JP2015160933A - aqueous resin composition and glass fiber sizing agent - Google Patents

aqueous resin composition and glass fiber sizing agent Download PDF

Info

Publication number
JP2015160933A
JP2015160933A JP2014038458A JP2014038458A JP2015160933A JP 2015160933 A JP2015160933 A JP 2015160933A JP 2014038458 A JP2014038458 A JP 2014038458A JP 2014038458 A JP2014038458 A JP 2014038458A JP 2015160933 A JP2015160933 A JP 2015160933A
Authority
JP
Japan
Prior art keywords
mass
resin composition
acid
glass fiber
sizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014038458A
Other languages
Japanese (ja)
Other versions
JP6269167B2 (en
Inventor
武志 岩尾
Takeshi Iwao
武志 岩尾
正浩 梶川
Masahiro Kajikawa
正浩 梶川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2014038458A priority Critical patent/JP6269167B2/en
Publication of JP2015160933A publication Critical patent/JP2015160933A/en
Application granted granted Critical
Publication of JP6269167B2 publication Critical patent/JP6269167B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Landscapes

  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aqueous resin composition which is excellent in properties of sizing glass fibers and usable in production of moldings excellent in mechanical strength and appearance and a glass fiber sizing agent.SOLUTION: An aqueous resin composition comprises (A) an acrylic resin obtained by copolymerizing a monocarboxylic acid (a1) having an unsaturated double bond and a dicarboxylic acid (anhydride) (a2) having an unsaturated double bond as essential raw materials and (B) an aqueous medium, and the acid number of (A) the acrylic resin is 700-900. A glass sizing agent containing the aqueous resin composition is excellent in properties of sizing glass fibers, and a glass fiber-reinforced plastic containing the composition or the glass sizing agent is excellent in appearance and mechanical strength.

Description

本発明は、ガラス繊維集束剤に有用な水性樹脂組成物及びガラス繊維集束剤に関するものである。   The present invention relates to an aqueous resin composition useful for a glass fiber sizing agent and a glass fiber sizing agent.

一般にガラス繊維は、溶融ガラスを白金ブッシングの底部に設けられた多数のノズルから引きすことによって成形され、各ガラス繊維(フィラメント)の表面には、集束剤が塗布された後、数百〜数千本束ねられて一本のストランドとされる。また、ガラス繊維強化熱可塑性樹脂組成物は、上記のようにして得られたストランドを所定長に切断し、あるいはストランドを一旦巻き取ってから引き出し、所定長に切断することによってガラスチョップドストランドにした後、これを熱可塑性マトリックス樹脂と加熱しながら混練し、次いで各種の成形法によって所定形状に成形することによって製造される。   In general, glass fiber is formed by drawing molten glass from a number of nozzles provided at the bottom of a platinum bushing, and after the sizing agent is applied to the surface of each glass fiber (filament), several hundred to several Thousands are bundled into one strand. In addition, the glass fiber reinforced thermoplastic resin composition is made into a glass chopped strand by cutting the strand obtained as described above into a predetermined length, or winding the strand once and then drawing out and cutting it into a predetermined length. Thereafter, this is kneaded while being heated with a thermoplastic matrix resin, and then molded into a predetermined shape by various molding methods.

従来、ガラス繊維強化熱可塑性樹脂(FRTP)の機械的物性改良を目的として、ガラ
ス繊維の表面にコートされ、熱可塑性樹脂との好適な密着性を付与する各種ガラス繊維収
束剤が提案されている。このような中、成形品の強度向上を目的としたガラス繊維集束剤として、(無水)マレイン酸と(メタ)アクリル酸エステルとからなる重合性単量体を共重合したアクリル樹脂を必須成分としたアクリル系樹脂組成物が提案されている(例えば、特許文献1参照。)。
Conventionally, for the purpose of improving the mechanical properties of glass fiber reinforced thermoplastic resin (FRTP), various glass fiber sizing agents have been proposed which are coated on the surface of glass fiber and give suitable adhesion to the thermoplastic resin. . Under such circumstances, as a glass fiber sizing agent for the purpose of improving the strength of a molded product, an acrylic resin copolymerized with a polymerizable monomer comprising (anhydrous) maleic acid and (meth) acrylic acid ester is an essential component. An acrylic resin composition has been proposed (see, for example, Patent Document 1).

しかし、前記特許文献1に記載された繊維集束剤を用いて得られる成形品は、より高度な機械的強度を求められる用途においては、強度が不十分であり、また、繊維集束剤の加熱時の着色度が大きく、外観にも問題があった。   However, the molded product obtained by using the fiber sizing agent described in Patent Document 1 has insufficient strength in applications where higher mechanical strength is required, and when the fiber sizing agent is heated. The degree of coloring was large, and there was a problem with the appearance.

特開2011−116589号公報JP 2011-116589 A

本発明が解決しようとする課題は、ガラス繊維の集束性に優れ、機械的強度及び外観に優れた成形品の製造に使用可能な水性樹脂組成物及びガラス繊維集束剤を提供することである。   The problem to be solved by the present invention is to provide an aqueous resin composition and a glass fiber sizing agent which can be used for the production of a molded article excellent in glass fiber sizing properties and excellent in mechanical strength and appearance.

本発明者等は前記課題を解決すべく検討した結果、特定の原料を共重合して得られる特定の酸価を有するアクリル樹脂、及び、水性媒体を含有する水性樹脂組成物が、上記課題を解決できることを見出した。   As a result of studying the above problems, the present inventors have found that an acrylic resin having a specific acid value obtained by copolymerizing a specific raw material and an aqueous resin composition containing an aqueous medium have the above problems. I found that it can be solved.

すなわち、本発明は、不飽和二重結合を有するモノカルボン酸(a1)及び不飽和二重結合を有するジカルボン酸(無水物)(a2)を必須原料として共重合して得られるアクリル樹脂(A)、及び、水性媒体(B)を含有する水性樹脂組成物であって、前記アクリル樹脂(A)の酸価が700〜900の範囲である水性樹脂組成物に関するものである。   That is, the present invention provides an acrylic resin (A) obtained by copolymerizing a monocarboxylic acid (a1) having an unsaturated double bond and a dicarboxylic acid (anhydride) (a2) having an unsaturated double bond as essential raw materials. ), And an aqueous resin composition containing an aqueous medium (B), wherein the acrylic resin (A) has an acid value in the range of 700 to 900.

本発明のアクリル樹脂組成物は、ガラス繊維の集束性に優れることから、ガラス繊維集束剤に使用することができる。   Since the acrylic resin composition of the present invention is excellent in glass fiber sizing properties, it can be used as a glass fiber sizing agent.

