JP2011116589A - Acrylic resin composition for glass fiber sizing agent, glass fiber sizing agent, its production method, and glass fiber - Google Patents

Acrylic resin composition for glass fiber sizing agent, glass fiber sizing agent, its production method, and glass fiber Download PDF

Info

Publication number
JP2011116589A
JP2011116589A JP2009275423A JP2009275423A JP2011116589A JP 2011116589 A JP2011116589 A JP 2011116589A JP 2009275423 A JP2009275423 A JP 2009275423A JP 2009275423 A JP2009275423 A JP 2009275423A JP 2011116589 A JP2011116589 A JP 2011116589A
Authority
JP
Japan
Prior art keywords
glass fiber
weight
sizing agent
parts
acrylic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009275423A
Other languages
Japanese (ja)
Other versions
JP2011116589A5 (en
JP5471374B2 (en
Inventor
Masahiro Kajikawa
正浩 梶川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2009275423A priority Critical patent/JP5471374B2/en
Publication of JP2011116589A publication Critical patent/JP2011116589A/en
Publication of JP2011116589A5 publication Critical patent/JP2011116589A5/ja
Application granted granted Critical
Publication of JP5471374B2 publication Critical patent/JP5471374B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an acrylic resin composition having excellent sizing property, which when used as a reinforcing agent for a thermoplastic resin, particularly a polyamide resin, avoids deterioration of physical properties even when a metal salt is added to a sizing agent-containing molding formulation, and which can give a fiber-reinforced resin molded product having good mechanical characteristics, particularly tensile characteristics. <P>SOLUTION: The acrylic resin composition for a glass fiber sizing agent contains as an essential component a copolymer having a weight-average molecular weight of 5,000-150,000 obtained by radical copolymerization of a polymerizable monomer mixture comprising a (meth)acrylic ester and maleic acid (anhydride), wherein a weight ratio of the (meth)acrylic ester (a) to the maleic acid (anhydride) (m) [(a)/(m)] in the polymerizable monomer mixture is 7/3 to 3/7. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、チョップトストランドやロービング、ヤーン他をはじめとするガラス繊維の集束剤に好適なガラス繊維集束剤用アクリル系樹脂組成物、該ガラス繊維集束剤用アクリル系樹脂組成物を含有するガラス繊維集束剤、ガラス繊維集束剤が表面に被覆されたガラス繊維に関する   The present invention relates to an acrylic resin composition for glass fiber sizing agent suitable for a glass fiber sizing agent including chopped strands, rovings, yarns, and the like, and a glass containing the acrylic resin composition for glass fiber sizing agent Fiber sizing agent, glass fiber with glass fiber sizing agent coated on the surface

一般にガラス繊維は、溶融ガラスを白金ブッシングの底部に設けられた多数のノズルから引きすことによって成型され、各ガラス繊維(フィラメント)の表面には、集束剤が塗布された後、数百〜数千本束ねられて一本のストランドとされる。また、ガラス繊維強化熱可塑性樹脂組成物は、上記のようにして得られたストランドを所定長に切断し、あるいはストランドを一旦巻き取ってから引き出し、所定長に切断することによってガラスチョップトストランドにした後、これを熱可塑性マトリックス樹脂と加熱しながら混練し、次いで各種の成型法によって所定形状に成型することによって製造される。
従来、ガラス繊維強化熱可塑性樹脂(FRTP)の機械的物性改良を目的として、ガラス繊維の表面にコートされ、熱可塑性樹脂との好適な密着性を付与する各種ガラス繊維収束剤が提案されている。たとえば、イソシアネートとポリオールから合成されるポリウレタン樹脂を含有するガラス繊維用集束剤が一般的に知られている。
そのような中、成型品の色相や機械的強度の改良を目的として、アクリル系共重合樹脂を用いたガラス繊維集束剤も広く検討されている。しかしこれらの樹脂は特にポリアミド樹脂の補強剤として用いた場合、良好な耐水強度を有するが、成型品の引っ張り強度や衝撃強度が不十分で、経時による強度低下や着色の問題があった。これに対し重合性2塩基酸とアクリル酸とを主成分としたアクリル樹脂系組成物が提案されているが、該技術では特に集束剤を含む成型物配合中に耐熱性向上等を目的とした金属塩が入った場合に、機械的強度低下の問題が発生する難点があった。
In general, glass fibers are formed by drawing molten glass from a number of nozzles provided at the bottom of a platinum bushing. After a sizing agent is applied to the surface of each glass fiber (filament), several hundred to several Thousands are bundled into one strand. In addition, the glass fiber reinforced thermoplastic resin composition is obtained by cutting the strand obtained as described above into a predetermined length, or winding the strand once and then drawing out and cutting it into a predetermined length into a glass chopped strand. Then, this is kneaded with a thermoplastic matrix resin while heating, and then molded into a predetermined shape by various molding methods.
Conventionally, for the purpose of improving the mechanical properties of glass fiber reinforced thermoplastic resin (FRTP), various glass fiber sizing agents have been proposed which are coated on the surface of glass fiber and give suitable adhesion to the thermoplastic resin. . For example, a glass fiber sizing agent containing a polyurethane resin synthesized from an isocyanate and a polyol is generally known.
Under such circumstances, a glass fiber sizing agent using an acrylic copolymer resin has been widely studied for the purpose of improving the hue and mechanical strength of a molded product. However, these resins, particularly when used as a reinforcing agent for polyamide resins, have good water resistance strength, but the tensile strength and impact strength of the molded product are insufficient, and there are problems of strength reduction and coloring over time. On the other hand, an acrylic resin-based composition mainly composed of a polymerizable dibasic acid and acrylic acid has been proposed, but this technique aims at improving heat resistance especially during compounding of a molded product containing a sizing agent. When a metal salt is added, there is a problem that a problem of a decrease in mechanical strength occurs.

特開2008−138026JP2008-138026

本発明が解決しようとする課題は、集束性に優れ、かつ熱可塑性樹脂、とくにポリアミド樹脂の補強剤として用いた場合に、集束剤を含む成型物配合に金属塩が入っても物性の低下がなく、良好な機械特性、特に成型物の引っ張り特性を有する繊維補強樹脂成型体を与えることができるアクリル系樹脂組成物を提供することである。   The problem to be solved by the present invention is that the sizing property is excellent, and when used as a reinforcing agent for a thermoplastic resin, particularly a polyamide resin, even if a metal salt enters the molding compound containing the sizing agent, the physical properties are deteriorated. It is another object of the present invention to provide an acrylic resin composition capable of providing a fiber-reinforced resin molded article having good mechanical properties, particularly tensile properties of a molded product.

