JP2015153864A - Organic film and organic electronic device - Google Patents

Organic film and organic electronic device Download PDF

Info

Publication number
JP2015153864A
JP2015153864A JP2014025661A JP2014025661A JP2015153864A JP 2015153864 A JP2015153864 A JP 2015153864A JP 2014025661 A JP2014025661 A JP 2014025661A JP 2014025661 A JP2014025661 A JP 2014025661A JP 2015153864 A JP2015153864 A JP 2015153864A
Authority
JP
Japan
Prior art keywords
organic
hatcn
electronic device
film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014025661A
Other languages
Japanese (ja)
Inventor
勇進 夫
Yushin Fu
勇進 夫
省吾 高橋
Shogo Takahashi
省吾 高橋
一茂 井手田
Kazushige Iteda
一茂 井手田
貴之 千葉
Takayuki Chiba
貴之 千葉
城戸 淳二
Junji Kido
淳二 城戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamagata University NUC
Original Assignee
Yamagata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamagata University NUC filed Critical Yamagata University NUC
Priority to JP2014025661A priority Critical patent/JP2015153864A/en
Publication of JP2015153864A publication Critical patent/JP2015153864A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

PROBLEM TO BE SOLVED: To provide an organic film on which a compound capable of improving film formability of HATCN and suppressing reduction in electric characteristics is mixed with HATCN and applied and deposited and to provide an organic electronic device using the same.SOLUTION: A coated film formed by adding a compound containing a quinoxaline skeleton or a 2,3-dicyanopyrazine skeleton to HATCN is applied to an organic electronic device such as a hole injection layer, a charge generation layer, or an organic thin film solar cell as an electron acceptor layer of an organic electroluminescent element.

Description

本発明は、塗布成膜可能な電子アクセプタ性有機材料による有機膜及びこれを用いた有機エレクトロルミネッセンス素子(以下、有機EL素子と略称する)や有機薄膜太陽電池、有機トランジスタ等の有機電子デバイスに関する。   The present invention relates to an organic film made of an electron-accepting organic material that can be coated and formed, and an organic electronic device such as an organic electroluminescence element (hereinafter abbreviated as an organic EL element), an organic thin-film solar cell, and an organic transistor. .

下記(化1)に示す1,4,5,8,9,11−ヘキサアザトリフェニレンヘキサカルボニトリル(HATCN)は、マルチフォトンエミッション型有機EL素子における電荷発生層における電子アクセプタ材料として広く知られている。   1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile (HATCN) shown in the following (Chemical Formula 1) is widely known as an electron acceptor material in a charge generation layer in a multiphoton emission type organic EL device. Yes.

Figure 2015153864
Figure 2015153864

しかしながら、HATCNは、電子アクセプタとしての電気特性には優れているものの、塗布成膜性に劣るものであった。このため、本発明者らは、バインダを添加することによって成膜性を向上させることができると考え、これまでに、いくつかの適用可能なバインダを報告してきた。   However, HATCN has excellent electrical characteristics as an electron acceptor, but has poor coating film formability. For this reason, the present inventors considered that the film-forming property can be improved by adding a binder, and so far, some applicable binders have been reported.

例えば、特許文献1において、下記(化2)に示すようなN,N’−ジ[(1−ナフタレニル)−N,N’−ジフェニル]−1,1’−ビフェニル)−4,4’−ジアミン(NPD)等の低分子アリールアミン誘導体やポリメチルメタクリレート(PMMA)等をバインダとしてHATCNと混合させることを提案している。   For example, in Patent Document 1, N, N′-di [(1-naphthalenyl) -N, N′-diphenyl] -1,1′-biphenyl) -4,4′- as shown in the following (Chemical Formula 2) It has been proposed to mix a low molecular weight arylamine derivative such as diamine (NPD), polymethyl methacrylate (PMMA) or the like with HATCN as a binder.

Figure 2015153864
Figure 2015153864

また、下記(化3)に示すようなAD−TMP等の多官能性アクリレートモノマーを混合し、熱処理により架橋させ、成膜性及び不溶性を向上させ、上層の塗布積層を可能とすることも提案している(特願2013−172197)。   Also proposed is to mix polyfunctional acrylate monomers such as AD-TMP as shown below (Chemical Formula 3), cross-link by heat treatment, improve film formability and insolubility, and enable coating and lamination of the upper layer (Japanese Patent Application No. 2013-172197).

Figure 2015153864
Figure 2015153864

国際公開WO2013/122182号International Publication WO2013 / 122182

しかしながら、HATCNに対して、上記のようなバインダや架橋性化合物を添加し、熱処理等を施すことは、成膜性の向上を図ることができる一方で、電気特性の低下を招くという課題を有していた。   However, adding a binder or a crosslinkable compound as described above to HATCN and performing a heat treatment or the like can improve the film formability, but has the problem of causing a decrease in electrical characteristics. Was.

したがって、HATCNに対して、その成膜性を向上させ、かつ、電気特性の低下を抑制することができる化合物が求められている。   Therefore, there is a demand for a compound that can improve the film formability and suppress the deterioration of electrical characteristics with respect to HATCN.

本発明は、上記技術課題を解決するためになされたものであり、HATCNの成膜性を向上させ、かつ、電気特性の低下を抑制することができる化合物をHATCNに混合して塗布成膜された有機膜及びこれを用いた有機電子デバイスを提供することを目的とするものである。   The present invention has been made in order to solve the above technical problem, and is formed by coating a HATCN with a compound capable of improving the film forming property of HATCN and suppressing the deterioration of electrical characteristics. It is an object of the present invention to provide an organic film and an organic electronic device using the same.

本発明に係る有機膜は、上記(化1)に示すHATCNに、下記(化4)に示すキノキサリン骨格又は下記(化5)に示す2,3−ジシアノピラジン骨格を含む化合物が添加された塗布膜であることを特徴とする。   The organic film according to the present invention is a coating in which a compound containing a quinoxaline skeleton shown in the following (Chemical Formula 4) or a 2,3-dicyanopyrazine skeleton shown in the following (Chemical Formula 5) is added to the HATCN shown in the Chemical Formula 1 above. It is a film.