また、前記ガラス繊維集束剤を用いて集束した繊維束とマトリックス樹脂とを用いて得られる成形品は、着色度が小さく、引張した場合や屈曲した場合、強い衝撃を受けた場合であっても、割れ等を引きこさないレベルの機械的強度を備えることから、例えば自動車や航空機の部材、家電製品の部品や風力発電部材をはじめとする様々な用途で使用することができる。   In addition, the molded product obtained using the fiber bundle and the matrix resin bundled using the glass fiber sizing agent has a small degree of coloring, even when it is pulled, bent, or subjected to a strong impact. Since it has a mechanical strength at a level that does not pull cracks, it can be used in various applications including automobile and aircraft parts, home appliance parts and wind power generation members.

本発明の水性樹脂組成物は、不飽和二重結合を有するモノカルボン酸(a1)及び不飽和二重結合を有するジカルボン酸(無水物)(a2)を必須原料として共重合して得られるアクリル樹脂(A)、及び、水性媒体(B)を含有する水性樹脂組成物であって、前記アクリル樹脂(A)の酸価が700〜900の範囲である水性樹脂組成物である。なお、本発明において「ジカルボン酸(無水物)」の表記は、「ジカルボン酸」及び「ジカルボン酸無水物」のいずれか一方または両方を表すものである。   The aqueous resin composition of the present invention is an acrylic resin obtained by copolymerizing a monocarboxylic acid (a1) having an unsaturated double bond and a dicarboxylic acid (anhydride) (a2) having an unsaturated double bond as essential raw materials. An aqueous resin composition containing a resin (A) and an aqueous medium (B), wherein the acrylic resin (A) has an acid value in the range of 700 to 900. In the present invention, the expression “dicarboxylic acid (anhydride)” represents one or both of “dicarboxylic acid” and “dicarboxylic anhydride”.

まず、前記アクリル樹脂(A)について説明する。前記アクリル樹脂(A)は、不飽和二重結合を有するモノカルボン酸(a1)及び不飽和二重結合を有するジカルボン酸(無水物)(a2)を必須原料として共重合して得られるものである。   First, the acrylic resin (A) will be described. The acrylic resin (A) is obtained by copolymerizing a monocarboxylic acid (a1) having an unsaturated double bond and a dicarboxylic acid (anhydride) (a2) having an unsaturated double bond as essential raw materials. is there.

前記不飽和二重結合を有するモノカルボン酸(a1)としては、例えば、(メタ)アクリル酸、クロトン酸、3−ブテン酸、4−ペンテン酸、2−ヘキセン酸、3−ヘキセン酸、5−ヘキセン酸、2−ヘプテン酸、3−ヘプテン酸、6−ヘプテン酸、3−オクテン酸、7−オクテン酸、2−ノネン酸、3−ノネン酸、8−ノネン酸、9−デセン酸、10−ウンデセン酸、3−アリルオキシプロピオン酸、アリルオキシ吉草酸、ω−カルボキシ−ポリカプロラクトンモノアクリレート等が挙げられる。これらの中でも、より引張強度に優れる成形品が得られることから、(メタ)アクリル酸が好ましい。なお、これらの不飽和二重結合を有するモノカルボン酸(a1)は、単独で用いることも2種以上併用することもできる。   Examples of the monocarboxylic acid (a1) having an unsaturated double bond include (meth) acrylic acid, crotonic acid, 3-butenoic acid, 4-pentenoic acid, 2-hexenoic acid, 3-hexenoic acid, 5- Hexenoic acid, 2-heptenoic acid, 3-heptenoic acid, 6-heptenoic acid, 3-octenoic acid, 7-octenoic acid, 2-nonenoic acid, 3-nonenoic acid, 8-nonenoic acid, 9-decenoic acid, 10- Examples include undecenoic acid, 3-allyloxypropionic acid, allyloxyvaleric acid, and ω-carboxy-polycaprolactone monoacrylate. Among these, (meth) acrylic acid is preferable because a molded product having more excellent tensile strength can be obtained. In addition, these monocarboxylic acid (a1) which has an unsaturated double bond can be used individually, or can also be used together 2 or more types.

本発明において「(メタ)アクリル」の表記は、「アクリル」及び「メタクリル」のいずれか一方または両方を表すものである。   In the present invention, the notation “(meth) acryl” represents one or both of “acryl” and “methacryl”.

前記不飽和二重結合を有するジカルボン酸(無水物)(a2)としては、例えば、イタコン酸(無水物)、マレイン酸(無水物)、フマル酸等が挙げられる。これらの中でも、より引張強度に優れる成形品が得られることから、イタコン酸(無水物)、マレイン酸(無水物)が好ましい。なお、これらの不飽和二重結合を有するジカルボン酸(無水物)(a2)は、単独で用いることも2種以上併用することもできる。   Examples of the dicarboxylic acid (anhydride) (a2) having an unsaturated double bond include itaconic acid (anhydride), maleic acid (anhydride), and fumaric acid. Among these, itaconic acid (anhydride) and maleic acid (anhydride) are preferable because a molded article having more excellent tensile strength can be obtained. These dicarboxylic acids (anhydrides) (a2) having an unsaturated double bond can be used alone or in combination of two or more.

前記アクリル樹脂(A)の原料としては、前記モノカルボン酸(a1)及び前記ジカルボン酸(無水物)(a2)の他に、必要に応じてその他の重合性不飽和基を有する単量体(a3)を使用することができる。   As a raw material of the acrylic resin (A), in addition to the monocarboxylic acid (a1) and the dicarboxylic acid (anhydride) (a2), a monomer having another polymerizable unsaturated group as necessary ( a3) can be used.

前記その他の重合性不飽和基を有する単量体(a3)としては、例えば(メタ)アクリル酸アルキルエステルが挙げられる。   As said other monomer (a3) which has a polymerizable unsaturated group, (meth) acrylic-acid alkylester is mentioned, for example.

前記(メタ)アクリル酸アルキルエステルとしては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等が挙げられる。なかでも、繊維に対してより一層優れた集束性を有し、かつ、最終的に得られる成形品により一層優れた強度を付与するうえで、炭素原子数1〜8のアルキル基を有するアルキル(メタ)アクリレートが好ましく、炭素原子数1〜4のアルキル基を有するアルキル(メタ)アクリレートがより好ましい。   Examples of the (meth) acrylic acid alkyl ester include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, cyclohexyl (meth) acrylate, and 2-ethylhexyl (meth). Examples include acrylate, lauryl (meth) acrylate, and stearyl (meth) acrylate. Among them, an alkyl having 1 to 8 carbon atoms (i.e., an alkyl group having an even better bundling property to the fiber and imparting more excellent strength to the finally obtained molded product ( A (meth) acrylate is preferable, and an alkyl (meth) acrylate having an alkyl group having 1 to 4 carbon atoms is more preferable.

