(y←0)、処理をステップS1に戻す。
次に、ステップS8において、「V(d,y)>10」の条件を満たさない、出現回数が10回以下の視差値dの値が、探索範囲の下端値の初期値の条件(sy=0)も満たさないと判別した場合(ステップS8:No)、範囲決定部16は、ステップS6に処理を進める。範囲決定部16は、ステップS6において、視差値dを、次の値に移行させ(d←d+1)、ステップS7に処理を進める。ステップS7では、範囲決定部16が、視差値dの値を、次の値に移行させることで、視差値dが上限値の300以下か否かを判別する(d<300)。視差値dが、300よりも大きな値となったものと判別した場合(ステップS7:No)、{d=[10,300]}の範囲の走査が完了したことを意味するため、範囲決定部16は、図6のフローチャートの全処理を終了する。これに対して、視差値dが300以下の値であると判別した場合(ステップS7:Yes)、範囲決定部16は、ステップS10に処理を進め、走査を行うy座標の行を0行目にリセットし(y←0)、処理をステップS1に戻す。
一方、ステップS1において、0行目のy座標における視差値dの出現回数が、「V(d,y)>10」の条件を満たすものと判別した場合、範囲決定部16は、ステップS2に処理を進める。ステップS2では、範囲決定部16が、「V(d,y)>10」の条件を満たす0行目のy座標における視差値dの出現回数が、立体物のy座標の探索範囲における下端y座標の初期値の条件(sy=0)も満たすか否かを判別する。「sy=0」の条件を満たすものと判別した場合(ステップS2:Yes)、範囲決定部16は、処理をステップS3に進める。また、「sy=0」の条件を満たさないものと判別した場合(ステップS2:No)、範囲決定部16は、処理をステップS9に進める。
0行目のy座標における視差値dの出現回数が、「V(d,y)>10」の条件を満たしたが、初期値である「sy=0」の条件を満たさなかった場合、範囲決定部16は、ステップS9において、現在のy座標を、立体物のy方向の探索範囲の上端y座標(ey)に設定して、処理をステップS4に進める。これに対して、0行目のy座標における視差値dの出現回数が、「V(d,y)>10」および「sy=0」の各条件を両方満たす場合、範囲決定部16は、ステップS3において、現在のy座標値を、立体物のy方向の探索範囲における下端y座標(sy)に設定して、処理をステップS4に進める。なお、下端y座標(sy)の設定後に、視差値dの出現回数が、「V(d,y)>10」および「sy=0」の各条件を両方満たすものと判別した場合、範囲決定部16は、ステップS3において、現在のy座標値を、立体物のy方向の探索範囲における上端y座標(ey)に設定して、処理をステップS4に進める。
ステップS4では、範囲決定部16が、走査するy座標を1つインクリメントし(y+1)、ステップS5に処理を進める。ステップS5では、範囲決定部16が、走査するy座標を1つインクリメントすることで、y座標の探索範囲外となったか否かを判別する(y<960を満たすか否かを判別する)。走査するy座標を1つインクリメントしても、y座標の探索範囲内であるものと判別した場合(ステップS5:Yes)、範囲決定部16は、ステップS1に処理を戻す。そして、この例の場合、範囲決定部16は、ステップS1において、Vマップの1行目のy座標を走査し、視差値dの出現回数が10回以上か否か(「V(d,y)>10」の条件を満たすか否か)を判別する。これにより、ステップS5において、y座標の探索範囲外となったものと判別されるまでの間(y<960を満たさないと判別されるまでの間)、y座標が1つずつインクリメントされ(ステップS4)、y座標の行毎に、「V(d,y)>10」の条件を満たすか否かが判別される。
図7のフローチャートに、範囲決定部16が、Uマップを用いて、各視差(各距離)における立体物の存在領域のx方向範囲を決定する動作の流れを示す。図7のフローチャートにおいて、「U(x,d)」は、図5の(c)の符号を付した図に示すUマップ上の値を示している。また、視差値dの範囲は、{d=[10,300]}となっている(10〜300の範囲)。また、x方向画像サイズは、{x=[0,1279]}となっている。すなわち、x方向画像サイズは、1280となっている。また、立体物のx方向範囲は、Rx(d,i)={sxi,exi}となっている。sxiは、Uマップ上における立体物の左端x座標である。また、exiは、Uマップ上における立体物の右端x座標である。また、sxおよびexの初期値は、共に「0」である。また、iの初期値も「0」である。範囲決定部16は、例えば図4の(c)の符号を付した図に示した出現回数の値を、視差方向(x軸方向に対して直交する方向)に沿って走査することで、Uマップ上における立体物の存在領域を特定する。
