JP2015167187A - Electronic part manufacturing method and intermediate product of electronic part - Google Patents

Electronic part manufacturing method and intermediate product of electronic part Download PDF

Info

Publication number
JP2015167187A
JP2015167187A JP2014041483A JP2014041483A JP2015167187A JP 2015167187 A JP2015167187 A JP 2015167187A JP 2014041483 A JP2014041483 A JP 2014041483A JP 2014041483 A JP2014041483 A JP 2014041483A JP 2015167187 A JP2015167187 A JP 2015167187A
Authority
JP
Japan
Prior art keywords
electrode
anisotropic conductive
conductive adhesive
circuit member
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014041483A
Other languages
Japanese (ja)
Other versions
JP5949811B2 (en
Inventor
晋 川上
Susumu Kawakami
晋 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2014041483A priority Critical patent/JP5949811B2/en
Priority to CN201520051747.XU priority patent/CN204589054U/en
Priority to CN201510037331.7A priority patent/CN104893598B/en
Priority to TW104102172A priority patent/TWI658522B/en
Publication of JP2015167187A publication Critical patent/JP2015167187A/en
Application granted granted Critical
Publication of JP5949811B2 publication Critical patent/JP5949811B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Wire Bonding (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electronic part manufacturing method that can sufficiently reduce warpage of an electronic part after the electronic part is connected, and an intermediate product of the electronic part.SOLUTION: According to an electronic part manufacturing method, in an arranging step, heat is applied to an anisotropic conductive adhesive agent layer 4 at first temperature T1 higher than second temperature T2 which is applied in a connection step, and a bump electrode 5 is pushed into the anisotropic conductive adhesive agent layer 4 to exclude surplus resin in advance. In the arranging step, the anisotropic conductive adhesive agent 4 is uncured, so that the anisotropic conductive adhesive agent layer 4 can follow contraction after application of heat, and the warpage of a first circuit member 2 and a second circuit member 3 can be suppressed. In the connection step subsequent to the arranging step, the second temperature T2 lower than the first temperature T1 may be added as an assist for photocuring, and the warpage of the electronic part 1 after the connection can be sufficiently reduced.

Description

本発明は、電子部品の製造方法及び電子部品の中間体に関する。   The present invention relates to an electronic component manufacturing method and an electronic component intermediate.

従来、例えば液晶ディスプレイ等の基板と、ICチップ等の回路部材との接続には、接着剤中に導電粒子を分散させた異方導電性接着剤が用いられている(例えば特許文献1参照)。回路部材を基板に接続するにあたっては、例えば回路部材側の電極をフェイスダウンで基板側の電極に実装する接続方法が採用されている。かかる接続方法では、異方導電性接着剤を介して回路部材側の電極と基板側の電極とを対向させ、回路基板と基板とに圧力を付与しながら熱で異方導電性接着剤を硬化させている。   Conventionally, for example, an anisotropic conductive adhesive in which conductive particles are dispersed in an adhesive is used to connect a substrate such as a liquid crystal display and a circuit member such as an IC chip (see, for example, Patent Document 1). . In connecting the circuit member to the substrate, for example, a connection method is employed in which the electrode on the circuit member side is mounted face-down on the electrode on the substrate side. In this connection method, the electrode on the circuit member side and the electrode on the substrate side are opposed to each other through the anisotropic conductive adhesive, and the anisotropic conductive adhesive is cured by heat while applying pressure to the circuit board and the substrate. I am letting.

特開2003−253217号公報JP 2003-253217 A

上述したような接続方法では、回路部材と基板との間の熱膨張係数の差に起因して、熱圧着によって異方導電性接着剤が硬化した後の回路部材と基板との間で収縮差が生じ、接続後の電子部品に反りが生じるという問題があった。このような問題に対し、近年では、光硬化型の異方導電性接着剤を使用し、接着剤層に光照射を行いながら低温での熱圧着を行う接続方法も開発されてきている。しかしながら、光硬化型の異方導電性接着剤を使用する場合であっても、圧力を付与したときの異方導電性接着剤の流動性を確保する(余分な樹脂を排除する)観点から一定の熱の付与も行われるため、接続後の電子部品に反りが生じる問題は依然として残存しており、反りの問題を改善できる技術が望まれている。   In the connection method as described above, due to the difference in coefficient of thermal expansion between the circuit member and the substrate, the shrinkage difference between the circuit member and the substrate after the anisotropic conductive adhesive is cured by thermocompression bonding. As a result, there is a problem that the electronic parts after connection are warped. In recent years, a connection method that uses a photocurable anisotropic conductive adhesive and performs thermocompression bonding at a low temperature while irradiating the adhesive layer with light has been developed to deal with such problems. However, even when using a photo-curing anisotropic conductive adhesive, it is constant from the viewpoint of ensuring the fluidity of the anisotropic conductive adhesive when pressure is applied (excluding excess resin). Since the heat is also applied, the problem of warping of the electronic component after connection still remains, and a technique capable of improving the problem of warping is desired.

本発明は、上記課題の解決のためになされたものであり、接続後の電子部品の反りを十分に低減できる電子部品の製造方法及び電子部品の中間体を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an electronic component manufacturing method and an electronic component intermediate that can sufficiently reduce warpage of the electronic component after connection.

上記課題の解決のため、本発明に係る電子部品の製造方法は、第1の電極を有する第1の回路部材と第1の電極に対応する第2の電極を有する第2の回路部材とを光硬化型の異方導電性接着剤を用いて接続する電子部品の製造方法であって、異方導電性接着剤を介して第1の回路部材を第2の回路部材に対して配置する配置工程と、異方導電性接着剤を光硬化させ、第1の回路部材の第1の電極と第2の回路部材の第2の電極とを電気的に接続する接続工程と、を備え、配置工程において、異方導電性接着剤に第1の温度で熱を付加しながら第1の電極を前記異方導電性接着剤に押し込み、接続工程において、異方導電性接着剤に第1の温度よりも低く且つ80℃以下である第2の温度で熱を付加しながら異方導電性接着剤の光硬化を行うことを特徴としている。   In order to solve the above-described problems, an electronic component manufacturing method according to the present invention includes a first circuit member having a first electrode and a second circuit member having a second electrode corresponding to the first electrode. A method for manufacturing an electronic component to be connected using a photocurable anisotropic conductive adhesive, wherein the first circuit member is arranged with respect to the second circuit member via the anisotropic conductive adhesive And a step of photocuring the anisotropic conductive adhesive to electrically connect the first electrode of the first circuit member and the second electrode of the second circuit member. In the process, the first electrode is pushed into the anisotropic conductive adhesive while applying heat to the anisotropic conductive adhesive at a first temperature. In the connecting process, the first temperature is applied to the anisotropic conductive adhesive. The anisotropic conductive adhesive is photocured while applying heat at a second temperature lower than 80 ° C. It is characterized in.

この電子部品の製造方法では、配置工程において、接続工程で付加される温度よりも高い温度で異方導電性接着剤に熱を付加し、第1の電極を異方導電性接着剤に押し込むことで予め余分な樹脂を排除する。配置工程では、異方導電性接着剤は実質的に未硬化であるため、熱を付加した後の収縮に異方導電性接着剤が追従し、第1の回路部材及び第2の回路部材の反りを抑制できる。配置工程に続く接続工程では、第1の温度よりも低い第2の温度を光硬化のアシストとして付加すればよく、接続後の電子部品の反りを十分に低減できる。また、この電子部品の製造方法では、異方導電性接着剤の流動と硬化とを実質的に異なる工程に分けることができ、配置工程での熱の付加によって異方導電性接着剤の濡れ性も高められるため、異方導電性接着剤による接着力を十分に確保でき、接続後の電子部品における第1の回路部材及び第2の回路部材の剥離を抑制できる。   In this electronic component manufacturing method, heat is applied to the anisotropic conductive adhesive at a temperature higher than the temperature applied in the connecting step in the placement step, and the first electrode is pushed into the anisotropic conductive adhesive. Eliminate excess resin in advance. In the arranging step, the anisotropic conductive adhesive is substantially uncured, so the anisotropic conductive adhesive follows the contraction after the heat is applied, and the first circuit member and the second circuit member Warpage can be suppressed. In the connection process subsequent to the arrangement process, a second temperature lower than the first temperature may be added as an assist for photocuring, and warpage of the electronic component after connection can be sufficiently reduced. Further, in this electronic component manufacturing method, the flow and curing of the anisotropic conductive adhesive can be divided into substantially different processes, and the wettability of the anisotropic conductive adhesive is increased by the application of heat in the placement process. Therefore, it is possible to sufficiently secure the adhesive force by the anisotropic conductive adhesive, and to suppress the separation of the first circuit member and the second circuit member in the electronic component after connection.

また、配置工程と接続工程との間に、異方導電性接着剤の温度を第2の温度以下に冷却する冷却工程を更に備えることが好ましい。冷却工程を介在させることで、異方導電性接着剤の流動と硬化とをより確実に異なる工程に分けることができる。これにより、異方導電性接着剤による接着力を一層十分に確保でき、接続後の電子部品における第1の回路部材及び第2の回路部材の剥離を好適に抑制できる。   Moreover, it is preferable to further provide a cooling step for cooling the temperature of the anisotropic conductive adhesive to a second temperature or lower between the placing step and the connecting step. By interposing the cooling step, the flow and curing of the anisotropic conductive adhesive can be more reliably divided into different steps. Thereby, the adhesive force by an anisotropic conductive adhesive can be ensured more fully, and peeling of the 1st circuit member and the 2nd circuit member in the electronic component after connection can be controlled suitably.

また、配置工程において、第1の圧力を付加しながら第1の電極を異方導電性接着剤に押し込み、接続工程において、第1の圧力よりも高い第2の圧力を付加しながら異方導電性接着剤の光硬化を行うことが好ましい。これにより、接続工程において第1の回路部材と第2の回路部材との電気的な接続をより確実に実現できる。   Further, in the arranging step, the first electrode is pushed into the anisotropic conductive adhesive while applying the first pressure, and in the connecting step, the anisotropic conductivity is applied while applying the second pressure higher than the first pressure. It is preferable to perform photocuring of the adhesive. Thereby, the electrical connection between the first circuit member and the second circuit member can be more reliably realized in the connection step.