また、前記その他の重合性不飽和基を有する単量体(a3)としては、例えばスチレン、α−メチルスチレン、パラメチルスチレン、クロロメチルスチレン、酢酸ビニル等のビニル単量体が挙げられる。   Examples of the other monomer (a3) having a polymerizable unsaturated group include vinyl monomers such as styrene, α-methylstyrene, paramethylstyrene, chloromethylstyrene, and vinyl acetate.

また、前記その他の重合性不飽和基を有する単量体(a3)としては、例えば、テトラヒドロフルフリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ベンジル(メタ)アクリレート、グリシジル(メタ)アクリレート、ジ(メタ)アクリル酸ジエチレングリコール、ジ(メタ)アクリル酸−1,4−ブタンジオール、ジ(メタ)アクリル酸−1,6−ヘキサンジオール、トリ(メタ)アクリル酸トリメチロールプロパン、ジ(メタ)アクリル酸グリセリン等が挙げられる。   Examples of the other monomer (a3) having a polymerizable unsaturated group include tetrahydrofurfuryl (meth) acrylate, isobornyl (meth) acrylate, benzyl (meth) acrylate, glycidyl (meth) acrylate, and diester. (Meth) acrylic acid diethylene glycol, di (meth) acrylic acid-1,4-butanediol, di (meth) acrylic acid-1,6-hexanediol, tri (meth) acrylic acid trimethylolpropane, di (meth) acrylic Acid glycerin etc. are mentioned.

前記その他の重合性不飽和基を有する単量体(a3)は、単独で用いることも2種以上併用することもできる。   The other monomer (a3) having a polymerizable unsaturated group may be used alone or in combination of two or more.

前記モノカルボン酸(a1)の使用量は、得られる成形品の引張強度及び外観が向上することから、前記アクリル樹脂(A)の原料である単量体成分中の質量比率で、10〜90質量%の範囲が好ましく、20〜80質量%の範囲がより好ましい。また、前記ジカルボン酸(無水物)(a2)の使用量は、得られる成形品の引張強度及び外観が向上することから、前記アクリル樹脂(A)の原料である単量体成分中の質量比率で、10〜70質量%の範囲が好ましく、20〜60質量%の範囲がより好ましい。なお、必要に応じて用いるその他の単量体(a3)の使用量は、前記アクリル樹脂(A)の原料である単量体成分の合計100質量%から上記のモノカルボン酸(a1)及びジカルボン酸(無水物)(a2)の使用比率を除いた残部となる。   The amount of the monocarboxylic acid (a1) used is 10 to 90 in terms of a mass ratio in the monomer component that is a raw material of the acrylic resin (A) because the tensile strength and appearance of the obtained molded product are improved. The range of mass% is preferable, and the range of 20 to 80 mass% is more preferable. The amount of the dicarboxylic acid (anhydride) (a2) used is such that the tensile strength and appearance of the resulting molded product are improved, so the mass ratio in the monomer component that is the raw material of the acrylic resin (A). And the range of 10-70 mass% is preferable, and the range of 20-60 mass% is more preferable. In addition, the usage-amount of the other monomer (a3) used as needed is said monocarboxylic acid (a1) and dicarboxylic acid from the total 100 mass% of the monomer component which is a raw material of the said acrylic resin (A). It becomes the remainder except the use ratio of acid (anhydride) (a2).

また、前記アクリル樹脂(A)の酸価は、引張強度及び外観に優れる成形品が得られることから、700〜900の範囲であるが、700〜800の範囲が好ましい。なお、本発明において、酸価とは、原料である単量体組成から計算により求めた酸価である。   The acid value of the acrylic resin (A) is in the range of 700 to 900 because a molded product having excellent tensile strength and appearance is obtained, but the range of 700 to 800 is preferable. In addition, in this invention, an acid value is an acid value calculated | required by calculation from the monomer composition which is a raw material.

前記アクリル樹脂(A)の重量平均分子量は、3000〜150000の範囲であることが好ましい。   The acrylic resin (A) preferably has a weight average molecular weight in the range of 3000 to 150,000.

前記アクリル樹脂(A)は、例えば、前記モノカルボン酸(a1)及び前記ジカルボン酸(無水物)(a2)、必要に応じて前記その他の単量体(a3)を、有機溶剤及び/又は水中で、重合開始剤存在下、60〜140℃の温度で加熱しラジカル重合することによって製造することができる。   The acrylic resin (A) includes, for example, the monocarboxylic acid (a1) and the dicarboxylic acid (anhydride) (a2), and if necessary, the other monomer (a3), an organic solvent and / or water. In the presence of a polymerization initiator, it can be produced by heating at a temperature of 60 to 140 ° C. and radical polymerization.

前記有機溶剤としては、例えばトルエン、キシレンのような芳香族溶剤;シクロへキサノンのような脂環族溶剤;酢酸ブチル、酢酸エチル等のエステル系溶剤;イソブタノール、ノルマルブタノール、イソプロピルアルコール、ソルビトール、プロピレングリコールモノメチルエーテルアセテート等のセロソルブ;メチルエチルケトン、メチルイソブチルケトン等のケトン等を使用することができる。これらの溶剤は、単独で用いることも2種以上併用することもできる。   Examples of the organic solvent include aromatic solvents such as toluene and xylene; alicyclic solvents such as cyclohexanone; ester solvents such as butyl acetate and ethyl acetate; isobutanol, normal butanol, isopropyl alcohol, sorbitol, Cellosolves such as propylene glycol monomethyl ether acetate; ketones such as methyl ethyl ketone and methyl isobutyl ketone can be used. These solvents can be used alone or in combination of two or more.

