JPH1197482A - Electrode connecting method and electrode connection structure - Google Patents

Electrode connecting method and electrode connection structure

Info

Publication number
JPH1197482A
JPH1197482A JP9250459A JP25045997A JPH1197482A JP H1197482 A JPH1197482 A JP H1197482A JP 9250459 A JP9250459 A JP 9250459A JP 25045997 A JP25045997 A JP 25045997A JP H1197482 A JPH1197482 A JP H1197482A
Authority
JP
Japan
Prior art keywords
heating
connection
circuit
film
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9250459A
Other languages
Japanese (ja)
Inventor
Toshiyuki Yanagawa
俊之 柳川
Itsuo Watanabe
伊津夫 渡辺
Mitsugi Fujinawa
貢 藤縄
Yasushi Goto
泰史 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP9250459A priority Critical patent/JPH1197482A/en
Publication of JPH1197482A publication Critical patent/JPH1197482A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To reduce thermal influences, by a method wherein connection terminals of two circuit members are facing each other, and a film-like circuit connection material of which essential components are an optical curing resin, an optical start agent, a high polymer resin of a molecular weight of a specified value or more and conductive particles resides therebetween, and they are connected by heating, pressing and optical irradiation. SOLUTION: At least one of a pair of circuit members has an optical transmission, and a first connection terminal and a second connection terminal thereof are disposed counter to each other, and a film-like circuit connection material of which essential components are a thermosetting resin, an optical start agent, a high polymer resin of a molecular weight 10,000 or more and conductive particles resides therebetween, and the first connection terminal and the second connection terminal disposed counter to each other by heating, pressing and light irradiation are electrically connected to each other. Since curing of the film-like circuit connection material is performed mainly by light curing, the temperature is in the range of 80 to 140 deg.C. Accordingly, it is possible to enhance handling and unifomize a connection thickness, and to attain an excellent adhering face and favorable electric conductivity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電極の接続方法お
よび電極の接続構造にかんする。
The present invention relates to an electrode connection method and an electrode connection structure.

【0002】[0002]

【従来の技術】フィルム状回路接続材料は、金属粒子等
の導電性粒子を所定量含有した接着剤からなるもので、
このフィルム状回路接続材料を電子部品と電極や回路の
間に設け、加圧または加熱加圧を行うことによって、両
者の電極同士が電気的に接続されると共に、隣接電極間
の絶縁性を付与して、電子部品と回路とが接着固定され
るものである。フィルム状回路接続材料に用いられる接
着剤としては、スチレン系やポリエステル系等の熱可塑
性物質や、エポキシ系やシリコーン系等の熱硬化性物質
が知られている。これらの物質を含む接着剤を硬化させ
るには硬化剤が必要であり、さらにその硬化剤には、フ
ィルム状回路接続材料の保存安定性を高めるために、常
温では不活性であり、活性温度以上でのみ反応するとい
う潜在性が伴っていなければならない。このため接着剤
を硬化させるためには、樹脂成分の流動性の向上および
硬化反応の促進のための加熱加圧が必要となる。すなわ
ち、接着剤を溶融、流動させ、導電性粒子を変形して回
路との接触面積を増大し、かつ回路部材との密着性を高
めるために温度や圧力が必要となり、これらは接着剤の
種類や硬化成分による。この他にフィルム状以外の形態
を有する回路接続材料としては、光硬化性樹脂を用いた
ペースト状材料が知られているが、これらの回路接続材
料は加圧もしくは加熱加圧によって回路部材を接続し、
その後光照射によって接着剤を硬化させることを特徴と
している。
2. Description of the Related Art A film-like circuit connecting material is made of an adhesive containing a predetermined amount of conductive particles such as metal particles.
This film-shaped circuit connecting material is provided between the electronic component and the electrodes or the circuit, and by applying pressure or heat and pressure, both electrodes are electrically connected and insulation between adjacent electrodes is provided. Then, the electronic component and the circuit are bonded and fixed. As an adhesive used for the film-like circuit connection material, a styrene-based or polyester-based thermoplastic material, or an epoxy-based or silicone-based thermosetting material is known. A curing agent is required to cure the adhesive containing these substances, and the curing agent is inactive at room temperature in order to enhance the storage stability of the film-like circuit connection material, and is at or above the activation temperature. Must have the potential to react only at Therefore, in order to cure the adhesive, it is necessary to apply heat and pressure for improving the fluidity of the resin component and accelerating the curing reaction. That is, the adhesive is melted and fluidized, the conductive particles are deformed to increase the contact area with the circuit, and temperature and pressure are required to increase the adhesion to the circuit member. And hardening components. In addition, as a circuit connection material having a form other than a film shape, a paste-like material using a photocurable resin is known, but these circuit connection materials connect circuit members by pressing or heating and pressing. And
Thereafter, the adhesive is cured by light irradiation.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、樹脂硬
化の際の加熱加圧に伴う回路部材に対する熱や圧力の影
響はその大小を問わず存在し、特に熱的な影響に関して
は、回路部材自体への影響のみならず、回路部材接続時
の影響も大きい。すなわち前者の場合、例えば液晶パネ
ル等の回路部材を接続する際、偏光板等液晶パネル自体
に対する影響が懸念され、これによって従来より低温で
の接続、あるいは従来より短時間での接続が要求されて
いる。また後者の場合、加熱加圧時の温度が高い条件で
接続を行うと、対向する2つの回路部材が異なっており
それぞれの熱膨張係数(α)の差が大きい場合には、回
路の位置ずれが発生する可能性が高い。これは隣接回路
間のピッチが狭くなるにつれてさらに発生確率が高くな
る。本発明はこのような状況に鑑みなされたもので、光
照射を併用することによって従来より低温での接続が可
能で、回路部材に対する熱的影響を軽減し、かつ接続後
における接続部の信頼性に優れ、さらには従来より有す
る簡便な取扱い性の品質に影響を与えない、フィルム状
回路接続材料を用いた電極の接続方法を提供するもので
ある。
However, the influence of heat and pressure on the circuit member due to the heating and pressurizing during the curing of the resin exists regardless of the magnitude thereof, and especially the thermal effect is exerted on the circuit member itself. In addition to the effects of the above, the effects of connecting the circuit members are also large. That is, in the former case, for example, when connecting a circuit member such as a liquid crystal panel, there is a concern about the influence on the liquid crystal panel itself such as a polarizing plate, which requires a connection at a lower temperature than before or a connection in a shorter time than before. I have. In the latter case, when the connection is performed under the condition that the temperature at the time of heating and pressurizing is high, the two circuit members facing each other are different, and when the difference between the respective thermal expansion coefficients (α) is large, the circuit is misaligned. Is more likely to occur. This is more likely to occur as the pitch between adjacent circuits is reduced. The present invention has been made in view of such a situation. By using light irradiation together, it is possible to connect at a lower temperature than before, reduce the thermal effect on circuit members, and improve the reliability of the connection part after connection. It is intended to provide a method for connecting electrodes using a film-like circuit connection material, which is excellent in terms of quality, and which does not affect the quality of the conventional easy-to-handle property.

【0004】[0004]

【課題を解決するための手段】本発明は、光硬化成分を
含有するフィルム状回路接続材料を用いて、接続材料の
溶融流動に必要な加熱を行い、これと光照射を併用する
電極の接続方法に関する。
SUMMARY OF THE INVENTION The present invention uses a film-like circuit connection material containing a photo-curing component to perform heating necessary for the melt flow of the connection material, and to connect the electrodes together with light irradiation. About the method.

【0005】本発明の電極の接続方法は、少なくとも一
方が光透過性を有する2つの回路部材、すなわち第一の
接続端子を有する第一の回路部材と、第二の接続端子を
有する第二の回路部材とを、第一の接続端子と第二の接
続端子を対向して配置し、前記対向配置した第一の接続
端子と第二の接続端子の間に、光硬化性樹脂、光開始
剤、分子量が10,000以上の高分子樹脂および導電
性粒子を必須成分とするフィルム状回路接続材料を介在
させ、一定時間の加熱加圧および一定時間の光照射を併
用することによって、前記対向配置した第一の接続端子
と第二の接続端子を電気的に接続させることを特徴とす
るものである。また、一定時間の加熱加圧開始後1〜数
秒の間隔を設け、所定間隔経過後に一定時間の光照射を
開始することを特徴とし、光照射を加熱加圧と同時に終
了するか、あるいは光照射を加熱加圧工程終了後も暫時
継続して行うことを特徴とするものである。本発明にお
いて、回路部材としては半導体チップ、抵抗体チップ、
コンデンサチップ等のチップ部品、プリント基板等の基
板、液晶パネル等が用いられる。これらの回路部材には
接続端子が通常は多数(場合によっては単数でも良い)
設けられており、少なくとも一方が光透過性を有する前
記回路部材の少なくとも1組を、それらの回路部材に設
けられた接続端子の少なくとも1部を対向配置し、対向
配置した接続端子間に接着剤を介在させ、加熱加圧およ
び光照射して対向配置した接続端子同士を電気的に接続
して接続体とする。この時、光透過性を有する回路部材
の厚みは、1.2mm以下が光透過性の面で好ましい。
[0005] According to the electrode connecting method of the present invention, at least one of the two circuit members has a light transmitting property, that is, a first circuit member having a first connection terminal and a second circuit member having a second connection terminal. A circuit member, a first connection terminal and a second connection terminal are arranged to face each other, and a photocurable resin, a photoinitiator is provided between the first connection terminal and the second connection terminal arranged opposite to each other. By interposing a film-like circuit connection material containing a polymer resin having a molecular weight of 10,000 or more and conductive particles as essential components, using a combination of heating and pressing for a certain time and light irradiation for a certain time, The first connection terminal and the second connection terminal are electrically connected to each other. Further, an interval of one to several seconds is provided after the start of heating and pressurizing for a certain time, and light irradiation is started for a certain time after the elapse of the predetermined interval. Is performed for a while after the completion of the heating and pressurizing step. In the present invention, as a circuit member, a semiconductor chip, a resistor chip,
Chip components such as capacitor chips, substrates such as printed boards, liquid crystal panels and the like are used. These circuit members usually have a large number of connection terminals (in some cases, a single connection terminal may be used).
At least one set of the circuit members, at least one of which has optical transparency, is provided, and at least one part of the connection terminals provided on the circuit members is opposed to each other, and an adhesive is provided between the opposed connection terminals. , And the connection terminals facing each other are heated and pressurized and irradiated with light to electrically connect them to form a connection body. At this time, the thickness of the light-transmitting circuit member is preferably 1.2 mm or less in terms of light-transmitting properties.