範囲決定部16は、出現回数が10回以上300回以下の範囲内、かつ、x座標値が0列〜1279列の範囲で、Uマップ上における立体物の存在領域を特定する。まず、範囲決定部16は、上述のようにVマップから特定した立体物の下端y座標値と上端y座標値との差が、30画素よりも多い画素であるか否かを判別する(ey−sy>30)。下端および上端の各y座標値の差が30画素よりも大きな値であるものと判別した場合(ステップS11:Yes)、範囲決定部16は、処理をステップS12に進める。これに対して、下端および上端の各y座標値の差が30画素よりも小さな値であるものと判別した場合(ステップS11:No)、範囲決定部16は、処理をステップS17に進める。すなわち、一例ではあるが、実施の形態の立体物認識装置は、高さが30画素よりも小さな物体は、検出対象から除外するようになっている。
ステップS17では、範囲決定部16は、視差値dを次の値に移行し(d←d+1)、処理をステップS18に進める。ステップS18では、範囲決定部16が、次の値に移行した視差値dが、上限である300よりも小さな値であるか否かを判別する。
次の値に移行した視差値dが、上限の300よりも大きな値となった場合(ステップS18:No)、範囲決定部16は、図7のフローチャートに示す処理を終了する。これに対して、次の値に移行しても、上限の300よりも視差値dが小さな値であると判別した場合(ステップS18:Yes)、範囲決定部16は、ステップS22に処理を進める。そして、ステップS22において、範囲決定部16は、走査を行うx座標の列を0列にリセットして、処理をステップS11に戻す。
次に、ステップS11において、下端y座標値syと上端y座標値eyとの差が30画素よりも大きな値であると判別(ステップS11:Yes)すると、範囲決定部16は、処理をステップS12に進める。ステップS12では、範囲決定部16が、Uマップの0列目のx座標を走査し、視差値dの出現回数が10回以上か否か(「U(x,d)>10」の条件を満たすか否か)を判別する。例えば、視差値dの物体の平面部に位置する画素等が、「U(x,d)>10」の条件を満たす。
「U(x,d)>10」の条件を満たさないと判別した場合でも(ステップS12:No)、立体物のx方向範囲の左端x座標の初期値(0)の条件を満たす可能性もある。このため、範囲決定部16は、ステップS19に処理を進め、「U(x,d)>10」の条件を満たさないものと判別した場合、立体物のx方向範囲の左端x座標の初期値(sxi=0)の条件を満たすか否かを判別する。
sxi=0の条件を満たす場合(ステップS19:Yes)、範囲決定部16はステップS15に処理を進め、走査するx座標を1つインクリメントし(x+1)、ステップS16に処理を進める。ステップS16では、範囲決定部16が、走査するx座標を1つインクリメントすることで、x座標の探索範囲外となったか否かを判別する(x<1280を満たすか否かを判別する)。走査するx座標を1つインクリメントしても、x座標の探索範囲内であるものと判別した場合(ステップS16:Yes)、範囲決定部16は、ステップS12に処理を戻す。
そして、この例の場合、範囲決定部16は、ステップS12において、走査するUマップのx座標を0列目から1列目に移行し、視差値dの出現回数が10回以上か否か(「U(x,d)>10」の条件を満たすか否か)を判別する。これにより、ステップS19において、立体物のx方向範囲の左端x座標の初期値の条件(sxi=0)を満たすと判別される場合は(ステップS19:Yes)、x座標の値が上限の1280よりも大きな値となるまでの間(ステップS16)、x座標が1つずつインクリメントされ(ステップS15)、x座標の列毎に、「U(x,d)>10」の条件を満たすか否かが判別される。
次に、ステップS19において、視差値dの出現回数が「U(x,d)>10」の条件を満たさず、かつ、立体物のx方向範囲の左端x座標の初期値(sxi=0)の条件も満たさないと判別した場合(ステップS19:No)、範囲決定部16は、ステップS20に処理を進める。範囲決定部16は、ステップS20において、探索範囲の個数iの値を1つインクリメントし(i+1)、処理をステップS15に進める。範囲決定部16は、「U(x,d)>10」および「sxi=0」の条件をいずれも満たさないと判別した場合には、xの値が1280よりも小さな値である間(ステップS16:Yes)、ステップS20で探索範囲の個数iの値を1つずつインクリメントすると共に、ステップS15でxの値を1つずつインクリメントしながら探索範囲の走査を行う。