前記重合開始剤としては、例えば、2,2’−アゾビス(イソブチロニトリル)、2,2’−アゾビス(2−メチルブチロニトリル)、アゾビスシアノ吉草酸等のアゾ化合物;tert−ブチルパーオキシピバレート、tert−ブチルパーオキシベンゾエート、tert−ブチルパーオキシ−2−エチルヘキサノエート、ジ−tert−ブチルパーオキサイド、クメンハイドロパーオキサイド、ベンゾイルパーオキサイド、tert−ブチルハイドロパーオキサイド等の有機過酸化物;過酸化水素、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム等の無機過酸化物などが挙げられる。これらの重合体開始剤は、単独で用いることも2種以上併用することもできる。また、前記重合開始剤は、前記アクリル樹脂(A)の原料となる単量体の合計に対して、0.1〜10質量%の範囲内で使用することが好ましい。   Examples of the polymerization initiator include azo compounds such as 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2-methylbutyronitrile), azobiscyanovaleric acid; tert-butylperoxy Organic peroxides such as pivalate, tert-butylperoxybenzoate, tert-butylperoxy-2-ethylhexanoate, di-tert-butyl peroxide, cumene hydroperoxide, benzoyl peroxide, tert-butyl hydroperoxide Oxides; inorganic peroxides such as hydrogen peroxide, ammonium persulfate, potassium persulfate, sodium persulfate and the like. These polymer initiators can be used alone or in combination of two or more. Moreover, it is preferable to use the said polymerization initiator within the range of 0.1-10 mass% with respect to the sum total of the monomer used as the raw material of the said acrylic resin (A).

本発明の水性樹脂組成物は、アクリル樹脂(A)、及び、水性媒体(B)を含有するものであるが、前記方法で得られたアクリル樹脂(A)が水性媒体(B)に溶解または分散したものであることが好ましい。   The aqueous resin composition of the present invention contains the acrylic resin (A) and the aqueous medium (B), but the acrylic resin (A) obtained by the above method is dissolved or dissolved in the aqueous medium (B). It is preferable that it is dispersed.

前記水性媒体(B)としては、水、水と混和する有機溶剤、及び、これらの混合物が挙げられる。水と混和する有機溶剤としては、例えば、メタノール、エタノール、n−プロパノール及びイソプロパノール等のアルコール;アセトン、メチルエチルケトン等のケトン;エチレングリコール、ジエチレングリコール、プロピレングリコール等のポリアルキレングリコール;ポリアルキレングリコールのアルキルエーテル;N-メチル−2−ピロリドン等のラクタム等が挙げられる。本発明では、水のみを用いても良く、また水及び水と混和する有機溶剤との混合物を用いても良く、水と混和する有機溶剤のみを用いても良い。安全性や環境に対する負荷の点から、水のみ、または、水及び水と混和する有機溶剤との混合物が好ましく、水のみを使用することが特に好ましい。   Examples of the aqueous medium (B) include water, organic solvents miscible with water, and mixtures thereof. Examples of the organic solvent miscible with water include alcohols such as methanol, ethanol, n-propanol and isopropanol; ketones such as acetone and methyl ethyl ketone; polyalkylene glycols such as ethylene glycol, diethylene glycol and propylene glycol; alkyl ethers of polyalkylene glycols And lactams such as N-methyl-2-pyrrolidone. In the present invention, only water may be used, a mixture of water and an organic solvent miscible with water may be used, or only an organic solvent miscible with water may be used. From the viewpoint of safety and load on the environment, water alone or a mixture of water and an organic solvent miscible with water is preferable, and it is particularly preferable to use only water.

前記アクリル樹脂(A)を水性媒体(B)に溶解または分散する方法としては、前記アクリル樹脂(A)を前記水性媒体(B)中で重合する方法、前記アクリル樹脂(A)と前記水性媒体(B)とを混合する方法、前記アクリル樹脂(A)を中和したものと、前記水性媒体(B)とを混合する方法等が挙げられる。   As a method of dissolving or dispersing the acrylic resin (A) in the aqueous medium (B), a method of polymerizing the acrylic resin (A) in the aqueous medium (B), the acrylic resin (A) and the aqueous medium. Examples thereof include a method of mixing (B), a method of neutralizing the acrylic resin (A), and a method of mixing the aqueous medium (B).

前記アクリル樹脂(A)を中和する場合は、塩基性化合物を使用することが好ましく、これらの塩基性化合物としては、例えば、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、2−アミノエタノール、2−ジメチルアミノエタノール等の有機アミン;アンモニア、水酸化ナトリウム、水酸化カリウム等の無機塩基性化合物;テトラメチルアンモニウムハイドロオキサイド、テトラ−n−ブチルアンモニウムハイドロオキサイド、トリメチルベンジルアンモニウムハイドロオキサイドの四級アンモニウムハイドロオキサイドなどが挙げられる。これらの中でも有機アミンおよびアンモニア(アンモニア水でもよい。)を使用することが好ましい。なお、これらの塩基性化合物は、単独で用いることも2種以上併用することもできる。   When neutralizing the acrylic resin (A), it is preferable to use a basic compound. Examples of these basic compounds include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, 2-amino. Organic amines such as ethanol and 2-dimethylaminoethanol; inorganic basic compounds such as ammonia, sodium hydroxide and potassium hydroxide; tetramethylammonium hydroxide, tetra-n-butylammonium hydroxide and trimethylbenzylammonium hydroxide Examples include quaternary ammonium hydroxide. Of these, organic amines and ammonia (ammonia water may be used) are preferably used. These basic compounds can be used alone or in combination of two or more.

本発明のガラス繊維集束剤は、前記水性樹脂組成物を含有するものであるが、得られる成形品の機械的強度が向上することから、シランカップリング剤を含有することが好ましく、その中でも、γ−アミノプロピルトリエトキシシラン、γ−ウレイドプロピルトリエトキシシラン、γ−アミノプロピルトリエトキシシランを含有することが特に好ましい。なお、これらのシランカップリング剤は、単独で用いることも2種以上を併用することもできる。   Although the glass fiber sizing agent of the present invention contains the aqueous resin composition, it preferably contains a silane coupling agent because the mechanical strength of the resulting molded article is improved. It is particularly preferable to contain γ-aminopropyltriethoxysilane, γ-ureidopropyltriethoxysilane, and γ-aminopropyltriethoxysilane. In addition, these silane coupling agents can be used alone or in combination of two or more.

また、本発明のガラス繊維集束剤は、本発明の効果を損なわない範囲で、ウレタン樹脂、アクリル樹脂、エポキシ樹脂等の結束剤、潤滑剤、帯電防止剤等の成分を添加できる。   In addition, the glass fiber sizing agent of the present invention can contain components such as a binder such as urethane resin, acrylic resin, and epoxy resin, a lubricant, and an antistatic agent as long as the effects of the present invention are not impaired.

本発明のガラス繊維集束剤で処理したガラス繊維は、ポリオレフィン樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリエステル樹脂等のマトリックス樹脂の補強剤として用いられ、特にポリアミド系樹脂に好適に使用される。   The glass fiber treated with the glass fiber sizing agent of the present invention is used as a reinforcing agent for matrix resins such as polyolefin resins, polycarbonate resins, polyamide resins, and polyester resins, and is particularly preferably used for polyamide resins.