本発明者は、(無水)マレイン酸と(メタ)アクリル酸エステルとからなる重合性単量体を共重合したアクリル樹脂で、該アクリル樹脂中にアクリル酸由来のカルボキシル基を有さない樹脂を必須成分としたアクリル系樹脂組成物が本課題を解決することを見出した。   The present inventor is an acrylic resin obtained by copolymerizing a polymerizable monomer composed of (anhydrous) maleic acid and (meth) acrylic ester, and a resin having no carboxyl group derived from acrylic acid in the acrylic resin. It has been found that an acrylic resin composition as an essential component solves this problem.

すなわち、本発明は、(メタ)アクリル酸エステルと(無水)マレイン酸からなる重合性単量体混合物をラジカル共重合して得られる重量平均分子量が5000〜150000の共重合体を必須成分とするガラス繊維集束剤用アクリル系樹脂組成物であって、前記重合性単量体混合物中の(メタ)アクリル酸エステル(a)と(無水)マレイン酸(m)との重量比〔(a)/(m)〕が7/3〜3/7であることを特徴とするガラス繊維集束剤用アクリル系樹脂組成物、該ガラス繊維集束剤用アクリル系樹脂組成物を含有するガラス繊維集束剤、ガラス繊維集束剤が表面に被覆されたガラス繊維を提供する。
(a) H2C=CXHCOOR1
(ここでXは水素原子あるいはメチル基を表し、R1は炭素数1〜4の直鎖あるい
は分岐鎖アルキル基を表す)
That is, the present invention uses, as an essential component, a copolymer having a weight average molecular weight of 5,000 to 150,000 obtained by radical copolymerization of a polymerizable monomer mixture comprising (meth) acrylic acid ester and (anhydrous) maleic acid. An acrylic resin composition for glass fiber sizing agent, wherein the weight ratio of (meth) acrylic acid ester (a) and (anhydrous) maleic acid (m) in the polymerizable monomer mixture [(a) / (M)] is 7/3 to 3/7, an acrylic resin composition for glass fiber sizing agent, a glass fiber sizing agent containing the acrylic resin composition for glass fiber sizing agent, and glass A glass fiber having a surface coated with a fiber sizing agent is provided.
(A) H 2 C = CXHCOOR 1
(Here, X represents a hydrogen atom or a methyl group, and R 1 represents a linear or branched alkyl group having 1 to 4 carbon atoms.)

本発明のガラス繊維集束剤用アクリル樹脂組成物によれば、従来のポリアミド樹脂の補強剤として考えた場合に、集束剤に金属塩を配合しても物性の低下がなく、良好なガラス繊維集束性、ならびに良好な機械特性、特に成型物の引っ張り特性を有する繊維補強樹脂成型体を与えることができるアクリル系樹脂組成物を提供することが可能である。   According to the acrylic resin composition for a glass fiber sizing agent of the present invention, when considered as a reinforcing agent for a conventional polyamide resin, there is no deterioration in physical properties even when a metal salt is added to the sizing agent, and good glass fiber sizing. It is possible to provide an acrylic resin composition that can provide a fiber-reinforced resin molded product having excellent properties and good mechanical properties, particularly tensile properties of a molded product.

本発明のガラス繊維集束剤用アクリル系樹脂組成物(A)は、(メタ)アクリル酸エステル、特に好ましくは、下記一般式(a)にて示される(メタ)アクリル酸エステルと(無水)マレイン酸からなる重合性単量体類を溶剤(c)の存在下、ラジカル開始剤にてラジカル重合して得られるアクリル系樹脂を必須成分としたものである。このアクリル系樹脂組成物の一部あるいは全部を塩基性化合物(b)にて中和し、水中に分散させた水分散体の形態をとってもよい。また、さらに該水分散体を脱溶剤したものでもよい。   The acrylic resin composition (A) for glass fiber sizing agent of the present invention is a (meth) acrylic acid ester, particularly preferably a (meth) acrylic acid ester represented by the following general formula (a) and (anhydrous) maleic acid. An acrylic resin obtained by radical polymerization of an acid polymerizable monomer with a radical initiator in the presence of the solvent (c) is an essential component. A part or all of the acrylic resin composition may be neutralized with the basic compound (b) and may be in the form of an aqueous dispersion in which the acrylic resin composition is dispersed in water. Further, a solvent obtained by removing the water dispersion may be used.

(a) H2C=CXHCOOR1
(ここでXは水素原子あるいはメチル基を表し、R1は炭素数1〜4の直鎖あるいは分岐鎖アルキル基を表す)
(A) H 2 C = CXHCOOR 1
(Here, X represents a hydrogen atom or a methyl group, and R 1 represents a linear or branched alkyl group having 1 to 4 carbon atoms.)

また、前記水分散体は、造膜性、ガラス繊維ぬれ性、ガラス繊維の集束性、及びこのガラス繊維を補強剤として用いたFRTPの機械的強度等の理由から500nm以下の範囲の平均粒子径であることが好ましい。ここで言う平均粒子径とは、動的光散乱法により測定した体積基準での平均粒子径を指す。   The aqueous dispersion has an average particle diameter in the range of 500 nm or less for reasons such as film-forming properties, glass fiber wettability, glass fiber bundling, and mechanical strength of FRTP using this glass fiber as a reinforcing agent. It is preferable that The average particle diameter here refers to the average particle diameter on a volume basis measured by a dynamic light scattering method.

また、前記水性樹脂は、本発明の水性樹脂分散体の全量に対して10〜70重量%の範囲で含まれることが、樹脂貯蔵安定性及び樹脂塗工適性の理由により好ましい。   The aqueous resin is preferably contained in an amount of 10 to 70% by weight based on the total amount of the aqueous resin dispersion of the present invention for reasons of resin storage stability and resin coating suitability.

本願のアクリル系樹脂組成物について説明する。
まず、前記(メタ)アクリル酸エステル(a)について説明する。
(メタ)アクリル酸エステル(a)としては、たとえばアクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸イソプロピル、アクリル酸-n-ブチル、アクリル酸イソブチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸-n-プロピル、メタクリル酸イソプロピル、メタクリル酸-n-ブチル、メタクリル酸イソブチル等があるが、ガラス集束性と機械的強度のバランスを考慮すると、メタクリル酸-n-ブチルが特に好ましい。
The acrylic resin composition of the present application will be described.
First, the (meth) acrylic acid ester (a) will be described.
Examples of the (meth) acrylic acid ester (a) include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, -n-butyl acrylate, isobutyl acrylate, methyl methacrylate, ethyl methacrylate, There are methacrylic acid-n-propyl, isopropyl methacrylate, methacrylic acid-n-butyl, isobutyl methacrylate, and the like, but in view of the balance between glass sizing properties and mechanical strength, methacrylic acid-n-butyl is particularly preferable.