次に、ステップS12において、Uマップの0列目のx座標を走査した結果、「U(x,d)>10」の条件を満たすものと判別すると(ステップS12:Yes)、範囲決定部16は、処理をステップS13に進める。ステップS13において、範囲決定部16は、視差値dが、立体物のx方向範囲の左端x座標の初期値の条件(sxi=0)を満たすか否かを判別する。
sxi=0の条件を満たす場合(ステップS13:Yes)、範囲決定部16はステップS14に処理を進め、現在のx座標値を、立体物のx方向範囲の左端x座標(sxi)に設定し(sxi←x)、処理をステップS15に進める。なお、左端x座標(sxi)の設定後に、視差値dの出現回数が、「U(x,d)>10」および「sxi=0」の各条件を両方満たすものと判別した場合、範囲決定部16は、ステップS14において、現在のx座標値を、立体物のx方向の探索範囲における右端x座標(exi)に設定して、処理をステップS15に進める。
これに対して、視差値dの出現回数が、「U(x,d)>10」の条件を満たすが、「sxi=0」の条件を満たさないものと判別した場合(ステップS13:No)、範囲決定部16は、ステップS21において、現在のx座標値を、立体物のx方向の探索範囲における右端x座標(exi)に設定して、処理をステップS15に進める。
ステップS15では、範囲決定部16が、走査するx座標を1つインクリメントし(x+1)、ステップS16に処理を進める。ステップS16では、範囲決定部16が、走査するx座標を1つインクリメントすることで、x座標の探索範囲外となったか否かを判別する(x<1280を満たすか否かを判別する)。走査するx座標を1つインクリメントしても、x座標の探索範囲内であるものと判別した場合(ステップS16:Yes)、範囲決定部16は、ステップS12に処理を戻す。
そして、この例の場合、範囲決定部16は、ステップS12において、走査するUマップのx座標の列を、0列目から1列目に移行し、視差値dの出現回数が10以上であるか否か(「U(x,d)>10」の条件を満たすか否か)を判別する。これにより、ステップS13において、立体物のx方向範囲の左端x座標の初期値の条件(sxi=0)を満たすと判別される場合は(ステップS13:Yes)、x座標の値が上限の1280よりも大きな値となるまでの間(ステップS16)、x座標が1つずつインクリメントされ(ステップS15)、x座標の列毎に、「U(x,d)>10」の条件を満たすか否かが判別される。
次に、x座標を1つずつインクリメントすることで、走査するx座標の値が上限の1280となった場合(ステップS16:No)、範囲決定部16は、処理をステップS17に進め、視差値dを、次の値に移行させ(d←d+1)、ステップS18に処理を進める。ステップS18では、範囲決定部16が、視差値dの値を、次の値に移行させることで、視差値dが上限値の300以下か否かを判別する(d<300)。視差値dが上限値の300よりも大きな値となったものと判別した場合(ステップS18:No)、{d=[10,300]}の範囲の走査が完了したことを意味するため、範囲決定部16は、図7のフローチャートの全処理を終了する。これに対して、視差値dが上限値の300よりも小さな値であると判別した場合(ステップS18:Yes)、範囲決定部16は、ステップS22に処理を進め、走査を行うx座標の列を0列目にリセットし(x←0)、処理をステップS11に戻す。
範囲決定部16は、このようにx座標値および視差値dを1つずつインクリメントしながらUマップを走査し、Uマップ上における、立体物の存在領域のx方向範囲を決定する。また、範囲決定部16は、x座標値および視差値dを1つずつインクリメントしながらUマップを走査し、Uマップ上における、立体物の存在領域のx方向範囲を決定する。
これにより、路面上の立体物は、図5の(b)の符号を付した図に示すVマップ上において、図5の(a)の符号を付した図に示す道路に対応する右肩下がりの直線状のヒストグラムを検出することができる。そして、道路に対応する右肩下がりの直線状のヒストグラム上に、例えば図5の(a)の符号を付した図に示す自動車の車高に対応する下端y座標sy〜上端y座標eyの長さの直線状のヒストグラムを検出することができる。また、図5の(c)の符号を付した図に示すUマップ上において、図5の(a)の符号を付した図に示す自動車の車幅に対応する左端x座標sxi〜右端x座標exiの長さの直線状のヒストグラムを検出することができる。
