JP2015138850A - Manufacturing method for connection body, and connection method for electronic component - Google Patents

Manufacturing method for connection body, and connection method for electronic component Download PDF

Info

Publication number
JP2015138850A
JP2015138850A JP2014009002A JP2014009002A JP2015138850A JP 2015138850 A JP2015138850 A JP 2015138850A JP 2014009002 A JP2014009002 A JP 2014009002A JP 2014009002 A JP2014009002 A JP 2014009002A JP 2015138850 A JP2015138850 A JP 2015138850A
Authority
JP
Japan
Prior art keywords
pressing
heating
liquid crystal
ultraviolet irradiation
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014009002A
Other languages
Japanese (ja)
Inventor
太一郎 梶谷
Taichiro Kajitani
太一郎 梶谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2014009002A priority Critical patent/JP2015138850A/en
Priority to PCT/JP2015/051464 priority patent/WO2015111599A1/en
Priority to TW104101927A priority patent/TW201546919A/en
Publication of JP2015138850A publication Critical patent/JP2015138850A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75251Means for applying energy, e.g. heating means in the lower part of the bonding apparatus, e.g. in the apparatus chuck
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/753Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/75301Bonding head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83862Heat curing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83874Ultraviolet [UV] curing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83885Combinations of two or more hardening methods provided for in at least two different groups from H01L2224/83855 - H01L2224/8388, e.g. for hybrid thermoplastic-thermosetting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83986Specific sequence of steps, e.g. repetition of manufacturing steps, time sequence
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0278Flat pressure, e.g. for connecting terminals with anisotropic conductive adhesive

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for a connection body, which makes an electronic component connected at a low temperature with a photo-curing type adhesive and which improves poor connection of the electronic component, and a connection method for the electronic component.SOLUTION: An electronic component 18 is arrayed on a transparent substrate 12 via an adhesive 1 for circuit connection, containing a photoinitiator. Heating and photoirradiation are performed while the electronic component 18 is pressed against the top of the transparent substrate 12, and the photoirradiation is completed while the heating and pressing are continued.

Description

本発明は、光重合開始剤を含有する回路接続用接着剤を介して透明基板上に電子部品が接続された接続体の製造方法、及び光重合開始剤を含有する回路接続用接着剤を介して透明基板上に電子部品を接続する接続方法に関し、特に加熱加圧と光照射とを併用した接続体の製造方法、及び電子部品の接続方法に関する。   The present invention relates to a method for producing a connection body in which an electronic component is connected to a transparent substrate via an adhesive for circuit connection containing a photopolymerization initiator, and an adhesive for circuit connection containing a photopolymerization initiator. In particular, the present invention relates to a connection method for connecting an electronic component on a transparent substrate, and more particularly to a method for manufacturing a connection body using both heating and pressurization and light irradiation, and a connection method for an electronic component.

従来から、テレビやPCモニタ、携帯電話、携帯型ゲーム機、タブレットPCあるいは車載用モニタ等の各種表示手段として、液晶表示装置が多く用いられている。近年、このような液晶表示装置においては、ファインピッチ化、軽量薄型化等の観点から、液晶駆動用ICを直接液晶表示パネルの基板上に実装するいわゆるCOG(chip on glass)や、液晶駆動回路が形成されたフレキシブル基板を直接液晶表示パネルの基板上に実装するいわゆるFOG(film on glass)が採用されている。   Conventionally, a liquid crystal display device has been widely used as various display means such as a television, a PC monitor, a mobile phone, a portable game machine, a tablet PC, or an in-vehicle monitor. In recent years, in such liquid crystal display devices, so-called COG (chip on glass) in which a liquid crystal driving IC is directly mounted on a substrate of a liquid crystal display panel or a liquid crystal driving circuit from the viewpoints of fine pitch, light weight, and thinning. A so-called FOG (film on glass) that directly mounts the flexible substrate on which the substrate is formed on the substrate of the liquid crystal display panel is employed.

例えばCOG実装方式が採用された液晶表示装置100は、図4に示すように、液晶表示のための主機能を果たす液晶表示パネル104を有しており、この液晶表示パネル104は、ガラス基板等からなる互いに対向する二枚の透明基板102,103を有している。そして、液晶表示パネル104は、これら両透明基板102,103が枠状のシール105によって互いに貼り合わされるとともに、両透明基板102,103およびシール105によって囲繞された空間内に液晶106が封入されたパネル表示部107が設けられている。   For example, as shown in FIG. 4, a liquid crystal display device 100 employing a COG mounting system has a liquid crystal display panel 104 that performs a main function for liquid crystal display. The liquid crystal display panel 104 is a glass substrate or the like. And two transparent substrates 102 and 103 facing each other. In the liquid crystal display panel 104, the transparent substrates 102 and 103 are bonded to each other by a frame-shaped seal 105, and the liquid crystal 106 is sealed in a space surrounded by the transparent substrates 102 and 103 and the seal 105. A panel display unit 107 is provided.

透明基板102,103は、互いに対向する両内側表面に、ITO(酸化インジウムスズ)等からなる縞状の一対の透明電極108,109が、互いに交差するように形成されている。そして、両透明基板102,103は、これら両透明電極108,109の当該交差部位によって液晶表示の最小単位としての画素が構成されるようになっている。   The transparent substrates 102 and 103 have a pair of striped transparent electrodes 108 and 109 made of ITO (indium tin oxide) or the like on both inner surfaces facing each other so as to intersect each other. The transparent substrates 102 and 103 are configured such that a pixel as a minimum unit of liquid crystal display is constituted by the intersection of the transparent electrodes 108 and 109.

両透明基板102,103のうち、一方の透明基板103は、他方の透明基板102よりも平面寸法が大きく形成されており、この大きく形成された透明基板103の縁部103aには、透明電極109の端子部109aが形成されている。また、両透明電極108,109上には、所定のラビング処理が施された配向膜111,112が形成されており、この配向膜111,112によって液晶分子の初期配向が規制されるようになっている。さらに、両透明電極108,109の外側には、一対の偏光板118,119が配設されており、これら両偏光板118,119によってバックライト等の光源120からの透過光の振動方向が規制されるようになっている。   Of the two transparent substrates 102 and 103, one transparent substrate 103 is formed to have a larger planar dimension than the other transparent substrate 102, and the transparent electrode 109 is formed on the edge 103a of the transparent substrate 103 formed to be large. Terminal portion 109a is formed. Further, alignment films 111 and 112 subjected to a predetermined rubbing process are formed on both transparent electrodes 108 and 109, and the initial alignment of liquid crystal molecules is regulated by the alignment films 111 and 112. ing. Further, a pair of polarizing plates 118 and 119 are disposed outside the transparent electrodes 108 and 109, and the vibration direction of transmitted light from the light source 120 such as a backlight is regulated by the polarizing plates 118 and 119. It has come to be.

端子部109a上には、異方性導電フィルム114を介して液晶駆動用IC115が熱圧着されている。異方性導電フィルム114は、熱硬化型のバインダー樹脂に導電性粒子を混ぜ込んでフィルム状としたもので、2つの導体間で加熱圧着されることにより導電粒子で導体間の電気的導通がとられ、バインダー樹脂にて導体間の機械的接続が保持される。液晶駆動用IC115は、画素に対して液晶駆動電圧を選択的に印加することにより、液晶の配向を部分的に変化させて所定の液晶表示を行うことができるようになっている。なお、異方性導電フィルム114を構成する接着剤としては、通常、最も信頼性の高い熱硬化性の接着剤を用いるようになっている。   On the terminal portion 109a, a liquid crystal driving IC 115 is thermocompression bonded via an anisotropic conductive film 114. The anisotropic conductive film 114 is a film formed by mixing conductive particles in a thermosetting binder resin, and heat conduction is performed between the two conductors so that the electrical conduction between the conductors is achieved by the conductive particles. And the mechanical connection between the conductors is maintained by the binder resin. The liquid crystal driving IC 115 can perform predetermined liquid crystal display by selectively changing the alignment of the liquid crystal by selectively applying a liquid crystal driving voltage to the pixels. In addition, as the adhesive constituting the anisotropic conductive film 114, the most reliable thermosetting adhesive is usually used.

このような異方性導電フィルム114を介して液晶駆動用IC115を端子部109aへ接続する場合は、先ず、透明電極109の端子部109a上に異方性導電フィルム114を図示しない仮圧着手段によって仮圧着する。続いて、異方性導電フィルム114上に液晶駆動用IC115を載置した後、図5に示すように熱圧着ヘッド等の熱圧着手段121によって液晶駆動用IC115を異方性導電フィルム114とともに端子部109a側へ押圧しつつ熱圧着手段121を発熱させる。この熱圧着手段121による発熱によって、異方性導電フィルム114は熱硬化反応を起こし、これにより、異方性導電フィルム114を介して液晶駆動用IC115が端子部109a上に接着される。   When the liquid crystal driving IC 115 is connected to the terminal portion 109a through such an anisotropic conductive film 114, first, the anisotropic conductive film 114 is attached to the terminal portion 109a of the transparent electrode 109 by a temporary crimping means (not shown). Temporarily crimp. Subsequently, after the liquid crystal driving IC 115 is placed on the anisotropic conductive film 114, the liquid crystal driving IC 115 is connected to the terminal together with the anisotropic conductive film 114 by the thermocompression bonding means 121 such as a thermocompression bonding head as shown in FIG. The thermocompression bonding means 121 is caused to generate heat while being pressed toward the portion 109a. Due to the heat generated by the thermocompression bonding means 121, the anisotropic conductive film 114 undergoes a thermosetting reaction, whereby the liquid crystal driving IC 115 is bonded onto the terminal portion 109a via the anisotropic conductive film 114.

しかし、このような異方性導電フィルムを用いた接続方法においては、熱加圧温度が高く、液晶駆動用IC115等の電子部品や透明基板103に対する熱衝撃が大きくなる。加えて、異方性導電フィルムが接続された後、常温まで温度が低下する際に、その温度差に起因して、バインダーが収縮し、透明基板103の端子部109aに反りが生じうる。そのため、表示ムラや液晶駆動用IC115の接続不良等の不具合を引き起こすおそれがあった。   However, in such a connection method using an anisotropic conductive film, the heat pressing temperature is high, and the thermal shock to the electronic components such as the liquid crystal driving IC 115 and the transparent substrate 103 is increased. In addition, after the anisotropic conductive film is connected, when the temperature decreases to room temperature, the binder contracts due to the temperature difference, and the terminal portion 109a of the transparent substrate 103 may be warped. For this reason, there is a risk of causing problems such as uneven display and poor connection of the liquid crystal driving IC 115.