(無水)マレイン酸(m)については、・・・・・   For (anhydrous) maleic acid (m)

次に、塩基性化合物(b)について説明する。
塩基性化合物(b)としては、例えばアンモニアの他、トリエチルアミン、ジメチルエタノールアミン、ピリジン、モルホリン等の有機アミンや、モノエタノールアミン等のアルカノールアミンや、Na、K、Li、Ca等を含む金属塩基化合物等が挙げられる。
該塩基性化合物による中和率は、変性ポリオレフィンの固形分酸価にもよるが、分散後の樹脂安定性を考慮すれば、100%以上が好ましい。
Next, the basic compound (b) will be described.
Examples of the basic compound (b) include ammonia, organic amines such as triethylamine, dimethylethanolamine, pyridine and morpholine, alkanolamines such as monoethanolamine, and metal bases including Na, K, Li, Ca and the like. Compounds and the like.
The neutralization rate with the basic compound depends on the solid content acid value of the modified polyolefin, but is preferably 100% or more in consideration of the resin stability after dispersion.

有機溶剤(c)としては、エステル系、芳香族系、ケトン系、アルコール系等々の有機溶剤が使用可能であるが、ラジカル重合温度あるいは脱溶剤等を考慮すると、エステル系あるいはアルコール系、とりわけ-n-酢酸ブチル、-n-酢酸エチル、イソブタノール、-n-ブタノール、イソプロピルアルコールが好ましい。   As the organic solvent (c), organic solvents such as esters, aromatics, ketones, alcohols and the like can be used. In consideration of radical polymerization temperature or solvent removal, ester solvents, alcohol solvents, n-Butyl acetate, -n-ethyl acetate, isobutanol, -n-butanol and isopropyl alcohol are preferred.

また、前記アクリル系樹脂組成物(A)としては、前記の通り、ガラス繊維の集束性と、このガラス繊維を補強剤として用いたFRTP(Fiber Reinforced ThermoPlastics)の機械的強度付与の理由から5000〜150000の重量平均分子量を有するものを使用することが好ましい。なお、前記重量平均分子量はゲル浸透クロマトグラフィー(GPC)を用いて測定された値を指す。(尚、FRTP(Fiber Reinforced ThermoPlastics)繊維強化熱可塑性樹脂を意味する。)。   Moreover, as said acrylic resin composition (A), as above-mentioned, from the reason of mechanical strength provision of FRTP (Fiber Reinforced ThermoPlastics) which used the fiber fiber converging property and this glass fiber as a reinforcing agent, it is 5000- It is preferable to use one having a weight average molecular weight of 150,000. In addition, the said weight average molecular weight points out the value measured using gel permeation chromatography (GPC). (It means FRTP (Fiber Reinforced ThermoPlastics) fiber reinforced thermoplastic resin).

更に、アクリル系樹脂組成物(A)の無水マレイン酸/(メタ)アクリル酸エステルの混合物中の無水マレイン酸の含有率としては、ガラス繊維の集束性と、これを用いた基材の機械的強度のバランスを考慮すると、30〜70重量%であることが望ましい。   Furthermore, the maleic anhydride content in the maleic anhydride / (meth) acrylic acid ester mixture of the acrylic resin composition (A) includes the glass fiber bundling properties and the mechanical properties of the substrate using the same. Considering the balance of strength, the content is desirably 30 to 70% by weight.

また、該アクリル系樹脂組成物の固形分酸価であるが、340〜800mgKOH/g、ガラス繊維の集束性と、成型品の耐久性(耐水性)を考慮すると、好ましくは440〜690mgKOH/gであるのが良い。   The acid value of the solid content of the acrylic resin composition is preferably 440 to 690 mgKOH / g in consideration of 340 to 800 mgKOH / g, constraining property of glass fiber, and durability (water resistance) of the molded product. It is good to be.

また、該アクリル系樹脂組成物は、溶剤(c)中にて重合が完了した状態で、中和剤(b)によりカルボン酸を(一部)中和し、その後水添加により水分散化を行うことが可能である。更に該水分散物を減圧蒸留により、脱溶剤を行うことも可能である。   In addition, the acrylic resin composition is in a state where the polymerization is completed in the solvent (c), and the carboxylic acid is (partially) neutralized by the neutralizing agent (b), and then water-dispersed by adding water. Is possible. Furthermore, it is also possible to remove the solvent from the aqueous dispersion by distillation under reduced pressure.

本発明のガラス繊維集束剤は、前記ガラス繊維集束剤用アクリル系樹脂組成物に、後述する添加剤を配合したものである。   The glass fiber sizing agent of the present invention is a mixture of the acrylic resin composition for glass fiber sizing agent with an additive described later.

本発明のガラス繊維集束剤は、シランカップリング剤、特に、γ−アミノプロピルトリエトキシシラン、γ−ウレイドプロピルトリエトキシシラン、γ−アミノプロピルトリエトキシシラン等を含有すると、マトリックス樹脂とガラス繊維の表面に形成されるポリオレフィン樹脂との結合力が増加し、ポリオレフィン系FRTPの機械的強度が向上するため好ましい。   When the glass fiber sizing agent of the present invention contains a silane coupling agent, particularly γ-aminopropyltriethoxysilane, γ-ureidopropyltriethoxysilane, γ-aminopropyltriethoxysilane, etc. The bond strength with the polyolefin resin formed on the surface is increased, and the mechanical strength of the polyolefin FRTP is improved, which is preferable.

また、本発明のガラス繊維集束剤は、上記した成分に加え、本発明の効果を損なわない範囲で、ウレタン樹脂、アクリル樹脂、エポキシ樹脂等の結束剤、潤滑剤、帯電防止剤等の成分を添加できる。また、本発明のガラス繊維強化熱可塑性樹脂は、ガラス繊維を5〜65質量%の範囲で含有させることができる。   Further, the glass fiber sizing agent of the present invention contains components such as a binder such as urethane resin, acrylic resin, and epoxy resin, lubricant, antistatic agent, etc., in addition to the above-described components, as long as the effects of the present invention are not impaired. Can be added. Moreover, the glass fiber reinforced thermoplastic resin of this invention can contain glass fiber in 5 to 65 mass%.

本発明のアクリル系水溶性樹脂組成物を使用したガラス繊維集束剤で処理したガラス繊維は、ポリオレフィン樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリエステル樹脂等のマトリックス樹脂の補強剤として用いられ、特にポリアミド系樹脂に好適に使用される。   Glass fiber treated with a glass fiber sizing agent using the acrylic water-soluble resin composition of the present invention is used as a reinforcing agent for matrix resins such as polyolefin resin, polycarbonate resin, polyamide resin, polyester resin, and in particular, polyamide resin. Is preferably used.

以下、本発明を実施例に基づいて詳細に説明する。また、部、%は、特に断りのない場合はそれぞれ重量部、重量%を示す。   Hereinafter, the present invention will be described in detail based on examples. In addition, parts and% indicate parts by weight and% by weight, respectively, unless otherwise specified.