また、配置工程において、第1の電極と第2の電極とによって異方導電性接着剤中の導電粒子が噛合されるように異方導電性接着剤への第1の電極の押し込みを行うことが好ましい。この場合、配置工程で異方導電性接着剤の余分な樹脂を予め十分に排除することができ、接続工程において第1の回路部材と第2の回路部材との電気的な接続をより確実に実現できる。   Further, in the arranging step, the first electrode is pushed into the anisotropic conductive adhesive so that the conductive particles in the anisotropic conductive adhesive are engaged by the first electrode and the second electrode. Is preferred. In this case, excess resin of the anisotropic conductive adhesive can be sufficiently removed in the arranging step in advance, and the electrical connection between the first circuit member and the second circuit member can be more reliably performed in the connecting step. realizable.

また、配置工程において、第1の電極と第2の電極との間隔が異方導電性接着剤中の導電粒子の平均粒径の0%〜200%となるように異方導電性接着剤への第1の電極の押し込みを行うことが好ましい。この場合、配置工程で異方導電性接着剤の余分な樹脂を予め十分に排除することができ、接続工程において第1の回路部材と第2の回路部材との電気的な接続をより確実に実現できる。   Moreover, in an arrangement | positioning process, it becomes to an anisotropic conductive adhesive so that the space | interval of a 1st electrode and a 2nd electrode may be 0%-200% of the average particle diameter of the electroconductive particle in an anisotropic conductive adhesive. It is preferable to push in the first electrode. In this case, excess resin of the anisotropic conductive adhesive can be sufficiently removed in the arranging step in advance, and the electrical connection between the first circuit member and the second circuit member can be more reliably performed in the connecting step. realizable.

また、第1の電極は、突起電極であることが好ましい。この場合、突起電極を異方導電性接着剤に押し込むことで、予め余分な樹脂を一層確実に排除できる。   The first electrode is preferably a protruding electrode. In this case, excessive resin can be removed more reliably in advance by pressing the protruding electrode into the anisotropic conductive adhesive.

また、異方導電性接着剤は、光ラジカル重合性の成分を含有する接着剤成分を含むことが好ましい。この場合、接続工程での異方導電性接着剤の硬化率が好適なものとなる。   The anisotropic conductive adhesive preferably contains an adhesive component containing a radically polymerizable component. In this case, the curing rate of the anisotropic conductive adhesive in the connection step is suitable.

また、本発明に係る電子部品の製造方法は、第1の電極を有する第1の回路部材と第1の電極に対応する第2の電極を有する第2の回路部材とを光硬化型の異方導電性接着剤を用いて接続する電子部品の製造方法であって、異方導電性接着剤を介して第1の回路部材を第2の回路部材に対して配置する配置工程と、異方導電性接着剤を光硬化させ、第1の回路部材の第1の電極と第2の回路部材の第2の電極とを電気的に接続する接続工程と、を備え、配置工程において、第1の電極と第2の電極との間隔が異方導電性接着剤中の導電粒子の平均粒径の0%〜200%となるように異方導電性接着剤への第1の電極の押し込みを行うことを特徴としている。   In addition, in the method for manufacturing an electronic component according to the present invention, the first circuit member having the first electrode and the second circuit member having the second electrode corresponding to the first electrode are different from each other. A method for manufacturing an electronic component connected using an anisotropic conductive adhesive, the disposing step of arranging a first circuit member with respect to a second circuit member via an anisotropic conductive adhesive, and an anisotropic method A connection step of photo-curing the conductive adhesive and electrically connecting the first electrode of the first circuit member and the second electrode of the second circuit member. The first electrode is pushed into the anisotropic conductive adhesive so that the distance between the second electrode and the second electrode is 0% to 200% of the average particle diameter of the conductive particles in the anisotropic conductive adhesive. It is characterized by doing.

この電子部品の製造方法では、配置工程において、第1の電極を異方導電性接着剤に押し込むことで予め余分な樹脂を排除する。配置工程では、異方導電性接着剤は実質的に未硬化であるため、熱を付加した後の収縮に異方導電性接着剤が追従し、第1の回路部材及び第2の回路部材の反りを抑制できる。配置工程に続く接続工程では、光硬化のアシストとして比較的低温の熱を付加すればよく、接続後の電子部品の反りを十分に低減できる。また、この電子部品の製造方法では、異方導電性接着剤の流動と硬化とを実質的に異なる工程に分けることができ、接続後の電子部品における第1の回路部材及び第2の回路部材の剥離を抑制できる。   In this method of manufacturing an electronic component, excess resin is eliminated in advance by pressing the first electrode into the anisotropic conductive adhesive in the arranging step. In the arranging step, the anisotropic conductive adhesive is substantially uncured, so the anisotropic conductive adhesive follows the contraction after the heat is applied, and the first circuit member and the second circuit member Warpage can be suppressed. In the connection process subsequent to the arrangement process, heat at a relatively low temperature may be applied as an assist for photocuring, and warpage of the electronic component after connection can be sufficiently reduced. Further, in this method of manufacturing an electronic component, the flow and curing of the anisotropic conductive adhesive can be divided into substantially different steps, and the first circuit member and the second circuit member in the electronic component after connection are obtained. Can be prevented.

また、本発明に係る電子部品の中間体は、第1の電極を有する第1の回路部材と、第1の電極に対応する第2の電極を有する第2の回路部材とが、光硬化型の異方導電性接着剤を介して配置された電子部品の中間体であって、第1の電極と第2の電極との間隔が異方導電性接着剤中の導電粒子の平均粒径の0%〜200%となるように、未硬化状態の異方導電性接着剤に第1の電極が押し込まれていることを特徴としている。   Further, in the electronic component intermediate according to the present invention, the first circuit member having the first electrode and the second circuit member having the second electrode corresponding to the first electrode are photocurable. An intermediate of an electronic component disposed via an anisotropic conductive adhesive, wherein the distance between the first electrode and the second electrode is the average particle size of the conductive particles in the anisotropic conductive adhesive The first electrode is pressed into the uncured anisotropic conductive adhesive so as to be 0% to 200%.

この電子部品の中間体では、第1の電極が未硬化状態の異方導電性接着剤に押し込まれていることで予め余分な樹脂が排除されている。したがって、異方導電性接着剤を光硬化する際には、光硬化のアシストとして比較的低温の熱を付加すればよく、接続後の電子部品の反りを十分に低減できる。   In the intermediate body of this electronic component, excess resin is eliminated in advance by the first electrode being pushed into the uncured anisotropic conductive adhesive. Therefore, when photo-curing the anisotropic conductive adhesive, heat at a relatively low temperature may be applied as photo-curing assist, and warpage of the electronic component after connection can be sufficiently reduced.

本発明によれば、接続後の電子部品の反りを十分に低減できる。   According to the present invention, it is possible to sufficiently reduce warpage of an electronic component after connection.

本発明の一実施形態に係る電子部品の製造方法を適用して形成される電子部品の一例を示す模式的な断面図である。It is typical sectional drawing which shows an example of the electronic component formed by applying the manufacturing method of the electronic component which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電子部品の製造方法における配置工程を示す模式的な断面図である。It is typical sectional drawing which shows the arrangement | positioning process in the manufacturing method of the electronic component which concerns on one Embodiment of this invention. 図2の後続の工程を示す模式的な断面図である。FIG. 3 is a schematic cross-sectional view showing a step subsequent to FIG. 2. 図3に後続する接続工程を示す模式的な断面図である。FIG. 4 is a schematic cross-sectional view showing a connection process subsequent to FIG. 3. 実施例及び比較例についての配置工程・接続工程での条件を示す図である。It is a figure which shows the conditions in the arrangement | positioning process and connection process about an Example and a comparative example. 実施例及び比較例についての評価結果を示す図である。It is a figure which shows the evaluation result about an Example and a comparative example.

以下、図面を参照しながら、本発明に係る電子部品の製造方法の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of an electronic component manufacturing method according to the present invention will be described in detail with reference to the drawings.

図1は、本発明に係る電子部品の製造方法を適用して形成される電子部品の一例を示す模式的な断面図である。同図に示すように、電子部品1は、互いに対向する第1の回路部材2と第2の回路部材3とを後述の異方導電性接着剤層4の硬化物14で接合することによって構成されている。   FIG. 1 is a schematic cross-sectional view showing an example of an electronic component formed by applying an electronic component manufacturing method according to the present invention. As shown in the figure, the electronic component 1 is configured by joining a first circuit member 2 and a second circuit member 3 facing each other with a cured product 14 of an anisotropic conductive adhesive layer 4 described later. Has been.

第1の回路部材2は、例えばICチップ、LSIチップ、抵抗体チップ、コンデンサチップ等といったチップ部品である。第1の回路部材2において、第2の回路部材3と対向する面は、実装面2aとなっている。実装面2aには、例えば突起電極(第1の電極)5が所定の間隔で複数形成されている。第1の回路部材2の本体部6の形成材料には例えばシリコン等が用いられる。また、突起電極5の形成材料には例えばAu等が用いられる。突起電極5は、異方導電性接着剤層4に含有される導電粒子7よりも変形し易くなっていることが好ましい。   The first circuit member 2 is a chip component such as an IC chip, an LSI chip, a resistor chip, a capacitor chip, or the like. In the first circuit member 2, the surface facing the second circuit member 3 is a mounting surface 2 a. For example, a plurality of protruding electrodes (first electrodes) 5 are formed on the mounting surface 2a at a predetermined interval. For example, silicon or the like is used as a material for forming the main body 6 of the first circuit member 2. Further, for example, Au or the like is used as a material for forming the protruding electrode 5. The protruding electrode 5 is preferably easier to deform than the conductive particles 7 contained in the anisotropic conductive adhesive layer 4.

第2の回路部材3は、例えば第1の回路部材2に電気的に接続される回路電極(第2の電極)8を有する部材である。第2の回路部材3は、光透過性を有する基板9を有していることが好ましい。基板9としては、例えばガラス基板、ポリイミド基板、ポリエチレンテレフタレート基板、ポリカーボネート基板、ポリエチレンナフタレート基板、ガラス強化エポキシ基板、紙フェノール基板、セラミック基板、積層板が用いられる。これらの中でも、紫外光に対する透過性に優れるガラス基板、ポリエチレンテレフタレート基板、ポリカーボネート基板、又はポリエチレンナフタレート基板を用いることが好ましい。   The second circuit member 3 is a member having a circuit electrode (second electrode) 8 electrically connected to the first circuit member 2, for example. It is preferable that the 2nd circuit member 3 has the board | substrate 9 which has a light transmittance. As the substrate 9, for example, a glass substrate, a polyimide substrate, a polyethylene terephthalate substrate, a polycarbonate substrate, a polyethylene naphthalate substrate, a glass reinforced epoxy substrate, a paper phenol substrate, a ceramic substrate, or a laminated plate is used. Among these, it is preferable to use a glass substrate, a polyethylene terephthalate substrate, a polycarbonate substrate, or a polyethylene naphthalate substrate having excellent transparency to ultraviolet light.