以下、本発明を実施例及び比較例によって、より具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.

(実施例1:水性樹脂組成物(1)の調製及び評価)
攪拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコに酢酸n−ブチル95質量部を仕込み120℃に昇温し、これに無水マレイン酸99質量部、メチルアクリレート47質量部、アクリル酸99質量部、酢酸n−ブチル75質量部、ジターシャリーブチルハイドロパーオキサイド1.6質量部及びターシャリーブチルパーオキシベンゾエート3.0質量部の溶解混合物を2時間かけて滴下し、120〜125℃にて反応を行った。その後120℃で120分間ホールドした後、温度を90℃に下げ、25%アンモニア水137質量部、イオン交換水600質量部を添加し、中和、水溶解を行った。これを減圧(0.080〜0.095MPa)下、90℃で脱溶剤後、冷却し、不揮発分18質量%、pH7.5、粘度580mPa・sの水性樹脂組成物(1)を得た。
(Example 1: Preparation and evaluation of aqueous resin composition (1))
A 4-necked flask equipped with a stirrer, a reflux condenser, a thermometer and a nitrogen blowing tube was charged with 95 parts by mass of n-butyl acetate and heated to 120 ° C., to which 99 parts by mass of maleic anhydride and 47 parts by mass of methyl acrylate were added. , 99 parts by mass of acrylic acid, 75 parts by mass of n-butyl acetate, 1.6 parts by mass of ditertiary butyl hydroperoxide and 3.0 parts by mass of tertiary butyl peroxybenzoate were added dropwise over 2 hours, 120 The reaction was performed at ˜125 ° C. After holding at 120 ° C. for 120 minutes, the temperature was lowered to 90 ° C., and 137 parts by mass of 25% ammonia water and 600 parts by mass of ion-exchanged water were added for neutralization and water dissolution. After removing the solvent at 90 ° C. under reduced pressure (0.080 to 0.095 MPa), the solution was cooled to obtain an aqueous resin composition (1) having a nonvolatile content of 18% by mass, a pH of 7.5, and a viscosity of 580 mPa · s.

[外観(着色度)の評価]
上記で得られた水性樹脂組成物(1)をA4版のPP基材四隅に枠を付けた基材へ流し、24時間室温乾燥後、150℃で5分間さらに乾燥して、膜厚150μmのフィルムを得た。さらに、このフィルムを200℃で1時間熱処理をした後の外観を分光測色計(コニカミノルタ株式会社製「CM−3500d」)で測定し、ΔEab値で評価した。ΔEab値が低いほど着色度が低く好ましい。
[Evaluation of appearance (coloring degree)]
The aqueous resin composition (1) obtained above was poured onto a base material having a frame at the four corners of the A4 size PP base material, dried at room temperature for 24 hours, and further dried at 150 ° C. for 5 minutes. A film was obtained. Further, the appearance of the film after heat treatment at 200 ° C. for 1 hour was measured with a spectrocolorimeter (“CM-3500d” manufactured by Konica Minolta Co., Ltd.), and evaluated by ΔEab value. The lower the ΔEab value, the lower the coloring degree and the better.

(実施例2:水性樹脂組成物(2)の調製及び評価)
攪拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコにイオン交換水150質量部を仕込み80℃に昇温し、これにイタコン酸60質量部とメタクリル酸40質量部を60℃に加温したイオン交換水180質量部へ溶解させた溶解混合物、及び過硫酸アンモニウム0.45質量部とイオン交換水15重量部の溶解物を2時間かけて滴下し、77〜83℃にて反応を行った。その後80℃で120分間ホールドした後、温度を50℃に下げ、25%アンモニア水95質量部を添加し、不揮発分16.4質量%、pH9.3、粘度150mPa・sの水性樹脂組成物(2)を得た。
(Example 2: Preparation and evaluation of aqueous resin composition (2))
A four-necked flask equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen blowing tube was charged with 150 parts by mass of ion-exchanged water, and the temperature was raised to 80 ° C .. A dissolved mixture dissolved in 180 parts by mass of ion-exchanged water heated to ° C and a dissolved product of 0.45 parts by mass of ammonium persulfate and 15 parts by weight of ion-exchanged water were dropped over 2 hours at 77 to 83 ° C. Reaction was performed. Thereafter, after holding at 80 ° C. for 120 minutes, the temperature is lowered to 50 ° C., 95% by mass of 25% aqueous ammonia is added, and an aqueous resin composition having a nonvolatile content of 16.4% by mass, pH 9.3, and a viscosity of 150 mPa · s 2) was obtained.

実施例1の水性樹脂組成物(1)に代えて、水性樹脂組成物(2)を使用した以外は、実施例1と同様にして、外観(着色度)を評価した。 The appearance (coloring degree) was evaluated in the same manner as in Example 1 except that the aqueous resin composition (2) was used instead of the aqueous resin composition (1) of Example 1.

(比較例1:水性樹脂組成物(R−1)の調製及び評価)
攪拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコに酢酸n−ブチル95質量部を仕込み120℃に昇温し、これに無水マレイン酸74質量部、メチルアクリレート74質量部、アクリル酸98質量部、酢酸n−ブチル75質量部、ジターシャリーブチルハイドロパーオキサイド1.6質量部及びターシャリーブチルパーオキシベンゾエート3.0質量部の溶解混合物を2時間かけて滴下し、120〜125℃にて反応を行った。その後120℃で120分間ホールドした後、温度を90℃に下げ、25%アンモニア水137質量部、イオン交換水600質量部を添加し、中和、水溶解を行った。これを減圧(0.080〜0.095MPa)下、90℃で脱溶剤後、冷却し、不揮発分20質量%、pH7.3、粘度580mPa・sの水性樹脂組成物(R−1)を得た。
(Comparative Example 1: Preparation and evaluation of aqueous resin composition (R-1))
A 4-necked flask equipped with a stirrer, a reflux condenser, a thermometer and a nitrogen blowing tube was charged with 95 parts by mass of n-butyl acetate and heated to 120 ° C., and then 74 parts by mass of maleic anhydride and 74 parts by mass of methyl acrylate. , 98 parts by mass of acrylic acid, 75 parts by mass of n-butyl acetate, 1.6 parts by mass of ditertiary butyl hydroperoxide and 3.0 parts by mass of tertiary butyl peroxybenzoate were added dropwise over 2 hours, and 120 The reaction was performed at ˜125 ° C. After holding at 120 ° C. for 120 minutes, the temperature was lowered to 90 ° C., and 137 parts by mass of 25% ammonia water and 600 parts by mass of ion-exchanged water were added for neutralization and water dissolution. After removing the solvent at 90 ° C. under reduced pressure (0.080 to 0.095 MPa), the resultant was cooled to obtain an aqueous resin composition (R-1) having a nonvolatile content of 20% by mass, a pH of 7.3, and a viscosity of 580 mPa · s. It was.