実施例1
攪拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコに酢酸-n-ブチル95重量部を仕込み120℃に昇温、これに無水マレイン酸98重量部、メタクリル酸-n-ブチル147重量部、-n-酢酸ブチル75重量部、パーブチルD(ジターシャリーブチルハイドロパーオキサイド:日本油脂(株)製)1.6重量部、パーブチルZ(ターシャリーブチルパーオキシベンゾエート:日本油脂(株)製)3.0重量部の溶解混合物を2時間かけて滴下し、120〜125℃にて反応を行った。その後120℃に120分間ホールドしたのち、温度を90℃に下げ、25%安水137重量部、イオン交換水600重量部を添加し、中和、水溶解を行った。これを90℃減圧(0.080〜0.095MPa)下、脱溶剤(約60分)、冷却を行い、不揮発分約23重量%、pH7.6、粘度580mPa・s、重量平均分子量7.0万の水性アクリル系樹脂組成物を得た。
Example 1
A four-necked flask equipped with a stirrer, reflux condenser, thermometer and nitrogen blowing tube was charged with 95 parts by weight of n-butyl acetate and heated to 120 ° C., and then 98 parts by weight of maleic anhydride and methacrylic acid-n— 147 parts by weight of butyl, 75 parts by weight of -n-butyl acetate, 1.6 parts by weight of perbutyl D (ditertiary butyl hydroperoxide: manufactured by Nippon Oil & Fats Co., Ltd.), perbutyl Z (tertiary butyl peroxybenzoate: Japanese oil and fat ( Co., Ltd.) 3.0 parts by weight of the dissolved mixture was added dropwise over 2 hours and reacted at 120 to 125 ° C. Thereafter, after holding at 120 ° C. for 120 minutes, the temperature was lowered to 90 ° C., 137 parts by weight of 25% aqueous solution and 600 parts by weight of ion-exchanged water were added, and neutralization and water dissolution were performed. Under reduced pressure at 90 ° C. (0.080 to 0.095 MPa), solvent removal (about 60 minutes) and cooling were performed, the nonvolatile content was about 23% by weight, pH 7.6, viscosity 580 mPa · s, weight average molecular weight 7.0. Ten thousand aqueous acrylic resin compositions were obtained.

まず、皮膜形成成分として、上記水性アクリル系樹脂組成物を固形分で3.0重量%、γ−アミノプロピルトリエトキシシランを固形分として0.5重量%、を用いて集束剤(水分散液)を調合し、13μm径の繊維表面に均一に塗布した。この繊維を集束させた後、長さ3mmに切断、乾燥してチョップドストランドを作成した。   First, as a film-forming component, a sizing agent (aqueous dispersion) was prepared by using 3.0% by weight of the above aqueous acrylic resin composition as a solid content and 0.5% by weight of γ-aminopropyltriethoxysilane as a solid content. ) And was uniformly applied to the surface of a fiber having a diameter of 13 μm. After converging the fibers, the fibers were cut to a length of 3 mm and dried to prepare chopped strands.

また、上記チョップトストランドを30重量%、ポリアミド66(ナイロン66)樹脂69.5重量%、酸化マグネシウム0.5重量%を270℃で加熱しながら混練し、公知の方法によってペレット化した後、このペレットを射出成型することによってFRTP成型品を作成した。次いで、得られたFRTP成型品を下記の試験方法で評価し、得られた結果を表1に示す。   The chopped strand was kneaded while heating at 270 ° C. with 30% by weight of the chopped strand, 69.5% by weight of polyamide 66 (nylon 66) resin, 0.5% by weight of magnesium oxide, and pelletized by a known method. An FRTP molded product was prepared by injection molding the pellet. Subsequently, the obtained FRTP molded product was evaluated by the following test method, and the obtained results are shown in Table 1.

集束性、機械的強度の評価方法
集束性・・・該チョップトストランドの集束性は、作成したチョップトストランド
50gと、ポリアミド66樹脂100gを容積1Lのタンブラーに投入し、10分間混合した後、発生した毛羽を採取してその質量を測定することによって評価した。なお、表中の評価結果は、下記の判定基準に依る。
○・・・0.15g未満 △・・・0.15〜1.5g ×・・・1.5g以上
Evaluation Method of Convergence and Mechanical Strength Convergence: Convergence of the chopped strand is 50 g of the prepared chopped strand and 100 g of polyamide 66 resin put into a 1 L volume tumbler and mixed for 10 minutes. The generated fluff was collected and evaluated by measuring its mass. The evaluation results in the table depend on the following criteria.
○ ・ ・ ・ less than 0.15g △ ・ ・ ・ 0.15-1.5g × ・ ・ ・ 1.5g or more

機械的強度・・・上記にて得られたFRTP成型品の引っ張り強度(ASTM D638)に基づいて測定した。なお、表中の評価結果は、下記の判定基準に依る。
○・・・90MPa以上 △・・・70〜90MPa ×・・・70MPa以下
Mechanical strength: Measured based on the tensile strength (ASTM D638) of the FRTP molded product obtained above. The evaluation results in the table depend on the following criteria.
○ ・ ・ ・ 90MPa or more △ ・ ・ ・ 70 ~ 90MPa × ・ ・ ・ 70MPa or less

実施例2
攪拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコに酢酸-n-ブチル95重量部を仕込み120℃に昇温、これに無水マレイン酸75重量部、メタクリル酸-n-ブチル170重量部、酢酸-n-ブチル75重量部、パーブチルD(ジターシャリーブチルハイドロパーオキサイド:日本油脂(株)製)1.6重量部、パーブチルZ(ターシャリーブチルパーオキシベンゾエート:日本油脂(株)製)3.0重量部の溶解混合物を2時間かけて滴下し、120〜125℃にて反応を行った。その後120℃に120分間ホールドしたのち、温度を90℃に下げ、25%安水105重量部、イオン交換水630重量部を添加し、中和、水溶解を行った。これを90℃減圧(0.080〜0.095MPa)下、脱溶剤(約60分)、冷却を行い、不揮発分約22重量%、pH7.7、粘度650mPa・s、重量平均分子量6.5万の水性アクリル系樹脂組成物を得た。尚、チョップトストランド、FRTP成型品の作成と各種評価に関しては、実施例1と同様にした。得られた結果を表1に示す。
Example 2
A four-necked flask equipped with a stirrer, reflux condenser, thermometer and nitrogen blowing tube was charged with 95 parts by weight of n-butyl acetate and heated to 120 ° C., and 75 parts by weight of maleic anhydride and methacrylic acid-n— 170 parts by weight of butyl, 75 parts by weight of n-butyl acetate, 1.6 parts by weight of perbutyl D (ditertiary butyl hydroperoxide: manufactured by Nippon Oil & Fats Co., Ltd.), perbutyl Z (tertiary butyl peroxybenzoate: Japanese oil and fat ( Co., Ltd.) 3.0 parts by weight of the dissolved mixture was added dropwise over 2 hours and reacted at 120 to 125 ° C. Thereafter, after holding at 120 ° C. for 120 minutes, the temperature was lowered to 90 ° C., and 105 parts by weight of 25% water and 630 parts by weight of ion-exchanged water were added to neutralize and dissolve in water. Under reduced pressure at 90 ° C. (0.080 to 0.095 MPa), solvent removal (about 60 minutes) and cooling were performed, the nonvolatile content was about 22% by weight, pH 7.7, viscosity 650 mPa · s, weight average molecular weight 6.5. Ten thousand aqueous acrylic resin compositions were obtained. The production of chopped strands and FRTP molded products and various evaluations were the same as in Example 1. The obtained results are shown in Table 1.