基板9において、第1の回路部材2と対向する面は、実装面3aとなっている。実装面3aには、例えば3μm以下の厚さで突出する回路電極8が突起電極5に対応する間隔で複数形成されている。回路電極8の表面は、例えば金、銀、錫、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金及びインジウム錫酸化物(ITO)から選ばれる1種或いは2種以上の材料で構成されている。   In the substrate 9, the surface facing the first circuit member 2 is a mounting surface 3 a. On the mounting surface 3 a, for example, a plurality of circuit electrodes 8 that protrude with a thickness of 3 μm or less are formed at intervals corresponding to the protruding electrodes 5. The surface of the circuit electrode 8 is made of, for example, one or more materials selected from gold, silver, tin, ruthenium, rhodium, palladium, osmium, iridium, platinum, and indium tin oxide (ITO).

硬化物14の形成に用いられる異方導電性接着剤層4は、例えば光硬化性成分を含有する接着剤成分、及び導電粒子7を含んで形成される。光硬化性成分としては、光硬化性を示す成分であれば特に限定されないが、例えばアクリレートやメタクリレート樹脂と光ラジカル発生剤を含有する光ラジカル重合系の成分や、エポキシ樹脂及びオキセタンに代表される環状エーテル化合物と光酸発生剤を含有する光カチオン重合系の成分、前述の環状エーテル化合物と光塩基発生剤を含有する光アニオン重合系の成分などの公知の重合系の成分を使用できる。これらの中でも、光ラジカル重合性の成分を含有する接着剤成分を用いることが、80℃以下の温度での硬化率を確保できる観点から好ましい。   The anisotropic conductive adhesive layer 4 used for forming the cured product 14 is formed including, for example, an adhesive component containing a photocurable component and conductive particles 7. The photocurable component is not particularly limited as long as it is a component exhibiting photocurability, but, for example, a photoradical polymerization component containing an acrylate or methacrylate resin and a photoradical generator, or an epoxy resin or oxetane is representative. Known polymerization components such as a cationic photopolymerization component containing a cyclic ether compound and a photoacid generator and a photoanionic polymerization component containing the cyclic ether compound and a photobase generator can be used. Among these, it is preferable to use an adhesive component containing a radically polymerizable component from the viewpoint of ensuring a curing rate at a temperature of 80 ° C. or lower.

アクリレート及びメタクリレート樹脂としては、例えばエポキシアクリレートオリゴマー、ウレタンアクリレートオリゴマー、ポリエーテルアクリレートオリゴマー、ポリエステルアクリレートオリゴマー等の光重合性オリゴマーや、トリメチロールプロパントリアクリレート、ポリエチレングリコールジアクリレート、ポリアルキレングリコールジアクリレート、ペンタエリスリトールアクリレート等の光重合性多官能アクリレートモノマーなどのアクリル酸エステル、及びこれらと類似したメタクリル酸エステル等に代表される光重合型の樹脂が挙げられる。必要に応じてこれらの樹脂を単独あるいは混合して用いてもよい。接着剤硬化物の硬化収縮を抑制して柔軟性を与えるためには、ウレタンアクリレートオリゴマーを配合することが好ましい。   Examples of acrylate and methacrylate resins include photopolymerizable oligomers such as epoxy acrylate oligomers, urethane acrylate oligomers, polyether acrylate oligomers, and polyester acrylate oligomers, trimethylolpropane triacrylate, polyethylene glycol diacrylate, polyalkylene glycol diacrylate, and pentane. Examples thereof include photopolymerization resins represented by acrylic esters such as photopolymerizable polyfunctional acrylate monomers such as erythritol acrylate, and methacrylic esters similar to these. If necessary, these resins may be used alone or in combination. In order to suppress the curing shrinkage of the cured adhesive and give flexibility, it is preferable to add a urethane acrylate oligomer.

また、上述した光重合性オリゴマーは高粘度であるため、粘度調整のために低粘度の光重合性多官能アクリレートモノマー等のモノマーを配合することが好ましい。環状エーテル化合物としては、例えばエポキシ系樹脂及びオキセタン化合物が好適に使用できる。エポキシ系樹脂としては、例えばビスフェノールA型、ビスフェノールF型、ノボラック型、脂環式等の液状又は固形のエポキシ樹脂を好適に使用できる。特に、脂環式エポキシ樹脂を使用した場合、紫外線照射で硬化させるときの硬化速度を上げることが可能となる。   Moreover, since the photopolymerizable oligomer mentioned above has high viscosity, it is preferable to mix | blend monomers, such as a low-viscosity photopolymerizable polyfunctional acrylate monomer, for viscosity adjustment. As the cyclic ether compound, for example, an epoxy resin and an oxetane compound can be preferably used. As the epoxy resin, for example, a liquid or solid epoxy resin such as bisphenol A type, bisphenol F type, novolac type, and alicyclic type can be suitably used. In particular, when an alicyclic epoxy resin is used, it is possible to increase the curing speed when cured by ultraviolet irradiation.

オキセタン化合物としては、例えばキシリレンジオキセタン、3−エチル−3−(ヒドロキシメチル)オキセタン、3−エチル−3−(ヘキシルオキシメチル)オキセタン、3−エチル−3−(フェノキシメチル)オキセタンビス{[1−エチル(3−オキセタニル)]メチル}エーテルを使用できる。   Examples of oxetane compounds include xylylene oxetane, 3-ethyl-3- (hydroxymethyl) oxetane, 3-ethyl-3- (hexyloxymethyl) oxetane, 3-ethyl-3- (phenoxymethyl) oxetanebis {[1 -Ethyl (3-oxetanyl)] methyl} ether can be used.

光ラジカル発生剤としては、ベンゾインエチルエーテル、イソプロピルベンゾインエーテル等のベンゾインエーテル、ベンジル、ヒドロキシシクロヘキシルフェニルケトン等のベンジルケタール、ベンゾフェノン、アセトフェノン等のケトン類及びその誘導体、チオキサントン類、ビイミダゾール類などが挙げられる。これらの光開始剤に、必要に応じてアミン類、イオウ化合物、リン化合物等の増感剤を任意の比で添加してもよい。この際、用いる光源の波長や所望の硬化特性等に応じて最適な光ラジカル発生剤を選択する必要がある。   Examples of the photo radical generator include benzoin ethers such as benzoin ethyl ether and isopropyl benzoin ether, benzyl ketals such as benzyl and hydroxycyclohexyl phenyl ketone, ketones such as benzophenone and acetophenone, and derivatives thereof, thioxanthones, and biimidazoles. It is done. Sensitizers such as amines, sulfur compounds and phosphorus compounds may be added to these photoinitiators in any ratio as required. At this time, it is necessary to select an optimal photo radical generator according to the wavelength of the light source to be used, desired curing characteristics, and the like.

光塩基発生剤は、紫外線や可視光などの光照射によって分子構造が変化し、或いは分子内で開裂が起こることによって、速やかに1種類以上の塩基性物質又は塩基性物質に類似する物質を生成する化合物である。ここでいう塩基性物質は、1級アミン類、2級アミン類、3級アミン類、並びにこれらのアミン類が1分子中に2個以上存在するポリアミン類及びその誘導体、イミダゾール類、ピリジン類、モルホリン類及びその誘導体である。また、2種類以上の光照射によって塩基性物質を発生する化合物を併用してもよい。   Photobase generators quickly generate one or more basic substances or substances similar to basic substances by changing the molecular structure upon irradiation with light such as ultraviolet rays or visible light, or by causing cleavage within the molecule. It is a compound. Basic substances here include primary amines, secondary amines, tertiary amines, and polyamines and derivatives thereof in which two or more of these amines are present in one molecule, imidazoles, pyridines, Morpholines and their derivatives. Moreover, you may use together the compound which generate | occur | produces a basic substance by two or more types of light irradiation.

また、α−アミノアセトフェノン骨格を有する化合物を好適に用いることができる。当該骨格を有する化合物は、分子中にベンゾインエーテル結合を有しているため、光照射によって分子内で容易に開裂し、これが塩基性物質として作用する。α−アミノアセトフェノン骨格を有する化合物の具体例としては、(4−モルホリノベンゾイル)−1−ベンジル−1−ジメチルアミノプロパン(BASF社製:イルガキュア369)や、4−(メチルチオベンゾイル)−1−メチル−1−モルホリノエタン(BASF社製:イルガキュア907)などの市販の化合物、又はその溶液が挙げられる。   A compound having an α-aminoacetophenone skeleton can be preferably used. Since the compound having the skeleton has a benzoin ether bond in the molecule, it is easily cleaved within the molecule by light irradiation, and this acts as a basic substance. Specific examples of the compound having an α-aminoacetophenone skeleton include (4-morpholinobenzoyl) -1-benzyl-1-dimethylaminopropane (manufactured by BASF: Irgacure 369) and 4- (methylthiobenzoyl) -1-methyl. Examples thereof include commercially available compounds such as -1-morpholinoethane (manufactured by BASF: Irgacure 907) or solutions thereof.

光酸発生剤は、光照射によって酸を発生する化合物であれば、特に制限無く公知の化合物を使用することができる。光酸発生剤としては、例えばアリールジアゾニウム塩誘導体、ジアリールヨードニウム塩誘導体、トリアリールスルホニウム塩誘導体、トリアルキルスルホニウム塩誘導体、アリールジアルキルスルホニウム塩誘導体、トリアリールセレノニウム塩誘導体、トリアリールスルホキソニウム塩誘導体、アリーロキシジアリールスルホキソニウム塩誘導体、ジアルキルフェナシルスルホニウム塩誘導体等のオニウム塩や、鉄−アレーン錯体を用いることができる。   As the photoacid generator, a known compound can be used without particular limitation as long as it is a compound that generates an acid by light irradiation. Examples of the photoacid generator include aryldiazonium salt derivatives, diaryliodonium salt derivatives, triarylsulfonium salt derivatives, trialkylsulfonium salt derivatives, aryldialkylsulfonium salt derivatives, triarylselenonium salt derivatives, and triarylsulfoxonium salt derivatives. Further, onium salts such as aryloxydiarylsulfoxonium salt derivatives and dialkylphenacylsulfonium salt derivatives, and iron-arene complexes can be used.