実施例1の水性樹脂組成物(1)に代えて、水性樹脂組成物(R−1)を使用した以外は、実施例1と同様にして、外観(着色度)を評価した。 The appearance (coloring degree) was evaluated in the same manner as in Example 1 except that the aqueous resin composition (R-1) was used instead of the aqueous resin composition (1) of Example 1.

(比較例2:水性樹脂組成物(R−2)の調製及び評価)
攪拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコに酢酸n−ブチル95質量部を仕込み120℃に昇温し、これに無水マレイン酸98質量部、n−ブチルメタクリレート147質量部、酢酸n−ブチル75質量部、ジターシャリーブチルハイドロパーオキサイド1.6質量部及びターシャリーブチルパーオキシベンゾエート3.0質量部の溶解混合物を2時間かけて滴下し、120〜125℃にて反応を行った。その後120℃で120分間ホールドした後、温度を90℃に下げ、25%アンモニア水137質量部、イオン交換水600質量部を添加し、中和、水溶解を行った。これを減圧(0.080〜0.095MPa)下、90℃で脱溶剤後、冷却し、不揮発分23質量%、pH7.6、粘度580mPa・sの水性樹脂組成物(R−2)を得た。
(Comparative Example 2: Preparation and evaluation of aqueous resin composition (R-2))
A 4-necked flask equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen blowing tube was charged with 95 parts by mass of n-butyl acetate and heated to 120 ° C., to which 98 parts by mass of maleic anhydride and n-butyl methacrylate 147 were added. A dissolved mixture of parts by mass, 75 parts by mass of n-butyl acetate, 1.6 parts by mass of ditertiary butyl hydroperoxide and 3.0 parts by mass of tertiary butyl peroxybenzoate was added dropwise over 2 hours, and the temperature reached 120 to 125 ° C. The reaction was performed. After holding at 120 ° C. for 120 minutes, the temperature was lowered to 90 ° C., and 137 parts by mass of 25% ammonia water and 600 parts by mass of ion-exchanged water were added for neutralization and water dissolution. After removing the solvent at 90 ° C. under reduced pressure (0.080 to 0.095 MPa), the mixture was cooled to obtain an aqueous resin composition (R-2) having a nonvolatile content of 23% by mass, a pH of 7.6, and a viscosity of 580 mPa · s. It was.

実施例1の水性樹脂組成物(1)に代えて、水性樹脂組成物(R−2)を使用した以外は、実施例1と同様にして、外観(着色度)を評価した。 The appearance (coloring degree) was evaluated in the same manner as in Example 1 except that the aqueous resin composition (R-2) was used instead of the aqueous resin composition (1) of Example 1.

上記の実施例1〜2及び比較例1〜2の単量体組成及び評価を表1に示す。   Table 1 shows the monomer compositions and evaluations of Examples 1-2 and Comparative Examples 1-2.

Figure 2015160933
Figure 2015160933

(実施例3:ガラス繊維集束剤(1)の調製及び評価)
上記で得られた水性樹脂組成物(1)12.2質量部(固形分として3質量部)、γ−アミノプロピルトリエトキシシラン0.5質量部、及びイオン交換水87.3質量部を混合し、ガラス繊維集束剤(1)を調製した。
(Example 3: Preparation and evaluation of glass fiber sizing agent (1))
12.2 parts by mass of the aqueous resin composition (1) obtained above (3 parts by mass as solid content), 0.5 part by mass of γ-aminopropyltriethoxysilane, and 87.3 parts by mass of ion-exchanged water were mixed. And a glass fiber sizing agent (1) was prepared.

[集束性の評価]
上記で得られたガラス繊維集束剤(1)を、13μm径の繊維表面に、繊維質量に対し1%均一に塗布した。この繊維を集束させた後、長さ3mmに切断、乾燥してチョップドストランド(1)を作成した。このチョップドストランド(1)50gと、ポリアミド66樹脂100gとを容積1Lのタンブラーに投入し、10分間混合した後、発生した毛羽を採取してその質量を測定し、下記の基準で評価した。
○:0.15g未満
△:0.15g以上1.5g未満
×:1.5g以上
[Evaluation of convergence]
The glass fiber sizing agent (1) obtained above was uniformly applied to the surface of the 13 μm diameter fiber by 1% with respect to the fiber mass. After concentrating the fibers, the fibers were cut to a length of 3 mm and dried to prepare chopped strands (1). 50 g of this chopped strand (1) and 100 g of polyamide 66 resin were put into a 1 L volume tumbler and mixed for 10 minutes, and then the generated fluff was collected and its mass was measured and evaluated according to the following criteria.
○: Less than 0.15 g Δ: 0.15 g or more and less than 1.5 g ×: 1.5 g or more

[引張強度の評価]
上記で得られたチョップドストランド(1)30質量%、ポリアミド66(ナイロン66)樹脂69.5質量%、及び酸化マグネシウム0.5質量%からなる混合物を270℃で加熱しながら混練し、公知の方法によってペレット化した後、このペレットを射出成形することによってFRTP成形品を作成した。次いで、得られたFRTP成形品の引張強度(ASTM D638)を、下記の基準で評価した。
◎:100MPa以上
○:90MPa以上100MPa未満
△:70MPa以上90MPa未満
×:70MPa以下
[Evaluation of tensile strength]
A mixture composed of 30% by mass of the chopped strand (1) obtained above, 69.5% by mass of polyamide 66 (nylon 66) resin, and 0.5% by mass of magnesium oxide was kneaded while heating at 270 ° C. After pelletizing by the method, an FRTP molded product was prepared by injection molding the pellet. Subsequently, the tensile strength (ASTM D638) of the obtained FRTP molded product was evaluated according to the following criteria.
◎: 100 MPa or more ○: 90 MPa or more and less than 100 MPa Δ: 70 MPa or more and less than 90 MPa ×: 70 MPa or less

(実施例4:ガラス繊維集束剤(2)の調製及び評価)
実施例2で得られた水性樹脂組成物(2)18.3質量部(固形分として3質量部)、γ−アミノプロピルトリエトキシシラン0.5質量部、及びイオン交換水81.2質量部を混合し、ガラス繊維集束剤(2)を調製した。また、実施例3で用いたガラス繊維集束剤(1)に代えて、ガラス繊維集束剤(2)を用いた以外は、実施例3と同様に、チョップドストランド及びFRTP成形品を作成し、集束性及び引張強度を評価した。
(Example 4: Preparation and evaluation of glass fiber sizing agent (2))
18.3 parts by mass of the aqueous resin composition (2) obtained in Example 2 (3 parts by mass as the solid content), 0.5 parts by mass of γ-aminopropyltriethoxysilane, and 81.2 parts by mass of ion-exchanged water Were mixed to prepare a glass fiber sizing agent (2). Moreover, it replaced with the glass fiber sizing agent (1) used in Example 3, and produced the chopped strand and the FRTP molded product similarly to Example 3 except having used the glass fiber sizing agent (2). And tensile strength were evaluated.