特開2008−252098号公報JP 2008-252098 A

そこで、このような熱硬化型の接着剤を用いた異方性導電フィルム114に代えて、紫外線硬化型の接着剤を用いた接続方法も提案されている。紫外線硬化型の接着剤を用いる接続方法においては、接着剤が熱によって軟化流動し、透明電極109の端子部109aと液晶駆動用IC115の電極間に導電性粒子を捕捉するのに十分な温度まで加熱するにとどめ、紫外線照射によって接着剤を硬化させる。   Therefore, a connection method using an ultraviolet curable adhesive instead of the anisotropic conductive film 114 using such a thermosetting adhesive has been proposed. In the connection method using an ultraviolet curable adhesive, the adhesive softens and flows due to heat, and the temperature is sufficient to capture the conductive particles between the terminal portion 109a of the transparent electrode 109 and the electrode of the liquid crystal driving IC 115. Only heat, cure the adhesive by UV irradiation.

しかし、かかる紫外線硬化型の接着剤を用いる接続方法においても、紫外線照射による硬化の進行が速いと、加熱押圧によっても導電性粒子を押し込むことができず、導通抵抗が上昇するおそれがある。また、バインダーが加熱により十分に軟化する前に紫外線照射による硬化が進むことにより、液晶駆動用IC115の接着強度が低下する恐れもある。   However, even in such a connection method using an ultraviolet curable adhesive, if the progress of curing by ultraviolet irradiation is fast, the conductive particles cannot be pushed in even by heat pressing, and the conduction resistance may increase. Further, the adhesive strength of the IC 115 for driving the liquid crystal may be reduced due to the progress of curing by ultraviolet irradiation before the binder is sufficiently softened by heating.

本発明は、上述した課題を解決するものであり、光硬化型の接着剤を用いることで低温で電子部品の接続を行うと共に、電子部品の接続不良を改善する接続体の製造方法、及び電子部品の接続方法を提供することを目的とする。   The present invention solves the above-described problems, and uses a photo-curing adhesive to connect electronic components at a low temperature and to improve the connection failure of the electronic components, and the electronic An object is to provide a method for connecting parts.

上述した課題を解決するために、本発明に係る接続体の製造方法は、光重合開始剤を含有する回路接続用接着剤を介して、透明基板上に電子部品を配置し、上記電子部品を上記透明基板に対して押圧しながら、加熱及び光照射を行い、加熱押圧を続行しながら光照射を終了するものである。   In order to solve the above-described problem, a manufacturing method of a connection body according to the present invention includes arranging an electronic component on a transparent substrate via an adhesive for circuit connection containing a photopolymerization initiator, Heating and light irradiation are performed while pressing against the transparent substrate, and light irradiation is terminated while continuing heating and pressing.

また、本発明に係る電子部品の接続方法は、光重合開始剤を含有する回路接続用接着剤を介して、透明基板上に電子部品を配置し、上記電子部品を上記透明基板に対して押圧しながら、加熱及び光照射を行い、加熱押圧を続行しながら光照射を終了するものである。   The electronic component connection method according to the present invention includes an electronic component disposed on a transparent substrate via a circuit connection adhesive containing a photopolymerization initiator, and presses the electronic component against the transparent substrate. Then, heating and light irradiation are performed, and the light irradiation is terminated while continuing the heating and pressing.

本発明によれば、電子部品の本圧着工程において、電子部品を押圧しながら導電性粒子を含有する接着剤が流動性を示す温度まで加熱し、この状態で光照射を行い、光照射の終了後も加熱加圧を続行する。したがって、光照射による硬化反応の進行を制御することでバインダーを十分に軟化させることができ、導電性粒子を十分に押し込んで電子部品の接続信頼性を向上させるとともに、接着強度を確保することができる。   According to the present invention, in the final crimping step of the electronic component, the adhesive containing the conductive particles is heated to a temperature at which the adhesive is contained while pressing the electronic component, and light irradiation is performed in this state, and the light irradiation is completed. Continue heating and pressurization. Therefore, by controlling the progress of the curing reaction by light irradiation, the binder can be sufficiently softened, and the conductive particles can be sufficiently pushed in to improve the connection reliability of the electronic component and ensure the adhesive strength. it can.

図1は、本発明が適用された実装工程を示す断面図である。FIG. 1 is a cross-sectional view showing a mounting process to which the present invention is applied. 図2は、異方性導電フィルムを示す断面図である。FIG. 2 is a cross-sectional view showing an anisotropic conductive film. 図3は、実施例及び比較例に係る導通抵抗の測定方法を説明するための図である。FIG. 3 is a diagram for explaining a method of measuring conduction resistance according to the example and the comparative example. 図4は、従来の液晶表示パネルを示す断面図である。FIG. 4 is a cross-sectional view showing a conventional liquid crystal display panel. 図5は、従来の液晶表示パネルのCOG実装工程を示す断面図である。FIG. 5 is a cross-sectional view showing a COG mounting process of a conventional liquid crystal display panel.

以下、本発明が適用された接続体の製造方法、電子部品の接続方法について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Hereinafter, a method for manufacturing a connection body and a method for connecting an electronic component to which the present invention is applied will be described in detail with reference to the drawings. It should be noted that the present invention is not limited to the following embodiments, and various modifications can be made without departing from the scope of the present invention. Further, the drawings are schematic, and the ratio of each dimension may be different from the actual one. Specific dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

以下では、液晶表示パネルのガラス基板に、電子部品として液晶駆動用のICチップを実装するいわゆるCOG(chip on glass)実装を行う場合を例に説明する。この液晶表示パネル10は、図1に示すように、ガラス基板等からなる二枚の透明基板11,12が対向配置され、これら透明基板11,12が枠状のシール13によって互いに貼り合わされている。そして、液晶表示パネル10は、透明基板11,12によって囲繞された空間内に液晶14が封入されることによりパネル表示部15が形成されている。   Hereinafter, a case where so-called COG (chip on glass) mounting in which an IC chip for driving a liquid crystal as an electronic component is mounted on a glass substrate of a liquid crystal display panel will be described as an example. As shown in FIG. 1, the liquid crystal display panel 10 includes two transparent substrates 11 and 12 made of a glass substrate and the like, and the transparent substrates 11 and 12 are bonded to each other by a frame-shaped seal 13. . In the liquid crystal display panel 10, the liquid crystal 14 is sealed in a space surrounded by the transparent substrates 11 and 12 to form a panel display unit 15.

透明基板11,12は、互いに対向する両内側表面に、ITO(酸化インジウムスズ)等からなる縞状の一対の透明電極16,17が、互いに交差するように形成されている。そして、両透明電極16,17は、これら両透明電極16,17の当該交差部位によって液晶表示の最小単位としての画素が構成されるようになっている。   The transparent substrates 11 and 12 have a pair of striped transparent electrodes 16 and 17 made of ITO (indium tin oxide) or the like on both inner surfaces facing each other so as to intersect each other. The transparent electrodes 16 and 17 are configured such that a pixel as a minimum unit of liquid crystal display is configured by the intersection of the transparent electrodes 16 and 17.

両透明基板11,12のうち、一方の透明基板12は、他方の透明基板11よりも平面寸法が大きく形成されており、この大きく形成された透明基板12の縁部12aには、電子部品として液晶駆動用IC18が実装されるCOG実装部20が設けられ、またCOG実装部20の外側近傍には、電子部品として液晶駆動回路が形成されたフレキシブル基板21が実装されるFOG実装部22が設けられている。   Of the transparent substrates 11 and 12, one transparent substrate 12 is formed to have a larger planar dimension than the other transparent substrate 11, and an edge 12a of the formed transparent substrate 12 has an electronic component. A COG mounting portion 20 on which the liquid crystal driving IC 18 is mounted is provided, and an FOG mounting portion 22 on which a flexible substrate 21 on which a liquid crystal driving circuit is formed as an electronic component is mounted is provided near the outside of the COG mounting portion 20. It has been.

なお、液晶駆動用ICや液晶駆動回路は、画素に対して液晶駆動電圧を選択的に印加することにより、液晶の配向を部分的に変化させて所定の液晶表示を行うことができるようになっている。   Note that the liquid crystal driving IC and the liquid crystal driving circuit can perform predetermined liquid crystal display by selectively changing the alignment of the liquid crystal by selectively applying the liquid crystal driving voltage to the pixels. ing.

各実装部20,22には、透明電極17の端子部17aが形成されている。端子部17a上には、光重合開始剤を含有する回路接続用接着剤として異方性導電フィルム1を用いて液晶駆動用IC18やフレキシブル基板21が接続される。異方性導電フィルム1は、導電性粒子4を含有しており、液晶駆動用IC18やフレキシブル基板21の電極と透明基板12の縁部12aに形成された透明電極17の端子部17aとを、導電性粒子4を介して電気的に接続させるものである。この異方性導電フィルム1は、紫外線硬化型の接着剤であり、後述する加熱押圧ヘッド30により熱圧着されることにより流動化して導電性粒子4が端子部17aと液晶駆動用IC18やフレキシブル基板21の各電極との間で押し潰され、紫外線照射器31により紫外線が照射されることにより、導電性粒子4が押し潰された状態で硬化する。これにより、異方性導電フィルム1は、透明基板12と液晶駆動用IC18やフレキシブル基板21とを電気的、機械的に接続する。   In each of the mounting portions 20 and 22, a terminal portion 17a of the transparent electrode 17 is formed. On the terminal portion 17a, the liquid crystal driving IC 18 and the flexible substrate 21 are connected using the anisotropic conductive film 1 as an adhesive for circuit connection containing a photopolymerization initiator. The anisotropic conductive film 1 contains the conductive particles 4, and includes the liquid crystal driving IC 18 and the electrode of the flexible substrate 21 and the terminal portion 17 a of the transparent electrode 17 formed on the edge portion 12 a of the transparent substrate 12. Electrical connection is made through the conductive particles 4. The anisotropic conductive film 1 is an ultraviolet curable adhesive, and is fluidized by being thermocompression bonded by a heating and pressing head 30 described later, whereby the conductive particles 4 are converted into terminal portions 17a, a liquid crystal driving IC 18 and a flexible substrate. By being crushed between the respective electrodes 21 and being irradiated with ultraviolet rays by the ultraviolet irradiator 31, the conductive particles 4 are cured in a crushed state. Thereby, the anisotropic conductive film 1 electrically and mechanically connects the transparent substrate 12 to the liquid crystal driving IC 18 and the flexible substrate 21.