また、トリアリールシリルパーオキサイド誘導体、アシルシラン誘導体、α−スルホニロキシケトン誘導体、α−ヒドロキシメチルベンゾイン誘導体、ニトロベンジルエステル誘導体、α−スルホニルアセトフェノン誘導体など、光照射又は加熱によって有機酸を発生する化合物を使用することができる。特に、光照射又は加熱時の酸発生効率の観点から、旭電化工業株式会社製アデカオプトマーSPシリーズ、旭電化工業株式会社製アデカオプトンCPシリーズ、UnionCarbide社製CyracureUVIシリーズ、BASF社製Irgacureシリーズを用いることが好ましい。さらに、必要に応じて、アントラセンやチオキサントン誘導体に代表される公知の一重項増感剤や三重項増感剤を併用できる。   In addition, compounds that generate organic acids by light irradiation or heating, such as triarylsilyl peroxide derivatives, acylsilane derivatives, α-sulfonyloxyketone derivatives, α-hydroxymethylbenzoin derivatives, nitrobenzyl ester derivatives, α-sulfonylacetophenone derivatives Can be used. In particular, from the viewpoint of acid generation efficiency during light irradiation or heating, the Adekaoptomer SP series manufactured by Asahi Denka Kogyo Co., Ltd., the Adeka Opton CP series manufactured by Asahi Denka Kogyo Co., Ltd., the Cycure UVI series manufactured by Union Carbide, and the Irgacure series manufactured by BASF It is preferable. Furthermore, if necessary, known singlet sensitizers and triplet sensitizers typified by anthracene and thioxanthone derivatives can be used in combination.

光ラジカル発生剤、光塩基発生剤、及び光酸発生剤の配合量は、接着剤組成物100重量%中、0.01重量部〜30重量部で配合することが好ましい。0.01重量部未満では硬化不足となり、接着力が低下するおそれがある。また、30重量部を超えると、比較的低分子量物が多くなるため、これらの成分が異方導電性接着剤層4の表面に染み出して接着力が低下するおそれがある。   The compounding amount of the photo radical generator, photo base generator, and photo acid generator is preferably 0.01 to 30 parts by weight in 100% by weight of the adhesive composition. If it is less than 0.01 part by weight, the curing is insufficient and the adhesive strength may be reduced. On the other hand, when the amount exceeds 30 parts by weight, relatively low molecular weight substances increase, so that these components may ooze out on the surface of the anisotropic conductive adhesive layer 4 and the adhesive force may be reduced.

また、光ラジカル発生剤、光塩基発生剤、及び光酸発生剤の中には、熱により反応が開始するものが存在する。本実施形態においては、これらの反応開始温度が配置工程の温度より高いことが好ましい。このような観点で適宜、光ラジカル発生剤、光塩基発生剤、及び光酸発生剤を選択したり、必要に応じて配置工程温度を調整したりすることができる。   Further, among the photo radical generator, the photo base generator, and the photo acid generator, there are those whose reaction is initiated by heat. In this embodiment, it is preferable that these reaction start temperatures are higher than the temperature of an arrangement | positioning process. From such a viewpoint, a photo radical generator, a photo base generator, and a photo acid generator can be appropriately selected, and the arrangement process temperature can be adjusted as necessary.

電子部品1において、例えば導電粒子7は、図1に示すように、僅かに扁平に変形しつつ、第1の回路部材2の突起電極5と第2の回路部材3の回路電極8とに食い込むようにして突起電極5と回路電極8との間に介在している。これにより、第1の回路部材2の突起電極5と第2の回路部材3の回路電極8との間の電気的な接続が実現されると同時に、突起電極5,5間の電気的な絶縁及び回路電極8,8間の電気的な絶縁が実現されている。   In the electronic component 1, for example, as shown in FIG. 1, the conductive particles 7 bite into the protruding electrodes 5 of the first circuit member 2 and the circuit electrodes 8 of the second circuit member 3 while being slightly flattened. Thus, it is interposed between the protruding electrode 5 and the circuit electrode 8. Thereby, electrical connection between the projecting electrode 5 of the first circuit member 2 and the circuit electrode 8 of the second circuit member 3 is realized, and at the same time, electrical insulation between the projecting electrodes 5 and 5. In addition, electrical insulation between the circuit electrodes 8 and 8 is realized.

導電粒子7としては、例えば、Au、Ag、Pd、Ni、Cu、はんだ等の金属粒子、カーボン粒子などが挙げられる。また、導電粒子7は、ガラス、セラミック、プラスチック等の非導電性材料からなる核体粒子と、該核体粒子を被覆する金属、金属粒子、カーボン等の導電層と、を有する複合粒子であってもよい。金属粒子は、銅粒子及び銅粒子を被覆する銀層を有する粒子であってもよい。複合粒子の核体粒子は、好ましくはプラスチック粒子である。   Examples of the conductive particles 7 include metal particles such as Au, Ag, Pd, Ni, Cu, and solder, and carbon particles. The conductive particles 7 are composite particles having core particles made of a non-conductive material such as glass, ceramic, and plastic, and conductive layers such as metal, metal particles, and carbon that coat the core particles. May be. The metal particles may be copper particles and particles having a silver layer covering the copper particles. The core particle of the composite particle is preferably a plastic particle.

上記プラスチック粒子を核体粒子とする複合粒子は、加熱及び加圧によって変形する変形性を有するので、第1の回路部材2と第2の回路部材3とを接続する際に、導電粒子7と突起電極5及び回路電極8との接触面積を増加させることができる。このため、これらの複合粒子を導電粒子7として含有する接着剤組成物によれば、接続信頼性の点でより一層優れる接続体が得られる。   The composite particles having the plastic particles as the core particles have the deformability to be deformed by heating and pressurization. Therefore, when the first circuit member 2 and the second circuit member 3 are connected, the conductive particles 7 and The contact area between the protruding electrode 5 and the circuit electrode 8 can be increased. For this reason, according to the adhesive composition containing these composite particles as the conductive particles 7, a connection body that is further superior in terms of connection reliability can be obtained.

導電粒子7と、その表面の少なくとも一部を被覆する絶縁層又は絶縁性粒子とを有する絶縁被覆導電性粒子を、導電粒子7として使用してもよい。絶縁層は、ハイブリダイゼーション等の方法により設けることができる。絶縁層又は絶縁性粒子は、例えば高分子樹脂等の絶縁性材料から形成される。このような絶縁被覆導電性粒子を用いることで、隣接する導電粒子7同士による短絡が生じにくくなる。導電粒子7の平均粒径は、良好な分散性及び導電性を得る観点から、1μm〜18μmであることが好ましい。   Insulating coated conductive particles having the conductive particles 7 and an insulating layer or insulating particles covering at least a part of the surface thereof may be used as the conductive particles 7. The insulating layer can be provided by a method such as hybridization. The insulating layer or the insulating particles are formed from an insulating material such as a polymer resin. By using such insulating coating conductive particles, short-circuiting between adjacent conductive particles 7 hardly occurs. The average particle diameter of the conductive particles 7 is preferably 1 μm to 18 μm from the viewpoint of obtaining good dispersibility and conductivity.

導電粒子7は、接着剤成分100体積に対して、例えば0.1〜50体積%、より好ましくは0.1〜10体積%の範囲で用途により適宜配合される。これにより、突起電極5と回路電極8との間に十分な数の導電粒子7を介在させることができる。   The electroconductive particle 7 is suitably mix | blended with a use in the range of 0.1-50 volume% with respect to 100 volume of adhesive components, for example, More preferably, 0.1-10 volume%. Thereby, a sufficient number of conductive particles 7 can be interposed between the protruding electrode 5 and the circuit electrode 8.

また、異方導電性接着剤層4には、熱可塑性樹脂を含有させることができる。熱可塑性樹脂としては、例えばポリイミド樹脂、ポリアミド樹脂、フェノキシ樹脂、ポリ(メタ)アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリエステルウレタン樹脂及びポリビニルブチラール樹脂から選ばれる1種又は2種以上の樹脂が挙げられる。また、本発明の効果を阻害しない範囲で、各種添加剤やフィラーを異方導電性接着剤層4に含有させてもよい。   Further, the anisotropic conductive adhesive layer 4 can contain a thermoplastic resin. Examples of the thermoplastic resin include one or more resins selected from polyimide resins, polyamide resins, phenoxy resins, poly (meth) acrylic resins, polyester resins, polyurethane resins, polyester urethane resins, and polyvinyl butyral resins. . In addition, various additives and fillers may be included in the anisotropic conductive adhesive layer 4 as long as the effects of the present invention are not impaired.

異方導電性接着剤層4は、配置工程の温度において第1の回路部材2の突起電極5を押し込むのに充分な流動性を有することが必要である。配置工程の温度にあわせ、例えば異方導電性接着剤層4に含まれるアクリレート樹脂、メタクリレート樹脂、環状エーテル化合物、及び熱可塑性樹脂の種類や配合量を調整することによって流動性を調整することができる。   The anisotropic conductive adhesive layer 4 needs to have sufficient fluidity to push the protruding electrode 5 of the first circuit member 2 at the temperature of the placement step. The fluidity can be adjusted by adjusting the type and blending amount of the acrylate resin, methacrylate resin, cyclic ether compound, and thermoplastic resin contained in the anisotropic conductive adhesive layer 4 according to the temperature of the arrangement process, for example. it can.