Figure 2015153864
Figure 2015153864

Figure 2015153864
Figure 2015153864

上記のような化合物をHATCNに混合することにより、HATCNの成膜性を向上させると同時に、電気特性の低下を抑制することができる。   By mixing the above compound with HATCN, it is possible to improve the film formability of HATCN and at the same time suppress the deterioration of electrical characteristics.

本発明によれば、前記有機膜が用いられていることを特徴とする有機電子デバイスが提供される。前記有機電子デバイスとしては、具体的には、有機EL素子又は有機薄膜太陽電池に好適に適用することができる。   According to the present invention, there is provided an organic electronic device characterized in that the organic film is used. Specifically, the organic electronic device can be suitably applied to an organic EL element or an organic thin film solar cell.

特に、前記有機電子デバイスは、有機EL素子であり、前記有機膜が電子アクセプタ層としてホール注入層に用いられていることが好ましい。
前記有機膜は、有機EL素子におけるホール注入層において、良好に機能し得る。
In particular, the organic electronic device is an organic EL element, and the organic film is preferably used as a hole injection layer as an electron acceptor layer.
The organic film can function well in the hole injection layer in the organic EL element.

また、本発明によれば、複数の発光ユニットが電荷発生層を介して直列式に積層されたマルチフォトンエミッション型有機EL素子であり、前記有機膜が、電子アクセプタ層として電荷発生層に用いられていることを特徴とする有機電子デバイスが提供される。
前記有機膜は、マルチフォトンエミッション型有機EL素子における電荷発生層において良好に機能し得る。
Further, according to the present invention, there is provided a multi-photon emission type organic EL device in which a plurality of light emitting units are stacked in series via a charge generation layer, and the organic film is used as a charge generation layer as an electron acceptor layer. An organic electronic device is provided.
The organic film can function well in a charge generation layer in a multi-photon emission type organic EL device.

本発明に係る有機膜によれば、HATCNの成膜性を向上させ、かつ、電気特性の低下を抑制することができる。
また、前記有機膜を用いることにより、該有機膜に隣接する上層の塗布積層が可能となり、有機EL素子又は有機薄膜太陽電池等の有機電子デバイス、特に、マルチフォトンエミッション型有機EL素子を塗布プロセスにて作製することが可能となり、これらのデバイス特性の向上にも寄与し得る。
According to the organic film of the present invention, it is possible to improve the film formability of HATCN and to suppress the deterioration of electrical characteristics.
Further, by using the organic film, it is possible to apply and laminate an upper layer adjacent to the organic film, and to apply an organic electronic device such as an organic EL element or an organic thin film solar cell, in particular, a multiphoton emission type organic EL element. And can contribute to the improvement of these device characteristics.

有機EL素子の層構造の一例を模式的に示した概略断面図である。It is the schematic sectional drawing which showed typically an example of the layer structure of an organic EL element. 実施例の耐溶媒性試験における吸光度測定結果を示したグラフである。It is the graph which showed the light absorbency measurement result in the solvent resistance test of an Example. 実施例1及び比較例1の有機EL素子の電流密度−電圧特性を示したグラフである。5 is a graph showing current density-voltage characteristics of organic EL elements of Example 1 and Comparative Example 1. 実施例2及び比較例2の有機EL素子の電流密度−電圧特性を示したグラフである。6 is a graph showing current density-voltage characteristics of organic EL elements of Example 2 and Comparative Example 2. 実施例3及び比較例3の有機EL素子の電流密度−電圧特性を示したグラフである。5 is a graph showing current density-voltage characteristics of organic EL elements of Example 3 and Comparative Example 3. 実施例3及び比較例3の有機EL素子の外部量子効率−電流密度特性を示したグラフである。6 is a graph showing external quantum efficiency-current density characteristics of organic EL elements of Example 3 and Comparative Example 3. 実施例4の有機EL素子の電流効率−電流密度特性を示したグラフである。6 is a graph showing current efficiency-current density characteristics of an organic EL element of Example 4.

以下、本発明について、より詳細に説明する。
本発明に係る有機膜は、上記(化1)に示すHATCNに、上記(化4)に示すキノキサリン骨格又は上記(化5)に示す2,3−ジシアノピラジン骨格を含む化合物が添加された塗布膜である。
キノキサリン及び2,3−ジシアノピラジンは、いずれも、HATCNの骨格に類似する化合物であり、本発明においては、このような類似骨格を含む化合物をHATCNと混合することにより、良好な塗布膜を形成することができる。
Hereinafter, the present invention will be described in more detail.
The organic film according to the present invention is a coating in which a compound containing the quinoxaline skeleton shown in the above (Chemical formula 4) or the 2,3-dicyanopyrazine skeleton shown in the above (Chemical formula 5) is added to the HATCN shown in the above (Chemical formula 1). It is a membrane.
Both quinoxaline and 2,3-dicyanopyrazine are compounds similar to the skeleton of HATCN. In the present invention, a compound having such a similar skeleton is mixed with HATCN to form a good coating film. can do.

強い電子アクセプタ性を示す有機材料であるHATCNは、ヘキサアザトリフェニレン(HAT)骨格にシアノ基が6つ付いた構造であり、平面性が高く、キシレンやクロロホルムには不溶である一方で、アセトニトニルやTHF等の極性溶媒には溶解性を示す。
しかしながら、HATCNの塗布溶媒としてアセトニトリルを用いた場合、HATCN単膜では結晶化が起きる。
これに対して、本発明においては、HATCNにこれと類似の骨格を含む上記のような化合物を混合することにより、HATCNの成膜性を向上させると同時に、電気特性の低下を抑制することを可能とした。
また、上記のようなHATCNに類似する骨格を含む化合物を混合することにより、上述したAD−TMPのように加熱等により架橋させることなく、成膜性の向上を図ることができ、かつ、上層の塗布に用いられる溶媒に対する耐溶媒性が得られる。
HATCN, an organic material that exhibits strong electron acceptor properties, has a structure in which six cyano groups are attached to a hexaazatriphenylene (HAT) skeleton, has high planarity, and is insoluble in xylene and chloroform, while acetonitonyl and It is soluble in polar solvents such as THF.
However, when acetonitrile is used as the coating solvent for HATCN, crystallization occurs in the HATCN single film.
On the other hand, in the present invention, by mixing the above compound containing a similar skeleton with HATCN, it is possible to improve the film formability of HATCN and at the same time suppress the deterioration of the electrical characteristics. It was possible.
Further, by mixing a compound containing a skeleton similar to HATCN as described above, the film formability can be improved without crosslinking by heating or the like as in the above-described AD-TMP, and the upper layer Solvent resistance to the solvent used for coating is obtained.