また、両透明電極16,17上には、所定のラビング処理が施された配向膜24が形成されており、この配向膜24によって液晶分子の初期配向が規制されるようになっている。さらに、両透明基板11,12の外側には、一対の偏光板25,26が配設されており、これら両偏光板25,26によってバックライト等の光源(図示せず)からの透過光の振動方向が規制されるようになっている。   Further, an alignment film 24 subjected to a predetermined rubbing process is formed on both the transparent electrodes 16 and 17, and the initial alignment of liquid crystal molecules is regulated by the alignment film 24. In addition, a pair of polarizing plates 25 and 26 are disposed outside the transparent substrates 11 and 12, and these polarizing plates 25 and 26 allow transmitted light from a light source (not shown) such as a backlight to be transmitted. The vibration direction is regulated.

[異方性導電フィルム]
異方性導電フィルム(ACF:Anisotropic Conductive Film)1は、図2に示すように、通常、基材となる剥離フィルム2上に導電性粒子を含有するバインダー樹脂層(接着剤層)3が形成されたものである。異方性導電フィルム1は、図1に示すように、液晶表示パネル10の透明基板12に形成された透明電極17と液晶駆動用IC18やフレキシブル基板21との間にバインダー樹脂層3を介在させることで、液晶表示パネル10と液晶駆動用IC18あるいはフレキシブル基板21とを接続し、導通させるために用いられる。
[Anisotropic conductive film]
As shown in FIG. 2, an anisotropic conductive film (ACF) 1 is usually formed with a binder resin layer (adhesive layer) 3 containing conductive particles on a release film 2 as a base material. It has been done. As shown in FIG. 1, the anisotropic conductive film 1 has a binder resin layer 3 interposed between a transparent electrode 17 formed on a transparent substrate 12 of the liquid crystal display panel 10 and a liquid crystal driving IC 18 or a flexible substrate 21. As a result, the liquid crystal display panel 10 and the liquid crystal driving IC 18 or the flexible substrate 21 are connected and made conductive.

剥離フィルム2としては、異方性導電フィルムにおいて一般に用いられている例えばポリエチレンテレフタレートフィルム等の基材を使用することができる。   As the release film 2, a base material such as a polyethylene terephthalate film generally used in anisotropic conductive films can be used.

バインダー樹脂層3は、バインダー中に導電性粒子4を分散してなるものである。バインダーは、膜形成樹脂、硬化性樹脂、硬化剤、シランカップリング剤等を含有するものであり、通常の異方性導電フィルムに用いられるバインダーと同様である。   The binder resin layer 3 is formed by dispersing conductive particles 4 in a binder. The binder contains a film-forming resin, a curable resin, a curing agent, a silane coupling agent, and the like, and is the same as the binder used for a normal anisotropic conductive film.

膜形成樹脂としては、平均分子量が10000〜80000程度の樹脂が好ましい。膜形成樹脂としては、フェノキシ樹脂、エポキシ樹脂、変形エポキシ樹脂、ウレタン樹脂、等の各種の樹脂が挙げられる。中でも、膜形成状態、接続信頼性等の観点からフェノキシ樹脂が特に好ましい。   As the film-forming resin, a resin having an average molecular weight of about 10,000 to 80,000 is preferable. Examples of the film forming resin include various resins such as a phenoxy resin, an epoxy resin, a modified epoxy resin, and a urethane resin. Among these, phenoxy resin is particularly preferable from the viewpoint of film formation state, connection reliability, and the like.

硬化性樹脂としては、特に限定されず、エポキシ樹脂、アクリル樹脂等が挙げられる。   It does not specifically limit as curable resin, An epoxy resin, an acrylic resin, etc. are mentioned.

エポキシ樹脂としては、特に制限はなく、目的に応じて適宜選択することができる。具体例として、例えば、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂等が挙げられる。これらは単独でも、2種以上の組み合わせであってもよい。   There is no restriction | limiting in particular as an epoxy resin, According to the objective, it can select suitably. As specific examples, for example, naphthalene type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, bisphenol type epoxy resin, stilbene type epoxy resin, triphenolmethane type epoxy resin, phenol aralkyl type epoxy resin, naphthol type epoxy resin, A dicyclopentadiene type epoxy resin, a triphenylmethane type epoxy resin, etc. are mentioned. These may be used alone or in combination of two or more.

アクリル樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、具体例として、例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、イソブチルアクリレート、エポキシアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ジメチロールトリシクロデカンジアクリレート、テトラメチレングリコールテトラアクリレート、2−ヒドロキシ−1,3−ジアクリロキシプロパン、2,2−ビス[4−(アクリロキシメトキシ)フェニル]プロパン、2,2−ビス[4−(アクリロキシエトキシ)フェニル]プロパン、ジシクロペンテニルアクリレート、トリシクロデカニルアクリレート、トリス(アクリロキシエチル)イソシアヌレート、ウレタンアクリレート、エポキシアクリレート等が挙げられる。これらは単独でも、2種以上の組み合わせであってもよい。   There is no restriction | limiting in particular as an acrylic resin, According to the objective, it can select suitably, For example, methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, epoxy acrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, for example , Trimethylolpropane triacrylate, dimethyloltricyclodecane diacrylate, tetramethylene glycol tetraacrylate, 2-hydroxy-1,3-diaacryloxypropane, 2,2-bis [4- (acryloxymethoxy) phenyl] propane 2,2-bis [4- (acryloxyethoxy) phenyl] propane, dicyclopentenyl acrylate, tricyclodecanyl acrylate, tris (acryloxyethyl) ) Isocyanurate, urethane acrylate, epoxy acrylate. These may be used alone or in combination of two or more.

硬化剤としては、光硬化型であれば特に制限はなく、目的に応じて適宜選択することができるが、硬化性樹脂がエポキシ樹脂の場合はカチオン系硬化剤が好ましく、硬化性樹脂がアクリル樹脂の場合はラジカル系硬化剤が好ましい。   The curing agent is not particularly limited as long as it is a photo-curing type, and can be appropriately selected according to the purpose. However, when the curable resin is an epoxy resin, a cationic curing agent is preferable, and the curable resin is an acrylic resin. In this case, a radical curing agent is preferable.

カチオン系硬化剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スルホニウム塩、オニウム塩等を挙げることができ、これらの中でも、芳香族スルホニウム塩が好ましい。ラジカル系硬化剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、有機過酸化物を挙げることができる。   There is no restriction | limiting in particular as a cationic hardening | curing agent, According to the objective, it can select suitably, For example, a sulfonium salt, onium salt, etc. can be mentioned, Among these, an aromatic sulfonium salt is preferable. There is no restriction | limiting in particular as a radical type hardening | curing agent, According to the objective, it can select suitably, For example, an organic peroxide can be mentioned.

シランカップリング剤としては、エポキシ系、アミノ系、メルカプト・スルフィド系、ウレイド系等を挙げることができる。シランカップリング剤を添加することにより、有機材料と無機材料との界面における接着性が向上される。   Examples of the silane coupling agent include epoxy-based, amino-based, mercapto-sulfide-based, and ureido-based agents. By adding the silane coupling agent, the adhesion at the interface between the organic material and the inorganic material is improved.

導電性粒子4としては、異方性導電フィルムにおいて使用されている公知の何れの導電性粒子を挙げることができる。導電性粒子4としては、例えば、ニッケル、鉄、銅、アルミニウム、錫、鉛、クロム、コバルト、銀、金等の各種金属や金属合金の粒子、金属酸化物、カーボン、グラファイト、ガラス、セラミック、プラスチック等の粒子の表面に金属をコートしたもの、或いは、これらの粒子の表面に更に絶縁薄膜をコートしたもの等が挙げられる。樹脂粒子の表面に金属をコートしたものである場合、樹脂粒子としては、例えば、エポキシ樹脂、フェノール樹脂、アクリル樹脂、アクリロニトリル・スチレン(AS)樹脂、ベンゾグアナミン樹脂、ジビニルベンゼン系樹脂、スチレン系樹脂等の粒子を挙げることができる。   Examples of the conductive particles 4 include any known conductive particles used in anisotropic conductive films. Examples of the conductive particles 4 include particles of various metals and metal alloys such as nickel, iron, copper, aluminum, tin, lead, chromium, cobalt, silver, gold, metal oxide, carbon, graphite, glass, ceramic, Examples thereof include those in which the surface of particles such as plastic is coated with metal, or those in which the surface of these particles is further coated with an insulating thin film. In the case where the surface of the resin particle is coated with metal, examples of the resin particle include an epoxy resin, a phenol resin, an acrylic resin, an acrylonitrile / styrene (AS) resin, a benzoguanamine resin, a divinylbenzene resin, a styrene resin, and the like. Can be mentioned.

[製造方法]
次いで、異方性導電フィルム1を介して液晶駆動用IC18やフレキシブル基板21が透明基板12の透明電極17上に接続された接続体の製造工程について説明する。先ず、異方性導電フィルム1を透明電極17上に仮圧着する。異方性導電フィルム1を仮圧着する方法は、液晶表示パネル10の透明基板12の透明電極17上に、バインダー樹脂層3が透明電極17側となるように、異方性導電フィルム1を配置する。
[Production method]
Next, a manufacturing process of a connection body in which the liquid crystal driving IC 18 and the flexible substrate 21 are connected to the transparent electrode 17 of the transparent substrate 12 through the anisotropic conductive film 1 will be described. First, the anisotropic conductive film 1 is temporarily pressure-bonded onto the transparent electrode 17. The method for temporarily pressing the anisotropic conductive film 1 is to dispose the anisotropic conductive film 1 on the transparent electrode 17 of the transparent substrate 12 of the liquid crystal display panel 10 so that the binder resin layer 3 is on the transparent electrode 17 side. To do.