また、異方導電性接着剤層4の厚みは、例えば2μm〜50μmであることが好ましい。異方導電性接着剤層4の厚みが2μm未満の場合、第1の回路部材2と第2の回路部材3との間の異方導電性接着剤層4が充填不足となるおそれがある。一方、異方導電性接着剤層4の厚みが50μmを超えると、第1の回路部材2と第2の回路部材3との間の導通の確保が困難となるおそれがある。このような厚みの異方導電性接着剤層4は、例えば異方導電性フィルムを用いることで容易に形成できる。異方導電性フィルムは、例えば塗工装置を用いて支持フィルム上に異方導電性接着剤を塗布し、これを熱風などで乾燥させることによって形成できる。   Moreover, it is preferable that the thickness of the anisotropic conductive adhesive layer 4 is 2 micrometers-50 micrometers, for example. When the thickness of the anisotropic conductive adhesive layer 4 is less than 2 μm, the anisotropic conductive adhesive layer 4 between the first circuit member 2 and the second circuit member 3 may be insufficiently filled. On the other hand, if the thickness of the anisotropic conductive adhesive layer 4 exceeds 50 μm, it may be difficult to ensure conduction between the first circuit member 2 and the second circuit member 3. The anisotropic conductive adhesive layer 4 having such a thickness can be easily formed by using, for example, an anisotropic conductive film. The anisotropic conductive film can be formed, for example, by applying an anisotropic conductive adhesive on a support film using a coating apparatus and drying it with hot air or the like.

次に、上述した電子部品1の製造方法について説明する。   Next, a method for manufacturing the electronic component 1 described above will be described.

電子部品1の形成にあたっては、ステージ(不図示)上に第2の回路部材3を載置し、まず、図2に示すように、第2の回路部材3の実装面3a側に異方導電性接着剤層4を配置する。異方導電性接着剤層4の配置は、異方導電性フィルムのラミネートによって実施してもよく、異方導電性ペーストの塗布によって実施してもよい。   In forming the electronic component 1, the second circuit member 3 is placed on a stage (not shown). First, as shown in FIG. 2, anisotropic conduction is performed on the mounting surface 3 a side of the second circuit member 3. The adhesive layer 4 is disposed. The arrangement of the anisotropic conductive adhesive layer 4 may be performed by lamination of an anisotropic conductive film or may be performed by application of an anisotropic conductive paste.

次に、突起電極5と回路電極8とが対向するように第1の回路部材2と第2の回路部材3との位置合わせを行い、異方導電性接着剤層4を挟んで第1の回路部材2を第2の回路部材3上に積層する(配置工程)。この配置工程では、図3に示すように、異方導電性接着剤層4に対して第1の温度T1で熱を付加しながら、第1の回路部材2を第2の回路部材3側に第1の圧力P1で加圧し、突起電極5を異方導電性接着剤層4に対して押し込む。第1の温度T1は、例えば80℃〜130℃、好ましくは90℃〜110℃に設定され、第1の圧力P1は、例えば10MPaに設定される。加熱・加圧の時間は、例えば0.5秒〜20秒に設定される。   Next, the first circuit member 2 and the second circuit member 3 are aligned so that the protruding electrode 5 and the circuit electrode 8 face each other, and the first conductive adhesive layer 4 is sandwiched between the first circuit member 2 and the circuit electrode 8. The circuit member 2 is laminated on the second circuit member 3 (arrangement step). In this arrangement step, the first circuit member 2 is moved toward the second circuit member 3 while applying heat to the anisotropic conductive adhesive layer 4 at the first temperature T1, as shown in FIG. Pressurization is performed with the first pressure P <b> 1, and the protruding electrode 5 is pushed into the anisotropic conductive adhesive layer 4. The first temperature T1 is set to, for example, 80 ° C. to 130 ° C., preferably 90 ° C. to 110 ° C., and the first pressure P1 is set to, for example, 10 MPa. The heating / pressurization time is set to 0.5 to 20 seconds, for example.

第1の温度T1での熱の付加により、異方導電性接着剤層4は、実質的に未硬化の状態で流動性を有することとなり、第1の圧力P1の付加により突起電極5が押し込まれることで異方導電性接着剤層4中の余分な樹脂が排除される。このとき、突起電極5と回路電極8とによって異方導電性接着剤層4中の導電粒子7が噛合される(突起電極5と回路電極8とが導通する)ように異方導電性接着剤層4への突起電極5の押し込みを行うことが好適である。したがって、第1の圧力P1は、第1の温度T1により異方導電性接着剤層4が有する流動性を参考に適宜調整すればよい。これにより、実質的に未硬化状態の異方導電性接着剤層4に突起電極5が押し込まれた電子部品の中間体Sが形成される。   By applying heat at the first temperature T1, the anisotropic conductive adhesive layer 4 has fluidity in a substantially uncured state, and the protruding electrode 5 is pushed in by applying the first pressure P1. As a result, excess resin in the anisotropic conductive adhesive layer 4 is eliminated. At this time, the anisotropic conductive adhesive is so formed that the conductive particles 7 in the anisotropic conductive adhesive layer 4 are engaged by the protruding electrode 5 and the circuit electrode 8 (the protruding electrode 5 and the circuit electrode 8 are electrically connected). It is preferable to push the protruding electrode 5 into the layer 4. Therefore, the first pressure P1 may be appropriately adjusted by referring to the fluidity of the anisotropic conductive adhesive layer 4 at the first temperature T1. Thereby, the intermediate body S of the electronic component in which the protruding electrode 5 is pushed into the substantially uncured anisotropic conductive adhesive layer 4 is formed.

突起電極5の押し込み量に関しては、必ずしも突起電極5と回路電極8との間に位置する導電粒子7が突起電極5及び回路電極8に接触していなくてもよく、突起電極5と回路電極8とが一定の間隔以下に近接していればよい。より具体的には、突起電極5と回路電極8との間隔(突起電極5の先端面と回路電極8の先端面との間の距離、すなわち、導電粒子7を噛合する面と面との間の距離)が異方導電性接着剤層4中の導電粒子7の平均粒径の0%〜200%程度となっていればよい。突起電極5が異方導電性接着剤層4に含有される導電粒子7よりも変形し易い場合、突起電極5と回路電極8との間隔が異方導電性接着剤層4中の導電粒子7の平均粒径の100%未満となっているときには、導電粒子7が扁平な状態に変形すると共に、その少なくとも一部が突起電極5に埋没した状態となる。   With respect to the pushing amount of the protruding electrode 5, the conductive particles 7 positioned between the protruding electrode 5 and the circuit electrode 8 do not necessarily have to be in contact with the protruding electrode 5 and the circuit electrode 8. As long as they are close to each other below a certain distance. More specifically, the distance between the projecting electrode 5 and the circuit electrode 8 (the distance between the front end surface of the projecting electrode 5 and the front end surface of the circuit electrode 8, that is, between the surface engaging the conductive particle 7 and the surface). Of the average particle diameter of the conductive particles 7 in the anisotropic conductive adhesive layer 4 may be about 0% to 200%. When the protruding electrode 5 is more easily deformed than the conductive particles 7 contained in the anisotropic conductive adhesive layer 4, the distance between the protruding electrode 5 and the circuit electrode 8 is the conductive particles 7 in the anisotropic conductive adhesive layer 4. When the average particle diameter is less than 100%, the conductive particles 7 are deformed into a flat state, and at least a part of the conductive particles 7 is buried in the protruding electrodes 5.

配置工程の後、電子部品の中間体Sにおける異方導電性接着剤層4の冷却(冷却工程)を行うことが好ましい。冷却工程では、後述する接続工程において異方導電性接着剤層4に付加する第2の温度T2よりも低い温度となるように異方導電性接着剤層4を冷却する。この温度は、例えば室温(20℃程度)であることが好適である。   After the disposing step, it is preferable to cool the anisotropic conductive adhesive layer 4 in the electronic component intermediate S (cooling step). In the cooling step, the anisotropic conductive adhesive layer 4 is cooled so that the temperature is lower than the second temperature T2 applied to the anisotropic conductive adhesive layer 4 in the connection step described later. This temperature is preferably room temperature (about 20 ° C.), for example.

冷却工程の後、電子部品の中間体Sにおける異方導電性接着剤層4を光硬化させ、第1の回路部材2の突起電極5と第2の回路部材3の回路電極8とを電気的に接続する(接続工程)。接続工程では、図4に示すように、異方導電性接着剤層4に対して第2の温度T2で熱を付加しながら、第1の回路部材2を第2の回路部材3側に第2の圧力P2で加圧する。また、第2の回路部材3側から紫外光等の光を照射し、異方導電性接着剤層4の硬化を行う。これにより、図1に示した電子部品1が得られる。   After the cooling step, the anisotropic conductive adhesive layer 4 in the intermediate S of the electronic component is photocured to electrically connect the protruding electrode 5 of the first circuit member 2 and the circuit electrode 8 of the second circuit member 3. (Connecting process). In the connecting step, as shown in FIG. 4, the first circuit member 2 is moved to the second circuit member 3 side while applying heat to the anisotropic conductive adhesive layer 4 at the second temperature T2. 2. Pressurize with a pressure P2. Further, the anisotropic conductive adhesive layer 4 is cured by irradiating light such as ultraviolet light from the second circuit member 3 side. Thereby, the electronic component 1 shown in FIG. 1 is obtained.

第2の温度T2は、第1の温度T1に比べて低く、例えば50℃に設定される。第2の温度T2は、70℃以下であることが好ましく、60℃以下であることが更に好ましい。また、第2の温度T2は、20℃以上であることが好ましい。また、第2の圧力P2は、第1の圧力P1に比べて高くしてもよく、例えば20MPa〜100MPaに設定される。光照射の強度は、例えば50mJ/cm〜2000mJ/cmに設定される。加熱・加圧・光照射の時間は、例えば5秒に設定される。なお、接続工程においては、ステージによる第2の回路部材3の加熱(バックアップ加熱)を実施してもよい。バックアップ加熱の温度は、第2の温度T2と同程度の温度或いは僅かに低い温度であればよく、例えば40℃に設定される。また、異方導電性接着剤層4への光の照射は、第1の回路部材2及び第2の回路部材3の側方から行ってもよく、第1の回路部材2が光透過性を有している場合には第1の回路部材2側から行ってもよい。 The second temperature T2 is lower than the first temperature T1, and is set to 50 ° C., for example. The second temperature T2 is preferably 70 ° C. or lower, and more preferably 60 ° C. or lower. Moreover, it is preferable that 2nd temperature T2 is 20 degreeC or more. Further, the second pressure P2 may be higher than the first pressure P1, and is set to, for example, 20 MPa to 100 MPa. The intensity of the light irradiation is set to, for example, 50mJ / cm 2 ~2000mJ / cm 2 . The time of heating, pressurization, and light irradiation is set to 5 seconds, for example. In the connection step, the second circuit member 3 may be heated (backup heating) by the stage. The temperature of the backup heating may be the same as or slightly lower than the second temperature T2, and is set to 40 ° C., for example. Moreover, the irradiation of the light to the anisotropic conductive adhesive layer 4 may be performed from the side of the first circuit member 2 and the second circuit member 3, and the first circuit member 2 is light transmissive. When it has, you may carry out from the 1st circuit member 2 side.