【0006】また、光硬化性樹脂を含有する回路接続材
料の形態をフィルム状とすることで、従来のペースト状
回路接続材料に比べて取扱い性が優れている点や接続厚
みの均一化が図れる点等で有利である。さらに、回路部
材との密着性を高めるために、硬化反応がほとんど進行
せず樹脂が流動する程度の加熱を行う場合、接続材料の
加熱を行って接続端子−導電性粒子−接続端子間の導通
を確保した後、冷却工程を導入することによって接続材
料の溶融粘度を再上昇させることが可能であり、これに
よって加熱−冷却のみによる導電性粒子の圧接状態を維
持し樹脂の固定が図れる。これはペースト状の回路接続
材料では不可能である。
[0006] Further, by making the circuit connection material containing a photocurable resin into a film form, the handleability is excellent and the connection thickness can be made uniform as compared with the conventional paste circuit connection material. It is advantageous in the point and the like. Furthermore, in order to enhance the adhesiveness with the circuit member, when heating is performed to such an extent that the curing reaction hardly progresses and the resin flows, the connection material is heated to conduct the connection between the connection terminal, the conductive particles, and the connection terminal. After ensuring the above, it is possible to increase the melt viscosity of the connection material again by introducing a cooling step, whereby the pressure-contact state of the conductive particles by only heating and cooling can be maintained and the resin can be fixed. This is not possible with paste-like circuit connection materials.

【0007】請求項1に示した方法では、第一の接続端
子と第二の接続端子とを対向配置し、その間に光硬化性
樹脂、光開始剤、分子量が10,000以上の高分子樹
脂および導電性粒子を必須成分とするフィルム状回路接
続材料を介在させ、加熱加圧および光照射によって前記
対向配置した第一の接続端子と第二の接続端子を電気的
に接続させる。フィルム状回路接続材料の硬化は主とし
て光硬化によって行なわれるために、加熱加圧工程の役
割としては、接着剤を溶融、流動させ、接続端子と導電
性粒子が接触する部分周辺の樹脂成分を十分に排除し、
接続端子間に導電性粒子を充分に圧接させることであ
る、と考えることができる。このため接着剤のTg以
上、もしくは導電性粒子の十分な変形に必要な接着剤の
流動が得られる温度まで加熱すればよく、その温度はフ
ィルム形成材料である高分子樹脂の種類にもよるが、概
ね80〜140℃の範囲内である。これは従来の熱硬化
性樹脂を硬化成分として用いているフィルム状回路接続
材料の接続に必要な加熱温度である150〜190℃よ
りも低い。したがって上記方法によって回路部材の接続
温度の低温化を図ることができる。
According to the first aspect of the present invention, the first connection terminal and the second connection terminal are opposed to each other, and a photocurable resin, a photoinitiator, and a polymer resin having a molecular weight of 10,000 or more are interposed therebetween. And a film-like circuit connection material containing conductive particles as an essential component, and the first connection terminal and the second connection terminal arranged opposite to each other are electrically connected by heating, pressurizing and light irradiation. Since the curing of the film-like circuit connection material is mainly performed by photo-curing, the role of the heating and pressurizing step is to melt and flow the adhesive and sufficiently remove the resin component around the portion where the connection terminals and the conductive particles come into contact. To eliminate
This can be considered to sufficiently press the conductive particles between the connection terminals. For this reason, heating may be performed to a temperature higher than the Tg of the adhesive or to a temperature at which the flow of the adhesive necessary for sufficient deformation of the conductive particles can be obtained. The temperature depends on the type of the polymer resin as the film forming material. , Approximately in the range of 80 to 140 ° C. This is lower than the heating temperature of 150 to 190 ° C. required for connection of a film-like circuit connection material using a conventional thermosetting resin as a curing component. Therefore, the connection temperature of the circuit member can be reduced by the above method.

【0008】また光硬化性樹脂、分子量が10,000
以上の高分子樹脂および導電性粒子を必須成分とするこ
とによって、光硬化が可能なフィルム状の回路接続材料
を提供することが可能である。これは、分子量が10,
000以上の高分子樹脂がほとんどが常温で固形であ
り、フィルム形成能力が高いことに起因している。この
高分子樹脂と光硬化性樹脂を混合することによって、従
来の、光硬化性樹脂を用いた回路接続材料の短所であっ
た、取扱い性の向上や接続厚みの均一化等を図ることが
可能である。
A photocurable resin having a molecular weight of 10,000
By using the above-mentioned polymer resin and conductive particles as essential components, a photocurable film-like circuit connection material can be provided. It has a molecular weight of 10,
Most of the polymer resins having a molecular weight of 000 or more are solid at room temperature and have high film forming ability. By mixing this polymer resin and photo-curable resin, it is possible to improve the handleability and uniform the connection thickness, which were disadvantages of conventional circuit connection materials using photo-curable resin. It is.

【0009】さらには、加熱加圧と光照射を同時に行う
場合は、接着剤の流動によって導電性粒子の接触を十分
に行うために、溶融流動性と光照射能力との調整が必要
である。ここでいう光照射能力は、用いる光照射装置の
光源に依存しており、光量の少ない光源を使用している
光照射装置の場合には、接着剤の硬化速度が遅くなり、
その間に樹脂流動が十分に行なわれるため、加熱加圧と
光照射を全く同時に行うことができる。また光量の多い
光源を使用している光照射装置の場合には、樹脂流動を
優先させるために加熱加圧工程と光照射工程の間に1〜
数秒の間隔を設け、加熱加圧開始後に光照射を行うこと
もできる。この場合光照射を遅延して行うため、樹脂が
流動し導電性粒子による接続端子の導通が確保された
後、光量を増加して短時間で急速に硬化させてもよい。
Further, when heating and pressurizing and light irradiation are performed simultaneously, it is necessary to adjust the melt fluidity and the light irradiation ability in order to sufficiently contact the conductive particles by the flow of the adhesive. The light irradiation ability here depends on the light source of the light irradiation device used, and in the case of a light irradiation device using a light source with a small amount of light, the curing speed of the adhesive becomes slow,
During that time, the resin flows sufficiently, so that heating and pressurization and light irradiation can be performed at the same time. In the case of a light irradiation device using a light source having a large amount of light, in order to give priority to the flow of the resin, one to one light irradiation is performed between the heating and pressing step and the light irradiation step.
Light irradiation can be performed after an interval of several seconds and heating and pressurization is started. In this case, since the light irradiation is performed with a delay, after the resin flows and the conduction of the connection terminals by the conductive particles is ensured, the amount of light may be increased to rapidly cure the resin in a short time.

【0010】請求項2、請求項3、請求項4はいずれも
加熱加圧工程および光照射工程を併用する場合における
各工程の終了方法についてであるが、加熱加圧によって
接着剤樹脂が十分に溶融流動し、導電性粒子が回路部材
間で十分に圧接された状態で、なおかつ光照射によって
接着剤樹脂が十分に硬化しており、その後の接着力、初
期抵抗、接続信頼性等の諸特性に何ら影響を与えない場
合には、加熱加圧工程および光照射工程を同時に終了す
ることができる(請求項4)。また回路部材のさらなる
低温接続化が必要な場合、加熱加圧時間自体の接続温度
の低温化と共に、加熱加圧時間の短縮化が要求され、場
合によっては低温化・短時間化の両方が同時に要求され
ることもある。しかしこのように接続時間を短縮を図る
場合、加熱加圧工程と光照射工程を同時に終了させる
と、光照射能力が同一の場合、接着剤樹脂を反応させる
のに要する光エネルギーが少なくなることから接着剤の
反応率が低下し、上述したような諸特性の低下が懸念さ
れる。これを解決するための手段が請求項2に記載した
方法であり、回路部材にかかる熱的影響を軽減するため
に、加熱加圧時間は接着剤樹脂が溶融流動し、導電性粒
子が回路部材に対して十分に圧接するような条件で行
う。光照射はその間併用して用い、上記状態が保持され
るような条件で行って接着剤樹脂の硬化を開始する。光
照射による接着剤樹脂の硬化が不十分であっても、上記
圧接状態が保持されているならば加熱加圧工程は終了さ
せてよく、光照射のみを引き続き行い、接着剤樹脂を完
全に硬化させる。また請求項3の方法では、接続体は加
圧された状態で加熱のみを終了することから、接続体に
これ以上の加熱が行なわれない状態を保持して、加熱加
圧工程が開始された位置に固定されることになる。した
がって接続体の光照射の位置ずれの可能性を危惧するこ
となく、引き続き接着剤樹脂が完全に硬化するまで光照
射を継続して行うことができる。
Claims 2, 3, and 4 all relate to a method of terminating each step in the case where the heating and pressing step and the light irradiating step are used together. The adhesive resin is sufficiently cured by light irradiation while the conductive particles are melted and flown and the conductive particles are sufficiently pressed between the circuit members, and various properties such as adhesive strength, initial resistance, connection reliability, etc. If no influence is exerted on the heating and pressurizing step, the heating and pressurizing step and the light irradiation step can be completed at the same time (claim 4). If it is necessary to lower the connection temperature of the circuit components, it is necessary to shorten the heating and pressurizing time as well as the connecting temperature of the heating and pressurizing time itself. May be required. However, when shortening the connection time in this way, if the heating and pressurizing step and the light irradiation step are completed at the same time, the light energy required to react the adhesive resin is reduced if the light irradiation ability is the same, The reaction rate of the adhesive is reduced, and there is a concern that the above-described various properties may be reduced. The means for solving this is the method according to claim 2, wherein in order to reduce the thermal effect on the circuit member, the adhesive resin melts and flows during the heating and pressurizing time, and the conductive particles are removed from the circuit member. This is performed under such conditions as to make sufficient pressure contact. The light irradiation is used in combination during that time, and is performed under conditions such that the above state is maintained, and curing of the adhesive resin is started. Even if the curing of the adhesive resin by light irradiation is insufficient, the heating and pressurizing step may be terminated as long as the above pressed state is maintained, and only the light irradiation is continued, and the adhesive resin is completely cured. Let it. In the method of claim 3, since only the heating is completed in the state where the connection body is pressurized, the heating and pressurizing step is started while maintaining the state where no further heating is performed on the connection body. Will be fixed in position. Therefore, the light irradiation can be continuously performed until the adhesive resin is completely cured, without fear of the possibility of displacement of the light irradiation of the connection body.