本発明に係る有機膜に用いられる上記のようなHATCNに類似する骨格を有する化合物の例を下記に示す。   Examples of compounds having a skeleton similar to HATCN as used in the organic film according to the present invention are shown below.

Figure 2015153864
Figure 2015153864

Figure 2015153864
Figure 2015153864

Figure 2015153864
Figure 2015153864

Figure 2015153864
Figure 2015153864

Figure 2015153864
Figure 2015153864

本発明に係る有機膜においては、上記のような化合物を添加してHATCNの溶解性を制御することにより、HATCNを含む該有機膜に隣接する上層の塗布積層が可能となり、有機EL素子や有機薄膜太陽電池等の有機電子デバイス、特に、マルチフォトンエミッション型有機EL素子を塗布プロセスにて作製することが可能となる。   In the organic film according to the present invention, by adding the above compound to control the solubility of HATCN, it is possible to apply and laminate an upper layer adjacent to the organic film containing HATCN. An organic electronic device such as a thin film solar cell, in particular, a multi-photon emission type organic EL element can be produced by a coating process.

図1に、上記のような有機膜を有する本発明に係る有機電子デバイスの層構造は、1対の電極間に少なくとも1層の有機層を備えた構造からなる。有機EL素子を例として、これらの層構造を具体的に示すと、例えば、図1に示すように、陽極1/有機膜2/ホール輸送層3/発光層4/電子注入層5/陰極6の順に積層された層構成が挙げられる。このような層構成において、有機膜2は電子アクセプタ性を発揮し、ホール注入層として機能する。
このように、本発明に係る有機膜は、有機EL素子において、電子アクセプタ層としてホール注入層に好適に適用することができる。
In FIG. 1, the layer structure of the organic electronic device according to the present invention having the organic film as described above has a structure in which at least one organic layer is provided between a pair of electrodes. Taking these examples as an example of an organic EL element, these layer structures are specifically shown, for example, as shown in FIG. 1, anode 1 / organic film 2 / hole transport layer 3 / light emitting layer 4 / electron injection layer 5 / cathode 6 The layer structure laminated | stacked in this order is mentioned. In such a layer structure, the organic film 2 exhibits electron acceptor properties and functions as a hole injection layer.
Thus, the organic film according to the present invention can be suitably applied to a hole injection layer as an electron acceptor layer in an organic EL element.

また、本発明に係る有機電子デバイスは、複数の発光ユニットが電荷発生層を介して直列式に積層されたマルチフォトンエミッション型有機EL素子であってもよく、例えば、陽極/発光ユニット/電荷発生層/発光ユニット/陰極等の層構造が挙げられる。このような有機EL素子においては、本発明に係る有機膜は、前記電荷発生層における電子アクセプタ層として機能し得る。
すなわち、本発明に係る有機膜は、電子アクセプタ層として電荷発生層にも好適に適用することができる。
また、有機薄膜太陽電池にも、同様にして適用することが可能である。
The organic electronic device according to the present invention may be a multi-photon emission type organic EL element in which a plurality of light emitting units are stacked in series via a charge generation layer. For example, anode / light emitting unit / charge generation Examples of the layer structure include layer / light emitting unit / cathode. In such an organic EL element, the organic film according to the present invention can function as an electron acceptor layer in the charge generation layer.
That is, the organic film according to the present invention can be suitably applied to a charge generation layer as an electron acceptor layer.
Further, the present invention can be similarly applied to an organic thin film solar cell.

なお、本発明に係る有機膜が適用される有機EL素子は、上記層構造に限定されるものではなく、電子輸送層、ホール輸送発光層、電子輸送発光層等をも含む公知の積層構造であってもよい。
また、前記有機EL素子の構成層のうち、本発明に係る有機膜以外の層に用いられる成膜材料は、特に限定されるものではなく、公知のものから適宜選択して用いることができ、低分子系又は高分子系のいずれであってもよい。
また、前記有機EL素子の各構成層の膜厚は、各層同士の適応性や求められる全体の層厚さ等を考慮して、適宜状況に応じて定められるが、通常、0.5nm〜5μmの範囲内であることが好ましい。
The organic EL device to which the organic film according to the present invention is applied is not limited to the above layer structure, but has a known laminated structure including an electron transport layer, a hole transport light emitting layer, an electron transport light emitting layer, and the like. There may be.
Moreover, the film-forming material used for layers other than the organic film which concerns on this invention among the structural layers of the said organic EL element is not specifically limited, It can select and use from a well-known thing suitably, Either a low molecular system or a high molecular system may be used.
The film thickness of each constituent layer of the organic EL element is appropriately determined according to the situation in consideration of the adaptability between the layers and the required total layer thickness, but is usually 0.5 nm to 5 μm. It is preferable to be within the range.

上記各層の形成方法は、蒸着法、スパッタリング法等などのドライプロセスでもよいが、本発明は、特に、塗布プロセスにより形成可能である点に利点を有しており、スピンコート法、インクジェット法、キャスティング法、ディップコート法、バーコート法、ブレードコート法、ロールコート法、グラビアコート法、フレキソ印刷法、スプレーコート法、ナノパーティクル分散液を用いる方法等のウェットプロセスを好適に適用することができる。
これにより、簡便で効率的な塗布成膜による有機電子デバイスの作製が可能となる。
The formation method of each of the above layers may be a dry process such as a vapor deposition method, a sputtering method, etc., but the present invention has an advantage in that it can be formed by a coating process, in particular, a spin coating method, an inkjet method, Wet processes such as casting methods, dip coating methods, bar coating methods, blade coating methods, roll coating methods, gravure coating methods, flexographic printing methods, spray coating methods, and methods using nanoparticle dispersions can be suitably applied. .
This makes it possible to produce an organic electronic device by simple and efficient coating film formation.