実施例3
攪拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコに-n-酢酸ブチ95重量部を仕込み120℃に昇温、これに無水マレイン酸170重量部、メタクリル酸-n-ブチル75重量部、-n-酢酸ブチル75重量部、パーブチルD(ジターシャリーブチルハイドロパーオキサイド:日本油脂(株)製)1.6重量部、パーブチルZ(ターシャリーブチルパーオキシベンゾエート:日本油脂(株)製)3.0重量部の溶解混合物を2時間かけて滴下し、120〜125℃にて反応を行った。その後120℃に120分間ホールドしたのち、温度を90℃に下げ、25%安水240重量部、イオン交換水500重量部を添加し、中和、水溶解を行った。これを90℃減圧(0.080〜0.095MPa)下、脱溶剤(約60分)、冷却を行い、不揮発分約21重量%、pH7.4、粘度850mPa・s、重量平均分子量6.5万の水性アクリル系樹脂組成物を得た。
尚、チョップトストランド、FRTP成型品の作成に関しては、実施例1と同様にした。
Example 3
A four-necked flask equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen blowing tube was charged with 95 parts by weight of -n-butylacetate and heated to 120 ° C. To this, 170 parts by weight of maleic anhydride, methacrylic acid-n- 75 parts by weight of butyl, 75 parts by weight of -n-butyl acetate, 1.6 parts by weight of perbutyl D (ditertiary butyl hydroperoxide: manufactured by Nippon Oil & Fats Co., Ltd.), perbutyl Z (tertiary butyl peroxybenzoate: Japanese oil and fat ( Co., Ltd.) 3.0 parts by weight of the dissolved mixture was added dropwise over 2 hours and reacted at 120 to 125 ° C. After holding at 120 ° C. for 120 minutes, the temperature was lowered to 90 ° C., and 240 parts by weight of 25% water and 500 parts by weight of ion-exchanged water were added for neutralization and water dissolution. Under reduced pressure at 90 ° C. (0.080 to 0.095 MPa), solvent removal (about 60 minutes) and cooling were performed, the nonvolatile content was about 21% by weight, pH 7.4, viscosity 850 mPa · s, weight average molecular weight 6.5. Ten thousand aqueous acrylic resin compositions were obtained.
The production of chopped strands and FRTP molded products was the same as in Example 1.

実施例4
攪拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコに酢酸-n-ブチル95重量部を仕込み120℃に昇温、これに無水マレイン酸98重量部、メタクリル酸-n-ブチル147重量部、酢酸-n-ブチル75重量部、パーブチルD(ジターシャリーブチルハイドロパーオキサイド:日本油脂(株)製)3.2重量部、パーブチルZ(ターシャリーブチルパーオキシベンゾエート:日本油脂(株)製)12.0重量部の溶解混合物を2時間かけて滴下し、120〜125℃にて反応を行った。その後120℃に120分間ホールドしたのち、温度を90℃に下げ、25%安水137重量部、イオン交換水600重量部を添加し、中和、水溶解を行った。これを90℃減圧(0.080〜0.095MPa)下、脱溶剤(約60分)、冷却を行い、不揮発分約25重量%、pH7.6、粘度230mPa・s、重量平均分子量0.7万の水性アクリル系樹脂組成物を得た。尚、チョップトストランド、FRTP成型品の作成と各種評価に関しては、実施例1と同様にした。得られた結果を表1に示す。
Example 4
A four-necked flask equipped with a stirrer, reflux condenser, thermometer and nitrogen blowing tube was charged with 95 parts by weight of n-butyl acetate and heated to 120 ° C., and then 98 parts by weight of maleic anhydride and methacrylic acid-n— 147 parts by weight of butyl, 75 parts by weight of n-butyl acetate, 3.2 parts by weight of perbutyl D (ditertiary butyl hydroperoxide: manufactured by Nippon Oil & Fats Co., Ltd.), perbutyl Z (tertiary butyl peroxybenzoate: Japanese oil and fat ( 12.0 parts by weight of the dissolved mixture was added dropwise over 2 hours and reacted at 120 to 125 ° C. Thereafter, after holding at 120 ° C. for 120 minutes, the temperature was lowered to 90 ° C., 137 parts by weight of 25% aqueous solution and 600 parts by weight of ion-exchanged water were added, and neutralization and water dissolution were performed. Under reduced pressure at 90 ° C. (0.080 to 0.095 MPa), solvent removal (about 60 minutes) and cooling were performed, the nonvolatile content was about 25% by weight, pH 7.6, viscosity 230 mPa · s, weight average molecular weight 0.7. Ten thousand aqueous acrylic resin compositions were obtained. The production of chopped strands and FRTP molded products and various evaluations were the same as in Example 1. The obtained results are shown in Table 1.