【0011】請求項5は、一定時間の加熱加圧および一
定時間の光照射を行う際の順序に関してであるが、前述
した様に溶融流動性と光照射能力との調整を行い、加熱
加圧と光照射を同時に開始し同時に終了するのが、その
所要時間を考えると最も理想的であるが、より優れた接
続信頼性を確実に得るには、加熱加圧工程と光照射工程
との間に適当な間隔を設け、接着剤樹脂が十分に流動す
るための時間を確保する方法が最適である。設ける間隔
は加熱加圧を開始し、接着剤樹脂の流動がほぼ完全に終
了するまでの時間とするのが理想的であり、1〜数秒と
するのがより好ましい。ここで言う「数秒」とは接着剤
樹脂の溶融粘度により変動するが、2〜5秒であること
が好ましい。
Claim 5 relates to the sequence of performing the heating and pressurizing for a certain period of time and the light irradiation for a certain period of time. It is most ideal to start and end the light irradiation at the same time, considering the required time.However, in order to ensure better connection reliability, it is necessary to set the time between the heating and pressing step and the light irradiation step. An optimal method is to provide an appropriate interval to ensure sufficient time for the adhesive resin to flow sufficiently. Ideally, the interval is set to the time from the start of heating and pressurization until the flow of the adhesive resin is almost completely completed, and more preferably 1 to several seconds. The term “several seconds” varies depending on the melt viscosity of the adhesive resin, but is preferably 2 to 5 seconds.

【0012】[0012]

【発明の実施の形態】本発明に用いるフィルム状回路接
続材料としては光硬化性樹脂に、フィルム形成性を付与
するための固形高分子樹脂を混合した接着剤成分、そし
て導電性粒子から成っており、接続材料をフィルム状と
することで回路部材接続時の取扱い性の向上を図ること
ができる。
BEST MODE FOR CARRYING OUT THE INVENTION The film-like circuit connecting material used in the present invention comprises an adhesive component obtained by mixing a solid polymer resin for imparting a film-forming property to a photocurable resin, and conductive particles. In addition, by making the connection material into a film shape, it is possible to improve the handleability when connecting the circuit member.

【0013】本発明に用いる光硬化性樹脂としては、エ
ポキシアクリレートオリゴマー、ウレタンアクリレート
オリゴマー、ポリエーテルアクリレートオリゴマー、ポ
リエステルアクリレートオリゴマー等の光重合性オリゴ
マー、トリメチロールプロパントリアクリレート、ポリ
エチレングリコールジアクリレート、ポリアルキレング
リコールジアクリレート、ペンタエリスリトールアクリ
レート等の光重合性多官能アクリレートモノマー等とい
ったアクリル酸エステル、およびこれらと類似したメタ
クリル酸エステル等に代表される光重合型の樹脂があ
り、必要に応じてこれらの樹脂を単独あるいは混合して
用いてもよいが、接着剤硬化物の硬化収縮を抑制し、柔
軟性を与えるためにはウレタンアクリレートオリゴマー
を配合するのが好ましい。また上述した光重合性オリゴ
マーは高粘度であるために、粘度調整のために低粘度の
光重合性多官能アクリレートモノマー等のモノマーを配
合するのが好ましい。
The photocurable resin for use in the present invention includes photopolymerizable oligomers such as epoxy acrylate oligomer, urethane acrylate oligomer, polyether acrylate oligomer, polyester acrylate oligomer, trimethylolpropane triacrylate, polyethylene glycol diacrylate, and polyalkylene. There are photopolymerizable resins represented by acrylates such as photopolymerizable polyfunctional acrylate monomers such as glycol diacrylate and pentaerythritol acrylate, and methacrylates similar to these, and if necessary, these resins. May be used alone or as a mixture. However, in order to suppress the curing shrinkage of the cured adhesive and to impart flexibility, it is preferable to blend a urethane acrylate oligomer. There. Further, since the above-mentioned photopolymerizable oligomer has a high viscosity, it is preferable to mix a low-viscosity monomer such as a photopolymerizable polyfunctional acrylate monomer for viscosity adjustment.

【0014】これらの光硬化性樹脂は光開始剤を用いて
重合、硬化させる。本発明に用いる光開始剤としてはベ
ンゾインエチルエーテル、イソプロピルベンゾインエー
テル等のベンゾインエーテル、ベンジル、ヒドロキシシ
クロヘキシルフェニルケトン等のベンジルケタール、ベ
ンゾフェノン、アセトフェノン等のケトン類およびその
誘導体、チオキサントン類、ビイミダゾール類等があ
り、これらの光開始剤に必要に応じてアミン類、イオウ
化合物、リン化合物等の増感剤を任意の比で添加しても
よい。この際、用いる光源の波長や所望の硬化特性等に
応じて最適な光開始剤を選択する必要がある。また、こ
れらの光硬化性樹脂とポリエチレン、酢酸エチル、ポリ
プロピレン等の熱可塑性樹脂や、高耐熱性を有するポリ
エーテルスルホン、ポリエーテルイミド、ポリイミド等
の樹脂やエポキシ樹脂等の熱硬化性樹脂、あるいはフェ
ノキシ樹脂やエラストマー等とを混合して用いることが
できる。
These photocurable resins are polymerized and cured using a photoinitiator. Examples of the photoinitiator used in the present invention include benzoin ethers such as benzoin ethyl ether and isopropyl benzoin ether, benzyl ketals such as benzyl and hydroxycyclohexyl phenyl ketone, ketones such as benzophenone and acetophenone and derivatives thereof, thioxanthones and biimidazoles. Sensitizers such as amines, sulfur compounds, and phosphorus compounds may be added to these photoinitiators as needed at any ratio. At this time, it is necessary to select an optimal photoinitiator according to the wavelength of the light source used, the desired curing characteristics, and the like. Further, these photocurable resins and polyethylene, ethyl acetate, thermoplastic resins such as polypropylene, and polyethersulfone having high heat resistance, polyetherimide, thermosetting resins such as polyimide resins and epoxy resins, or A phenoxy resin, an elastomer or the like can be used as a mixture.

【0015】また、被着体が無機物の場合にはシランカ
ップリング剤を接着剤樹脂に混合して被着体との接着力
を高めることが可能である。シランカップリング剤とし
てはビニルトリクロルシラン、ビニルトリエトキシシラ
ン、ビニル−トリス−(βメトキシエトキシ)シラン、
γ−メタクリロキシプロピルトリメトキシシラン、γ−
グリシドキシプロピルトリメトキシシラン、γ−アミノ
プロピルトリエトキシシラン、β−(3,4エポキシシ
クロヘキシル)エチルトリメトキシシラン、イソイアン
酸プロピルトリエトキシシラン等があるが、光硬化性樹
脂との反応性を高めるにはγ−メタクリロキシプロピル
トリメトキシシランを用いるのがより好ましい。
When the adherend is an inorganic substance, a silane coupling agent can be mixed with the adhesive resin to enhance the adhesive strength with the adherend. Examples of the silane coupling agent include vinyltrichlorosilane, vinyltriethoxysilane, vinyl-tris- (β-methoxyethoxy) silane,
γ-methacryloxypropyltrimethoxysilane, γ-
Glycidoxypropyltrimethoxysilane, γ-aminopropyltriethoxysilane, β- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, isopropyltriethoxysilane isocyanate, etc. It is more preferable to use γ-methacryloxypropyltrimethoxysilane to increase the value.

【0016】硬化に用いる光は、一般的に広く使用され
ている紫外線を用いることができ、水銀ランプ、メタル
ハライドランプ、無電極ランプ等で発生させることがで
きる。また、硬化反応としてラジカル反応を用いた場
合、酸素が反応禁止剤として作用するので、光照射の雰
囲気中の酸素量は光硬化性樹脂の硬化に影響を与える。
これは光硬化性樹脂、光開始剤、増感剤等の種類や濃度
にも大きく左右されるので、個々の配合系で詳細に検討
する必要がある。
As the light used for curing, generally used ultraviolet rays can be used, and can be generated by a mercury lamp, a metal halide lamp, an electrodeless lamp or the like. In addition, when a radical reaction is used as the curing reaction, oxygen acts as a reaction inhibitor, so that the amount of oxygen in the atmosphere of light irradiation affects the curing of the photocurable resin.
Since this greatly depends on the type and concentration of the photocurable resin, photoinitiator, sensitizer, and the like, it is necessary to study in detail for each compounding system.