また、電極は、公知の材料及び構成でよく、特に限定されるものではない。例えば、有機EL素子の場合には、ガラスやポリマーからなる透明基板上に透明導電性薄膜が形成されたものが用いられ、ガラス基板に陽極として酸化インジウム錫(ITO)電極が形成された、いわゆるITO基板が一般的である。一方、陰極は、Al等の仕事関数の小さい(4eV以下)金属や合金、導電性化合物により構成される。   Moreover, a well-known material and structure may be sufficient as an electrode, and it does not specifically limit. For example, in the case of an organic EL device, a transparent conductive thin film formed on a transparent substrate made of glass or polymer is used, and an indium tin oxide (ITO) electrode is formed on the glass substrate as an anode, so-called An ITO substrate is common. On the other hand, the cathode is composed of a metal, alloy, or conductive compound having a small work function (4 eV or less) such as Al.

以下、本発明を実施例に基づきさらに具体的に説明するが、本発明は下記実施例に限定されるものではない。なお、下記実施例においては、HATCNに対する混合物としてPPDNを代表例として用いたものを示す。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not limited to the following Example. In addition, in the following Example, what used PPDN as a representative example as a mixture with respect to HATCN is shown.

(溶解性試験)
PPDN1mgにTHF、アセトニトリル、クロロベンゼン、p−キシレン各1mlを加え、40℃で5時間加熱撹拌を行い、溶解性を調べた。
なお、比較のため、架橋性化合物であるAD−TMPについても同様にして溶解性を調べた。
(Solubility test)
1 mg each of THF, acetonitrile, chlorobenzene, and p-xylene was added to 1 mg of PPDN, and the mixture was heated and stirred at 40 ° C. for 5 hours to examine the solubility.
For comparison, the solubility of AD-TMP, which is a crosslinkable compound, was similarly examined.

その結果、いずれも、各溶媒に対して溶解性を示した。HATCNは、クロロベンゼンやp−キシレンに対して溶解性を示さないため、HATCNとPPDNは、THF又はアセトニトリル溶液として混合可能であると言える。   As a result, all showed solubility in each solvent. Since HATCN does not exhibit solubility in chlorobenzene or p-xylene, it can be said that HATCN and PPDN can be mixed as a THF or acetonitrile solution.

(耐溶媒性試験)
石英基板上に90wt%HATCNと10wt%PPDNの混合物のアセトニトリル溶液を塗布し、180℃で10分間熱処理して成膜した。その上に、ドナー層(ホール輸送層)の塗布溶媒として用いられるp−キシレンをスピンコート(空スピンコート)し、その前後における吸光度を測定することにより、塗布膜の耐溶媒性を評価した。
(Solvent resistance test)
An acetonitrile solution of a mixture of 90 wt% HATCN and 10 wt% PPDN was applied on a quartz substrate and heat-treated at 180 ° C. for 10 minutes to form a film. On top of that, p-xylene used as a coating solvent for the donor layer (hole transport layer) was spin-coated (empty spin coating), and the absorbance before and after that was measured to evaluate the solvent resistance of the coated film.

図2に、吸光度の測定結果のグラフを示す。
図2から分かるように、空スピンコートの前後で吸光度の変化は見られなかった。このことから、塗布膜への溶媒の浸透は抑制され、p−キシレンに対する耐溶媒性が認められた。
FIG. 2 shows a graph of absorbance measurement results.
As can be seen from FIG. 2, no change in absorbance was observed before and after the empty spin coating. From this, the permeation | transmission of the solvent to a coating film was suppressed and the solvent resistance with respect to p-xylene was recognized.

(塗布型有機EL素子の作製1)
[実施例1]
図1に示すような層構成からなる有機EL素子を作製した。ガラス基板上にITOを備えた透明電極(陽極)1の上に、電子アクセプタHATCN(90wt%)とPPDN(10%)の混合物からなる有機膜2と、ホール輸送層3としてインターレイヤー(IL)(住友化学株式会社製HT−12)と、発光層4として緑色蛍光ポリマーF8BT(住友化学株式会社製)、電子注入層5としてリチウム−8−キノリノラート(Liq)を順にスピンコートにより成膜した。その上に、陰極6としてAlを真空蒸着した。
なお、スピンコートに用いた溶液における溶媒は、HATCN(90wt%)とPPDN(10%)の混合物はTHF、IL及びF8BTはp−キシレン、Liqは2−エトキシエタノールを用いた。
上記のようにして作製した有機EL素子の層構成を簡略化して表すと、ITO(130nm)/HATCN:PPDN(10nm)/IL(20nm)/F8BT(80nm)/Liq(1nm)/Al(100nm)である。
(Preparation of coating type organic EL device 1)
[Example 1]
An organic EL element having a layer structure as shown in FIG. 1 was produced. On a transparent electrode (anode) 1 having ITO on a glass substrate, an organic film 2 made of a mixture of electron acceptor HATCN (90 wt%) and PPDN (10%), and an interlayer (IL) as a hole transport layer 3 (HT-12 manufactured by Sumitomo Chemical Co., Ltd.), green fluorescent polymer F8BT (manufactured by Sumitomo Chemical Co., Ltd.) as the light emitting layer 4, and lithium-8-quinolinolato (Liq) as the electron injection layer 5 were sequentially formed by spin coating. On top of that, Al was vacuum deposited as a cathode 6.
As a solvent in the solution used for spin coating, a mixture of HATCN (90 wt%) and PPDN (10%) was THF, IL and F8BT were p-xylene, and Liq was 2-ethoxyethanol.
When the layer structure of the organic EL device produced as described above is expressed in a simplified manner, ITO (130 nm) / HATCN: PPDN (10 nm) / IL (20 nm) / F8BT (80 nm) / Liq (1 nm) / Al (100 nm) ).