以上説明したように、この電子部品の製造方法では、配置工程において、接続工程で付加される第2の温度T2よりも高い第1の温度T1で異方導電性接着剤層4に熱を付加し、突起電極5を異方導電性接着剤層4に押し込むことで予め余分な樹脂を排除している。配置工程では、異方導電性接着剤層4は実質的に未硬化であるため、熱を付加した後の収縮に異方導電性接着剤層4が追従し、第1の回路部材2及び第2の回路部材3の反りを抑制できる。配置工程に続く接続工程では、第1の温度T1よりも低い第2の温度T2を光硬化のアシストとして付加すればよく、接続後の電子部品1の反りを十分に低減できる。   As described above, in this electronic component manufacturing method, heat is applied to the anisotropic conductive adhesive layer 4 at the first temperature T1 higher than the second temperature T2 applied in the connection step in the placement step. Then, the protruding electrode 5 is pushed into the anisotropic conductive adhesive layer 4 to eliminate excess resin in advance. In the arranging step, since the anisotropic conductive adhesive layer 4 is substantially uncured, the anisotropic conductive adhesive layer 4 follows the contraction after the heat is applied, and the first circuit member 2 and the first circuit member 2 The warp of the second circuit member 3 can be suppressed. In the connection process following the arrangement process, the second temperature T2 lower than the first temperature T1 may be added as an assist for photocuring, and the warpage of the electronic component 1 after connection can be sufficiently reduced.

また、この電子部品の製造方法では、異方導電性接着剤層4の流動性を得るための加熱と、異方導電性接着剤層4の硬化とが実質的にそれぞれ別の工程で実施され、さらに、配置工程での熱の付加によって異方導電性接着剤層4の濡れ性も高められるため、異方導電性接着剤層4による接着力を十分に確保できる。したがって、接続後の電子部品1における第1の回路部材2及び第2の回路部材3の剥離を抑制できる。   In this method for manufacturing an electronic component, heating for obtaining the fluidity of the anisotropic conductive adhesive layer 4 and curing of the anisotropic conductive adhesive layer 4 are performed in substantially separate steps. Furthermore, since the wettability of the anisotropic conductive adhesive layer 4 is enhanced by the application of heat in the arranging step, the adhesive force by the anisotropic conductive adhesive layer 4 can be sufficiently secured. Therefore, peeling of the first circuit member 2 and the second circuit member 3 in the electronic component 1 after connection can be suppressed.

また、この電子部品の製造方法では、配置工程と接続工程との間に、異方導電性接着剤層4の温度を第2の温度T2以下に冷却する冷却工程を備えている。かかる冷却工程を介在させることで、異方導電性接着剤層4の流動と硬化とをより確実に異なる工程に分けることができる。これにより、異方導電性接着剤層4による接着力を一層十分に確保でき、接続後の電子部品1における第1の回路部材2及び第2の回路部材3の剥離を好適に抑制できる。   In addition, this electronic component manufacturing method includes a cooling step of cooling the temperature of the anisotropic conductive adhesive layer 4 to the second temperature T2 or less between the placing step and the connecting step. By interposing such a cooling step, the flow and curing of the anisotropic conductive adhesive layer 4 can be more reliably divided into different steps. Thereby, the adhesive force by the anisotropic conductive adhesive layer 4 can be more sufficiently ensured, and peeling of the first circuit member 2 and the second circuit member 3 in the electronic component 1 after connection can be suitably suppressed.

また、この電子部品の製造方法では、配置工程において、第1の圧力P1を付加しながら突起電極5を異方導電性接着剤層4に押し込み、接続工程において、第1の圧力P1よりも高い第2の圧力P2を付加しながら異方導電性接着剤層4の光硬化を行っている。このように、接続工程において第1の圧力P1よりも高い第2の圧力P2を付加することにより、異方導電性接着剤層4の硬化時に突起電極5と回路電極8とによって導電粒子7が噛合した状態が維持され、第1の回路部材2と第2の回路部材3との電気的な接続をより確実に実現できる。   Further, in this electronic component manufacturing method, the protruding electrode 5 is pushed into the anisotropic conductive adhesive layer 4 while applying the first pressure P1 in the arranging step, and is higher than the first pressure P1 in the connecting step. The anisotropic conductive adhesive layer 4 is photocured while applying the second pressure P2. In this way, by applying the second pressure P2 higher than the first pressure P1 in the connecting step, the conductive particles 7 are formed by the protruding electrodes 5 and the circuit electrodes 8 when the anisotropic conductive adhesive layer 4 is cured. The engaged state is maintained, and the electrical connection between the first circuit member 2 and the second circuit member 3 can be more reliably realized.

また、この電子部品の製造方法では、配置工程において、突起電極5と回路電極8とによって異方導電性接着剤層4中の導電粒子7が噛合されるように異方導電性接着剤層4への突起電極5の押し込みが行われ、突起電極5と回路電極8との間隔が異方導電性接着剤層4中の導電粒子7の平均粒径の0%〜200%となっている。これにより、配置工程で異方導電性接着剤層4の余分な樹脂を予め十分に排除することができ、接続工程において第1の回路部材2と第2の回路部材3との電気的な接続をより確実に実現できる。   In this method of manufacturing an electronic component, the anisotropic conductive adhesive layer 4 is arranged so that the conductive particles 7 in the anisotropic conductive adhesive layer 4 are engaged with each other by the protruding electrode 5 and the circuit electrode 8 in the arranging step. The bump electrode 5 is pushed into the gap, and the gap between the bump electrode 5 and the circuit electrode 8 is 0% to 200% of the average particle diameter of the conductive particles 7 in the anisotropic conductive adhesive layer 4. Thereby, the excess resin of the anisotropic conductive adhesive layer 4 can be sufficiently removed in the arranging step in advance, and the electrical connection between the first circuit member 2 and the second circuit member 3 in the connecting step. Can be realized more reliably.

さらに、この電子部品の製造方法では、接続工程においてバックアップ加熱を行っている。このようなバックアップ加熱により、異方導電性接着剤層4の硬化時の第1の回路部材2と第2の回路部材3との間の温度差を軽減することができ、電子部品1の反りを一層抑制できる。また、当該バックアップ加熱の温度は、第2の温度T2に応じて比較的低温にすることができるので、余分な熱履歴が加わることを回避でき、第2の回路部材3の基板9にうねり等の変形が生じることを抑制できる。このことは、基板9が薄い場合やプラスチック基板等である場合に特に有意である。   Further, in this electronic component manufacturing method, backup heating is performed in the connection step. By such backup heating, the temperature difference between the first circuit member 2 and the second circuit member 3 when the anisotropic conductive adhesive layer 4 is cured can be reduced, and the warp of the electronic component 1 can be reduced. Can be further suppressed. Further, since the temperature of the backup heating can be made relatively low according to the second temperature T2, it is possible to avoid the addition of an excessive heat history, and undulation or the like on the substrate 9 of the second circuit member 3. It is possible to suppress the occurrence of deformation. This is particularly significant when the substrate 9 is thin or a plastic substrate or the like.

また、電子部品の中間体Sは、突起電極5と回路電極8との間隔が異方導電性接着剤層4中の導電粒子7の平均粒径の0%〜200%となるように、未硬化状態の異方導電性接着剤層4に突起電極5が押し込まれることで形成されている。かかる電子部品の中間体Sでは、突起電極5が実質的に未硬化状態の異方導電性接着剤層4に押し込まれていることで予め余分な樹脂が排除されている。したがって、異方導電性接着剤層4を光硬化する際には、光硬化のアシストとして比較的低温の熱を付加すればよく、接続後の電子部品1の反りを十分に低減できる。   In addition, the intermediate S of the electronic component is not yet formed so that the distance between the protruding electrode 5 and the circuit electrode 8 is 0% to 200% of the average particle diameter of the conductive particles 7 in the anisotropic conductive adhesive layer 4. The bumps 5 are formed by being pushed into the cured anisotropic conductive adhesive layer 4. In such an electronic component intermediate S, excess resin is eliminated in advance by the protruding electrode 5 being pushed into the substantially uncured anisotropic conductive adhesive layer 4. Accordingly, when the anisotropic conductive adhesive layer 4 is photocured, heat at a relatively low temperature may be applied as an assist for photocuring, and warpage of the electronic component 1 after connection can be sufficiently reduced.

続いて、当該電子部品の製造方法の実施例について説明する。
[異方導電性接着剤の作製]
(フィルム状接着剤A−1)
Subsequently, an example of a method for manufacturing the electronic component will be described.
[Production of anisotropic conductive adhesive]
(Film adhesive A-1)

硬化性成分として、ラジカル重合性化合物であるUA5500(根上工業株式会社製:25質量部)及びM313(新中村化学工業株式会社製:25質量部)と、光ラジカル重合開始剤であるイルガキュアOXE02(BASF社製:3質量部)とを用いた。バインダとして、フェノキシ樹脂YP−70(東都化成株式会社製:50質量部)を用いた。また、ポリスチレンを核とする粒子の表面に厚み0.2μmのニッケル層を設け、このニッケル層の外側に厚み0.02μmの金属層を設けることにより、平均粒径3μm、比重2.5の導電粒子を作製し、40質量部を用いた。各成分を配合し、厚み40μmのPETフィルムに塗工装置を用いて塗布し、70℃、5分の熱風乾燥によって厚みが20μmのフィルム状接着剤A−1を得た。
[配置工程]
As curable components, UA5500 (manufactured by Negami Kogyo Co., Ltd .: 25 parts by mass) and M313 (manufactured by Shin-Nakamura Chemical Co., Ltd .: 25 parts by mass) which are radical polymerizable compounds, and Irgacure OXE02 (a radical photopolymerization initiator) BASF Corporation: 3 parts by mass) was used. As the binder, phenoxy resin YP-70 (manufactured by Toto Kasei Co., Ltd .: 50 parts by mass) was used. In addition, a nickel layer having a thickness of 0.2 μm is provided on the surface of particles having polystyrene as a core, and a metal layer having a thickness of 0.02 μm is provided outside the nickel layer. Particles were prepared and 40 parts by weight were used. Each component was blended and applied to a PET film having a thickness of 40 μm using a coating apparatus, and a film-like adhesive A-1 having a thickness of 20 μm was obtained by drying with hot air at 70 ° C. for 5 minutes.
[Arrangement process]