【0017】導電性粒子としては、Au、Ag、Ni、
Cu、はんだ等の金属粒子やカーボン等があり、これら
および非導電性のガラス、セラミック、プラスチック等
に前記した導通層を被覆等によって形成したものでもよ
い。プラスチックを核とした場合や熱溶融金属粒子の場
合、加熱加圧によって変形性を有するので接続時に電極
との接触面積が増加し信頼性が向上するので好ましい。
導電性粒子は、接着剤成分100容量部に対して、0.
1〜30容量部の広範囲で用途によって使い分ける。過
剰な導電性粒子による隣接回路の短絡等を防止するため
には、0.2〜15容量部とするのがより好ましい。こ
の時の導電性粒子の平均粒径は、その添加量にもよるが
1〜15μmとするのがより好ましい。また導電性粒子
の圧縮弾性率は、加熱加圧および光照射を中断した時
に、接着剤の弾性による粒子の復元を抑制するために、
1000〜10000MPaの範囲内とすることが好ま
しい。
As the conductive particles, Au, Ag, Ni,
There are metal particles such as Cu, solder and the like, carbon and the like, and those obtained by forming the above-described conductive layer on these materials and non-conductive glass, ceramic, plastic or the like by coating or the like may be used. In the case of using plastic as a nucleus or hot-melt metal particles, they are deformable by heating and pressing, so that the contact area with the electrode at the time of connection increases and reliability is improved, which is preferable.
The conductive particles are used in an amount of 0.1 to 100 parts by volume of the adhesive component.
It is used properly depending on the application in a wide range of 1 to 30 parts by volume. In order to prevent a short circuit or the like in an adjacent circuit due to excessive conductive particles, the volume is more preferably 0.2 to 15 parts by volume. At this time, the average particle size of the conductive particles depends on the amount added, but is preferably 1 to 15 μm. In addition, the compression elastic modulus of the conductive particles, when heating and pressurizing and light irradiation is interrupted, to suppress the restoration of particles due to the elasticity of the adhesive,
It is preferable to be in the range of 1,000 to 10,000 MPa.

【0018】[0018]

【実施例】以下に、本発明を実施例に基づいて詳細に説
明するが、本発明はこれに限定されるものではない。 実施例1 フェノキシ樹脂(ユニオンカーバイド株式会社製、商品
名PKHA)40gを、重量比でトルエン(沸点11
0.6℃、SP値8.90)/酢酸エチル(沸点77.
1℃、SP値9.10)=50/50の混合溶剤60g
に溶解して、固形分40%の溶液とした。光硬化性樹脂
は、エポキシアクリレートオリゴマー(新中村化学工業
株式会社製、商品名NKオリゴEA−1020)および
アクリレートモノマー(新中村化学工業株式会社製、商
品名NKエステルA−TMM−3L)を、3/1の重量
比で用いた。光開始剤はベンゾフェノンを用い、これに
増感剤として4,4’−ビスジエチルアミノベンゾフェ
ノン(保土ケ谷化学工業株式会社製、商品名EAB)
を、光開始剤/増感剤=5/1となるように混合して用
いた。ポリスチレンを核とする粒子の表面に、厚み0.
2μmのニッケル層を設け、このニッケル層の外側に、
厚み0.02μmの金層を設け、平均粒径5μm、比重
2.5の導電性粒子を作製した。固形重量比でフェノキ
シ樹脂50、光硬化性樹脂50、光開始剤5、増感剤1
となるように配合し、さらに導電性粒子を3体積%配合
分散させ、厚み80μmのフッ素樹脂フィルムに塗工装
置を用いて塗布し、70℃、10分の熱風乾燥によって
接着剤層の厚みが20μmのフィルム状回路接続材料を
得た。上記製法によって得たフィルム状回路接続材料を
用いて、ライン幅50μm、ピッチ100μm、厚み1
8μmの銅回路を500本有するフレキシブル回路板
(FPC)と、0.2μmの酸化インジウム(ITO)
の薄層を形成したガラス(厚み1.1mm、表面抵抗2
0Ω/□)とを、紫外線照射併用型熱圧着装置(加熱方
式:コンスタントヒート型、東レエンジニアリング株式
会社製)を用いて図1に示すように130℃、2MPa
で20秒間の加熱加圧およびITOガラス側からの紫外
線照射を同時に行って幅2mmにわたり接続し、時間経
過後圧力開放して、接続体を作製した。接着剤に照射さ
れる紫外線量(以下紫外線照射量)は2.0J/cm2
とした。この時、あらかじめITOガラス上に、フィル
ム状回路接続材料の接着面を貼り付けた後、70℃、
0.5MPaで5秒間加熱加圧して仮接続し、その後、
フッ素樹脂フィルムを剥離してもう一方の被着体である
FPCと接続した。
The present invention will be described below in detail with reference to examples, but the present invention is not limited to these examples. Example 1 40 g of a phenoxy resin (trade name: PKHA, manufactured by Union Carbide Co., Ltd.) was mixed with toluene (boiling point: 11
0.6 ° C, SP value 8.90) / ethyl acetate (boiling point 77.
1 g, SP value 9.10) = 60/50/50 mixed solvent 60 g
Into a solution having a solid content of 40%. The photocurable resin is an epoxy acrylate oligomer (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name NK Oligo EA-1020) and an acrylate monomer (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name NK Ester A-TMM-3L), It was used at a weight ratio of 3/1. The photoinitiator used was benzophenone, and 4,4′-bisdiethylaminobenzophenone was used as a sensitizer (trade name: EAB, manufactured by Hodogaya Chemical Industry Co., Ltd.).
Was used so that photoinitiator / sensitizer = 5/1. On the surface of the particles having polystyrene as a core, a thickness of 0.
A nickel layer of 2 μm is provided, and outside the nickel layer,
A gold layer having a thickness of 0.02 μm was provided, and conductive particles having an average particle size of 5 μm and a specific gravity of 2.5 were produced. Phenoxy resin 50, photocurable resin 50, photoinitiator 5, sensitizer 1 in solid weight ratio
Then, 3% by volume of the conductive particles are mixed and dispersed, applied to a 80 μm-thick fluororesin film using a coating device, and dried at 70 ° C. for 10 minutes with hot air to reduce the thickness of the adhesive layer. A film-like circuit connection material of 20 μm was obtained. Using the film-like circuit connection material obtained by the above method, a line width of 50 μm, a pitch of 100 μm, and a thickness of 1
Flexible circuit board (FPC) with 500 8 μm copper circuits and 0.2 μm indium oxide (ITO)
(Thickness 1.1 mm, surface resistance 2)
0 Ω / □) at 130 ° C., 2 MPa as shown in FIG. 1 using an ultraviolet irradiation combined thermocompression bonding apparatus (heating method: constant heat type, manufactured by Toray Engineering Co., Ltd.).
For 20 seconds and UV irradiation from the ITO glass side were simultaneously performed to connect over a width of 2 mm, and after a lapse of time, the pressure was released to produce a connected body. The amount of ultraviolet light (hereinafter referred to as ultraviolet irradiation amount) irradiated to the adhesive is 2.0 J / cm 2.
And At this time, after bonding the adhesive surface of the film-like circuit connection material on the ITO glass in advance,
Temporarily connect by heating and pressing at 0.5 MPa for 5 seconds,
The fluororesin film was peeled off and connected to another FPC as an adherend.

【0019】実施例2 実施例1のフィルム状回路接続材料を用いて、ライン幅
50μm、ピッチ100μm、厚み18μmの銅回路を
500本有するフレキシブル回路板(FPC)と、0.
2μmの酸化インジウム(ITO)の薄層を形成したガ
ラス(厚み1.1mm、表面抵抗20Ω/□)とを、紫
外線照射併用型熱圧着装置(加熱方式:コンスタントヒ
ート型、東レエンジニアリング株式会社製)を用いて図
1に示すように130℃、2MPaで5秒間の加熱加圧
およびITOガラス側からの紫外線照射を同時に行って
幅2mmにわたり接続し、時間経過後圧力開放して、接
続体を作製した。この時、あらかじめITOガラス上
に、フィルム状回路接続材料の接着面を貼り付けた後、
70℃、0.5MPaで5秒間加熱加圧して仮接続し、
その後、フッ素樹脂フィルムを剥離してもう一方の被着
体であるFPCと接続した。また、図1における5秒間
の接続の際、加熱加圧のみを開始して2秒経過した後3
秒間の紫外線照射を開始した。そして加熱加圧開始5秒
後に加熱加圧工程を終了させ、接続体に引き続き15秒
の紫外線照射を行った。この時の総紫外線照射量、すな
わち加熱加圧中に行なわれた照射量と継続して行なわれ
た照射量の和は3.6J/cm2とした。
Example 2 A flexible circuit board (FPC) having 500 copper circuits having a line width of 50 μm, a pitch of 100 μm, and a thickness of 18 μm was prepared by using the film-like circuit connection material of Example 1;
A glass (thickness: 1.1 mm, surface resistance: 20 Ω / □) on which a thin layer of indium oxide (ITO) having a thickness of 2 μm is formed is combined with an ultraviolet irradiation combined thermocompression bonding apparatus (heating method: constant heat type, manufactured by Toray Engineering Co., Ltd.) As shown in FIG. 1, heating and pressurizing at 130 ° C. and 2 MPa for 5 seconds and ultraviolet irradiation from the ITO glass side are simultaneously performed to connect over a width of 2 mm, and after a lapse of time, the pressure is released to produce a connected body. did. At this time, after bonding the adhesive surface of the film-like circuit connection material on the ITO glass in advance,
Temporarily connected by heating and pressing at 70 ° C and 0.5 MPa for 5 seconds,
Thereafter, the fluororesin film was peeled off and connected to another FPC as an adherend. In addition, at the time of connection for 5 seconds in FIG.
UV irradiation was started for a second. After 5 seconds from the start of the heating and pressurizing, the heating and pressurizing step was completed, and the connected body was irradiated with ultraviolet rays for 15 seconds. At this time, the total amount of ultraviolet irradiation, that is, the sum of the amount of irradiation performed during heating and pressurization and the amount of irradiation continuously performed was 3.6 J / cm 2 .