そして、バインダー樹脂層3を透明電極17上に配置した後、剥離フィルム2側からバインダー樹脂層3を例えば加熱押圧ヘッド30で加熱及び加圧し、加熱押圧ヘッド30を剥離フィルム2から離し、剥離フィルム2を透明電極17上のバインダー樹脂層3から剥離することによって、バインダー樹脂層3のみが透明電極17上に仮貼りされる。加熱押圧ヘッド30による仮圧着は、剥離フィルム2の上面を僅かな圧力(例えば0.1MPa〜2MPa程度)で透明電極17側に押圧しながら加熱(例えば70〜100℃程度)する。   And after arrange | positioning the binder resin layer 3 on the transparent electrode 17, the binder resin layer 3 is heated and pressurized with the heating press head 30 from the peeling film 2 side, for example, the heating press head 30 is separated from the peeling film 2, and a peeling film 2 is peeled off from the binder resin layer 3 on the transparent electrode 17, so that only the binder resin layer 3 is temporarily attached on the transparent electrode 17. Temporary pressure bonding by the heating and pressing head 30 heats (eg, about 70 to 100 ° C.) while pressing the upper surface of the release film 2 to the transparent electrode 17 side with a slight pressure (eg, about 0.1 to 2 MPa).

次に、透明基板12の透明電極17と液晶駆動用IC18の電極端子とがバインダー樹脂層3を介して対向するように、液晶駆動用IC18を配置する。   Next, the liquid crystal driving IC 18 is disposed so that the transparent electrode 17 of the transparent substrate 12 and the electrode terminal of the liquid crystal driving IC 18 face each other with the binder resin layer 3 interposed therebetween.

次に、液晶駆動用IC18の上面を所定の加熱温度に昇温された加熱押圧ヘッド30により、所定の温度及び所定の圧力で熱加圧する。加熱押圧ヘッド30による熱加圧温度は、硬化開始前にバインダー樹脂層3が溶融したときの粘度(最低溶融粘度)を示す所定の温度に対して±10〜20℃の温度(例えば100℃前後)に設定される。これにより、透明基板12の反りを最小に抑え、また液晶駆動用IC18に熱による損傷を加えることもない。   Next, the upper surface of the liquid crystal driving IC 18 is hot-pressed at a predetermined temperature and a predetermined pressure by the heating and pressing head 30 that has been heated to a predetermined heating temperature. The heat pressing temperature by the heating and pressing head 30 is a temperature of ± 10 to 20 ° C. (for example, around 100 ° C.) with respect to a predetermined temperature indicating the viscosity (minimum melt viscosity) when the binder resin layer 3 is melted before the start of curing. ). Thereby, the warp of the transparent substrate 12 is minimized, and the liquid crystal driving IC 18 is not damaged by heat.

次いで、加熱押圧ヘッド30による加熱押圧開始から数秒後に、当該加熱押圧を続行しながら透明基板12の裏側に設けられた紫外線照射器31によって異方性導電フィルム1に紫外線を照射する。紫外線照射器31より発光された紫外線は、透明基板12を支持するガラス等の透明な支持台及びこの支持台に支持された透明基板12を透過してバインダー樹脂層3へ照射される。この紫外線照射器31としては、LEDランプ、水銀ランプ、メタルハライドランプ等を用いることができる。   Next, after several seconds from the start of heating and pressing by the heating and pressing head 30, the anisotropic conductive film 1 is irradiated with ultraviolet rays by the ultraviolet irradiator 31 provided on the back side of the transparent substrate 12 while continuing the heating and pressing. The ultraviolet light emitted from the ultraviolet irradiator 31 passes through a transparent support base such as glass supporting the transparent substrate 12 and the transparent substrate 12 supported by the support base and is irradiated to the binder resin layer 3. As the ultraviolet irradiator 31, an LED lamp, a mercury lamp, a metal halide lamp, or the like can be used.

紫外線照射器31による照射時間や、照射段階及び照度、総照射量は、バインダー樹脂の組成や、加熱押圧ヘッド30による熱加圧温度、圧力及び時間から、バインダー樹脂の硬化反応の進行を抑制しつつ加熱押圧ヘッド30による押し込みによる接続信頼性、接着強度の向上を図る条件を適宜設定する。   The irradiation time, irradiation stage and illuminance, and total irradiation amount by the ultraviolet irradiator 31 suppress the progress of the curing reaction of the binder resin from the composition of the binder resin and the hot press temperature, pressure and time by the heating and pressing head 30. On the other hand, conditions for improving connection reliability and adhesive strength by pressing with the heating and pressing head 30 are appropriately set.

そして、紫外線照射器31による紫外線照射を所定時間行った後、加熱押圧ヘッド30による加熱押圧を続行しながら、当該紫外線照射を終了する。紫外線照射の終了後も、所定時間だけ加熱押圧を行う。これにより、異方性導電フィルム1を介して液晶駆動用IC18が端子部17a上に本圧着される。   And after performing ultraviolet irradiation by the ultraviolet irradiation device 31 for a predetermined time, the said ultraviolet irradiation is complete | finished, continuing the heating press by the heating press head 30. FIG. Even after the end of ultraviolet irradiation, heating and pressing are performed for a predetermined time. As a result, the liquid crystal driving IC 18 is finally pressure-bonded onto the terminal portion 17 a via the anisotropic conductive film 1.

[照射後加熱]
このように、本製造工程によれば、液晶駆動用IC18に対する加熱押圧処理と共に紫外線照射処理を所定時間行い、紫外線照射の終了後も所定時間だけ加熱押圧を続行する。これにより、紫外線照射によるバインダー樹脂の硬化反応の進行を抑えつつ、加熱押圧によって透明電極17の端子部17aと液晶駆動用IC18の電極端子との間でバインダー樹脂を流出させるとともに導電性粒子4を押しつぶすことができ、この状態で硬化させることができる。したがって、本製造工程によれば、液晶駆動用IC18と透明電極17との導通信頼性を向上させることができる。
[Heating after irradiation]
As described above, according to this manufacturing process, the ultraviolet irradiation process is performed for a predetermined time together with the heating and pressing process for the liquid crystal driving IC 18, and the heating and pressing is continued for the predetermined time even after the ultraviolet irradiation is finished. Thereby, while suppressing the progress of the curing reaction of the binder resin due to ultraviolet irradiation, the binder resin flows out between the terminal portion 17a of the transparent electrode 17 and the electrode terminal of the liquid crystal driving IC 18 by heating and pressing, and the conductive particles 4 are removed. It can be crushed and cured in this state. Therefore, according to this manufacturing process, the conduction reliability between the liquid crystal driving IC 18 and the transparent electrode 17 can be improved.

また、本製造工程によれば、紫外線照射の終了後も加熱押圧処理を続行しているため、バインダー樹脂の硬化反応の進行を抑えつつ、液晶駆動用IC18と透明基板12との間に十分に浸透させることができ、液晶駆動用IC18の透明基板12に対する接着強度を向上させることができる。   In addition, according to the present manufacturing process, the heating and pressing process is continued even after the ultraviolet irradiation is completed, so that the progress of the curing reaction of the binder resin is suppressed and the liquid crystal driving IC 18 and the transparent substrate 12 are sufficiently provided. It can be penetrated, and the adhesion strength of the liquid crystal driving IC 18 to the transparent substrate 12 can be improved.

一方、加熱押圧処理と共に、引き続き紫外線照射も続行した場合、バインダー樹脂の硬化反応が進み、加熱押圧によっても透明電極17の端子部17aと液晶駆動用IC18の電極端子との間からバインダー樹脂を排除できず、十分に導電性粒子4を挟持することができない。そのため、液晶駆動用IC18との導通抵抗が上昇してしまう。   On the other hand, when the UV irradiation is continued along with the heat pressing process, the binder resin curing reaction proceeds, and the binder resin is excluded from between the terminal portion 17a of the transparent electrode 17 and the electrode terminal of the liquid crystal driving IC 18 by the heat pressing. The conductive particles 4 cannot be sandwiched sufficiently. Therefore, the conduction resistance with the liquid crystal driving IC 18 is increased.

また、加熱押圧処理と共に、引き続き紫外線照射も続行した場合、液晶駆動用IC18がバインダー樹脂を介して透明基板12に密着する前にバインダー樹脂の硬化反応が進むことから、接着強度が不足してしまう。   Further, when the UV irradiation is continued with the heat pressing process, the binder resin cures before the liquid crystal driving IC 18 adheres to the transparent substrate 12 via the binder resin, so that the adhesive strength is insufficient. .

[先行加熱]
また、本製造工程では、紫外線照射に先行して加熱押圧を開始し、所定時間経過後から紫外線を照射する。これにより、本製造工程は、紫外線照射による硬化開始に先立って、加熱押圧ヘッド30によって異方性導電フィルム1のバインダー樹脂層3が流動性を示す温度まで加熱し、透明電極17の端子部17aと液晶駆動用IC18の電極端子とで導電性粒子4を挟持させることができる。そして、本製造工程では、この状態で紫外線照射器31によって紫外線を照射し、光重合開始剤を活性化する。
[Pre-heating]
In this manufacturing process, heating and pressing are started prior to ultraviolet irradiation, and ultraviolet rays are irradiated after a predetermined time has elapsed. Thus, in this manufacturing process, prior to the start of curing by ultraviolet irradiation, the heating resin head 3 is heated to a temperature at which the binder resin layer 3 of the anisotropic conductive film 1 exhibits fluidity by the heating and pressing head 30, and the terminal portion 17 a of the transparent electrode 17. And the electrode terminals of the liquid crystal driving IC 18 can sandwich the conductive particles 4. And in this manufacturing process, an ultraviolet-ray irradiation device 31 is irradiated with an ultraviolet-ray in this state, and a photoinitiator is activated.

このような本製造工程によれば、加熱押圧ヘッド30は、バインダー樹脂層3を溶融させるのに必要な温度まで加熱し、溶融後に紫外線照射による硬化反応を開始させることで、押し込み不足による導通抵抗の上昇や、接着強度の低下を防止することができる。   According to such a manufacturing process, the heating and pressing head 30 is heated to a temperature necessary for melting the binder resin layer 3 and starts a curing reaction by irradiation with ultraviolet rays after melting, thereby causing conduction resistance due to insufficient pressing. Can be prevented and a decrease in adhesive strength can be prevented.