すなわち、まず、Vマップ上で十分なサイズの立体物が存在する視差値(図5の(b)の符号を付した図の視差値d0)の下端y座標sy〜上端y座標eyを取得すると共に、Uマップ上で、立体物が存在する左端x座標sxi〜右端x座標exiを取得する。例えば、「Ry(d0)={sy=400,ey=700}」、「Rx(d0,i=0,1)={sx0=300,sx0=500,sx1=700,ex1=800}」の場合、視差情報d0の距離に、(x,y,幅w,高さh)=(300,400,200(=ex0−sx0),300(=ey−sy))の位置と、(x,y,w,h)=(700,400,100(=ex1−sx1),300)の位置に立体物が存在すると考えられる。この領域が、以下に説明する識別部17の探索範囲となる。以降、探索範囲は、「R(i=0,1)={x0=300,y0=400,w0=200,h0=300,d0=70(視差),x1=700,y1=400,w1=100,h1=300,d1=70}」のように表記する。
次に、識別部17は、範囲決定部16により、上述のように決定された範囲を探索することで、立体物の識別処理を行う。図8のフローチャートに、識別部17による立体物の識別処理の流れを示す。この図8のフローチャートにおいて、R(i)の記号は、識別部17の探索範囲(i=1〜10)を示している。まず、ステップS31において、識別部17は、図2に示すRAM4に記憶されているデンス視差画像の探索範囲R(i)の領域において、立体物の視差情報diを閾値として2値化処理を行う。
この2値化処理を行うことで、図9の(a)〜(c)の符号を付した図に示すように、立体物を白領域とし、背景を黒領域として分離できる。図9の(a)の符号を付した図は、2値化処理により、立体物としての自動車が白領域、背景が黒領域として分離された例である。図9の(b)の符号を付した図は、2値化処理により、立体物としての標識が白領域、背景が黒領域として分離された例である。図9の(c)の符号を付した図は、2値化処理により、立体物としての人間が白領域、背景が黒領域として分離された例である。
次に、識別部17は、ステップS32において、探索範囲R(i)の立体物が縦長の長方形の場合、立体物は車両である可能性は低い。このため、識別部17は、探索範囲が縦長の長方形かどうかで、車両か否かを判定する。具体的には、識別部17は、ステップS32において、探索範囲R(i)の立体物が、「幅(wi)×2<高さ(hi)」であるか否かを判別することで、探索範囲R(i)の立体物が縦長の長方形であるか否かを判別する。探索範囲R(i)の立体物が、「幅(wi)×2<高さ(hi)」であるものと判別した場合(ステップS32:Yes)、識別部17は、処理をステップS33に進める。また、探索範囲R(i)の立体物が、「幅(wi)×2<高さ(hi)」ではないものと判別した場合(ステップS32:No)、識別部17は、処理をステップS36に進める。
ステップS33に処理を進めたということは、立体物が縦長の長方形であることを意味する。このため、識別部17は、ステップS33において、画像上部の1/3の白領域の画素数が白領域の総画素数の70%以上であるか否かを判別する((白領域の画素数/白画素総数)>0.7)。立体物が標識の場合、図9の(a)の符号を付した図に示すように、探索範囲の上部付近に白領域が多く含まれる形状となっている。このため、立体物が標識の場合、画像上部の1/3の白領域の画素数が白領域の総画素数の70%以上となる。このため、識別部17は、画像上部の1/3の白領域の画素数が白領域の総画素数の70%以上と判別した場合(ステップS33:Yes)、ステップS34において、立体物は「標識」であるものと識別する。
これに対して、立体物が人間の場合、図9の(c)の符号を付した図に示すように、縦長の長方形状ではあるが、探索範囲の上部付近に含まれる白領域の割合は少ない。このため、識別部17は、画像上部の1/3の白領域の画素数が白領域の総画素数の70%未満である場合(ステップS33:No)、ステップS39において、立体物は「人間」であるものと識別する。