実施例5
攪拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコに酢酸-n-ブチル95重量部を仕込み110℃に昇温、これに無水マレイン酸98重量部、メタクリル酸-n-ブチル147重量部、酢酸-n-ブチル75重量部、パーブチルD(ジターシャリーブチルハイドロパーオキサイド:日本油脂(株)製)0.8重量部、パーブチルZ(ターシャリーブチルパーオキシベンゾエート:日本油脂(株)製)1.5重量部の溶解混合物を2時間かけて滴下し、110〜115℃にて反応を行った。その後120℃に120分間ホールドしたのち、温度を90℃に下げ、25%安水137重量部、イオン交換水600重量部を添加し、中和、水溶解を行った。これを90℃減圧(0.080〜0.095MPa)下、脱溶剤(約60分)、冷却を行い、不揮発分約20重量%、pH7.6、粘度1230mPa・s、重量平均分子量12.7万の水性アクリル系樹脂組成物を得た。尚、チョップトストランド、FRTP成型品の作成と各種評価に関しては、実施例1と同様にした。得られた結果を表1に示す。
Example 5
A four-necked flask equipped with a stirrer, reflux condenser, thermometer and nitrogen blowing tube was charged with 95 parts by weight of n-butyl acetate and heated to 110 ° C., and 98 parts by weight of maleic anhydride and methacrylic acid-n— 147 parts by weight of butyl, 75 parts by weight of acetic acid-n-butyl, 0.8 parts by weight of perbutyl D (ditertiary butyl hydroperoxide: manufactured by Nippon Oil & Fats Co., Ltd.), perbutyl Z (tertiary butyl peroxybenzoate: Japanese oil and fat ( Co., Ltd.) 1.5 parts by weight of the dissolved mixture was added dropwise over 2 hours and reacted at 110 to 115 ° C. Thereafter, after holding at 120 ° C. for 120 minutes, the temperature was lowered to 90 ° C., 137 parts by weight of 25% aqueous solution and 600 parts by weight of ion-exchanged water were added, and neutralization and water dissolution were performed. Under reduced pressure at 90 ° C. (0.080 to 0.095 MPa), solvent removal (about 60 minutes) and cooling were performed, the nonvolatile content was about 20% by weight, pH 7.6, viscosity 1230 mPa · s, weight average molecular weight 12.7. Ten thousand aqueous acrylic resin compositions were obtained. The production of chopped strands and FRTP molded products and various evaluations were the same as in Example 1. The obtained results are shown in Table 1.

Figure 2011116589
Figure 2011116589

比較例1
モノマープレミックスの作成
イオン交換水50重量部、イタコン酸43.2重量部、80%アクリル酸90重量部を均一に溶解し、25%安水を90重量部添加後、アクリル酸メチル28.8重量部添加しモノマープレミックスとした。
攪拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコにイオン交換水120重量部を仕込み、窒素ブローしながら70℃に昇温した。その後、過硫酸アンモニウム(APS)の10%水溶液を4部添加し、その後モノマープレミックス302重量部と過硫酸アンモニウムの10%水溶液76重量部を3時間平行滴下し、その後同温度にて3時間ホールド後冷却し、不揮発分約30重量%、pH6.5、粘度350mPa・sの水性アクリル系樹脂組成物を得た。尚、チョップトストランド、FRTP成型品の作成と各種評価に関しては、実施例1と同様にした。得られた結果を表2に示す。
Comparative Example 1
Preparation of monomer premix 50 parts by weight of ion-exchanged water, 43.2 parts by weight of itaconic acid, 90 parts by weight of 80% acrylic acid were uniformly dissolved, 90 parts by weight of 25% aqueous solution was added, and methyl acrylate 28.8 A part by weight was added to prepare a monomer premix.
A four-necked flask equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen blowing tube was charged with 120 parts by weight of ion-exchanged water and heated to 70 ° C. while blowing nitrogen. Thereafter, 4 parts of 10% aqueous solution of ammonium persulfate (APS) was added, and then 302 parts by weight of monomer premix and 76 parts by weight of 10% aqueous solution of ammonium persulfate were dropped in parallel for 3 hours, and then held at the same temperature for 3 hours. The mixture was cooled to obtain an aqueous acrylic resin composition having a nonvolatile content of about 30% by weight, a pH of 6.5, and a viscosity of 350 mPa · s. The production of chopped strands and FRTP molded products and various evaluations were the same as in Example 1. The obtained results are shown in Table 2.

比較例2
攪拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコに酢酸-n-ブチル95重量部を仕込み120℃に昇温、これに無水マレイン酸60重量部、メタクリル酸-n-ブチル185重量部、酢酸-n-ブチル75重量部、パーブチルD(ジターシャリーブチルハイドロパーオキサイド:日本油脂(株)製)1.6重量部、パーブチルZ(ターシャリーブチルパーオキシベンゾエート:日本油脂(株)製)3.0重量部の溶解混合物を2時間かけて滴下し、120〜125℃にて反応を行った。その後120℃に120分間ホールドしたのち、温度を90℃に下げ、25%安水84重量部、イオン交換水680重量部を添加し、中和、水溶解を行った。これを90℃減圧(0.080〜0.095MPa)下、脱溶剤(約60分)、冷却を行い、不揮発分約22重量%、pH7.4、粘度280mPa・s、重量平均分子量6.5万の水性アクリル系樹脂組成物を得た。尚、チョップトストランド、FRTP成型品の作成と各種評価に関しては、実施例1と同様にした。得られた結果を表2に示す。
Comparative Example 2
A four-necked flask equipped with a stirrer, a reflux condenser, a thermometer and a nitrogen blowing tube was charged with 95 parts by weight of n-butyl acetate and heated to 120 ° C., to which 60 parts by weight of maleic anhydride, methacrylic acid-n— 185 parts by weight of butyl, 75 parts by weight of n-butyl acetate, 1.6 parts by weight of perbutyl D (ditertiary butyl hydroperoxide: manufactured by Nippon Oil & Fats Co., Ltd.), perbutyl Z (tertiary butyl peroxybenzoate: Japanese oil and fat ( Co., Ltd.) 3.0 parts by weight of the dissolved mixture was added dropwise over 2 hours and reacted at 120 to 125 ° C. After holding at 120 ° C. for 120 minutes, the temperature was lowered to 90 ° C., and 84 parts by weight of 25% water and 680 parts by weight of ion-exchanged water were added for neutralization and water dissolution. Under reduced pressure at 90 ° C. (0.080 to 0.095 MPa), solvent removal (about 60 minutes) and cooling were performed, the nonvolatile content was about 22% by weight, pH 7.4, viscosity 280 mPa · s, weight average molecular weight 6.5. Ten thousand aqueous acrylic resin compositions were obtained. The production of chopped strands and FRTP molded products and various evaluations were the same as in Example 1. The obtained results are shown in Table 2.