(比較例3:ガラス繊維集束剤(R−1)の調製及び評価)
比較例1で得られた水性樹脂組成物(R−1)15質量部(固形分として3質量部)、γ−アミノプロピルトリエトキシシラン0.5質量部、及びイオン交換水84.5質量部を混合し、ガラス繊維集束剤(R−1)を調製した。また、実施例3で用いたガラス繊維集束剤(1)に代えて、ガラス繊維集束剤(R−1)を用いた以外は、実施例3と同様に、チョップドストランド及びFRTP成形品を作成し、集束性及び引張強度を評価した。
(Comparative Example 3: Preparation and evaluation of glass fiber sizing agent (R-1))
15 parts by mass (3 parts by mass as a solid content) of the aqueous resin composition (R-1) obtained in Comparative Example 1, 0.5 parts by mass of γ-aminopropyltriethoxysilane, and 84.5 parts by mass of ion-exchanged water Were mixed to prepare a glass fiber sizing agent (R-1). Moreover, it replaced with the glass fiber sizing agent (1) used in Example 3, and produced the chopped strand and the FRTP molded product similarly to Example 3 except having used the glass fiber sizing agent (R-1). The bundling property and the tensile strength were evaluated.

(比較例4:ガラス繊維集束剤(R−2)の調製及び評価)
比較例1で得られた水性樹脂組成物(R−1)13質量部(固形分として3質量部)、γ−アミノプロピルトリエトキシシラン0.5質量部、及びイオン交換水86.5質量部を混合し、ガラス繊維集束剤(R−2)を調製した。また、実施例3で用いたガラス繊維集束剤(1)に代えて、ガラス繊維集束剤(R−2)を用いた以外は、実施例3と同様に、チョップドストランド及びFRTP成形品を作成し、集束性及び引張強度を評価した。
(Comparative Example 4: Preparation and evaluation of glass fiber sizing agent (R-2))
13 parts by mass (3 parts by mass as a solid content) of the aqueous resin composition (R-1) obtained in Comparative Example 1, 0.5 parts by mass of γ-aminopropyltriethoxysilane, and 86.5 parts by mass of ion-exchanged water Were mixed to prepare a glass fiber sizing agent (R-2). Moreover, it replaced with the glass fiber sizing agent (1) used in Example 3, and produced the chopped strand and the FRTP molded product similarly to Example 3 except having used the glass fiber sizing agent (R-2). The bundling property and the tensile strength were evaluated.

上記の実施例3〜4及び比較例3〜4の組成及び評価結果を表2に示す。   Table 2 shows the compositions and evaluation results of Examples 3 to 4 and Comparative Examples 3 to 4 described above.

Figure 2015160933
Figure 2015160933

本発明の水性樹脂組成物である実施例1〜2のものは、加熱時の着色度が小さく、これらを含有するガラス繊維集束剤は、ガラス繊維の集束性に優れ、また、これらを含有するガラス繊維強化プラスチックは、機械的強度(引張強度)に優れることが確認された。   Examples 1 and 2, which are aqueous resin compositions of the present invention, have a low degree of coloration upon heating, and the glass fiber sizing agent containing them has excellent glass fiber sizing properties, and also contains them. It was confirmed that the glass fiber reinforced plastic is excellent in mechanical strength (tensile strength).

一方、比較例1は、水性樹脂組成物の成分であるアクリル樹脂の酸価が、700〜900の範囲外である例であるが、得られるガラス繊維集束剤の集束性、及び得られるガラス繊維強化プラスチックの機械的強度(引張強度)が不十分であることが確認された。   On the other hand, Comparative Example 1 is an example in which the acid value of the acrylic resin that is a component of the aqueous resin composition is outside the range of 700 to 900, but the sizing property of the obtained glass fiber sizing agent, and the obtained glass fiber. It was confirmed that the mechanical strength (tensile strength) of the reinforced plastic was insufficient.

比較例2は、水性樹脂組成物の成分であるアクリル樹脂の成分に、不飽和二重結合を有するモノカルボン酸を有さず、酸価が700〜900の範囲外である例であるが、加熱時の着色度が大きく、得られるガラス繊維集束剤の集束性、及び得られるガラス繊維強化プラスチックの機械的強度(引張強度)が不十分であることが確認された。   Comparative Example 2 is an example in which the component of the acrylic resin that is a component of the aqueous resin composition does not have a monocarboxylic acid having an unsaturated double bond, and the acid value is outside the range of 700 to 900. It was confirmed that the degree of coloring at the time of heating was large, and the sizing property of the obtained glass fiber sizing agent and the mechanical strength (tensile strength) of the obtained glass fiber reinforced plastic were insufficient.

Claims (3)

不飽和二重結合を有するモノカルボン酸(a1)及び不飽和二重結合を有するジカルボン酸(無水物)(a2)を必須原料として共重合して得られるアクリル樹脂(A)、及び、水性媒体(B)を含有する水性樹脂組成物であって、前記アクリル樹脂(A)の酸価が700〜900の範囲であることを特徴とする水性樹脂組成物。   Acrylic resin (A) obtained by copolymerizing monocarboxylic acid (a1) having an unsaturated double bond and dicarboxylic acid (anhydride) (a2) having an unsaturated double bond as essential raw materials, and an aqueous medium An aqueous resin composition comprising (B), wherein the acrylic resin (A) has an acid value in the range of 700 to 900. 前記アクリル樹脂(A)の原料である単量体成分中の前記不飽和二重結合を有するモノカルボン酸(a1)の質量比率が10〜90質量%の範囲であり、前記不飽和二重結合を有するジカルボン酸(無水物)(a2)の質量比率が10〜70質量%の範囲である請求項1記載の水性樹脂組成物。   The mass ratio of the monocarboxylic acid (a1) having the unsaturated double bond in the monomer component which is a raw material of the acrylic resin (A) is in the range of 10 to 90% by mass, and the unsaturated double bond 2. The aqueous resin composition according to claim 1, wherein a mass ratio of the dicarboxylic acid (anhydride) (a2) having a content of 10 to 70 mass%. 請求項1又は2記載の水性樹脂組成物を含有することを特徴とするガラス繊維集束剤。   A glass fiber sizing agent comprising the aqueous resin composition according to claim 1.
JP2014038458A 2014-02-28 2014-02-28 Aqueous resin composition and glass fiber sizing agent Active JP6269167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014038458A JP6269167B2 (en) 2014-02-28 2014-02-28 Aqueous resin composition and glass fiber sizing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014038458A JP6269167B2 (en) 2014-02-28 2014-02-28 Aqueous resin composition and glass fiber sizing agent