[比較例1]
上記実施例1におけるPPDNに代えて、AD−TMPを用い、それ以外については実施例1と同様にして、有機EL素子を作製した。
上記のようにして作製した有機EL素子の層構成を簡略化して表すと、ITO(130nm)/HATCN:AD−TMP(10nm)/IL(20nm)/F8BT(80nm)/Liq(1nm)/Al(100nm)である。
[Comparative Example 1]
An organic EL element was produced in the same manner as in Example 1 except that AD-TMP was used instead of PPDN in Example 1 above.
When the layer structure of the organic EL device produced as described above is expressed in a simplified manner, ITO (130 nm) / HATCN: AD-TMP (10 nm) / IL (20 nm) / F8BT (80 nm) / Liq (1 nm) / Al (100 nm).

図3に、上記実施例1(HATCN:PPDN)及び比較例1(HATCN:AD−TMP)の電流密度−電圧特性のグラフを示す。
図3に示したグラフからも分かるように、HATCN:PPDN混合物からなる有機膜を用いた素子(実施例1)は、HATCN:AD−TMP混合塗布膜を用いた素子(比較例1)と比較して、より低電圧化を示すことが認められた。また、HATCN:PPDN混合物からなる有機膜上に、p−キシレン溶液により塗布積層した場合においても、良好な電荷発生特性を発現していると言える。
FIG. 3 shows a graph of current density-voltage characteristics of Example 1 (HATCN: PPDN) and Comparative Example 1 (HATCN: AD-TMP).
As can be seen from the graph shown in FIG. 3, the device using the organic film made of the HATCN: PPDN mixture (Example 1) is compared with the device using the HATCN: AD-TMP mixed coating film (Comparative Example 1). As a result, it was confirmed that a lower voltage was exhibited. In addition, it can be said that good charge generation characteristics are exhibited even when an organic film made of a HATCN: PPDN mixture is coated and laminated with a p-xylene solution.

(塗布型有機EL素子の作製2)
[実施例2]
図1に示すような層構成からなる有機EL素子を作製した。ガラス基板上にITOを備えた透明電極(陽極)1の上に、電子アクセプタHATCN(90wt%)とPPDN(10%)の混合物からなる有機膜2と、ホール輸送層3としてpolyTPDと、発光層4として青色蛍光ポリマーBlue1(住友化学株式会社製)、電子注入層5として炭酸セシウム(Cs2CO3)を順にスピンコートにより成膜した。その上に、陰極6としてAlを真空蒸着した。
なお、スピンコートに用いた溶液における溶媒は、HATCN(90wt%)とPPDN(10%)の混合物はTHF、polyTPDはクロロベンゼン、Blue1はp−キシレン、Cs2CO3は2−エトキシエタノールを用いた。
上記のようにして作製した有機EL素子の層構成を簡略化して表すと、ITO(130nm)/HATCN:PPDN(10nm)/polyTPD(20nm)/Blue1(70nm)/Cs2CO3(1nm)/Al(100nm)である。
なお、polyTPDの構造式を下記に示す。
(Production of coating type organic EL element 2)
[Example 2]
An organic EL element having a layer structure as shown in FIG. 1 was produced. On a transparent electrode (anode) 1 having ITO on a glass substrate, an organic film 2 made of a mixture of electron acceptor HATCN (90 wt%) and PPDN (10%), polyTPD as a hole transport layer 3, and a light emitting layer A blue fluorescent polymer Blue 1 (manufactured by Sumitomo Chemical Co., Ltd.) as 4 and a cesium carbonate (Cs 2 CO 3 ) as the electron injection layer 5 were sequentially formed by spin coating. On top of that, Al was vacuum deposited as a cathode 6.
As a solvent in the solution used for spin coating, a mixture of HATCN (90 wt%) and PPDN (10%) was THF, polyTPD was chlorobenzene, Blue 1 was p-xylene, and Cs 2 CO 3 was 2-ethoxyethanol. .
When the layer structure of the organic EL device produced as described above is expressed in a simplified manner, ITO (130 nm) / HATCN: PPDN (10 nm) / polyTPD (20 nm) / Blue1 (70 nm) / Cs 2 CO 3 (1 nm) / Al (100 nm).
The structural formula of polyTPD is shown below.

Figure 2015153864
Figure 2015153864

[比較例2]
上記実施例1におけるPPDNに代えて、AD−TMPを用い、それ以外については実施例2と同様にして、有機EL素子を作製した。
上記のようにして作製した有機EL素子の層構成を簡略化して表すと、ITO(130nm)/HATCN:AD−TMP(10nm)/polyTPD(20nm)/Blue1(70nm)/Cs2CO3(1nm)/Al(100nm)である。
[Comparative Example 2]
An organic EL element was produced in the same manner as in Example 2 except that AD-TMP was used instead of PPDN in Example 1 above.
When the layer structure of the organic EL device produced as described above is expressed in a simplified manner, ITO (130 nm) / HATCN: AD-TMP (10 nm) / polyTPD (20 nm) / Blue1 (70 nm) / Cs 2 CO 3 (1 nm) ) / Al (100 nm).

図4に、上記実施例2(HATCN:PPDN)及び比較例2(HATCN:AD−TMP)の電流密度−電圧特性のグラフを示す。
図4に示したグラフからも分かるように、HATCN:PPDN混合物からなる有機膜を用いた素子(実施例2)は、HATCN:AD−TMP混合塗布膜を用いた素子(比較例2)と比較して、より低電圧化を示すことが認められた。また、HATCN:PPDN混合物からなる有機膜上に、クロロベンゼン溶液により塗布積層した場合においても、良好な電荷発生特性を発現していると言える。
FIG. 4 shows a graph of current density-voltage characteristics of Example 2 (HATCN: PPDN) and Comparative Example 2 (HATCN: AD-TMP).
As can be seen from the graph shown in FIG. 4, the device using the organic film made of the HATCN: PPDN mixture (Example 2) is compared with the device using the HATCN: AD-TMP mixed coating film (Comparative Example 2). As a result, it was confirmed that a lower voltage was exhibited. In addition, it can be said that good charge generation characteristics are exhibited even when an organic film made of a HATCN: PPDN mixture is coated and laminated with a chlorobenzene solution.