上記製法により得たフィルム状接着剤を、ガラス基板(コーニング#1737、外形38mm×28mm、厚さ0.5mm、表面にITO(酸化インジウム錫)配線パターン(パターン幅50μm、ピッチ50μm)を有するもの)に2mm×20mmの大きさでPETフィルムから転写した。次に、ICチップ(外形1.7mm×17.2mm、厚さ0.55mm、バンプの大きさ50μm×50μm、バンプのピッチ50μm)を図5に示す条件(温度、圧力、時間)で加熱加圧し、ICチップをガラス基板に仮搭載した。この工程ではフィルム状接着剤への紫外線の照射は行わず、フィルム状接着剤は未硬化の状態である。
[接続工程]
A film-like adhesive obtained by the above-described manufacturing method has a glass substrate (Corning # 1737, outer shape 38 mm × 28 mm, thickness 0.5 mm, and an ITO (indium tin oxide) wiring pattern (pattern width 50 μm, pitch 50 μm) on the surface. ) Was transferred from a PET film in a size of 2 mm × 20 mm. Next, the IC chip (outer diameter 1.7 mm × 17.2 mm, thickness 0.55 mm, bump size 50 μm × 50 μm, bump pitch 50 μm) is heated under the conditions (temperature, pressure, time) shown in FIG. The IC chip was temporarily mounted on a glass substrate. In this step, the film adhesive is not irradiated with ultraviolet rays, and the film adhesive is in an uncured state.
[Connection process]

ICチップの仮搭載の後、紫外線照射装置である高圧水銀灯により、紫外線(波長365nm、強度1000mJ/cm)をガラス基板裏面からフィルム状接着剤に向けて照射し、図5に示す条件(温度、時間)で80MPa(バンプ面積換算)の荷重をかけてICチップとガラス基板との接続を行った。
[実施例及び比較例の評価]
After temporary mounting of the IC chip, ultraviolet light (wavelength 365 nm, intensity 1000 mJ / cm 2 ) was irradiated from the back surface of the glass substrate toward the film adhesive with a high-pressure mercury lamp as an ultraviolet irradiation device, and the conditions (temperatures shown in FIG. , Time), a load of 80 MPa (bump area conversion) was applied to connect the IC chip and the glass substrate.
[Evaluation of Examples and Comparative Examples]

実施例1及び2は、いずれもフィルム状接着剤A−1を用い、配置工程での温度が接続工程での温度よりも高くなるように設定した。比較例1は、配置工程の温度と接続工程での温度とが同程度になるように設定した。比較例2及び3は、いずれも接続工程の温度が80℃を超えるように設定した。これらの実施例及び比較例につき、接続後の電子部品におけるガラス基板の反り量、電子部品の接続抵抗、及び異方導電性接着剤層の硬化率の各項目をそれぞれ評価した。   In each of Examples 1 and 2, the film adhesive A-1 was used, and the temperature in the arranging step was set to be higher than the temperature in the connecting step. In Comparative Example 1, the temperature in the placement process and the temperature in the connection process were set to be approximately the same. In Comparative Examples 2 and 3, both were set so that the temperature of the connection process exceeded 80 ° C. About these Examples and Comparative Examples, each item of the warpage amount of the glass substrate in the electronic component after connection, the connection resistance of the electronic component, and the curing rate of the anisotropic conductive adhesive layer was evaluated.

ガラス基板の反り量は、接触式表面粗さ計を用いて測定した。反り量の測定箇所は、ガラス基板におけるICチップ実装部の裏面側(ITO基板の回路が設けられた面の反対面側)とした。また、接続抵抗の測定では、まず電子部品を温度サイクル槽中に配置し、温度サイクル試験を実施した。1サイクルでは140℃で30分間の保持した後100℃で30分間し、これを500サイクル繰り返した。温度サイクル試験後、電子部品の接続部分(突起電極と回路電極との間)の電気抵抗値を4端子測定法に従ってマルチメータで測定した。   The amount of warpage of the glass substrate was measured using a contact-type surface roughness meter. The measurement location of the amount of warpage was the back side of the IC chip mounting portion on the glass substrate (the side opposite to the surface on which the circuit of the ITO substrate was provided). In the measurement of connection resistance, first, electronic components were placed in a temperature cycle bath and a temperature cycle test was performed. In one cycle, the temperature was maintained at 140 ° C. for 30 minutes and then at 100 ° C. for 30 minutes, and this was repeated 500 cycles. After the temperature cycle test, the electrical resistance value of the connection part (between the protruding electrode and the circuit electrode) of the electronic component was measured with a multimeter according to a four-terminal measurement method.

硬化率の測定では、電子部品をせん断してICチップとガラス基板とを分離し、ICチップ側若しくはガラス基板側に付着している硬化後の異方導電性接着剤層を採取して赤外線スペクトルを測定した。そして、硬化前のフィルム状接着剤における赤外線吸収スペクトルのビニル基及びエポキシ基のシグナル強度の面積と、硬化後の異方導電性接着剤層における赤外線吸収スペクトルのビニル基及びエポキシ基のシグナル強度の面積との商を硬化率とした。   In the measurement of the curing rate, the electronic component is sheared to separate the IC chip and the glass substrate, and the cured anisotropic conductive adhesive layer attached to the IC chip side or the glass substrate side is collected to obtain an infrared spectrum. Was measured. And the area of the signal intensity of the vinyl group and epoxy group of the infrared absorption spectrum in the film adhesive before curing, and the signal intensity of the vinyl group and epoxy group of the infrared absorption spectrum in the anisotropic conductive adhesive layer after curing The quotient with the area was taken as the curing rate.

図6は、その評価結果を示す図である。同図に示すように、配置工程での温度が接続工程での温度よりも高い実施例1及び2では、反り量が2μm程度、接続抵抗が1Ω程度といずれも小さく、硬化率も良好であった。配置工程の温度と接続工程での温度とが同程度の比較例1では、反り量は1.4μm程度に抑えられているが、接続抵抗が100Ω以上となった。一方、接続工程の温度が80℃を超える比較例2及び3では、反り量が10μm以上なった。以上の結果から、本発明の手法により、電子部品の接続抵抗を良好に保ちつつ、ガラス基板の反り量を十分に低減できることが確認できた。   FIG. 6 is a diagram showing the evaluation results. As shown in the figure, in Examples 1 and 2 where the temperature in the placement process is higher than the temperature in the connection process, the warpage amount is about 2 μm, the connection resistance is about 1 Ω, and the curing rate is also good. It was. In Comparative Example 1 in which the temperature in the placement process and the temperature in the connection process are the same, the amount of warpage is suppressed to about 1.4 μm, but the connection resistance is 100Ω or more. On the other hand, in Comparative Examples 2 and 3 in which the temperature of the connection process exceeds 80 ° C., the warpage amount is 10 μm or more. From the above results, it was confirmed that the amount of warpage of the glass substrate can be sufficiently reduced by the method of the present invention while maintaining good connection resistance of the electronic component.

1…電子部品、2…第1の回路部材、3…第2の回路部材、4…異方導電性接着剤層、5…突起電極(第1の電極)、7…導電粒子、8…回路電極(第2の電極)、S…電子部品の中間体。   DESCRIPTION OF SYMBOLS 1 ... Electronic component, 2 ... 1st circuit member, 3 ... 2nd circuit member, 4 ... Anisotropic conductive adhesive layer, 5 ... Projection electrode (1st electrode), 7 ... Conductive particle, 8 ... Circuit Electrode (second electrode), S ... Intermediate of electronic component.

Claims (9)