比較例3
攪拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコに酢酸-n-ブチル95重量部を仕込み120℃に昇温、これに無水マレイン酸190重量部、メタクリル酸-n-ブチル55重量部、酢酸-n-ブチル75重量部、パーブチルD(ジターシャリーブチルハイドロパーオキサイド:日本油脂(株)製)1.6重量部、パーブチルZ(ターシャリーブチルパーオキシベンゾエート:日本油脂(株)製)3.0重量部の溶解混合物を2時間かけて滴下し、120〜125℃にて反応を行った。その後120℃に120分間ホールドしたのち、温度を90℃に下げ、25%安水268重量部、イオン交換水500重量部を添加し、中和、水溶解を行った。これを90℃減圧(0.080〜0.095MPa)下、脱溶剤(約60分)、冷却を行い、不揮発分約20重量%、pH7.3、粘度1120mPa・s、重量平均分子量6.5万の水性アクリル系樹脂組成物を得た。尚、チョップトストランド、FRTP成型品の作成と各種評価に関しては、実施例1と同様にした。得られた結果を表2に示す。
Comparative Example 3
A four-necked flask equipped with a stirrer, reflux condenser, thermometer and nitrogen blowing tube was charged with 95 parts by weight of n-butyl acetate and heated to 120 ° C., to which 190 parts by weight of maleic anhydride, methacrylic acid-n— 55 parts by weight of butyl, 75 parts by weight of n-butyl acetate, 1.6 parts by weight of perbutyl D (ditertiary butyl hydroperoxide: manufactured by Nippon Oil & Fats Co., Ltd.), perbutyl Z (tertiary butyl peroxybenzoate: Japanese oil and fat ( Co., Ltd.) 3.0 parts by weight of the dissolved mixture was added dropwise over 2 hours and reacted at 120 to 125 ° C. Thereafter, after holding at 120 ° C. for 120 minutes, the temperature was lowered to 90 ° C., 268 parts by weight of 25% aqueous solution and 500 parts by weight of ion-exchanged water were added, and neutralization and water dissolution were performed. Under reduced pressure at 90 ° C. (0.080 to 0.095 MPa), solvent removal (about 60 minutes) and cooling were performed, the nonvolatile content was about 20% by weight, pH 7.3, viscosity 1120 mPa · s, weight average molecular weight 6.5. Ten thousand aqueous acrylic resin compositions were obtained. The production of chopped strands and FRTP molded products and various evaluations were the same as in Example 1. The obtained results are shown in Table 2.

比較例4
攪拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコに酢酸-n-ブチル95重量部を仕込み120℃に昇温、これに無水マレイン酸98重量部、メタクリル酸-n-ブチル147重量部、酢酸-n-ブチル75重量部、パーブチルD(ジターシャリーブチルハイドロパーオキサイド:日本油脂(株)製)6.4重量部、パーブチルZ(ターシャリーブチルパーオキシベンゾエート:日本油脂(株)製)20.0重量部の溶解混合物を2時間かけて滴下し、120〜125℃にて反応を行った。その後120℃に120分間ホールドしたのち、温度を90℃に下げ、25%安水137重量部、イオン交換水600gを添加し、中和、水溶解を行った。これを90℃減圧(0.080〜0.095MPa)下、脱溶剤(約60分)、冷却を行い、不揮発分約28重量%、pH7.6、粘度45mPa・s、重量平均分子量0.3万の水性アクリル系樹脂組成物を得た。
尚、チョップトストランド、FRTP成型品の作成に関しては、実施例1と同様にした。
Comparative Example 4
A four-necked flask equipped with a stirrer, reflux condenser, thermometer and nitrogen blowing tube was charged with 95 parts by weight of n-butyl acetate and heated to 120 ° C., and then 98 parts by weight of maleic anhydride and methacrylic acid-n— 147 parts by weight of butyl, 75 parts by weight of n-butyl acetate, 6.4 parts by weight of perbutyl D (ditertiary butyl hydroperoxide: manufactured by Nippon Oil & Fats Co., Ltd.), perbutyl Z (tertiary butyl peroxybenzoate: Japanese oil and fat ( 20.0 parts by weight of the dissolved mixture was added dropwise over 2 hours and reacted at 120 to 125 ° C. Thereafter, after holding at 120 ° C. for 120 minutes, the temperature was lowered to 90 ° C., 137 parts by weight of 25% aqueous solution and 600 g of ion-exchanged water were added to neutralize and dissolve in water. Under reduced pressure at 90 ° C. (0.080 to 0.095 MPa), solvent removal (about 60 minutes) and cooling were performed, the nonvolatile content was about 28% by weight, pH 7.6, viscosity 45 mPa · s, weight average molecular weight 0.3. Ten thousand aqueous acrylic resin compositions were obtained.
The production of chopped strands and FRTP molded products was the same as in Example 1.

比較例5
攪拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコに酢酸-n-ブチル95重量部を仕込み110℃に昇温、これに無水マレイン酸98重量部、メタクリル酸-n-ブチル147重量部、酢酸-n-ブチル75重量部、パーブチルD(ジターシャリーブチルハイドロパーオキサイド:日本油脂(株)製)0.4重量部、パーブチルZ(ターシャリーブチルパーオキシベンゾエート:日本油脂(株)製)0.7重量部の溶解混合物を2時間かけて滴下し、110〜115℃にて反応を行った。その後120℃に120分間ホールドしたのち、温度を90℃に下げ、25%安水137重量部、イオン交換水600重量部を添加し、中和、水溶解を行った。これを90℃減圧(0.080〜0.095MPa)下、脱溶剤(約60分)、冷却を行い、不揮発分約18重量%、pH7.6、粘度930mPa・s、重量平均分子量16.9万の水性アクリル系樹脂組成物を得た。尚、チョップトストランド、FRTP成型品の作成と各種評価に関しては、実施例1と同様にした。得られた結果を表2に示す。
Comparative Example 5
A four-necked flask equipped with a stirrer, reflux condenser, thermometer and nitrogen blowing tube was charged with 95 parts by weight of n-butyl acetate and heated to 110 ° C., and 98 parts by weight of maleic anhydride and methacrylic acid-n— 147 parts by weight of butyl, 75 parts by weight of n-butyl acetate, 0.4 parts by weight of perbutyl D (ditertiary butyl hydroperoxide: manufactured by Nippon Oil & Fats Co., Ltd.), perbutyl Z (tertiary butyl peroxybenzoate: Japanese oil and fat ( Co., Ltd.) 0.7 part by weight of the dissolved mixture was added dropwise over 2 hours and reacted at 110 to 115 ° C. Thereafter, after holding at 120 ° C. for 120 minutes, the temperature was lowered to 90 ° C., 137 parts by weight of 25% aqueous solution and 600 parts by weight of ion-exchanged water were added, and neutralization and water dissolution were performed. Under reduced pressure at 90 ° C. (0.080 to 0.095 MPa), solvent removal (about 60 minutes) and cooling were performed, and the nonvolatile content was about 18% by weight, pH 7.6, viscosity 930 mPa · s, weight average molecular weight 16.9. Ten thousand aqueous acrylic resin compositions were obtained. The production of chopped strands and FRTP molded products and various evaluations were the same as in Example 1. The obtained results are shown in Table 2.