(塗布型有機EL素子の作製3)
[実施例3]
ガラス基板上にITOを備えた透明電極(陽極)の上に、電子アクセプタHATCN(90wt%)とPPDN(10%)の混合物からなる有機膜と、ホール輸送層としてpolyTPDと、発光層として青色低分子蛍光材料DPAVBi(10wt%):TPT1(45wt%):TrisPCz(45wt%)、電子輸送層としてTPBiを順にスピンコートにより成膜した。その上に、LiqとAlを真空蒸着した。
なお、スピンコートに用いた溶液における溶媒は、HATCN(90wt%)とPPDN(10%)の混合物はアセトニトリル、polyTPDはクロロベンゼン、DPAVBi:TPT1:TrisPCzは酢酸ブチル、TPBiはメタノールを用いた。
上記のようにして作製した有機EL素子の層構成を簡略化して表すと、ITO(45nm)/HATCN:PPDN(10nm)/polyTPD(40nm)/DPAVBi:TPT1:TrisPCz(30nm)/TPBi(50nm)/Liq(3nm)/Al(100nm)である。
なお、TPBiの構造式を下記に示す。
(Preparation of coating type organic EL element 3)
[Example 3]
On a transparent electrode (anode) provided with ITO on a glass substrate, an organic film made of a mixture of electron acceptor HATCN (90 wt%) and PPDN (10%), polyTPD as a hole transport layer, and blue low as a light emitting layer. Molecular fluorescent material DPAVBi (10 wt%): TPT1 (45 wt%): TrisPCz (45 wt%), and TPBi as an electron transport layer were sequentially formed by spin coating. On top of that, Liq and Al were vacuum deposited.
As a solvent in the solution used for spin coating, a mixture of HATCN (90 wt%) and PPDN (10%) was acetonitrile, polyTPD was chlorobenzene, DPAVBi: TPT1: TrisPCz was butyl acetate, and TPBi was methanol.
When the layer structure of the organic EL device produced as described above is expressed in a simplified manner, ITO (45 nm) / HATCN: PPDN (10 nm) / polyTPD (40 nm) / DPAVBi: TPT1: TrisPCz (30 nm) / TPBi (50 nm) / Liq (3 nm) / Al (100 nm).
The structural formula of TPBi is shown below.

Figure 2015153864
Figure 2015153864

[比較例3]
上記実施例3におけるHATCN:PPDNに代えて、PEDOT:PSS(ヘレウス株式会社製CleviousTM P VP CH8000)を用い、それ以外については実施例3と同様にして、有機EL素子を作製した。
上記のようにして作製した有機EL素子の層構成を簡略化して表すと、ITO(45nm)/PEDOT:PSS(30nm)/PolyTPD(40nm)/DPAVBi:TPT1:TrisPCz(30nm)/TPBi(50nm)/Liq(3nm)/Al(100nm)である。
[Comparative Example 3]
An organic EL device was produced in the same manner as in Example 3 except that PEDOT: PSS (Clevious PVP CH8000 manufactured by Heraeus Co., Ltd.) was used instead of HATCN: PPDN in Example 3.
When the layer structure of the organic EL device produced as described above is expressed in a simplified manner, ITO (45 nm) / PEDOT: PSS (30 nm) / PolyTPD (40 nm) / DPAVBi: TPT1: TrisPCz (30 nm) / TPBi (50 nm) / Liq (3 nm) / Al (100 nm).

図5,6に、上記実施例3(HATCN:PPDN)及び比較例3(PEDOT:PSS)の電流密度−電圧特性及び外部量子効率−電流密度特性のグラフをそれぞれ示す。
図5,6に示したグラフからも分かるように、HATCN:PPDN混合物からなる有機膜を用いた素子(実施例3)は、汎用的なホール注入材料であるPEDOT:PSSを用いた素子(比較例3)と比較して、より低電圧化を示し、効率も向上することが認められた。
5 and 6 show graphs of current density-voltage characteristics and external quantum efficiency-current density characteristics of Example 3 (HATCN: PPDN) and Comparative Example 3 (PEDOT: PSS), respectively.
As can be seen from the graphs shown in FIGS. 5 and 6, the element using the organic film made of the HATCN: PPDN mixture (Example 3) is an element using PEDOT: PSS which is a general hole injection material (comparison). Compared to Example 3), it was found that the voltage was lower and the efficiency was improved.

(塗布型有機EL素子の作製4)
[実施例4]
2つの発光ユニットを備えたマルチフォトンエミッション型有機EL素子を作製した。ガラス基板上にITOを備えた透明電極(陽極)の上に、PEDOT:PSS、ホール輸送ポリマー(IL)、緑色蛍光ポリマーF8BT、ZnO微粒子、PEIE(重量平均分子量約70,000)、HATCN(90wt%)とPPDN(10%)の混合物からなる有機膜、ホール輸送ポリマー(polyTPD)、緑色蛍光ポリマーF8BT、Liqを順にスピンコートにより成膜した。その上に、Alを真空蒸着した。
なお、スピンコートに用いた溶液における溶媒は、HATCN(90wt%)とPPDN(10%)の混合物はアセトニトリル、IL及びF8BTはp−キシレン、ZnOは2−エトキシエタノール:クロロホルム=4:1、PEIE及びLiqは2−エトキシエタノールを用いた。
上記のようにして作製した有機EL素子の層構成を簡略化して表すと、ITO(130nm)/PEDOT:PSS(30nm)/IL(20nm)/F8BT(120nm)/ZnO(10nm)/PEIE(20nm)/HATCN:PPDN(10nm)/polyTPD(20nm)/F8BT(80nm)/Liq(1nm)/Al(100nm)である。
なお、PEIEの構造式を下記に示す。
(Preparation of coating type organic EL element 4)
[Example 4]
A multi-photon emission type organic EL device provided with two light emitting units was produced. On a transparent electrode (anode) provided with ITO on a glass substrate, PEDOT: PSS, hole transport polymer (IL), green fluorescent polymer F8BT, ZnO fine particles, PEIE (weight average molecular weight about 70,000), HATCN (90 wt) %) And PPDN (10%), a hole transport polymer (polyTPD), a green fluorescent polymer F8BT, and Liq were sequentially formed by spin coating. On top of that, Al was vacuum deposited.
In addition, the solvent in the solution used for the spin coating was acetonitril (90 wt%) and PPDN (10%) in acetonitrile, IL and F8BT in p-xylene, ZnO in 2-ethoxyethanol: chloroform = 4: 1, PEIE. And Liq used 2-ethoxyethanol.
When the layer structure of the organic EL device produced as described above is simplified, ITO (130 nm) / PEDOT: PSS (30 nm) / IL (20 nm) / F8BT (120 nm) / ZnO (10 nm) / PEIE (20 nm) ) / HATCN: PPDN (10 nm) / polyTPD (20 nm) / F8BT (80 nm) / Liq (1 nm) / Al (100 nm).
The structural formula of PEIE is shown below.