【0020】実施例3 実施例1のフィルム状回路接続材料を用いて、ライン幅
50μm、ピッチ100μm、厚み18μmの銅回路を
500本有するフレキシブル回路板(FPC)と、0.
2μmの酸化インジウム(ITO)の薄層を形成したガ
ラス(厚み1.1mm、表面抵抗20Ω/□)とを、紫
外線照射併用型熱圧着装置(加熱方式:コンスタントヒ
ート型、東レエンジニアリング株式会社製)を用いて図
1に示すように130℃、2MPaで5秒間の加熱加圧
およびITOガラス側からの紫外線照射を同時に行って
幅2mmにわたり接続し、時間経過後圧力開放して、接
続体を作製した。この時、あらかじめITOガラス上
に、フィルム状回路接続材料の接着面を貼り付けた後、
70℃、0.5MPaで5秒間加熱加圧して仮接続し、
その後、フッ素樹脂フィルムを剥離してもう一方の被着
体であるFPCと接続した。また、図1における5秒間
の接続の際、加熱加圧のみを開始して2秒経過した後3
秒間の紫外線照射を開始した。そして加熱加圧開始5秒
後に加熱工程のみをを終了させ、接続体に圧力が加わっ
た状態で引き続き15秒の紫外線照射を行った。この時
の総紫外線照射量、すなわち加熱加圧中に行なわれた照
射量と継続して行なわれた照射量の和は3.6J/cm
2とした。
Example 3 A flexible circuit board (FPC) having 500 copper circuits having a line width of 50 μm, a pitch of 100 μm, and a thickness of 18 μm was prepared using the film-like circuit connecting material of Example 1, and
A glass (thickness: 1.1 mm, surface resistance: 20 Ω / □) on which a thin layer of indium oxide (ITO) having a thickness of 2 μm is formed is combined with an ultraviolet irradiation combined thermocompression bonding apparatus (heating method: constant heat type, manufactured by Toray Engineering Co., Ltd.) As shown in FIG. 1, heating and pressurizing at 130 ° C. and 2 MPa for 5 seconds and ultraviolet irradiation from the ITO glass side are simultaneously performed to connect over a width of 2 mm, and after a lapse of time, the pressure is released to produce a connected body. did. At this time, after bonding the adhesive surface of the film-like circuit connection material on the ITO glass in advance,
Temporarily connected by heating and pressing at 70 ° C and 0.5 MPa for 5 seconds,
Thereafter, the fluororesin film was peeled off and connected to another FPC as an adherend. In addition, at the time of connection for 5 seconds in FIG.
UV irradiation was started for a second. After 5 seconds from the start of heating and pressurization, only the heating step was completed, and the connection was continuously irradiated with ultraviolet rays for 15 seconds with pressure applied. At this time, the total amount of ultraviolet irradiation, that is, the sum of the amount of irradiation performed during heating and pressurization and the amount of irradiation continuously performed is 3.6 J / cm.
And 2 .

【0021】実施例4 実施例1のフィルム状回路接続材料を用いて、ライン幅
50μm、ピッチ100μm、厚み18μmの銅回路を
500本有するフレキシブル回路板(FPC)と、0.
2μmの酸化インジウム(ITO)の薄層を形成したガ
ラス(厚み1.1mm、表面抵抗20Ω/□)とを、紫
外線照射併用型熱圧着装置(加熱方式:コンスタントヒ
ート型、東レエンジニアリング株式会社製)を用いて図
1に示すように130℃、2MPaで10秒間の加熱加
圧およびITOガラス側からの紫外線照射を同時に行っ
て幅2mmにわたり接続し、時間経過後圧力開放して、
接続体を作製した。紫外線照射量は1.6J/cm2
した。この時、あらかじめITOガラス上に、フィルム
状回路接続材料の接着面を貼り付けた後、70℃、0.
5MPaで5秒間加熱加圧して仮接続し、その後、フッ
素樹脂フィルムを剥離してもう一方の被着体であるFP
Cと接続した。また、図1における10秒間の接続の
際、加熱加圧のみを開始して2秒経過した後8秒間の紫
外線照射を開始し、加熱加圧10秒後に2工程が同時に
終了するようにした。
EXAMPLE 4 A flexible circuit board (FPC) having 500 copper circuits having a line width of 50 μm, a pitch of 100 μm, and a thickness of 18 μm using the film-like circuit connecting material of Example 1 was prepared.
A glass (thickness: 1.1 mm, surface resistance: 20 Ω / □) on which a thin layer of indium oxide (ITO) having a thickness of 2 μm has been formed is combined with an ultraviolet irradiation-type thermocompression bonding apparatus (heating method: constant heat type, manufactured by Toray Engineering Co., Ltd.) As shown in FIG. 1, heating and pressing at 130 ° C. and 2 MPa for 10 seconds and ultraviolet irradiation from the ITO glass side were simultaneously performed to connect over a width of 2 mm, and after a lapse of time, the pressure was released.
A connection body was produced. The amount of ultraviolet irradiation was 1.6 J / cm 2 . At this time, after the adhesive surface of the film-like circuit connection material is pasted on the ITO glass in advance, the temperature is set to 70 ° C. and 0.1 mm.
Temporarily connect by heating and pressurizing at 5 MPa for 5 seconds, and then peel off the fluororesin film and FP which is the other adherend
Connected to C. In addition, at the time of connection for 10 seconds in FIG. 1, ultraviolet irradiation was started for 8 seconds after 2 seconds had elapsed after only heating and pressurization was started, and two steps were simultaneously completed 10 seconds after heating and pressurization.

【0022】実施例5 実施例1〜4で使用したフィルム状回路接続材料の導電
性粒子を、平均粒径5μmのニッケル粒子(大同特殊綱
株式会社製、商品名DSP3101、比重8.5)に代
えた他は、実施例2と同様にして接続体を作製した。
Example 5 The conductive particles of the film-like circuit connecting material used in Examples 1 to 4 were converted to nickel particles having an average particle size of 5 μm (trade name DSP3101, specific gravity 8.5, manufactured by Daido Special Co., Ltd.). Except having changed, the connection body was produced like Example 2. FIG.

【0023】実施例6 実施例1〜4で使用したフィルム状回路接続材料の光硬
化性樹脂を、ウレタンアクリレートオリゴマー(新中村
化学工業株式会社製、商品名NKオリゴUA−512)
およびアクリレートモノマー(A−TMM−3L)に代
えた他は、実施例2と同様にして接続体を作製した。
Example 6 The photocurable resin of the film-like circuit connecting material used in Examples 1 to 4 was a urethane acrylate oligomer (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: NK Oligo UA-512).
A connector was produced in the same manner as in Example 2, except that the acrylate monomer (A-TMM-3L) was used instead.

【0024】比較例1 実施例1〜4で使用したフィルム状回路接続材料を用い
て、ライン幅50μm、ピッチ100μm、厚み18μ
mの銅回路を500本有するフレキシブル回路板(FP
C)と、0.2μmの酸化インジウム(ITO)の薄層
を形成したガラス(厚み1.1mm、表面抵抗20Ω/
□)とを、コンスタントヒート型熱圧着装置(当社製)
を用いて130℃、2MPaで20秒間加熱加圧して幅
2mmにわたり接続し、時間経過後圧力開放して、これ
を接続終了とした。この時、あらかじめITOガラス上
に、フィルム状回路接続材料の接着面を貼り付けた後、
70℃、0.5MPaで5秒間加熱加圧して仮接続し、
その後、フッ素樹脂フィルムを剥離してもう一方の被着
体であるFPCと接続した。上記方法によって得た接続
体に、紫外線照射装置(コンベア移動式、ウシオ電機株
式会社製)を用いて、図2に示すようにITOガラス側
から紫外線を照射して接続体を作製した。この時の紫外
線照射量は2.0J/cm2とした。
Comparative Example 1 Using the film-like circuit connecting materials used in Examples 1 to 4, the line width was 50 μm, the pitch was 100 μm, and the thickness was 18 μm.
circuit board (FP) having 500 copper circuits
C) and glass having a thin layer of indium oxide (ITO) of 0.2 μm (thickness: 1.1 mm, surface resistance: 20Ω /
□) and a constant heat type thermocompression bonding machine (made by our company)
The connection was made by heating and pressing at 130 ° C. and 2 MPa for 20 seconds, and the connection was made over a width of 2 mm. After a lapse of time, the pressure was released, and the connection was completed. At this time, after bonding the adhesive surface of the film-like circuit connection material on the ITO glass in advance,
Temporarily connected by heating and pressing at 70 ° C and 0.5 MPa for 5 seconds,
Thereafter, the fluororesin film was peeled off and connected to another FPC as an adherend. The connected body obtained by the above method was irradiated with ultraviolet rays from the ITO glass side as shown in FIG. At this time, the amount of ultraviolet irradiation was 2.0 J / cm 2 .

【0025】比較例2 実施例1〜4で使用したフィルム状回路接続材料を用い
て、ライン幅50μm、ピッチ100μm、厚み18μ
mの銅回路を500本有するフレキシブル回路板(FP
C)と、0.2μmの酸化インジウム(ITO)の薄層
を形成したガラス(厚み1.1mm、表面抵抗20Ω/
□)とを、紫外線照射併用型熱圧着装置(加熱方式:コ
ンスタントヒート型、東レエンジニアリング株式会社
製)を用いて図1に示すように130℃、2MPaで1
0秒間の加熱加圧およびITOガラス側からの紫外線照
射を同時に行って幅2mmにわたり接続し、時間経過後
圧力開放して、接続体を作製した。紫外線照射量は5.
0J/cm2とした。この時、あらかじめITOガラス
上に、フィルム状回路接続材料の接着面を貼り付けた
後、70℃、0.5MPaで5秒間加熱加圧して仮接続
し、その後、フッ素樹脂フィルムを剥離してもう一方の
被着体であるFPCと接続した。
Comparative Example 2 Using the film-like circuit connecting materials used in Examples 1-4, a line width of 50 μm, a pitch of 100 μm, and a thickness of 18 μm
circuit board (FP) having 500 copper circuits
C) and glass having a thin layer of indium oxide (ITO) of 0.2 μm (thickness: 1.1 mm, surface resistance: 20Ω /
□) using an ultraviolet irradiation combined thermocompression bonding apparatus (heating method: constant heat type, manufactured by Toray Engineering Co., Ltd.) at 130 ° C. and 2 MPa as shown in FIG.
The connection was made over a width of 2 mm by simultaneously performing heating and pressurization for 0 second and ultraviolet irradiation from the ITO glass side, and after a lapse of time, the pressure was released to produce a connected body. UV irradiation dose is 5.
It was set to 0 J / cm 2 . At this time, after the adhesive surface of the film-like circuit connection material is pasted on the ITO glass in advance, it is temporarily connected by heating and pressing at 70 ° C. and 0.5 MPa for 5 seconds, and then the fluororesin film is peeled off. One of the adherends, the FPC, was connected.