第1の電極を有する第1の回路部材と前記第1の電極に対応する第2の電極を有する第2の回路部材とを光硬化型の異方導電性接着剤を用いて接続する電子部品の製造方法であって、
前記異方導電性接着剤を介して前記第1の回路部材を前記第2の回路部材に対して配置する配置工程と、
前記異方導電性接着剤を光硬化させ、前記第1の回路部材の前記第1の電極と前記第2の回路部材の前記第2の電極とを電気的に接続する接続工程と、を備え、
前記配置工程において、前記異方導電性接着剤に第1の温度で熱を付加しながら前記第1の電極を前記異方導電性接着剤に押し込み、
前記接続工程において、前記異方導電性接着剤に前記第1の温度よりも低く且つ80℃以下である第2の温度で熱を付加しながら前記異方導電性接着剤の光硬化を行う電子部品の製造方法。
An electronic component for connecting a first circuit member having a first electrode and a second circuit member having a second electrode corresponding to the first electrode by using a photocurable anisotropic conductive adhesive A manufacturing method of
An arranging step of arranging the first circuit member with respect to the second circuit member via the anisotropic conductive adhesive;
A step of photocuring the anisotropic conductive adhesive to electrically connect the first electrode of the first circuit member and the second electrode of the second circuit member; ,
In the placing step, the first electrode is pushed into the anisotropic conductive adhesive while applying heat to the anisotropic conductive adhesive at a first temperature,
In the connecting step, an electron that performs photocuring of the anisotropic conductive adhesive while applying heat to the anisotropic conductive adhesive at a second temperature lower than the first temperature and not higher than 80 ° C. A manufacturing method for parts.
前記配置工程と前記接続工程との間に、前記異方導電性接着剤の温度を前記第2の温度以下に冷却する冷却工程を更に備える請求項1記載の電子部品の製造方法。   The method for manufacturing an electronic component according to claim 1, further comprising a cooling step of cooling the temperature of the anisotropic conductive adhesive to the second temperature or less between the arranging step and the connecting step. 前記配置工程において、第1の圧力を付加しながら前記第1の電極を前記異方導電性接着剤に押し込み、
前記接続工程において、前記第1の圧力よりも高い第2の圧力を付加しながら前記異方導電性接着剤の光硬化を行う請求項1又は2記載の電子部品の製造方法。
In the placing step, the first electrode is pushed into the anisotropic conductive adhesive while applying a first pressure,
3. The method of manufacturing an electronic component according to claim 1, wherein in the connecting step, the anisotropic conductive adhesive is photocured while applying a second pressure higher than the first pressure. 4.
前記配置工程において、前記第1の電極と前記第2の電極とによって前記異方導電性接着剤中の導電粒子が噛合されるように前記異方導電性接着剤への前記第1の電極の押し込みを行う請求項1〜3のいずれか一項記載の電子部品の製造方法。   In the arranging step, the first electrode to the anisotropic conductive adhesive is engaged by the first electrode and the second electrode so that the conductive particles in the anisotropic conductive adhesive are engaged with each other. The manufacturing method of the electronic component as described in any one of Claims 1-3 which pushes in. 前記配置工程において、前記第1の電極と前記第2の電極との間隔が前記異方導電性接着剤中の導電粒子の平均粒径の0%〜200%となるように前記異方導電性接着剤への前記第1の電極の押し込みを行う請求項1〜3のいずれか一項記載の電子部品の製造方法。   In the disposing step, the anisotropic conductivity is set such that an interval between the first electrode and the second electrode is 0% to 200% of an average particle diameter of the conductive particles in the anisotropic conductive adhesive. The manufacturing method of the electronic component as described in any one of Claims 1-3 which pushes in the said 1st electrode to an adhesive agent. 前記第1の電極は、突起電極である請求項1〜5のいずれか一項記載の電子部品の製造方法。   The method for manufacturing an electronic component according to claim 1, wherein the first electrode is a protruding electrode. 前記異方導電性接着剤は、光ラジカル重合性の成分を含有する接着剤成分を含む請求項1〜6のいずれか一項記載の電子部品の製造方法。   The said anisotropically conductive adhesive is a manufacturing method of the electronic component as described in any one of Claims 1-6 containing the adhesive agent component containing radically polymerizable component. 第1の電極を有する第1の回路部材と前記第1の電極に対応する第2の電極を有する第2の回路部材とを光硬化型の異方導電性接着剤を用いて接続する電子部品の製造方法であって、
前記異方導電性接着剤を介して前記第1の回路部材を前記第2の回路部材に対して配置する配置工程と、
前記異方導電性接着剤を光硬化させ、前記第1の回路部材の前記第1の電極と前記第2の回路部材の前記第2の電極とを電気的に接続する接続工程と、を備え、
前記配置工程において、前記第1の電極と前記第2の電極との間隔が前記異方導電性接着剤中の導電粒子の平均粒径の0%〜200%となるように前記異方導電性接着剤への前記第1の電極の押し込みを行う電子部品の製造方法。
An electronic component for connecting a first circuit member having a first electrode and a second circuit member having a second electrode corresponding to the first electrode by using a photocurable anisotropic conductive adhesive A manufacturing method of
An arranging step of arranging the first circuit member with respect to the second circuit member via the anisotropic conductive adhesive;
A step of photocuring the anisotropic conductive adhesive to electrically connect the first electrode of the first circuit member and the second electrode of the second circuit member; ,
In the disposing step, the anisotropic conductivity is set such that an interval between the first electrode and the second electrode is 0% to 200% of an average particle diameter of the conductive particles in the anisotropic conductive adhesive. A method for manufacturing an electronic component, wherein the first electrode is pushed into an adhesive.
第1の電極を有する第1の回路部材と、前記第1の電極に対応する第2の電極を有する第2の回路部材とが、光硬化型の異方導電性接着剤を介して配置された電子部品の中間体であって、
前記第1の電極と前記第2の電極との間隔が前記異方導電性接着剤中の導電粒子の平均粒径の0%〜200%となるように、未硬化状態の前記異方導電性接着剤に前記第1の電極が押し込まれている電子部品の中間体。
A first circuit member having a first electrode and a second circuit member having a second electrode corresponding to the first electrode are disposed via a photocurable anisotropic conductive adhesive. Intermediate of electronic components,
The anisotropic conductive material in an uncured state so that the distance between the first electrode and the second electrode is 0% to 200% of the average particle size of the conductive particles in the anisotropic conductive adhesive. An intermediate of an electronic component in which the first electrode is pressed into an adhesive.
JP2014041483A 2014-03-04 2014-03-04 Manufacturing method of electronic parts Active JP5949811B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014041483A JP5949811B2 (en) 2014-03-04 2014-03-04 Manufacturing method of electronic parts
CN201520051747.XU CN204589054U (en) 2014-03-04 2015-01-23 The intermediate of electronic unit
CN201510037331.7A CN104893598B (en) 2014-03-04 2015-01-23 The manufacturing method of electronic component and the intermediate of electronic component
TW104102172A TWI658522B (en) 2014-03-04 2015-01-23 Manufacturing method of electronic part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014041483A JP5949811B2 (en) 2014-03-04 2014-03-04 Manufacturing method of electronic parts

Publications (2)

Publication Number Publication Date
JP2015167187A true JP2015167187A (en) 2015-09-24
JP5949811B2 JP5949811B2 (en) 2016-07-13

Family

ID=53925229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014041483A Active JP5949811B2 (en) 2014-03-04 2014-03-04 Manufacturing method of electronic parts

Country Status (3)

Country Link
JP (1) JP5949811B2 (en)
CN (2) CN204589054U (en)
TW (1) TWI658522B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017092230A (en) * 2015-11-10 2017-05-25 日立化成株式会社 Circuit connection material and connection structure of circuit member and method of manufacturing the same
WO2017130754A1 (en) * 2016-01-29 2017-08-03 デクセリアルズ株式会社 Anisotropic conductive film, connection method, and joined body
KR20170113037A (en) 2016-03-24 2017-10-12 데쿠세리아루즈 가부시키가이샤 Method of manufacturing connector

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017069543A (en) * 2015-09-30 2017-04-06 太陽インキ製造株式会社 Connection structure and electronic component
CN109292936B (en) * 2018-12-07 2020-12-08 北京交通大学 Polyaluminium titanium chloride inorganic composite coagulant, and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226038A (en) * 1988-07-15 1990-01-29 Sanken Electric Co Ltd Fixing method of electronic element
JPH1197482A (en) * 1997-09-16 1999-04-09 Hitachi Chem Co Ltd Electrode connecting method and electrode connection structure
JPH11335641A (en) * 1998-05-26 1999-12-07 Sekisui Chem Co Ltd Anisotropically electroconductive photo-postcuring paste and jointing method using the same
JP2008252098A (en) * 2008-03-31 2008-10-16 Hitachi Chem Co Ltd Method of manufacturing circuit board apparatus
JP2013168443A (en) * 2012-02-14 2013-08-29 Dexerials Corp Method for manufacturing connection body, and connection method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112383A1 (en) * 2005-04-14 2006-10-26 Matsushita Electric Industrial Co., Ltd. Electronic circuit device and method for manufacturing same
CN101724361B (en) * 2008-12-30 2011-12-07 四川虹欧显示器件有限公司 Aeolotropic conductive adhesive and conductive film and electric connection method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226038A (en) * 1988-07-15 1990-01-29 Sanken Electric Co Ltd Fixing method of electronic element
JPH1197482A (en) * 1997-09-16 1999-04-09 Hitachi Chem Co Ltd Electrode connecting method and electrode connection structure
JPH11335641A (en) * 1998-05-26 1999-12-07 Sekisui Chem Co Ltd Anisotropically electroconductive photo-postcuring paste and jointing method using the same
JP2008252098A (en) * 2008-03-31 2008-10-16 Hitachi Chem Co Ltd Method of manufacturing circuit board apparatus
JP2013168443A (en) * 2012-02-14 2013-08-29 Dexerials Corp Method for manufacturing connection body, and connection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017092230A (en) * 2015-11-10 2017-05-25 日立化成株式会社 Circuit connection material and connection structure of circuit member and method of manufacturing the same
WO2017130754A1 (en) * 2016-01-29 2017-08-03 デクセリアルズ株式会社 Anisotropic conductive film, connection method, and joined body
JP2017135065A (en) * 2016-01-29 2017-08-03 デクセリアルズ株式会社 Anisotropic conductive film, connection method and conjugate
KR20170113037A (en) 2016-03-24 2017-10-12 데쿠세리아루즈 가부시키가이샤 Method of manufacturing connector

Also Published As

Publication number Publication date
TW201535552A (en) 2015-09-16
CN104893598B (en) 2019-11-29
CN204589054U (en) 2015-08-26
CN104893598A (en) 2015-09-09
JP5949811B2 (en) 2016-07-13
TWI658522B (en) 2019-05-01

Similar Documents

Publication Publication Date Title
JP6221285B2 (en) Circuit member connection method
JP5949811B2 (en) Manufacturing method of electronic parts
TWI274780B (en) Anisotropic conduction connecting method and anisotropic conduction adhesive film
CN107079589B (en) Method for manufacturing connected body, method for connecting electronic component, and connected body
TWI673570B (en) Anisotropic conductive adhesive, method of manufacturing connector, and connection method of electronic component
JP2014096531A (en) Method for manufacturing connection structure and connection method
JP2016136625A (en) Manufacturing method of connection body, connection method of electronic component, and connection body
JP6661886B2 (en) Method for producing film-like circuit connection material and circuit member connection structure
JP6639874B2 (en) Photocurable anisotropic conductive adhesive, method for manufacturing connector, and method for connecting electronic components
TW201900812A (en) Anisotropic conductive adhesive and method of manufacturing the same
JP2014202821A (en) Manufacturing method of liquid crystal display element, and joint material
TWI648156B (en) Anisotropic conductive film and manufacturing method thereof
JP4936775B2 (en) Conductive particle connection structure
JP2020024937A (en) Film-like circuit connection material and method for manufacturing connection structural body of circuit member
CN107230646B (en) Method for manufacturing connector
KR20160052674A (en) Electrical connection material
JP2017092230A (en) Circuit connection material and connection structure of circuit member and method of manufacturing the same
JP2014202822A (en) Manufacturing method of liquid crystal display element, and joint material
JP2018065916A (en) Method for producing connection body
WO2016117613A1 (en) Method for producing connected body, method for connecting electronic component, and connected body
JP4396689B2 (en) Electrode connection method and connection device
JP2015138850A (en) Manufacturing method for connection body, and connection method for electronic component

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160523

R151 Written notification of patent or utility model registration

Ref document number: 5949811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350