Figure 2015153864
Figure 2015153864

図7に、上記実施例4の電流効率−電流密度特性のグラフを示す。図7のグラフに示したように、HATCN:PPDN混合物からなる有機膜を中間の電荷発生層に用いて、2つのELユニットを塗布積層したマルチフォトンエミッション型有機EL素子は、積層した2つのELユニットからの発光により高い電流効率が得られることが認められた。
このことから、塗布成膜したHATCN:PPDN混合物からなる有機膜は、マルチフォトンエミッション型有機EL素子における中間の電荷発生層における電子アクセプタ層として良好に機能し得ると言える。
In FIG. 7, the graph of the current efficiency-current density characteristic of the said Example 4 is shown. As shown in the graph of FIG. 7, the multi-photon emission type organic EL device in which two EL units are coated and laminated using an organic film made of a HATCN: PPDN mixture as an intermediate charge generation layer is composed of two stacked ELs. It was observed that high current efficiency was obtained by light emission from the unit.
From this, it can be said that the organic film made of the HATCN: PPDN mixture formed by coating can function well as an electron acceptor layer in an intermediate charge generation layer in the multiphoton emission type organic EL device.

1 陽極
2 有機膜
3 ホール輸送層
4 発光層
5 電子注入層
6 陰極
DESCRIPTION OF SYMBOLS 1 Anode 2 Organic film 3 Hole transport layer 4 Light emitting layer 5 Electron injection layer 6 Cathode

Claims (5)

下記(化1)に示すHATCNに、下記(化2)に示すキノキサリン骨格又は下記(化3)に示す2,3−ジシアノピラジン骨格を含む化合物が添加された塗布膜であることを特徴とする有機膜。
Figure 2015153864
Figure 2015153864
Figure 2015153864
It is a coating film in which a compound containing a quinoxaline skeleton shown in the following (Chemical Formula 2) or a 2,3-dicyanopyrazine skeleton shown in the following (Chemical Formula 3) is added to the HATCN shown in the following (Chemical Formula 1). Organic membrane.
Figure 2015153864
Figure 2015153864
Figure 2015153864
請求項1記載の有機膜が用いられていることを特徴とする有機電子デバイス。   An organic electronic device using the organic film according to claim 1. 前記有機電子デバイスが有機エレクトロルミネッセンス素子又は有機薄膜太陽電池であることを特徴とする請求項2記載の有機電子デバイス。   The organic electronic device according to claim 2, wherein the organic electronic device is an organic electroluminescence element or an organic thin film solar cell. 前記有機電子デバイスが有機エレクトロルミネッセンス素子であり、前記有機膜が電子アクセプタ層としてホール注入層に用いられていることを特徴とする請求項2記載の有機電子デバイス。   3. The organic electronic device according to claim 2, wherein the organic electronic device is an organic electroluminescent element, and the organic film is used as a hole injection layer as an electron acceptor layer. 前記有機電子デバイスが、複数の発光ユニットが電荷発生層を介して直列式に積層されたマルチフォトンエミッション型有機エレクトロルミネッセンス素子であり、前記有機膜が電子アクセプタ層として電荷発生層に用いられていることを特徴とする請求項2記載の有機電子デバイス。   The organic electronic device is a multi-photon emission type organic electroluminescence element in which a plurality of light emitting units are stacked in series via a charge generation layer, and the organic film is used as a charge generation layer as an electron acceptor layer The organic electronic device according to claim 2.
JP2014025661A 2014-02-13 2014-02-13 Organic film and organic electronic device Pending JP2015153864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014025661A JP2015153864A (en) 2014-02-13 2014-02-13 Organic film and organic electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014025661A JP2015153864A (en) 2014-02-13 2014-02-13 Organic film and organic electronic device

Publications (1)

Publication Number Publication Date
JP2015153864A true JP2015153864A (en) 2015-08-24

Family

ID=53895839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014025661A Pending JP2015153864A (en) 2014-02-13 2014-02-13 Organic film and organic electronic device

Country Status (1)

Country Link
JP (1) JP2015153864A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013533A1 (en) * 2014-07-23 2016-01-28 日産化学工業株式会社 Charge transport material
WO2016147877A1 (en) * 2015-03-13 2016-09-22 日産化学工業株式会社 Composition for forming charge-transporting thin film for organic electroluminescent elements, charge-transporting thin film for organic electroluminescent elements, and organic electroluminescent element
JP2017043580A (en) * 2015-08-28 2017-03-02 学校法人近畿大学 Semiconductor material
KR20180080197A (en) 2015-11-10 2018-07-11 고쿠리쓰다이가쿠호진 규슈다이가쿠 Dicyanopyrazine compound, luminescent material, luminescent device using the same, and production method of 2,5-dicyano-3,6-dihalogenopyrazine
KR20190085138A (en) 2017-01-13 2019-07-17 고쿠리쓰다이가쿠호진 규슈다이가쿠 Dicyano N-heterocyclic compound, luminescent material and luminescent element using the same
US10556864B2 (en) 2007-12-03 2020-02-11 Semiconductor Energy Laboratory Co., Ltd. Carbazole derivative, and light-emitting element, light-emitting device, and electronic device using the carbazole derivative