一方、ステップS32において、探索範囲R(i)の立体物が、「幅(wi)×2<高さ(hi)」ではないものと判別することで(ステップS32:No)、処理をステップS36に進めると、識別部17は、白領域の重心を検出する。そして、識別部17は、検出した白領域の重心は、探索範囲R(i)の中心付近か否かを判別する。ステップS22およびステップS36において、共にNoの場合、立体物は、長方形ではなく、かつ、白領域の重心は、探索範囲R(i)の中心付近ではないことを意味する。この場合(ステップS36:No)、識別部17は、ステップS38に処理を進め、立体物は「判定不能」とする。
これに対して、立体物が車両の場合、図9の(a)の符号を付した図に示すように、白領域の重心は、探索範囲R(i)の中心付近に位置する。このため、識別部17は、ステップS36において、白領域の重心が探索範囲R(i)の中心付近に位置するものと判別した場合(ステップS36:Yes)、ステップS37に処理を進め、立体物は「車両」と識別する。
このような識別部17の識別結果は、図1に示すCPU2に供給される。CPU2は、例えばAEBSまたはACCS等を実行する機器制御部として機能し、識別部17の識別結果に応じて、自動ブレーキ制御、速度制御、または走行制御等を行う。
最後に、立体物の識別処理を行うと、識別部17は、ステップS35に処理を進め、「i=10」の条件を満たすか否かを判別する。「i=10」の条件を満たす場合(ステップS35:Yes)、識別部17は、図8に示すフローチャートの全処理を終了する。また、「i=10」の条件を満たさない場合(ステップS35:No)、識別部17は、ステップS40に処理を進め、iの数値を1つインクリメントして、処理をステップS31に進める。
すなわち、この例の場合、識別部17は、i=1〜i=10の、最大10個の探索範囲R(i)の立体物を順次識別するようになっている。このため、一つの探索範囲R(i)の立体物の識別が終了すると、この例の上限である、10個の探索範囲の識別処理が完了したか否かを判別する(ステップS35)。そして、10個の探索範囲の識別処理が完了したものと判別した場合(ステップS35:Yes)、識別部17は、図8に示すフローチャートの全処理を終了する。また、10個の探索範囲の識別処理が完了していないものと判別した場合(ステップS35:No)、識別部17は、ステップS40において、次の探索範囲R(i)の立体物の識別を行うために、iの数値を1つインクリメントして、処理をステップS31に戻し、上述の各処理を繰り返し実行する。
ここで、この例では、識別部17は、探索範囲の2値化画像の白領域の割合または重心の位置等から立体物の識別を行った。しかし、識別部17が、探索範囲の2値化画像から立体物のエッジ部分を検出し、エッジ部分を検出することで現れる立体物の形状から、立体物を識別してもよい。
一例として、識別部17は、画像の局所領域から輝度勾配、輝度強度を示すHOG(Histograms of Oriented Gradients)特徴量を用いて、物体の形状を認識する。この場合、識別部17は、まず、物体のエッジ部分を検出する。次に、識別部17は、各エッジ部分に対して、エッジの勾配方向(上下左右、斜め方呼応)を判断し、各勾配方向のエッジの出現回数をカウントする(エッジの勾配でヒストグラムを算出する)。次に、識別部17は、ヒストグラムの結果から、車両、標識、人等を判断する。
例えば、ヒストグラムの結果から、斜め方向ではないエッジの出現回数が多いと判断できる場合、物体は四角形状と推測できるため、識別部17は、物体は車両であると識別する。また、ヒストグラムの結果から、斜め方向のエッジの出現回数が多いと判断できる場合、物体は丸い形状と推測できるため、識別部17は、物体は人であると識別する。また、ヒストグラムの結果から、斜め方向のエッジが存在し、また、右方向および左方向のエッジの出現回数が多いと判断できる場合、識別部17は、物体は標識であると識別する。
以上の説明から明らかなように、実施の形態の立体物識別装置は、ステレオカメラ部1の撮像画像から、デンス視差生成部12が、画素毎に視差情報を有するデンス視差画像を生成する。ヒストグラム生成部15は、デンス視差画像上をx方向またはy方向に視差情報を投票することでヒストグラム(VマップおよびUマップ)を生成する。範囲決定部16は、VマップおよびUマップ上に現れるヒストグラムから、各距離に存在する立体物の探索範囲を決定する。識別部17は、決定された探索範囲のデンス視差画像を、決定された探索範囲の視差情報を閾値として用いて2値化する。そして、識別部17は、立体物の形状、白領域の割合、および白領域の重心の位置等から立体物を識別する。