[UV多段階照射]
なお、本製造工程では、加熱押圧ヘッド30によって液晶駆動用IC18を押圧するとともに、紫外線照射器31によって紫外線を照射する。このとき、紫外線照射器31は、照度を一定としてもよいが、段階的に照度を上昇又は下降させてもよい。また、照度は段階的に上昇又は下降させてもよく、連続的に上昇又は下降させてもよい。
[UV multi-step irradiation]
In the present manufacturing process, the liquid crystal driving IC 18 is pressed by the heating and pressing head 30, and ultraviolet rays are irradiated by the ultraviolet irradiator 31. At this time, the ultraviolet irradiator 31 may keep the illuminance constant, but may increase or decrease the illuminance step by step. Further, the illuminance may be increased or decreased stepwise, or may be continuously increased or decreased.

紫外線照射器31によって、照射量を変化させることにより、バインダー樹脂の流動性や、透明電極17の端子部17aと液晶駆動用IC18の電極端子とで導電性粒子4を押し潰す作用等に応じて、紫外線照射のバインダー樹脂の硬化反応の進行を任意に制御することができる。   By changing the irradiation amount by the ultraviolet irradiator 31, depending on the fluidity of the binder resin, the action of crushing the conductive particles 4 between the terminal portion 17 a of the transparent electrode 17 and the electrode terminal of the liquid crystal driving IC 18, etc. The progress of the curing reaction of the binder resin irradiated with ultraviolet rays can be arbitrarily controlled.

液晶駆動用IC18を透明基板12の透明電極17上に接続した後、同様にしてフレキシブル基板21が透明基板12の透明電極17上に実装するいわゆるFOG(film on glass)実装が行われる。このときも、加熱押圧ヘッド30による加熱押圧処理を所定時間行った後、当該熱加圧を続行しながら紫外線照射器31による紫外線照射を行い、紫外線照射の終了後も所定時間だけ加熱押圧処理を続行させてもよい。   After the liquid crystal driving IC 18 is connected to the transparent electrode 17 of the transparent substrate 12, so-called FOG (film on glass) mounting is performed in which the flexible substrate 21 is mounted on the transparent electrode 17 of the transparent substrate 12 in the same manner. Also at this time, after the heating and pressing process by the heating and pressing head 30 is performed for a predetermined time, the ultraviolet irradiation by the ultraviolet irradiator 31 is performed while continuing the thermal pressurization, and the heating and pressing process is performed only for the predetermined time after the ultraviolet irradiation is completed. You may continue.

これにより、異方性導電フィルム1を介して透明基板12と液晶駆動用IC18やフレキシブル基板21とが接続された接続体を製造することができる。なお、これらCOG実装とFOG実装は、同時に行ってもよい。   Thereby, the connection body by which the transparent substrate 12, IC18 for liquid crystal drive, and the flexible substrate 21 were connected via the anisotropic conductive film 1 can be manufactured. Note that these COG mounting and FOG mounting may be performed simultaneously.

以上、液晶駆動用ICを直接液晶表示パネルのガラス基板上に実装するCOG実装、及びフレキシブル基板を直接液晶表示パネルの基板上に実装するFOG実装を例に説明したが、本技術は、光硬化型の接着剤を用いた接続体の製造工程であれば、電子部品以外の各種接続にも適用することができる。
[その他]
In the above, the COG mounting in which the liquid crystal driving IC is directly mounted on the glass substrate of the liquid crystal display panel and the FOG mounting in which the flexible substrate is directly mounted on the substrate of the liquid crystal display panel have been described as examples. If it is the manufacturing process of the connection body using the type | mold adhesive agent, it can apply also to various connections other than an electronic component.
[Others]

また、本発明は、上述した紫外線硬化型の導電性接着剤を用いる他、例えば赤外光等の他の波長の光線によって硬化する光硬化型の導電性接着剤を用いることもできる。   In addition to using the ultraviolet curable conductive adhesive described above, the present invention can also use a photocurable conductive adhesive that is cured by light of other wavelengths such as infrared light.

上記では、導電性の接着剤としてフィルム形状を有する異方性導電フィルム1について説明したが、ペースト状であっても問題は無い。また、本発明は、導電性粒子4を含有しないバインダー樹脂層からなる絶縁性接着フィルム、及び導電性粒子4を含有しないペースト状のバインダー樹脂を用いた絶縁性接着ペーストによる接続工程に用いてもよい。本発明に係る接着剤は、光重合開始剤を含有する回路接続用接着剤であれば、導電性粒子4の有無や、フィルムやペースト等の形態は問わない。   In the above, the anisotropic conductive film 1 having a film shape as the conductive adhesive has been described. Moreover, even if this invention is used for the connection process by the insulating adhesive film which consists of the binder resin layer which does not contain the electroconductive particle 4, and the paste-form binder resin which does not contain the electroconductive particle 4, it uses. Good. As long as the adhesive according to the present invention is an adhesive for circuit connection containing a photopolymerization initiator, the presence or absence of the conductive particles 4 or the form of a film, a paste or the like is not limited.

次いで、本技術の実施例について説明する。本実施例は、紫外線照射条件を異ならせて製造した透明基板とICチップとの各接続体サンプルについて、ICチップと基板との接続状態を導通抵抗値(Ω)、及びICチップの接着強度(kgf)によって評価した。   Next, examples of the present technology will be described. In this example, for each connection body sample of a transparent substrate and an IC chip manufactured under different ultraviolet irradiation conditions, the connection state between the IC chip and the substrate is determined as a conduction resistance value (Ω) and an adhesion strength of the IC chip ( kgf).

接続に用いる接着剤として、光酸発生剤とカチオン重合性化合物を含有するバインダー樹脂層からなる異方性導電フィルムAを用意した。   An anisotropic conductive film A comprising a binder resin layer containing a photoacid generator and a cationic polymerizable compound was prepared as an adhesive used for connection.

このバインダー樹脂層は、
フェノキシ樹脂(YP−50:新日鉄住金化学株式会社製);45質量部
エポキシ樹脂(ビスA型)(エピコート828:三菱化学株式会社製);45質量部
シランカップリング剤(KBM−403:信越化学工業株式会社製);2質量部
光酸発生剤(イルガキュア250:BASFジャパン株式会社製);8質量部
を酢酸エチル、トルエンにて固形分50%になるように混合溶液を作成し、導電性粒子(AUL704:積水化学工業株式会社製)を粒子密度50,000個/mm2になるように分散させた。この混合溶液を厚さ50μmのPETフィルム上に塗布し、70℃オーブンにて5分間乾燥し、厚さ20μmのフィルム状に成形した。
This binder resin layer
Phenoxy resin (YP-50: manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.); 45 parts by mass epoxy resin (bis A type) (Epicoat 828: manufactured by Mitsubishi Chemical Co., Ltd.); 45 parts by mass silane coupling agent (KBM-403: Shin-Etsu Chemical) Manufactured by Kogyo Co., Ltd.); 2 parts by mass photoacid generator (Irgacure 250: manufactured by BASF Japan Ltd.); 8 parts by mass of ethyl acetate / toluene is used to prepare a mixed solution so that the solid content is 50%. Particles (AUL704: manufactured by Sekisui Chemical Co., Ltd.) were dispersed so as to have a particle density of 50,000 particles / mm 2 . This mixed solution was applied onto a 50 μm thick PET film, dried in an oven at 70 ° C. for 5 minutes, and formed into a 20 μm thick film.

また、接続に用いる接着剤として、光ラジカル開始剤とラジカル重合性化合物を含有するバインダー樹脂層からなる異方性導電フィルムBを用意した。   Moreover, the anisotropic conductive film B which consists of a binder resin layer containing a photoradical initiator and a radically polymerizable compound was prepared as an adhesive used for connection.

このバインダー樹脂層は、
フェノキシ樹脂(YP−50:新日鉄住金化学株式会社製);45質量部
イソシアヌル酸EO変性ジアクリレート(M−215:東亜合成株式会社製);45質量部
シランカップリング剤(KBM−403:信越化学工業株式会社製);2質量部
光ラジカル発生剤(イルガキュア369:BASFジャパン株式会社製);8質量部
を酢酸エチル、トルエンにて固形分50%になるように混合溶液を作成し、導電性粒子(AUL704:積水化学工業株式会社製)を粒子密度50,000個/mm2になるように分散させた。この混合溶液を厚さ50μmのPETフィルム上に塗布し、70℃オーブンにて5分間乾燥し、厚さ20μmのフィルム状に成形した。
This binder resin layer
Phenoxy resin (YP-50: manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.); 45 parts by mass isocyanuric acid EO-modified diacrylate (M-215: manufactured by Toagosei Co., Ltd.); 45 parts by mass of silane coupling agent (KBM-403: Shin-Etsu Chemical) Manufactured by Kogyo Co., Ltd.); 2 parts by mass photoradical generator (Irgacure 369: manufactured by BASF Japan Co., Ltd.); Particles (AUL704: manufactured by Sekisui Chemical Co., Ltd.) were dispersed so as to have a particle density of 50,000 particles / mm 2 . This mixed solution was applied onto a 50 μm thick PET film, dried in an oven at 70 ° C. for 5 minutes, and formed into a 20 μm thick film.

評価素子として、
外形;1.8mm×20mm
バンプ高さ;15μm
の評価用ICを用いた。
As an evaluation element,
Outline: 1.8mm x 20mm
Bump height: 15 μm
IC for evaluation was used.

評価用ICが接続される評価基材として、厚さ0.5mmのITOコーティングラスを用いた。   An ITO coating lath having a thickness of 0.5 mm was used as an evaluation substrate to which the evaluation IC was connected.

このガラス基板に上記異方性導電フィルムを介して評価用ICを配置し、加熱押圧ヘッドによる熱加圧及び紫外線照射によって接続することにより、接続体サンプルを形成した。加熱押圧ヘッドの温度はいずれも100℃、押圧条件はいずれも80MPa、3〜14秒であり、加熱押圧ヘッドの熱加圧面には厚さ50μmのフッ素樹脂加工が施されている。   An evaluation IC was placed on the glass substrate through the anisotropic conductive film, and connected by thermal pressing with a heating press head and ultraviolet irradiation to form a connected body sample. The temperature of the heating and pressing head is 100 ° C., the pressing conditions are 80 MPa, and 3 to 14 seconds. The heat pressing surface of the heating and pressing head is processed with a fluororesin having a thickness of 50 μm.