【0026】比較例3 実施例1〜4で使用したフィルム状回路接続材料を用い
て、ライン幅50μm、ピッチ100μm、厚み18μ
mの銅回路を500本有するフレキシブル回路板(FP
C)と、0.2μmの酸化インジウム(ITO)の薄層
を形成したガラス(厚み1.1mm、表面抵抗20Ω/
□)とを、紫外線照射併用型熱圧着装置(加熱方式:コ
ンスタントヒート型、東レエンジニアリング株式会社
製)を用いて図1に示すように130℃、2MPaで5
秒間の加熱加圧およびITOガラス側からの紫外線照射
を同時に行って幅2mmにわたり接続し、時間経過後圧
力開放して、接続体を作製した。紫外線照射量は0.6
J/cm2とした。この時、あらかじめITOガラス上
に、フィルム状回路接続材料の接着面を貼り付けた後、
70℃、0.5MPaで5秒間加熱加圧して仮接続し、
その後、フッ素樹脂フィルムを剥離してもう一方の被着
体であるFPCと接続した。また、図1における5秒間
の接続の際、加熱加圧のみを開始して2秒経過した後3
秒間の紫外線照射を開始した。そして加熱加圧開始5秒
後に加熱工程のみをを終了するようにした。
Comparative Example 3 Using the film-like circuit connecting materials used in Examples 1 to 4, the line width was 50 μm, the pitch was 100 μm, and the thickness was 18 μm.
circuit board (FP) having 500 copper circuits
C) and glass having a thin layer of indium oxide (ITO) of 0.2 μm (thickness: 1.1 mm, surface resistance: 20Ω /
□) using an ultraviolet irradiation combined thermocompression bonding apparatus (heating method: constant heat type, manufactured by Toray Engineering Co., Ltd.) as shown in FIG.
The connection was made over a width of 2 mm by simultaneously applying heat and pressure for 2 seconds and irradiating ultraviolet rays from the ITO glass side, and after a lapse of time, the pressure was released to produce a connected body. UV irradiation dose is 0.6
J / cm 2 . At this time, after bonding the adhesive surface of the film-like circuit connection material on the ITO glass in advance,
Temporarily connected by heating and pressing at 70 ° C and 0.5 MPa for 5 seconds,
Thereafter, the fluororesin film was peeled off and connected to another FPC as an adherend. In addition, at the time of connection for 5 seconds in FIG.
UV irradiation was started for a second. Five seconds after the start of heating and pressurization, only the heating step was completed.

【0027】比較例4 実施例1〜6、比較例1〜3で使用したフィルム状回路
接続材料の配合樹脂であるフェノキシ樹脂と、マイクロ
カプセル型潜在性硬化剤を含有する液状エポキシ樹脂
を、固形重量比でフェノキシ樹脂50、液状エポキシ樹
脂50となるように配合し、さらに実施例1で用いた導
電性粒子を3体積%配合分散させ、厚み80μmのフッ
素樹脂フィルムに塗工装置を用いて塗布し、70℃、1
0分の熱風乾燥によって接着剤層の厚みが20μmのフ
ィルム状回路接続材料を得た。上記製法によって得たフ
ィルム状回路接続材料を用いて、ライン幅50μm、ピ
ッチ100μm、厚み18μmの銅回路を500本有す
るフレキシブル回路板(FPC)と、0.2μmの酸化
インジウム(ITO)の薄層を形成したガラス(厚み
1.1mm、表面抵抗20Ω/□)とを、コンスタント
ヒート型熱圧着装置(当社製)を用いて130℃、2M
Paで20秒間加熱加圧して幅2mmにわたり接続し、
時間経過後圧力開放して、これを接続終了とした。この
時、あらかじめITOガラス上に、フィルム状回路接続
材料の接着面を貼り付けた後、70℃、0.5MPaで
5秒間加熱加圧して仮接続し、その後、フッ素樹脂フィ
ルムを剥離してもう一方の被着体であるFPCと接続し
た。
Comparative Example 4 A phenoxy resin, which is a compounded resin of the film-like circuit connection material used in Examples 1 to 6 and Comparative Examples 1 to 3, and a liquid epoxy resin containing a microcapsule-type latent curing agent were solidified. The phenoxy resin 50 and the liquid epoxy resin 50 were blended in a weight ratio, and the conductive particles used in Example 1 were further blended and dispersed by 3% by volume, and applied to a 80 μm-thick fluororesin film using a coating apparatus. And 70 ° C, 1
By hot-air drying for 0 minutes, a film-like circuit connection material having an adhesive layer thickness of 20 μm was obtained. A flexible circuit board (FPC) having 500 copper circuits having a line width of 50 μm, a pitch of 100 μm, and a thickness of 18 μm, and a thin layer of indium oxide (ITO) having a thickness of 0.2 μm, using the film-like circuit connection material obtained by the above method. The glass (having a thickness of 1.1 mm and a surface resistance of 20 Ω / square) formed at 130 ° C. and 2M using a constant heat type thermocompression bonding apparatus (manufactured by our company).
Heat and pressurize for 20 seconds at Pa and connect over 2 mm width,
After a lapse of time, the pressure was released, and the connection was terminated. At this time, after the adhesive surface of the film-like circuit connection material is pasted on the ITO glass in advance, it is temporarily connected by heating and pressing at 70 ° C. and 0.5 MPa for 5 seconds, and then the fluororesin film is peeled off. One of the adherends, the FPC, was connected.

【0028】比較例5 光硬化性樹脂は、エポキシアクリレートオリゴマー(新
中村化学工業株式会社製、商品名NKオリゴEA−10
20)およびアクリレートモノマー(新中村化学工業株
式会社製、商品名NKエステルA−TMM−3L)を、
3/1の重量比で用い、光開始剤にはベンゾフェノンを
用い、これに増感剤として4,4’−ビスジエチルアミ
ノベンゾフェノン(保土ケ谷化学工業株式会社製、商品
名EAB)を、光開始剤/増感剤=5/1となるように
混合して用いた。また、ポリスチレンを核とする粒子の
表面に、厚み0.2μmのニッケル層を設け、このニッ
ケル層の外側に、厚み0.02μmの金層を設け、平均
粒径5μm、比重2.5の導電性粒子を作製した。これ
らを用い、固形重量比で光硬化性樹脂100、光開始剤
5、増感剤1となるように配合し、さらに導電性粒子を
3体積%配合分散させ、ペースト状回路接続材料を得
た。上記製法によって得たペースト状回路接続材料を用
いて、ライン幅50μm、ピッチ100μm、厚み18
μmの銅回路を500本有するフレキシブル回路板(F
PC)と、0.2μmの酸化インジウム(ITO)の薄
層を形成したガラス(厚み1.1mm、表面抵抗20Ω
/□)とを、パルスヒート型熱圧着装置(日本アビオニ
クス株式会社製)を用いて130℃、2MPaで20秒
間加熱加圧して幅2mmにわたり接続し、時間経過後圧
力開放して、これを接続終了とした。この時、あらかじ
めITOガラス上に、ペースト状回路接続材料を適量塗
布し、もう一方の被着体であるFPCと接続した。上記
方法によって得た接続体に、紫外線照射装置(コンベア
移動式、ウシオ電機株式会社製)を用いて、図2に示す
ようにITOガラス側から紫外線を照射して接続体を作
製した。この時の紫外線照射量は2.0J/cm2とし
た。
Comparative Example 5 The photo-curable resin was an epoxy acrylate oligomer (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: NK Oligo EA-10)
20) and an acrylate monomer (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: NK ester A-TMM-3L)
A benzophenone was used as a photoinitiator, and 4,4'-bisdiethylaminobenzophenone (trade name: EAB, manufactured by Hodogaya Chemical Industry Co., Ltd.) was used as a sensitizer. The sensitizer was mixed and used so as to be 5/1. A nickel layer having a thickness of 0.2 μm is provided on the surface of the particles having polystyrene as a core, and a gold layer having a thickness of 0.02 μm is provided outside the nickel layer. Particles were prepared. Using these, the photocurable resin 100, the photoinitiator 5, and the sensitizer 1 were blended so as to be a solid weight ratio, and the conductive particles were further blended and dispersed by 3% by volume to obtain a paste-like circuit connecting material. . A line width of 50 μm, a pitch of 100 μm, and a thickness of 18 were obtained using the paste-like circuit connection material obtained by the above method.
Flexible circuit board (F) with 500 μm copper circuits
PC) and glass (thickness: 1.1 mm, surface resistance: 20Ω) on which a thin layer of 0.2 μm indium oxide (ITO) was formed.
/ □) using a pulse-heat-type thermocompression bonding machine (manufactured by Nippon Avionics Co., Ltd.) to connect by heating and pressing at 130 ° C. and 2 MPa for 20 seconds over a width of 2 mm. Ended. At this time, an appropriate amount of a paste-like circuit connection material was applied on the ITO glass in advance, and connected to the FPC as the other adherend. The connected body obtained by the above method was irradiated with ultraviolet rays from the ITO glass side as shown in FIG. 2 using an ultraviolet irradiation device (conveyor moving type, manufactured by Ushio Inc.) to produce a connected body. At this time, the amount of ultraviolet irradiation was 2.0 J / cm 2 .