従来、エッジ部分の視差情報しか取得できず、視差画像上で面形状を識別することは困難であった。しかし、実施の形態の立体物識別装置は、画素毎に視差情報を有するデンス視差画像を用いることで、立体物の面全体の視差情報を取得して、デンス視差画像上で立体物の面形状を識別処理に利用できる。このため、前方立体物検出処理の精度を向上させることができる。また、検出した立体物の識別を可能とすることができる。
上述の実施の形態は、例として提示したものであり、本発明の範囲を限定することは意図していない。この新規な実施の形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことも可能である。例えば、上述の実施の形態の説明では、立体物の認識結果を、車両のブレーキ制御、走行制御および速度制御等に用いることとした。この他、本発明は、ベルトコンベア上を移動する製造物を監視するファクトリー・オートメーション・システム等に適用してもよい。すなわち、画像から立体物を認識し、認識結果を用いて制御対象を制御する機器であれば、本発明は、どのような機器に適用してもよい。また、実施の形態および各実施の形態の変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1 ステレオカメラ部
2 CPU
3 ROM
4 RAM
5 HDD
6 入出力I/F
7 通信I/F
8 バスライン
11 補正部
12 デンス視差生成部
13 立体物認識ブロック
15 ヒストグラム生成部
16 範囲決定部
17 識別部
特開2000−266539号公報

Claims (7)

  1. 視点と被写体との間の距離を示す距離情報を画素毎に備えた距離画像から、前記被写体の探索範囲を決定する範囲決定部と、
    前記距離画像上の前記探索範囲内における前記被写体の形状から、前記被写体の識別を行う識別部と
    を有する画像処理装置。
  2. 前記距離画像は、前記視点と前記被写体との間の距離を画素毎に算出した前記距離情報を備えること
    を特徴とする請求項1に記載の画像処理装置。
  3. 前記距離画像のx方向の前記距離情報、またはy方向の前記距離情報を投票したヒストグラムを生成するヒストグラム生成部をさらに備え、
    前記範囲決定部は、前記ヒストグラムを用いて、前記視点との間の各距離に存在する前記被写体の探索範囲を決定すること
    を特徴とする請求項1または請求項2に記載の画像処理装置。
  4. 前記識別部は、前記探索範囲内の前記被写体の距離情報を閾値として用いて、前記探索範囲に相当する距離画像を2値化することで、前記探索範囲内の被写体と背景とを分離し、分離した被写体の形状から前記被写体の識別を行うこと
    を特徴とする請求項1から請求項3のうち、いずれか一項に記載の画像処理装置。
  5. 前記識別部は、前記探索範囲内の前記被写体の距離情報を閾値として用いて、前記探索範囲に相当する距離画像を2値化することで、前記探索範囲内の被写体と背景とを分離し、分離した前記被写体のエッジを検出し、検出したエッジで示される前記被写体の形状から、前記被写体を識別すること
    を特徴とする請求項1から請求項3のうち、いずれか一項に記載の画像処理装置。
  6. 視点と被写体との間の距離を示す距離情報を備えた距離画像から、前記被写体の探索範囲を決定する範囲決定部と、
    前記距離画像上の前記探索範囲内における前記被写体の形状から、前記被写体の識別を行う識別部と、
    前記識別部による前記被写体の識別結果に応じて機器制御を行う機器制御部と
    を有する機器制御システム。
  7. コンピュータを、
    視点と被写体との間の距離を示す距離情報を備えた距離画像から、前記被写体の探索範囲を決定する範囲決定部と、
    前記距離画像上の前記探索範囲内における前記被写体の形状から、前記被写体の識別を行う識別部として機能させること
    を特徴とする画像処理プログラム。
JP2014048217A 2014-03-11 2014-03-11 画像処理装置、機器制御システム、および画像処理プログラム Pending JP2015172846A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014048217A JP2015172846A (ja) 2014-03-11 2014-03-11 画像処理装置、機器制御システム、および画像処理プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014048217A JP2015172846A (ja) 2014-03-11 2014-03-11 画像処理装置、機器制御システム、および画像処理プログラム