[実施例1、実施例8]
実施例1では、上記異方性導電フィルムAを用いた。実施例8では、上記異方性導電フィルムBを用いた。また、実施例1及び実施例8では、加熱押圧ヘッドによるトータルの熱加圧時間を5秒とし、熱加圧開始1秒後に紫外線照射を2秒間行い、紫外線照射終了後も熱加圧を2秒間続行した。すなわち、実施例1及び実施例8では、紫外線照射前の先行熱加圧時間を1秒、紫外線照射時間を2秒、紫外線照射終了後の熱加圧時間を2秒とした。紫外線照射時間はトータルの熱加圧時間の40%である。
[Example 1 and Example 8]
In Example 1, the anisotropic conductive film A was used. In Example 8, the anisotropic conductive film B was used. In Example 1 and Example 8, the total heat pressing time by the heating and pressing head is set to 5 seconds, ultraviolet irradiation is performed for 2 seconds 1 second after the start of heat pressing, and heat pressing is performed 2 times after the end of ultraviolet irradiation. Continued for seconds. That is, in Example 1 and Example 8, the preheating time before ultraviolet irradiation was 1 second, the ultraviolet irradiation time was 2 seconds, and the thermal pressing time after completion of ultraviolet irradiation was 2 seconds. The ultraviolet irradiation time is 40% of the total heat pressing time.

[実施例2、実施例9]
実施例2では、上記異方性導電フィルムAを用いた。実施例9では、上記異方性導電フィルムBを用いた。また、実施例2及び実施例9では、加熱押圧ヘッドによるトータルの熱加圧時間を6秒とし、熱加圧開始1秒後に紫外線照射を2秒間行い、紫外線照射終了後も熱加圧を3秒間続行した。すなわち、実施例2及び実施例9では、紫外線照射前の先行熱加圧時間を1秒、紫外線照射時間を2秒、紫外線照射終了後の熱加圧時間を3秒とした。紫外線照射時間はトータルの熱加圧時間の33%である。
[Example 2 and Example 9]
In Example 2, the anisotropic conductive film A was used. In Example 9, the anisotropic conductive film B was used. Further, in Example 2 and Example 9, the total heat pressing time by the heating and pressing head is set to 6 seconds, the ultraviolet irradiation is performed for 2 seconds 1 second after the start of the thermal pressing, and the thermal pressing is performed 3 times after the ultraviolet irradiation is completed. Continued for seconds. That is, in Example 2 and Example 9, the preceding heat pressurization time before ultraviolet irradiation was 1 second, the ultraviolet irradiation time was 2 seconds, and the heat pressurization time after completion of ultraviolet irradiation was 3 seconds. The ultraviolet irradiation time is 33% of the total heat pressing time.

[実施例3、実施例10]
実施例3では、上記異方性導電フィルムAを用いた。実施例10では、上記異方性導電フィルムBを用いた。また、実施例3及び実施例10では、加熱押圧ヘッドによるトータルの熱加圧時間を7秒とし、熱加圧開始1秒後に紫外線照射を2秒間行い、紫外線照射終了後も熱加圧を4秒間続行した。すなわち、実施例3及び実施例10では、紫外線照射前の先行熱加圧時間を1秒、紫外線照射時間を2秒、紫外線照射終了後の熱加圧時間を4秒とした。紫外線照射時間はトータルの熱加圧時間の28%であり、照射終了後の熱加圧時間はトータルの熱加圧時間の57%である。
[Example 3 and Example 10]
In Example 3, the anisotropic conductive film A was used. In Example 10, the anisotropic conductive film B was used. In Example 3 and Example 10, the total heat pressing time by the heating and pressing head is set to 7 seconds, ultraviolet irradiation is performed for 2 seconds 1 second after the start of heat pressing, and heat pressing is performed 4 times after the ultraviolet irradiation is completed. Continued for seconds. That is, in Example 3 and Example 10, the preceding heat pressurization time before ultraviolet irradiation was 1 second, the ultraviolet irradiation time was 2 seconds, and the heat pressurization time after completion of ultraviolet irradiation was 4 seconds. The ultraviolet irradiation time is 28% of the total thermal pressing time, and the thermal pressing time after the irradiation is 57% of the total thermal pressing time.

[実施例4、実施例11]
実施例4では、上記異方性導電フィルムAを用いた。実施例11では、上記異方性導電フィルムBを用いた。また、実施例4及び実施例11では、加熱押圧ヘッドによるトータルの熱加圧時間を8秒とし、熱加圧開始1秒後に紫外線照射を2秒間行い、紫外線照射終了後も熱加圧を5秒間続行した。すなわち、実施例4及び実施例11では、紫外線照射前の先行熱加圧時間を1秒、紫外線照射時間を2秒、紫外線照射終了後の熱加圧時間を5秒とした。紫外線照射時間はトータルの熱加圧時間の25%であり、照射終了後の熱加圧時間はトータルの熱加圧時間の62%である。
[Example 4, Example 11]
In Example 4, the anisotropic conductive film A was used. In Example 11, the anisotropic conductive film B was used. Moreover, in Example 4 and Example 11, the total heat pressurizing time by the heating and pressing head is set to 8 seconds, UV irradiation is performed for 2 seconds 1 second after the start of heat pressurization, and heat pressurization is performed 5 times after the end of UV irradiation. Continued for seconds. That is, in Example 4 and Example 11, the preceding heat pressurization time before ultraviolet irradiation was 1 second, the ultraviolet irradiation time was 2 seconds, and the heat pressurization time after completion of ultraviolet irradiation was 5 seconds. The ultraviolet irradiation time is 25% of the total heat pressing time, and the heat pressing time after the irradiation is 62% of the total heat pressing time.

[実施例5、実施例12]
実施例5では、上記異方性導電フィルムAを用いた。実施例12では、上記異方性導電フィルムBを用いた。また、実施例5及び実施例12では、加熱押圧ヘッドによるトータルの熱加圧時間を13秒とし、熱加圧開始1秒後に紫外線照射を2秒間行い、紫外線照射終了後も熱加圧を10秒間続行した。すなわち、実施例5及び実施例12では、紫外線照射前の先行熱加圧時間を1秒、紫外線照射時間を2秒、紫外線照射終了後の熱加圧時間を10秒とした。紫外線照射時間はトータルの熱加圧時間の15%であり、照射終了後の熱加圧時間はトータルの熱加圧時間の77%である。
[Example 5, Example 12]
In Example 5, the anisotropic conductive film A was used. In Example 12, the anisotropic conductive film B was used. Further, in Example 5 and Example 12, the total heat pressing time by the heating and pressing head is 13 seconds, ultraviolet irradiation is performed for 2 seconds 1 second after the start of heat pressing, and heat pressing is performed 10 seconds after the ultraviolet irradiation is completed. Continued for seconds. That is, in Example 5 and Example 12, the preceding thermal pressurization time before ultraviolet irradiation was 1 second, the ultraviolet irradiation time was 2 seconds, and the thermal pressurization time after completion of ultraviolet irradiation was 10 seconds. The ultraviolet irradiation time is 15% of the total heat pressing time, and the heat pressing time after the irradiation is 77% of the total heat pressing time.

[実施例6、実施例13]
実施例6では、上記異方性導電フィルムAを用いた。実施例13では、上記異方性導電フィルムBを用いた。また、実施例6及び実施例13では、加熱押圧ヘッドによるトータルの熱加圧時間を5秒とし、熱加圧開始2秒後に紫外線照射を2秒間行い、紫外線照射終了後も熱加圧を1秒間続行した。すなわち、実施例6及び実施例13では、紫外線照射前の先行熱加圧時間を2秒、紫外線照射時間を2秒、紫外線照射終了後の熱加圧時間を1秒とした。紫外線照射時間はトータルの熱加圧時間の40%である。
[Example 6 and Example 13]
In Example 6, the anisotropic conductive film A was used. In Example 13, the anisotropic conductive film B was used. In Example 6 and Example 13, the total thermal pressing time by the heating and pressing head is set to 5 seconds, ultraviolet irradiation is performed for 2 seconds 2 seconds after the start of thermal pressing, and thermal pressing is performed 1 after the completion of ultraviolet irradiation. Continued for seconds. That is, in Example 6 and Example 13, the preceding heat pressurization time before ultraviolet irradiation was 2 seconds, the ultraviolet irradiation time was 2 seconds, and the heat pressurization time after completion of ultraviolet irradiation was 1 second. The ultraviolet irradiation time is 40% of the total heat pressing time.

[実施例7、実施例14]
実施例7では、上記異方性導電フィルムAを用いた。実施例14では、上記異方性導電フィルムBを用いた。また、実施例7及び実施例14では、加熱押圧ヘッドによるトータルの熱加圧時間を14秒とし、熱加圧開始2秒後に紫外線照射を2秒間行い、紫外線照射終了後も熱加圧を10秒間続行した。すなわち、実施例7及び実施例14では、紫外線照射前の先行熱加圧時間を2秒、紫外線照射時間を2秒、紫外線照射終了後の熱加圧時間を10秒とした。紫外線照射時間はトータルの熱加圧時間の14%であり、照射終了後の熱加圧時間はトータルの熱加圧時間の71%である。
[Example 7, Example 14]
In Example 7, the anisotropic conductive film A was used. In Example 14, the anisotropic conductive film B was used. Further, in Example 7 and Example 14, the total heat pressing time by the heating and pressing head is set to 14 seconds, the ultraviolet irradiation is performed for 2 seconds after the start of the heat pressing, and the heat pressing is performed after the ultraviolet irradiation is finished. Continued for seconds. That is, in Example 7 and Example 14, the preceding thermal pressurization time before ultraviolet irradiation was 2 seconds, the ultraviolet irradiation time was 2 seconds, and the thermal pressurization time after the ultraviolet irradiation was finished was 10 seconds. The ultraviolet irradiation time is 14% of the total heat pressing time, and the heat pressing time after the irradiation is 71% of the total heat pressing time.