【0029】実施例1〜6、比較例1〜5で得た接続体
について初期抵抗、接着性および回路の補修性について
評価した。初期抵抗については、回路部材の接続後、上
記接続部を含むFPCの隣接回路間の抵抗値を、マルチ
メータで測定した。測定電流は1mAとし、抵抗値は隣
接回路間の抵抗150点の平均(x+3σ)で示した。
FPCならびにITOガラスに対する接着性について
は、接着力をJIS−Z0237に準じて90度剥離法
で測定し、評価した。測定装置は東洋ボールドウィン株
式会社製テンシロンUTM−4(剥離速度50mm/m
in、25℃)を使用した。
The joints obtained in Examples 1 to 6 and Comparative Examples 1 to 5 were evaluated for initial resistance, adhesiveness, and circuit repairability. Regarding the initial resistance, after the circuit members were connected, the resistance value between adjacent circuits of the FPC including the above-mentioned connection portions was measured with a multimeter. The measurement current was 1 mA, and the resistance value was represented by an average (x + 3σ) of 150 points of resistance between adjacent circuits.
Regarding the adhesion to FPC and ITO glass, the adhesion was measured and evaluated by a 90-degree peeling method according to JIS-Z0237. The measuring device was Tensilon UTM-4 manufactured by Toyo Baldwin Co., Ltd. (peeling speed 50 mm / m
in, 25 ° C.).

【0030】これらの結果をすべての実施例、比較例に
ついて図3の表1に示した。加熱加圧と紫外線照射を同
時に開始、終了している実施例1では、初期抵抗、接着
力のいずれも良好な値を示した。また実施例2の場合、
加熱加圧に要する時間は5秒と非常に短く、わずか3秒
の紫外線照射しか行っていないが、加熱加圧終了後に引
き続いて15秒の紫外線照射を行って接着剤樹脂の硬化
反応を促進しているために、実施例1と比較してさらに
回路部材に与える熱的影響を抑制することができ、なお
かつ良好な初期接続特性を得ることができている。加え
て、樹脂の流動および導通の確保を優先するために光照
射開始を2秒遅らせたために、接続抵抗に関して実施例
1より良好な結果が得られた。実施例3は実施例2と類
似しているが、加圧状態が保持されているために、継続
して行う15秒の紫外線照射を、回路部材が固定された
状態で行うことが可能であるという点で、実施例2より
有利であると考えられる。実施例4は実施例2、実施例
3より長い10秒の加熱加圧、8秒の紫外線照射を2秒
の間隔を設けて行い、紫外線もも1.6J/cm2と実
施例1に近い量が照射されているため、良好な接続特性
を有する接続体が得られた。さらに導電性粒子、光硬化
性樹脂を代えた実施例5、実施例6においても良好な接
続状態である。
The results are shown in Table 1 of FIG. 3 for all Examples and Comparative Examples. In Example 1, in which the heating and pressurizing and the ultraviolet irradiation were simultaneously started and completed, both the initial resistance and the adhesive force showed good values. In the case of Example 2,
The time required for heating and pressurizing is extremely short, 5 seconds, and only 3 seconds of UV irradiation is performed. However, after the completion of heating and pressing, 15 seconds of UV irradiation is performed to accelerate the curing reaction of the adhesive resin. Therefore, as compared with the first embodiment, it is possible to further suppress the thermal influence on the circuit member, and to obtain good initial connection characteristics. In addition, since the start of light irradiation was delayed by 2 seconds in order to give priority to ensuring the flow and conduction of the resin, better results were obtained in connection resistance than in Example 1. Example 3 is similar to Example 2, but since the pressurized state is maintained, it is possible to perform continuous 15-second ultraviolet irradiation with the circuit member fixed. In this respect, it is considered to be more advantageous than Example 2. In Example 4, heating and pressurizing for 10 seconds and irradiation of ultraviolet light for 8 seconds were performed at intervals of 2 seconds longer than those in Examples 2 and 3, and the ultraviolet light was 1.6 J / cm 2, which is close to Example 1. Because of the amount of irradiation, a connector having good connection characteristics was obtained. Further, in Examples 5 and 6 in which the conductive particles and the photocurable resin were changed, a good connection state was obtained.

【0031】一方、冷却工程を設けていない接続方法で
ある比較例1の場合、接着力に関しては紫外線照射によ
って十分に接着剤が硬化しているために実施例1〜4と
ほぼ同等の値を示しているが、冷却工程がないために接
着剤が固定されないことから導電性粒子の変形が維持さ
れず、回路部材との接触面積が小さくなるため、初期抵
抗は著しく高くなっている。また、実施例1に対して、
光照射量5.0J/cm2の条件下で加熱加圧と紫外線
照射を同時に行った比較例2では、接着剤の硬化反応が
樹脂の流動よりも早く進行するため、導電性粒子が回路
部材に十分に接触しておらず、導通不良となった。比較
例3の場合は3秒の紫外線照射のみで接着剤樹脂の硬化
を行っており、その照射量も0.6J/cm2しかなく
反応不足を招いているため、初期抵抗に関しては良好で
あるが初期接着力は芳しくなかった。熱硬化性樹脂を主
成分とした接着剤を用いている比較例4では、130
℃、2MPa、20秒の接続条件では接着剤の反応率が
低くなるため、十分な硬化が得られず、接着力がかなり
低くなり初期抵抗も高くなった。比較例5の場合には、
フィルム形成性を付与する高分子樹脂が含有されていな
いために、取扱い性の点でフィルム状材料より不利であ
った。
On the other hand, in the case of Comparative Example 1, which is a connection method without a cooling step, the adhesive strength is substantially the same as that of Examples 1 to 4 because the adhesive is sufficiently cured by the irradiation of ultraviolet rays. As shown in the figure, since the adhesive is not fixed due to the absence of the cooling step, the deformation of the conductive particles is not maintained, and the contact area with the circuit member is reduced, so that the initial resistance is significantly increased. Further, with respect to the first embodiment,
In Comparative Example 2, in which heating and pressurization and ultraviolet irradiation were simultaneously performed under the condition of a light irradiation amount of 5.0 J / cm 2 , the curing reaction of the adhesive proceeded faster than the flow of the resin. Was not sufficiently contacted, resulting in poor conduction. In the case of Comparative Example 3, the curing of the adhesive resin was performed only by irradiation with ultraviolet light for 3 seconds, and the irradiation amount was only 0.6 J / cm 2 , resulting in insufficient reaction. Therefore, the initial resistance was good. However, the initial adhesive strength was not good. In Comparative Example 4 using an adhesive mainly containing a thermosetting resin, 130
Under the connection conditions of 20 ° C. and 2 MPa for 20 seconds, the reaction rate of the adhesive was low, so that sufficient curing could not be obtained, the adhesive strength was considerably low, and the initial resistance was high. In the case of Comparative Example 5,
Since it does not contain a polymer resin that imparts film formability, it is disadvantageous in terms of handleability over a film-like material.

【0032】[0032]

【発明の効果】本発明によれば、接着剤に光硬化性樹脂
をおよび導電性粒子を必須成分とするフィルム状回路接
続材料を介在させ、加熱加圧と同時に、あるいは加熱加
圧後に光照射によって回路部材を接続するため、接続に
要する温度を従来より低くすることが可能で、優れた接
着力や良好な電気的導通を得ることができる。
According to the present invention, a light-curable resin and a film-like circuit connection material containing conductive particles as essential components are interposed in an adhesive, and light irradiation is performed simultaneously with or after heating and pressing. Therefore, the temperature required for connection can be lower than before, and excellent adhesive strength and good electrical conduction can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のフィルム状回路接続材料を用いた接
続方法を説明する断面図である。
FIG. 1 is a cross-sectional view illustrating a connection method using a film-like circuit connection material of the present invention.

【図2】 本発明のフィルム状回路接続材料を用いた接
続方法を説明する断面
FIG. 2 is a cross-sectional view illustrating a connection method using the film-like circuit connection material of the present invention.

【図3】 実施例、比較例について初期抵抗、接着力の
値を示す表である。
FIG. 3 is a table showing values of an initial resistance and an adhesive force in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1…ITOガラス、2…導電性粒子、3…FPC回路、
4…FPC基材、5…接着剤、6…光源、7…光、8…
ベース、9…加熱加圧ヘッド、
1: ITO glass, 2: conductive particles, 3: FPC circuit,
4 ... FPC base material, 5 ... adhesive, 6 ... light source, 7 ... light, 8 ...
Base, 9 ... Heating / pressing head,