Publications (1)

Publication Number Publication Date
JP2015172846A true JP2015172846A (ja) 2015-10-01

Family

ID=54260133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014048217A Pending JP2015172846A (ja) 2014-03-11 2014-03-11 画像処理装置、機器制御システム、および画像処理プログラム

Country Status (1)

Country Link
JP (1) JP2015172846A (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05265547A (ja) * 1992-03-23 1993-10-15 Fuji Heavy Ind Ltd 車輌用車外監視装置
JP2013250907A (ja) * 2012-06-04 2013-12-12 Ricoh Co Ltd 視差算出装置、視差算出方法及び視差算出用プログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05265547A (ja) * 1992-03-23 1993-10-15 Fuji Heavy Ind Ltd 車輌用車外監視装置
JP2013250907A (ja) * 2012-06-04 2013-12-12 Ricoh Co Ltd 視差算出装置、視差算出方法及び視差算出用プログラム

Similar Documents

Publication Publication Date Title
JP6707022B2 (ja) ステレオカメラ
JP6163453B2 (ja) 物体検出装置、運転支援装置、物体検出方法、および物体検出プログラム
US20120207348A1 (en) Vehicle detection apparatus
JP2017162116A (ja) 画像処理装置、撮像装置、移動体機器制御システム、画像処理方法、及びプログラム
WO2014002692A1 (ja) ステレオカメラ
US10235579B2 (en) Vanishing point correction apparatus and method
JP2013164351A (ja) ステレオ視差算出装置
JP6515704B2 (ja) 車線検出装置及び車線検出方法
JP2017004176A (ja) 路面標示検出装置及び路面標示検出方法
JP2008262333A (ja) 路面判別装置および路面判別方法
JP2012159469A (ja) 車両用画像認識装置
JPH11351862A (ja) 前方車両検出方法及び装置
US20150379334A1 (en) Object recognition apparatus
JP2017021780A (ja) 画像処理装置、撮像装置、移動体機器制御システム、画像処理方法、及び画像処理プログラム
JP2018092596A (ja) 情報処理装置、撮像装置、機器制御システム、移動体、情報処理方法、およびプログラム
JP2010020476A (ja) 物体検出装置及び物体検出方法
JP4123138B2 (ja) 車両検知方法及び車両検知装置
US11054245B2 (en) Image processing apparatus, device control system, imaging apparatus, image processing method, and recording medium
JP6431299B2 (ja) 車両周辺監視装置
JPH07244717A (ja) 車両用走行環境認識装置
JP2010286995A (ja) 車両用画像処理システム
WO2014054124A1 (ja) 路面標示検出装置及び路面標示検出方法
EP3879810A1 (en) Imaging device
JP7134780B2 (ja) ステレオカメラ装置
JP2014067320A (ja) ステレオカメラ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180904