[比較例1、比較例6]
比較例1では、上記異方性導電フィルムAを用いた。比較例6では、上記異方性導電フィルムBを用いた。また、比較例1及び比較例6では、加熱押圧ヘッドによるトータルの熱加圧時間を5秒とし、熱加圧と同時に紫外線照射を開始し、熱加圧の終了と同時に紫外線照射も終了した。すなわち、比較例1及び比較例6では、熱加圧時間と紫外線照射時間が同じであり、かつ先行熱加圧時間及び紫外線照射終了後の熱加圧時間を設けなかった。
[Comparative Example 1, Comparative Example 6]
In Comparative Example 1, the anisotropic conductive film A was used. In Comparative Example 6, the anisotropic conductive film B was used. Moreover, in Comparative Example 1 and Comparative Example 6, the total heat pressing time by the heating and pressing head was set to 5 seconds, and the ultraviolet irradiation was started simultaneously with the thermal pressing, and the ultraviolet irradiation was ended simultaneously with the end of the thermal pressing. That is, in Comparative Example 1 and Comparative Example 6, the heat pressurization time and the ultraviolet irradiation time were the same, and the preceding heat pressurization time and the heat pressurization time after completion of the ultraviolet irradiation were not provided.

[比較例2、比較例7]
比較例2では、上記異方性導電フィルムAを用いた。比較例7では、上記異方性導電フィルムBを用いた。また、比較例2及び比較例7では、加熱押圧ヘッドによるトータルの熱加圧時間を5秒とし、熱加圧開始1秒後に紫外線照射を4秒間行った。すなわち、比較例2及び比較例7では、紫外線照射前の先行熱加圧時間を1秒、紫外線照射時間を4秒とし、紫外線照射終了後の熱加圧時間は設けなかった。紫外線照射時間はトータルの熱加圧時間の80%である。
[Comparative Example 2, Comparative Example 7]
In Comparative Example 2, the anisotropic conductive film A was used. In Comparative Example 7, the anisotropic conductive film B was used. In Comparative Example 2 and Comparative Example 7, the total heat pressing time by the heating and pressing head was set to 5 seconds, and ultraviolet irradiation was performed for 4 seconds 1 second after the start of heat pressing. That is, in Comparative Example 2 and Comparative Example 7, the preceding heat pressing time before ultraviolet irradiation was 1 second, the ultraviolet irradiation time was 4 seconds, and no heat pressing time after the ultraviolet irradiation was completed. The ultraviolet irradiation time is 80% of the total heat pressing time.

[比較例3、比較例8]
比較例3では、上記異方性導電フィルムAを用いた。比較例8では、上記異方性導電フィルムBを用いた。また、比較例3及び比較例8では、加熱押圧ヘッドによるトータルの熱加圧時間を5秒とし、熱加圧開始2秒後に紫外線照射を3秒間行った。すなわち、比較例3及び比較例8では、紫外線照射前の先行熱加圧時間を2秒、紫外線照射時間を3秒とし、紫外線照射終了後の熱加圧時間は設けなかった。紫外線照射時間はトータルの熱加圧時間の60%である。
[Comparative Example 3, Comparative Example 8]
In Comparative Example 3, the anisotropic conductive film A was used. In Comparative Example 8, the anisotropic conductive film B was used. Moreover, in Comparative Example 3 and Comparative Example 8, the total heat pressing time by the heating and pressing head was set to 5 seconds, and ultraviolet irradiation was performed for 3 seconds 2 seconds after the start of heat pressing. That is, in Comparative Example 3 and Comparative Example 8, the preceding heat pressurization time before ultraviolet irradiation was 2 seconds, the ultraviolet irradiation time was 3 seconds, and no heat pressurization time after completion of ultraviolet irradiation was provided. The ultraviolet irradiation time is 60% of the total heat pressing time.

[比較例4、比較例9]
比較例4では、上記異方性導電フィルムAを用いた。比較例9では、上記異方性導電フィルムBを用いた。また、比較例4及び比較例9では、加熱押圧ヘッドによるトータルの熱加圧時間を5秒とし、熱加圧開始3秒後に紫外線照射を2秒間行った。すなわち、比較例4及び比較例9では、紫外線照射前の先行熱加圧時間を3秒、紫外線照射時間を2秒とし、紫外線照射終了後の熱加圧時間は設けなかった。紫外線照射時間はトータルの熱加圧時間の40%である。
[Comparative Example 4, Comparative Example 9]
In Comparative Example 4, the anisotropic conductive film A was used. In Comparative Example 9, the anisotropic conductive film B was used. In Comparative Example 4 and Comparative Example 9, the total heat pressing time by the heating and pressing head was 5 seconds, and ultraviolet irradiation was performed for 2 seconds 3 seconds after the start of heat pressing. That is, in Comparative Example 4 and Comparative Example 9, the preceding heat pressurization time before ultraviolet irradiation was 3 seconds, the ultraviolet irradiation time was 2 seconds, and no heat pressurization time after completion of ultraviolet irradiation was provided. The ultraviolet irradiation time is 40% of the total heat pressing time.

[比較例5、比較例10]
比較例5では、上記異方性導電フィルムAを用いた。比較例10では、上記異方性導電フィルムBを用いた。また、比較例5及び比較例10では、加熱押圧ヘッドによるトータルの熱加圧時間を3秒とし、熱加圧開始1秒後に紫外線照射を2秒間行った。すなわち、比較例5及び比較例10では、紫外線照射前の先行熱加圧時間を1秒、紫外線照射時間を2秒とし、紫外線照射終了後の熱加圧時間は設けなかった。紫外線照射時間はトータルの熱加圧時間の67%である。
[Comparative Example 5 and Comparative Example 10]
In Comparative Example 5, the anisotropic conductive film A was used. In Comparative Example 10, the anisotropic conductive film B was used. In Comparative Example 5 and Comparative Example 10, the total heat pressing time by the heating and pressing head was 3 seconds, and ultraviolet irradiation was performed for 2 seconds 1 second after the start of heat pressing. That is, in Comparative Example 5 and Comparative Example 10, the preceding heat pressurization time before ultraviolet irradiation was 1 second, the ultraviolet irradiation time was 2 seconds, and no heat pressurization time after completion of ultraviolet irradiation was provided. The ultraviolet irradiation time is 67% of the total heat pressing time.

以上の条件で加熱押圧及び紫外線照射を行って、評価用ICがITOコーティングラスに接続された接続体サンプルを形成し、各サンプルについて、初期導通抵抗値(Ω)及び信頼性試験後の導通抵抗値(Ω)を測定した。信頼性試験の条件は、85℃85%RH500hrである。   Under the above conditions, heat pressing and ultraviolet irradiation are performed to form a connected body sample in which the IC for evaluation is connected to the ITO coating lath. For each sample, the initial conduction resistance value (Ω) and the conduction resistance after the reliability test The value (Ω) was measured. The condition of the reliability test is 85 ° C. and 85% RH 500 hr.

導通抵抗値の測定は、図3に示すように、評価用ICのバンプ42と接続されたITOコーティングラスの配線43にデジタルマルチメータを接続し、いわゆる4端子法にて電流2mAを流したときの導通抵抗値を測定した。また、評価用ICの接続強度(kgf/IC)を測定した。接着強度は100kgf/ICを目標とした。   As shown in FIG. 3, the conduction resistance value is measured when a digital multimeter is connected to the ITO coating lath wiring 43 connected to the bump 42 of the evaluation IC and a current of 2 mA is applied by the so-called four-terminal method. The conduction resistance value of was measured. Further, the connection strength (kgf / IC) of the evaluation IC was measured. The target of the adhesive strength was 100 kgf / IC.

異方性導電フィルムAを用いて形成した接続体サンプルの測定結果を表1に示し、異方性導電フィルムBを用いて形成した接続体サンプルの測定結果を表2に示す。   Table 1 shows the measurement results of the connection body sample formed using the anisotropic conductive film A, and Table 2 shows the measurement results of the connection body sample formed using the anisotropic conductive film B.

表1、表2に示すように、異方性導電フィルムAを用いた実施例1〜7に係る接続体サンプルと、異方性導電フィルムBを用いた実施例8〜14に係る接続体サンプルとは、いずれも、初期導通抵抗が2.0Ω未満と低く、信頼性試験後の導通抵抗も5.0Ω未満と低い。また、実施例1〜14に係る接続体サンプルは、いずれも評価用ICの接着強度が100kgf/IC以上と、強固に接着されていた。   As shown in Table 1 and Table 2, the connector samples according to Examples 1 to 7 using the anisotropic conductive film A and the connector samples according to Examples 8 to 14 using the anisotropic conductive film B. In both cases, the initial conduction resistance is as low as less than 2.0Ω, and the conduction resistance after the reliability test is also as low as less than 5.0Ω. Moreover, all the connection body samples which concern on Examples 1-14 were adhere | attached firmly with the adhesive strength of IC for evaluation being 100 kgf / IC or more.

一方、異方性導電フィルムAを用いた比較例1〜5に係る接続体サンプルと、異方性導電フィルムBを用いた比較例6〜10に係る接続体サンプルとは、いずれも、初期導通抵抗が2.0Ω以上と高く、信頼性試験後には導通抵抗が5.0Ω以上に上昇した。また、比較例1〜10に係る接続体サンプルは、いずれも評価用ICの接着強度が100kgf/IC未満と、目標値に満たなかった。   On the other hand, the connected body samples according to Comparative Examples 1 to 5 using the anisotropic conductive film A and the connected body samples according to Comparative Examples 6 to 10 using the anisotropic conductive film B are both initial conductive. The resistance was as high as 2.0Ω or more, and the conduction resistance increased to 5.0Ω or more after the reliability test. Moreover, all the connection body samples which concern on Comparative Examples 1-10 did not satisfy the target value with the adhesive strength of IC for evaluation being less than 100 kgf / IC.

これは、各実施例においては、紫外線照射の終了後に所定時間だけ熱加圧を続行したことから、紫外線照射によるバインダー樹脂の硬化反応の進行を抑えつつ、加熱押圧によってITOコーティングラスの配線43aと評価用ICのバンプ42との間でバインダー樹脂を流出させるとともに導電性粒子を押しつぶすことができ、この状態で硬化させることができたことによる。   This is because, in each example, since the heat and pressure was continued for a predetermined time after the ultraviolet irradiation was completed, the progress of the curing reaction of the binder resin due to the ultraviolet irradiation was suppressed, and the ITO coating lath wiring 43a was formed by heating and pressing. This is because the binder resin can flow out between the bumps 42 of the evaluation IC and the conductive particles can be crushed, and can be cured in this state.