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013678A2 (en) * 2005-07-27 2007-02-01 Denka Singapore Private Limited Carbon black, method for producing the same, and its use
JP2008532229A (en) * 2005-02-23 2008-08-14 イーストマン コダック カンパニー Tandem OLED with organic intermediate connection layer
WO2008120626A1 (en) * 2007-04-03 2008-10-09 Idemitsu Kosan Co., Ltd. Light emitting device
JP2010165672A (en) * 2008-12-17 2010-07-29 Semiconductor Energy Lab Co Ltd Light-emitting element, light-emitting device, and electronic apparatus
JP2010209141A (en) * 2009-03-06 2010-09-24 Dainippon Printing Co Ltd Quantum dot light-emitting material, and light-emitting device
WO2013122182A1 (en) * 2012-02-15 2013-08-22 国立大学法人山形大学 Organic electroluminescent element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532229A (en) * 2005-02-23 2008-08-14 イーストマン コダック カンパニー Tandem OLED with organic intermediate connection layer
WO2007013678A2 (en) * 2005-07-27 2007-02-01 Denka Singapore Private Limited Carbon black, method for producing the same, and its use
WO2008120626A1 (en) * 2007-04-03 2008-10-09 Idemitsu Kosan Co., Ltd. Light emitting device
JP2010165672A (en) * 2008-12-17 2010-07-29 Semiconductor Energy Lab Co Ltd Light-emitting element, light-emitting device, and electronic apparatus
JP2010209141A (en) * 2009-03-06 2010-09-24 Dainippon Printing Co Ltd Quantum dot light-emitting material, and light-emitting device
WO2013122182A1 (en) * 2012-02-15 2013-08-22 国立大学法人山形大学 Organic electroluminescent element

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10556864B2 (en) 2007-12-03 2020-02-11 Semiconductor Energy Laboratory Co., Ltd. Carbazole derivative, and light-emitting element, light-emitting device, and electronic device using the carbazole derivative
WO2016013533A1 (en) * 2014-07-23 2016-01-28 日産化学工業株式会社 Charge transport material
JPWO2016013533A1 (en) * 2014-07-23 2017-05-25 日産化学工業株式会社 Charge transport material
US10153439B2 (en) 2014-07-23 2018-12-11 Nissan Chemical Industries, Ltd. Charge transport material
WO2016147877A1 (en) * 2015-03-13 2016-09-22 日産化学工業株式会社 Composition for forming charge-transporting thin film for organic electroluminescent elements, charge-transporting thin film for organic electroluminescent elements, and organic electroluminescent element
JP2017043580A (en) * 2015-08-28 2017-03-02 学校法人近畿大学 Semiconductor material
US10522763B2 (en) 2015-11-10 2019-12-31 Kyushu University, National Universit Corporation Dicyanopyrazine compound, luminescent material, luminescence device using the same, and method for producing 2,5-dicyano-3,6-dihalogenopyrazine
US10399960B2 (en) 2015-11-10 2019-09-03 Kyushu University, National University Corporation Dicyanopyrazine compound, luminescent material, luminescence device using the same, and method for producing 2,5-dicyano-3,6-dihalogenopyrazine
US10497878B2 (en) 2015-11-10 2019-12-03 Kyushu University, National University Corporation Dicyanopyrazine compound, luminescent material, luminescence device using the same, and method for producing 2,5-dicyano-3,6-dihalogenopyrazine
KR20180080197A (en) 2015-11-10 2018-07-11 고쿠리쓰다이가쿠호진 규슈다이가쿠 Dicyanopyrazine compound, luminescent material, luminescent device using the same, and production method of 2,5-dicyano-3,6-dihalogenopyrazine
EP3882243A1 (en) 2015-11-10 2021-09-22 Kyushu University National University Corporation Dicyanopyrazine compound, luminescent material and light transmitter using same
EP3882236A1 (en) 2015-11-10 2021-09-22 Kyushu University National University Corporation Production method for 2,5-dicyano-3,6-dihalogenopyrazine
KR20230093541A (en) 2015-11-10 2023-06-27 고쿠리쓰다이가쿠호진 규슈다이가쿠 Dicyanopyrazine compound, luminescent material, light transmitter using same, and production method for 2,5-dicyano-3,6-dihalogenopyrazine
KR20190085138A (en) 2017-01-13 2019-07-17 고쿠리쓰다이가쿠호진 규슈다이가쿠 Dicyano N-heterocyclic compound, luminescent material and luminescent element using the same
US11279680B2 (en) 2017-01-13 2022-03-22 Kyushu University, National University Corporation Dicyano N-heterocyclic compound, light-emitting material, and light-emitting element in which same is used

Similar Documents

Publication Publication Date Title
KR101684041B1 (en) Organic electroluminescent element
KR101639855B1 (en) Organic electronic device and method for manufacturing same
KR101311934B1 (en) Composition for organic photoelectric device and organic photoelectric device using the same
CN104380494B (en) Organic electroluminescent device, organic electroluminescent luminous device and organic electroluminescence display device and method of manufacturing same
KR101974233B1 (en) Organic electro luminescence device
JP2015153864A (en) Organic film and organic electronic device
CN107852793B (en) Organic thin film laminate and organic electroluminescent element
WO2007091548A1 (en) Organic electroluminescent element
CN105849227A (en) Organic electroluminescent device
JP2014239048A (en) Organic light-emitting element
CN103554011B (en) A kind of containing anthracene derivative, preparation method and application thereof
JP6549434B2 (en) Method of manufacturing organic electroluminescent device
JP2010195980A (en) Solution or dispersion of polythiophene or thiophene copolymer and method for producing the same
KR102487514B1 (en) Organic electro luminescence device
KR101297162B1 (en) Composition for organic photoelectric device and organic photoelectric device using the same
TWI692892B (en) Organic el element
TWI821170B (en) Non-aqueous coating compositions containing sulfonated conjugated polymers
KR20150077587A (en) Organic electro luminescence device
DE102014223952A1 (en) Organic light-emitting devices and methods
JP6156797B2 (en) Organic electronic devices
JP6908272B2 (en) Organic EL device using ionic compound carrier injection material
JP6278347B2 (en) Organic electroluminescence device
Liu et al. Inkjet printed organic light-emitting diodes employing organometal-halide perovskite as hole transport layer
TWI814728B (en) Non-aqueous ink composition
JP2015151464A (en) Polymer semiconductor layer and organic electronic device prepared using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180621