Publications (2)

Publication Number Publication Date
JP2015160933A true JP2015160933A (en) 2015-09-07
JP6269167B2 JP6269167B2 (en) 2018-01-31

Family

ID=54184262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014038458A Active JP6269167B2 (en) 2014-02-28 2014-02-28 Aqueous resin composition and glass fiber sizing agent

Country Status (1)

Country Link
JP (1) JP6269167B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016160288A (en) * 2015-02-27 2016-09-05 株式会社日本触媒 Method for preventing polycarboxylic acid-based polymer aqueous solution from being colored

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070741A (en) * 2005-09-05 2007-03-22 Asahi Fiber Glass Co Ltd Aqueous binder for inorganic fiber and inorganic fiber heat insulating sound absorbing material
JP2007169545A (en) * 2005-12-26 2007-07-05 Asahi Fiber Glass Co Ltd Water-based binder composition for mineral fiber and mineral fiber insulating acoustic absorption material
JP2008510864A (en) * 2004-08-24 2008-04-10 ビーエーエスエフ ソシエタス・ヨーロピア Process for producing carboxylate-rich copolymer from monoethylenically unsaturated monocarboxylic acid and dicarboxylic acid, and low neutralization degree carboxylate-rich copolymer
JP2008138026A (en) * 2006-11-30 2008-06-19 Nippon Carbide Ind Co Inc Acrylic water-soluble resin composition
JP2011116877A (en) * 2009-12-04 2011-06-16 Dic Corp Method for manufacturing maleic acid/(meth)acrylic acid copolymer, and fiber treating agent using the same
JP2012136385A (en) * 2010-12-27 2012-07-19 Nippon Electric Glass Co Ltd Glass fiber sizing agent, glass fiber, and glass-fiber reinforced thermoplastic resin material
JP2014029051A (en) * 2012-06-26 2014-02-13 Sanyo Chem Ind Ltd Aqueous binder for mineral fiber

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008510864A (en) * 2004-08-24 2008-04-10 ビーエーエスエフ ソシエタス・ヨーロピア Process for producing carboxylate-rich copolymer from monoethylenically unsaturated monocarboxylic acid and dicarboxylic acid, and low neutralization degree carboxylate-rich copolymer
US20080269446A1 (en) * 2004-08-24 2008-10-30 Basf Aktiengesellschaft Method for Producing Carboxylate-Rich Copolymers from Monoethylenically Unsaturated Monocarboxylic and Dicarboxylic Acids and Carboxylate-Rich Copolymers Having a Low Neurtralization Degree
JP2007070741A (en) * 2005-09-05 2007-03-22 Asahi Fiber Glass Co Ltd Aqueous binder for inorganic fiber and inorganic fiber heat insulating sound absorbing material
JP2007169545A (en) * 2005-12-26 2007-07-05 Asahi Fiber Glass Co Ltd Water-based binder composition for mineral fiber and mineral fiber insulating acoustic absorption material
JP2008138026A (en) * 2006-11-30 2008-06-19 Nippon Carbide Ind Co Inc Acrylic water-soluble resin composition
JP2011116877A (en) * 2009-12-04 2011-06-16 Dic Corp Method for manufacturing maleic acid/(meth)acrylic acid copolymer, and fiber treating agent using the same
JP2012136385A (en) * 2010-12-27 2012-07-19 Nippon Electric Glass Co Ltd Glass fiber sizing agent, glass fiber, and glass-fiber reinforced thermoplastic resin material
JP2014029051A (en) * 2012-06-26 2014-02-13 Sanyo Chem Ind Ltd Aqueous binder for mineral fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016160288A (en) * 2015-02-27 2016-09-05 株式会社日本触媒 Method for preventing polycarboxylic acid-based polymer aqueous solution from being colored

Also Published As

Publication number Publication date
JP6269167B2 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
TW589359B (en) Two-part structural adhesive having long working time
JP5915251B2 (en) Curable resin composition and cured product thereof
JP2010536942A5 (en)
JP2013544318A5 (en)
JP6269167B2 (en) Aqueous resin composition and glass fiber sizing agent
JP2018104533A (en) Resin composition for pulp fibrillation, fiber-reinforced material, and molding material
JP2010132876A (en) Curable (meth)acrylic resin composition, laminated material intermediate membrane, and laminated material
AU2014218472B2 (en) Polymer encapsulated titanium dioxide particles
JP2017066013A (en) Acrylic resin emulsion for cement mixing
JP2003261359A (en) Binding agent for glass fiber, glass fiber bundle, (meth) acrylic resin composition and (meth)acrylic resin molding
JPH078936B2 (en) Aqueous resin composition
JP6699153B2 (en) Aqueous resin composition and fiber sizing agent
JP3637794B2 (en) Method for producing methyl methacrylate polymer beads
JP6478093B2 (en) Fiber sizing agent
US7087302B2 (en) Glass sizing composition
JP6674163B2 (en) Powder coating and article having a coating of the coating
JP2011116589A (en) Acrylic resin composition for glass fiber sizing agent, glass fiber sizing agent, its production method, and glass fiber
CN101362814A (en) Prepolymer of room temperature curable yakeli resin for artificial marble manufacture
JPH0696603B2 (en) Method for producing self-dispersing aqueous vinyl resin
JP6112274B2 (en) Fiber sizing agent
JP3633327B2 (en) Method for producing methyl methacrylate polymer beads
JP6105354B2 (en) Laminated coating
JP2015054932A (en) Powder coating and aluminum wheel alloy member coated with the powder coating
JP6481879B2 (en) Water repellent agent for fabric and fabric
JP7163012B2 (en) Resin composition for putty

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171218

R151 Written notification of patent or utility model registration

Ref document number: 6269167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250