また、各実施例では、紫外線照射の終了後も加熱押圧処理を続行しているため、バインダー樹脂の硬化反応の進行を抑えつつ、評価用ICとITOコーティングラスとの間に十分に浸透させることができ、評価用ICのITOコーティングラスに対する接着強度を向上させることができたことによる。   In each example, the heat pressing process is continued even after the end of the ultraviolet irradiation, so that the evaluation resin and the ITO coating lath are sufficiently infiltrated while suppressing the progress of the curing reaction of the binder resin. This is because the adhesion strength of the evaluation IC to the ITO coating lath can be improved.

一方、各比較例においては、加熱押圧処理と共に、紫外線照射も行っているため、バインダー樹脂の硬化反応が進み、加熱押圧によってもITOコーティングラスの配線43aと評価用ICのバンプ42との間からバインダー樹脂を排除できず、十分に導電性粒子を挟持することができず、そのため、導通抵抗が上昇した。この傾向は信頼性試験を経るとさらに顕著に表れた。   On the other hand, in each comparative example, since ultraviolet irradiation is performed together with the heat pressing treatment, the curing reaction of the binder resin proceeds, and even between the wiring 43a of the ITO coating lath and the bump 42 of the evaluation IC even by the heat pressing. The binder resin could not be excluded, and the conductive particles could not be sufficiently sandwiched, so that the conduction resistance increased. This tendency became more prominent after the reliability test.

また、各比較例では、加熱押圧処理と共に、引き続き紫外線照射も続行しているため、評価用ICがバインダー樹脂を介してITOコーティングラスに密着する前にバインダー樹脂の硬化反応が進むことから、接着強度不足となった。   In each comparative example, since UV irradiation is continued with the heat pressing process, the curing reaction of the binder resin proceeds before the evaluation IC adheres to the ITO coating lath via the binder resin. Insufficient strength.

また、表1、表2に示すように、各実施例における紫外線の照射時間は、トータルの熱加圧時間の14〜40%とすることにより、良好な接続性及び接着強度が得られることが分かる。   In addition, as shown in Tables 1 and 2, when the ultraviolet irradiation time in each example is 14 to 40% of the total thermal pressing time, good connectivity and adhesive strength can be obtained. I understand.

また、実施例3,4,5,7,10,11,12,14に示すように、紫外線照射囚虜後に4秒以上熱加圧を行うことにより、接着強度をさらに向上できることが分かる。すなわち、紫外線照射の終了後、加熱押圧を続行する時間は、トータルの熱加圧時間の57%以上設けることが好ましい。これは、光重合開始剤の活性とともに熱加圧を続行することによって、よりバインダー樹脂が評価用ICとITOコーティングラスの間に浸透し、密着性が向上されることによる。   Moreover, as shown in Examples 3, 4, 5, 7, 10, 11, 12, and 14, it can be seen that the adhesive strength can be further improved by performing heat and pressure for 4 seconds or more after the ultraviolet irradiation prisoner. That is, it is preferable to provide 57% or more of the total heat pressurization time for continuing the heating and pressing after completion of the ultraviolet irradiation. This is because the binder resin penetrates more between the IC for evaluation and the ITO coating lath by continuing the thermal pressurization together with the activity of the photopolymerization initiator, thereby improving the adhesion.

1 異方性導電フィルム、2 剥離フィルム、3 バインダー樹脂層、4 導電性粒子、10 液晶表示パネル、11,12 透明基板、13 シール、14 液晶、15 パネル表示部、16,17 透明電極、18 液晶駆動用IC、20 COG実装部、21 フレキシブル基板、22 FOG実装部、24 配厚膜、25,26 偏光板、30 加熱押圧ヘッド、31 紫外線照射器、42 バンプ、43 配線 DESCRIPTION OF SYMBOLS 1 Anisotropic conductive film, 2 Release film, 3 Binder resin layer, 4 Conductive particle, 10 Liquid crystal display panel, 11, 12 Transparent substrate, 13 Seal, 14 Liquid crystal, 15 Panel display part, 16, 17 Transparent electrode, 18 IC for liquid crystal drive, 20 COG mounting part, 21 flexible substrate, 22 FOG mounting part, 24 thick film, 25, 26 polarizing plate, 30 heating press head, 31 UV irradiator, 42 bump, 43 wiring

Claims (8)

光重合開始剤を含有する回路接続用接着剤を介して、透明基板上に電子部品を配置し、
上記電子部品を上記透明基板に対して押圧しながら、加熱及び光照射を行い、
加熱押圧を続行しながら光照射を終了する、接続体の製造方法。
Place electronic components on a transparent substrate via an adhesive for circuit connection containing a photopolymerization initiator,
While pressing the electronic component against the transparent substrate, heating and light irradiation are performed,
A method for manufacturing a connected body, wherein light irradiation is terminated while continuing heating and pressing.
光照射の開始に先行して、加熱押圧を開始する請求項1記載の接続体の製造方法。   The manufacturing method of the connection body of Claim 1 which starts a heating press prior to the start of light irradiation. 光照射時間は、全加熱押圧時間の14〜40%である請求項1又は2に記載の接続体の製造方法。   The method for producing a connection body according to claim 1 or 2, wherein the light irradiation time is 14 to 40% of the total heating and pressing time. 光照射の終了後、4秒以上加熱押圧を続行する請求項1〜3のいずれか1項に記載の接続体の製造方法。   The manufacturing method of the connection body of any one of Claims 1-3 which continue a heat press for 4 second or more after completion | finish of light irradiation. 光照射の終了後、加熱押圧を続行する時間は、全加熱押圧時間の57%以上である請求項1〜3のいずれか1項に記載の接続体の製造方法。   The method for manufacturing a connected body according to any one of claims 1 to 3, wherein the time for continuing the heating and pressing after the light irradiation is 57% or more of the total heating and pressing time. 上記回路接続用接着剤は、光酸発生剤とカチオン重合性化合物を含有する組成物からなる請求項1〜5のいずれか1項に記載の接続体の製造方法。   The said circuit connection adhesive consists of a composition containing a photo-acid generator and a cationically polymerizable compound, The manufacturing method of the connection body of any one of Claims 1-5. 上記回路接続用接着剤は、光ラジカル開始剤とラジカル重合性化合物を含有する組成物からなる請求項1〜5のいずれか1項に記載の接続体の製造方法。   The said circuit connection adhesive consists of a composition containing a photoradical initiator and a radically polymerizable compound, The manufacturing method of the connection body of any one of Claims 1-5. 光重合開始剤を含有する回路接続用接着剤を介して、透明基板上に電子部品を配置し、
上記電子部品を上記透明基板に対して押圧しながら、加熱及び光照射を行い、
加熱押圧を続行しながら光照射を終了する、電子部品の接続方法。
Place electronic components on a transparent substrate via an adhesive for circuit connection containing a photopolymerization initiator,
While pressing the electronic component against the transparent substrate, heating and light irradiation are performed,
A method for connecting electronic components, in which light irradiation is terminated while continuing heating and pressing.
JP2014009002A 2014-01-21 2014-01-21 Manufacturing method for connection body, and connection method for electronic component Pending JP2015138850A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014009002A JP2015138850A (en) 2014-01-21 2014-01-21 Manufacturing method for connection body, and connection method for electronic component
PCT/JP2015/051464 WO2015111599A1 (en) 2014-01-21 2015-01-21 Connection body production method and electronic component connection method
TW104101927A TW201546919A (en) 2014-01-21 2015-01-21 Connection body production method and electronic component connection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014009002A JP2015138850A (en) 2014-01-21 2014-01-21 Manufacturing method for connection body, and connection method for electronic component

Publications (1)

Publication Number Publication Date
JP2015138850A true JP2015138850A (en) 2015-07-30

Family

ID=53681401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014009002A Pending JP2015138850A (en) 2014-01-21 2014-01-21 Manufacturing method for connection body, and connection method for electronic component

Country Status (3)

Country Link
JP (1) JP2015138850A (en)
TW (1) TW201546919A (en)
WO (1) WO2015111599A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10340927A (en) * 1997-06-06 1998-12-22 Matsushita Electron Corp Manufacture of semiconductor device and bonding device
JP2000169821A (en) * 1998-09-30 2000-06-20 Three Bond Co Ltd Ultraviolet light-curable anisotropic conductive adhesive
JP2009013316A (en) * 2007-07-06 2009-01-22 Toyo Ink Mfg Co Ltd Adhesive composition and adhesive film using the same and method for producing adhesive
WO2013121858A1 (en) * 2012-02-14 2013-08-22 デクセリアルズ株式会社 Method for manufacturing connector, and connection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10340927A (en) * 1997-06-06 1998-12-22 Matsushita Electron Corp Manufacture of semiconductor device and bonding device
JP2000169821A (en) * 1998-09-30 2000-06-20 Three Bond Co Ltd Ultraviolet light-curable anisotropic conductive adhesive
JP2009013316A (en) * 2007-07-06 2009-01-22 Toyo Ink Mfg Co Ltd Adhesive composition and adhesive film using the same and method for producing adhesive
WO2013121858A1 (en) * 2012-02-14 2013-08-22 デクセリアルズ株式会社 Method for manufacturing connector, and connection method

Also Published As

Publication number Publication date
WO2015111599A1 (en) 2015-07-30
TW201546919A (en) 2015-12-16

Similar Documents

Publication Publication Date Title
JP5972844B2 (en) Anisotropic conductive film, method for manufacturing anisotropic conductive film, method for manufacturing connected body, and connection method
KR101517323B1 (en) Connection method, connected-body production method and connected body
JP6679320B2 (en) Connection body manufacturing method, electronic component connection method
WO2015137008A1 (en) Anisotropic conductive adhesive, method for producing connector and method for connecting electronic component
JP6882224B2 (en) Manufacturing method of connecting body and connecting method of electronic parts
JP5836830B2 (en) Manufacturing method of connecting body and connecting method
JP5926590B2 (en) Manufacturing method of connecting body and connecting method of electronic component
JP2015142120A (en) Method of manufacturing connection body, and connection method and connection device of electronic component
JP6257303B2 (en) Manufacturing method of connecting body, connecting method, and connecting body
TW201634637A (en) Light curing anisotropic conductive adhesive, method for producing connector and method for connecting electronic components
CN107230646B (en) Method for manufacturing connector
WO2015111599A1 (en) Connection body production method and electronic component connection method
TWI603136B (en) Method of manufacturing connection body and connection method of electronic component
WO2016117613A1 (en) Method for producing connected body, method for connecting electronic component, and connected body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170411

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171010