Figure 2011116589
Figure 2011116589

Claims (5)

(メタ)アクリル酸エステルと(無水)マレイン酸からなる重合性単量体混合物をラジカル共重合して得られる重量平均分子量が5000〜150000の共重合体を必須成分とするガラス繊維集束剤用アクリル系樹脂組成物であって、前記重合性単量体混合物中の(メタ)アクリル酸エステル(a)と(無水)マレイン酸(m)との重量比〔(a)/(m)〕が7/3〜3/7であることを特徴とするガラス繊維集束剤用アクリル系樹脂組成物。 Acrylic for glass fiber sizing agent comprising as essential component a copolymer having a weight average molecular weight of 5000 to 150,000 obtained by radical copolymerization of a polymerizable monomer mixture comprising (meth) acrylic acid ester and (anhydrous) maleic acid. The weight ratio [(a) / (m)] of (meth) acrylic acid ester (a) and (maleic anhydride) (m) in the polymerizable monomer mixture is 7 An acrylic resin composition for a glass fiber sizing agent, characterized in that it is / 3 to 3/7. 前記(メタ)アクリル酸エステルが下記一般式(a)で示される請求項1記載のガラス繊維集束剤用アクリル系樹脂組成物(A)。
2C=CXHCOOR1・・・・・(a)
(ここでXは水素原子あるいはメチル基を表し、R1は炭素数1〜4のアルキル基を表す。)
The acrylic resin composition (A) for glass fiber sizing agent according to claim 1, wherein the (meth) acrylic acid ester is represented by the following general formula (a).
H 2 C = CXHCOOR 1 (a)
(Here, X represents a hydrogen atom or a methyl group, and R 1 represents an alkyl group having 1 to 4 carbon atoms.)
請求項1又は2記載のガラス繊維集束剤用アクリル系樹脂組成物を塩基性化合物(b)で中和したのち水分散させたガラス繊維集束剤用アクリル系樹脂組成物。 An acrylic resin composition for glass fiber sizing agents, wherein the acrylic resin composition for glass fiber sizing agents according to claim 1 or 2 is neutralized with a basic compound (b) and then dispersed in water. 請求項1、2又は3記載のガラス繊維集束剤用アクリル系樹脂組成物を含有するガラス繊維集束剤。 A glass fiber sizing agent comprising the acrylic resin composition for glass fiber sizing agent according to claim 1, 2 or 3. 請求項4記載のガラス繊維集束剤が表面に被覆されたガラス繊維。 A glass fiber having a surface coated with the glass fiber sizing agent according to claim 4.
JP2009275423A 2009-12-03 2009-12-03 Acrylic resin composition for glass fiber sizing agent, glass fiber sizing agent, production method and glass fiber Active JP5471374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009275423A JP5471374B2 (en) 2009-12-03 2009-12-03 Acrylic resin composition for glass fiber sizing agent, glass fiber sizing agent, production method and glass fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009275423A JP5471374B2 (en) 2009-12-03 2009-12-03 Acrylic resin composition for glass fiber sizing agent, glass fiber sizing agent, production method and glass fiber

Publications (3)

Publication Number Publication Date
JP2011116589A true JP2011116589A (en) 2011-06-16
JP2011116589A5 JP2011116589A5 (en) 2012-11-22
JP5471374B2 JP5471374B2 (en) 2014-04-16

Family

ID=44282378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009275423A Active JP5471374B2 (en) 2009-12-03 2009-12-03 Acrylic resin composition for glass fiber sizing agent, glass fiber sizing agent, production method and glass fiber

Country Status (1)

Country Link
JP (1) JP5471374B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103757886A (en) * 2013-12-20 2014-04-30 江苏鹏飞海太机械有限公司 Cool finishing agent
JP2014231452A (en) * 2013-05-29 2014-12-11 日本電気硝子株式会社 Glass fiber sizing agent, glass fiber, and glass fiber-reinforced polyamide resin

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108330687B (en) * 2018-01-29 2020-09-18 西安工程大学 Hot-melt textile size preparation method based on bulk polymerization method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4950294A (en) * 1972-08-18 1974-05-15
JPS59203738A (en) * 1983-05-06 1984-11-17 Nippon Shokubai Kagaku Kogyo Co Ltd Binder for glass fiber
JP2003261359A (en) * 2002-03-11 2003-09-16 Mitsubishi Rayon Co Ltd Binding agent for glass fiber, glass fiber bundle, (meth) acrylic resin composition and (meth)acrylic resin molding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4950294A (en) * 1972-08-18 1974-05-15
JPS59203738A (en) * 1983-05-06 1984-11-17 Nippon Shokubai Kagaku Kogyo Co Ltd Binder for glass fiber
JP2003261359A (en) * 2002-03-11 2003-09-16 Mitsubishi Rayon Co Ltd Binding agent for glass fiber, glass fiber bundle, (meth) acrylic resin composition and (meth)acrylic resin molding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014231452A (en) * 2013-05-29 2014-12-11 日本電気硝子株式会社 Glass fiber sizing agent, glass fiber, and glass fiber-reinforced polyamide resin
CN103757886A (en) * 2013-12-20 2014-04-30 江苏鹏飞海太机械有限公司 Cool finishing agent

Also Published As

Publication number Publication date
JP5471374B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5471374B2 (en) Acrylic resin composition for glass fiber sizing agent, glass fiber sizing agent, production method and glass fiber
KR20200031075A (en) Fluorine-containing polymer, release agent composition and release method
KR102132804B1 (en) Liquid-crystalline resin composition for sliding-resistant wear member and sliding-resistant wear member using the same
JP2009215492A (en) Glass fiber-reinforced resin composition, and method for producing the same
JP5664465B2 (en) Glass fiber article and glass fiber reinforced plastic
US6797768B2 (en) Water swellable compositions
JP6136579B2 (en) Glass fiber sizing agent, glass fiber, and glass fiber reinforced polyamide resin
JP5418159B2 (en) Glass fiber sizing agent, method for producing glass fiber sizing agent, and glass fiber
JP2010180293A (en) Acrylic emulsion composition
JP3216262B2 (en) Heat-curable anti-fog composition for vehicle lighting and vehicle lighting
US20200048473A1 (en) Resin emulsion for damping paint, damping paint, and method for producing resin emulsion for damping paint
JP7457788B2 (en) Binders and fixing materials
JP7145219B2 (en) Moisture resistance improver for water-based adhesives for inorganic materials and water-based adhesives for inorganic materials
JP6269167B2 (en) Aqueous resin composition and glass fiber sizing agent
TWI806962B (en) Cyanoacrylate compositions
JP2015163570A (en) Chopped strand for cement structure and cement structure
JP6651970B2 (en) Fiber sizing agent
KR101886912B1 (en) Resin composition for asphalt road pavement
TW201920388A (en) Sizing agent for reinforced fiber and use thereof
JP2004504438A (en) Curable, substantially formaldehyde-free composition
JP7129481B2 (en) Aqueous dispersion, method for producing the same, coating composition and coating film
JP7106184B2 (en) Water-based adhesive for inorganic materials
JP7106185B2 (en) Water-based adhesive for inorganic materials
JP2008106281A (en) Method for producing filament-reinforced polypropylene resin molding material
JP6699153B2 (en) Aqueous resin composition and fiber sizing agent

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121005

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131226

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5471374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250