───────────────────────────────────────────────────── フロントページの続き (72)発明者 後藤 泰史 茨城県つくば市和台48 日立化成工業株式 会社筑波開発研究所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yasushi Goto 48 Wadai, Tsukuba, Ibaraki Pref. Tsukuba Development Laboratory, Hitachi Chemical Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】少なくとも一方が光透過性を有する2つの
回路部材、すなわち第一の接続端子を有する第一の回路
部材と、第二の接続端子を有する第二の回路部材とを、
第一の接続端子と第二の接続端子を対向して配置し、前
記対向配置した第一の接続端子と第二の接続端子の間
に、光硬化性樹脂、光開始剤、分子量が10,000以
上の高分子樹脂および導電性粒子を必須成分とするフィ
ルム状回路接続材料を介在させ、一定時間の加熱加圧お
よび一定時間の光照射を併用することによって、前記対
向配置した第一の接続端子と第二の接続端子を電気的に
接続させることを特徴とする電極の接続方法。
At least one of the two circuit members has a light transmitting property, that is, a first circuit member having a first connection terminal and a second circuit member having a second connection terminal.
A first connection terminal and a second connection terminal are disposed to face each other, and a photocurable resin, a photoinitiator, and a molecular weight of 10, By interposing a film-like circuit connection material containing 000 or more polymer resin and conductive particles as essential components, and using a combination of heating and pressing for a certain period of time and light irradiation for a certain period of time, the first connection arranged opposite to each other is performed. A method for connecting electrodes, wherein a terminal and a second connection terminal are electrically connected.
【請求項2】 加熱加圧を終了した後、光照射を継続し
て行う請求項1記載の電極の接続方法。
2. The method for connecting electrodes according to claim 1, wherein the light irradiation is continued after the heating and pressurization is completed.
【請求項3】 加熱加圧を終了した後、接続されるべき
2つの回路部材が加圧された状態で光照射を継続して行
う請求項1記載の電極の接続方法。
3. The method for connecting electrodes according to claim 1, wherein after the heating and pressurizing is completed, the light irradiation is continuously performed in a state where the two circuit members to be connected are pressurized.
【請求項4】 加熱加圧と光照射を同時に終了する請求
項1記載の電極の接続方法。
4. The method for connecting electrodes according to claim 1, wherein the heating and pressurizing and the light irradiation are ended at the same time.
【請求項5】 一定時間の加熱加圧開始後1〜数秒の間
隔を設け、所定間隔経過後に一定時間の光照射を開始す
る請求項1〜4記載の電極の接続方法。
5. The electrode connection method according to claim 1, wherein an interval of one to several seconds is provided after the start of heating and pressurizing for a predetermined time, and light irradiation is started for a predetermined time after a predetermined interval.
【請求項6】 フィルム状回路接続材料が異方導電接着
剤である請求項1〜5記載の電極の接続方法。
6. The method for connecting electrodes according to claim 1, wherein the film-like circuit connecting material is an anisotropic conductive adhesive.
【請求項7】 請求項1〜6のいずれかに記載の電極の
接続方法によって得られ、第一の回路部材と第二の回路
部材が電気的に接続している電極の接続構造。
7. An electrode connection structure obtained by the electrode connection method according to claim 1, wherein the first circuit member and the second circuit member are electrically connected.
JP9250459A 1997-09-16 1997-09-16 Electrode connecting method and electrode connection structure Pending JPH1197482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9250459A JPH1197482A (en) 1997-09-16 1997-09-16 Electrode connecting method and electrode connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9250459A JPH1197482A (en) 1997-09-16 1997-09-16 Electrode connecting method and electrode connection structure

Publications (1)

Publication Number Publication Date
JPH1197482A true JPH1197482A (en) 1999-04-09

Family

ID=17208199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9250459A Pending JPH1197482A (en) 1997-09-16 1997-09-16 Electrode connecting method and electrode connection structure

Country Status (1)

Country Link
JP (1) JPH1197482A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001014484A1 (en) * 1999-08-25 2001-03-01 Hitachi Chemical Company, Ltd. Adhesive agent, method for connecting wiring terminals and wiring structure
JP2002097442A (en) * 2000-09-21 2002-04-02 Hitachi Chem Co Ltd Adhesive composition, adhesive composition for connecting circuit, circuit-connecting material, connected body, and semiconductor device
JP2002167569A (en) * 2000-11-29 2002-06-11 Hitachi Chem Co Ltd Adhesive composition, adhesive composition for connecting circuit, connected unit and semiconductor device
JP2003506860A (en) * 1999-07-30 2003-02-18 スリーエム イノベイティブ プロパティズ カンパニー Method of manufacturing a laminated structure
JP2003268346A (en) * 2002-12-26 2003-09-25 Sony Chem Corp Low-temperature curable adhesive and anisotropically electroconductive adhesive film obtained using the same
JP2005226048A (en) * 2004-02-16 2005-08-25 Hitachi Chem Co Ltd Adhesive composition, film-formed adhesive and circuit-joining material by using the same, and joining structure of circuit member and method for producing the same
US6984714B2 (en) * 2002-05-13 2006-01-10 Nippon Steel Chemical Co., Ltd. Siloxane-modified polyimide resin
JP2007291396A (en) * 1999-08-25 2007-11-08 Hitachi Chem Co Ltd Wiring-connecting material and process for producing circuit board with the same
US7754790B2 (en) * 1999-08-12 2010-07-13 Sony Corporation Adhesive of epoxy acrylate, non-unsaturated resin and bis(methacryloylethyl) hydrogen phosphate
WO2013121858A1 (en) * 2012-02-14 2013-08-22 デクセリアルズ株式会社 Method for manufacturing connector, and connection method
JP2015167187A (en) * 2014-03-04 2015-09-24 日立化成株式会社 Electronic part manufacturing method and intermediate product of electronic part
JP2016096261A (en) * 2014-11-14 2016-05-26 パナソニックIpマネジメント株式会社 Component mounting device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003506860A (en) * 1999-07-30 2003-02-18 スリーエム イノベイティブ プロパティズ カンパニー Method of manufacturing a laminated structure
US7824754B2 (en) 1999-08-12 2010-11-02 Sony Corporation Peeling sheet with adhesive of epoxy acrylate, non-unsaturated resin and bis(methacryloyloxyethyl) hydrogen phosphate
US7754790B2 (en) * 1999-08-12 2010-07-13 Sony Corporation Adhesive of epoxy acrylate, non-unsaturated resin and bis(methacryloylethyl) hydrogen phosphate
US8115322B2 (en) 1999-08-25 2012-02-14 Hitachi Chemical Company, Ltd. Adhesive, method of connecting wiring terminals and wiring structure
US8120189B2 (en) 1999-08-25 2012-02-21 Hitachi Chemical Company, Ltd. Wiring terminal-connecting adhesive
WO2001014484A1 (en) * 1999-08-25 2001-03-01 Hitachi Chemical Company, Ltd. Adhesive agent, method for connecting wiring terminals and wiring structure
US6939913B1 (en) 1999-08-25 2005-09-06 Hitachi Chemical Company, Ltd. Adhesive agent, method of connecting wiring terminals and wiring structure
JP4605184B2 (en) * 1999-08-25 2011-01-05 日立化成工業株式会社 Wiring connecting material and wiring board manufacturing method using the same
US7241644B2 (en) 1999-08-25 2007-07-10 Hitachi Chemical Company, Ltd. Adhesive, method of connecting wiring terminals and wiring structure
JP2007291396A (en) * 1999-08-25 2007-11-08 Hitachi Chem Co Ltd Wiring-connecting material and process for producing circuit board with the same
US7777335B2 (en) 1999-08-25 2010-08-17 Hitachi Chemical Company, Ltd. Wiring structure having a wiring-terminal-connecting adhesive comprising silicone particles
JP2002097442A (en) * 2000-09-21 2002-04-02 Hitachi Chem Co Ltd Adhesive composition, adhesive composition for connecting circuit, circuit-connecting material, connected body, and semiconductor device
JP2002167569A (en) * 2000-11-29 2002-06-11 Hitachi Chem Co Ltd Adhesive composition, adhesive composition for connecting circuit, connected unit and semiconductor device
US6984714B2 (en) * 2002-05-13 2006-01-10 Nippon Steel Chemical Co., Ltd. Siloxane-modified polyimide resin
JP2003268346A (en) * 2002-12-26 2003-09-25 Sony Chem Corp Low-temperature curable adhesive and anisotropically electroconductive adhesive film obtained using the same
JP4655487B2 (en) * 2004-02-16 2011-03-23 日立化成工業株式会社 Adhesive composition, film-like adhesive and circuit connecting material using the same, circuit member connecting structure, and manufacturing method thereof
JP2005226048A (en) * 2004-02-16 2005-08-25 Hitachi Chem Co Ltd Adhesive composition, film-formed adhesive and circuit-joining material by using the same, and joining structure of circuit member and method for producing the same
WO2013121858A1 (en) * 2012-02-14 2013-08-22 デクセリアルズ株式会社 Method for manufacturing connector, and connection method
JP2013168443A (en) * 2012-02-14 2013-08-29 Dexerials Corp Method for manufacturing connection body, and connection method
JP2015167187A (en) * 2014-03-04 2015-09-24 日立化成株式会社 Electronic part manufacturing method and intermediate product of electronic part
JP2016096261A (en) * 2014-11-14 2016-05-26 パナソニックIpマネジメント株式会社 Component mounting device

Similar Documents

Publication Publication Date Title
JP4469089B2 (en) Film-like anisotropic conductive adhesive for circuit connection, electrode connection structure, and electrode connection method
CN101230241B (en) Adhesive for electrode connection and connecting method using it
KR100875411B1 (en) Low-temperature setting adhesive and anisotropically electroconductive adhesive film using the same
JP3801666B2 (en) Electrode connection method and connection member used therefor
US20070068622A1 (en) Method for establishing anisotropic conductive connection and anisotropic conductive adhesive film
KR20060130268A (en) Adhesive composition for circuit connection
JPH1197482A (en) Electrode connecting method and electrode connection structure
JP2014096531A (en) Method for manufacturing connection structure and connection method
WO2007058142A1 (en) Method of manufacturing circuit board having electronic part
JP6425899B2 (en) ANISOTROPIC CONDUCTIVE ADHESIVE, METHOD FOR MANUFACTURING CONNECTION AND METHOD FOR CONNECTING ELECTRONIC COMPONENTS
JP2008252098A (en) Method of manufacturing circuit board apparatus
JP2006173100A (en) Method for connecting electrode
JPH11343465A (en) Adhesive, adhering method and assembly of packaging board
JPH11279500A (en) Circuit-connecting material and production of circuit board device
JP2985640B2 (en) Electrode connector and method of manufacturing the same
JP3871095B2 (en) Circuit board device manufacturing method
JP3759294B2 (en) Electrode connection method
JP5000695B2 (en) Circuit board device manufacturing method
JP2009290231A (en) Method of manufacturing circuit board apparatus
JP2002367692A (en) Anisotropy conductive adhesive and connection structure using the same
CN107001865B (en) Photocurable anisotropic conductive adhesive, method for producing connected body, and method for connecting electronic component
JP2003045236A (en) Anisotropy conductive film and connection method of integrated circuit device
JP4032320B2 (en) Electrode connection method
JP2002167569A (en) Adhesive composition, adhesive composition for connecting circuit, connected unit and semiconductor device
JP2003253238A (en) Adhesive and method for joining electronic component using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051006