TWI692892B - Organic el element - Google Patents

Organic el element Download PDF

Info

Publication number
TWI692892B
TWI692892B TW105103271A TW105103271A TWI692892B TW I692892 B TWI692892 B TW I692892B TW 105103271 A TW105103271 A TW 105103271A TW 105103271 A TW105103271 A TW 105103271A TW I692892 B TWI692892 B TW I692892B
Authority
TW
Taiwan
Prior art keywords
layer
electron transport
organic
light
cathode
Prior art date
Application number
TW105103271A
Other languages
Chinese (zh)
Other versions
TW201639210A (en
Inventor
源千
岩崎正剛
関口泰広
Original Assignee
日商住友化學股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商住友化學股份有限公司 filed Critical 日商住友化學股份有限公司
Publication of TW201639210A publication Critical patent/TW201639210A/en
Application granted granted Critical
Publication of TWI692892B publication Critical patent/TWI692892B/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/865Intermediate layers comprising a mixture of materials of the adjoining active layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/186Metal complexes of the light metals other than alkali metals and alkaline earth metals, i.e. Be, Al or Mg

Abstract

The present invention provides an organic EL element capable of further improving driving stability. One embodiment of the organic EL element (1) contains an anode (E1), a cathode (E2) and a light emitting layer provides between the anode and the cathode, and contains a multilayer-type electron transport layer (14) provided between the light emitting layer and the cathode layer. The multilayer-type electron transport layer (14) contains: an electron transport layer (14a) which contains an electron transporting material, and a light-emitting-side mixture layer (14b) which is provided between the electron transport layer and the light emitting layer and contacts with the light emitting layer and is thinner than the electron transport layer. The light-emitting-side mixture layer contains both an electron transporting material and an organic metal chelate compound.

Description

有機EL元件 Organic EL element

本發明係有關於一種有機EL元件。 The present invention relates to an organic EL device.

在有機電致發光元件(以下,有時稱為「有機EL元件」),係被要求提升元件壽命,亦即提升驅動安定性。例如,在專利文獻1所記載的技術,係在基板上層積有陽極、發光層及陰極之有機EL元件,藉由設置與發光層相接之電洞阻擋層來謀求提升驅動安定性。 In organic electroluminescent devices (hereinafter, sometimes referred to as "organic EL devices"), it is required to increase the life of the device, that is, to improve drive stability. For example, the technique described in Patent Document 1 is an organic EL device in which an anode, a light-emitting layer, and a cathode are stacked on a substrate, and a hole blocking layer in contact with the light-emitting layer is provided to improve driving stability.

[先前技術文獻] [Prior Technical Literature]

[專利文獻] [Patent Literature]

[專利文獻1]日本特許第4325197號公報 [Patent Document 1] Japanese Patent No. 4325197

但是,近年來被要求進一步提升有機EL元件的驅動安定性。 However, in recent years, it has been required to further improve the driving stability of organic EL elements.

因而,本發明之目的,係提供一種能夠進一步提升驅動安定性之有機EL元件。 Therefore, the object of the present invention is to provide an organic EL device which can further improve the driving stability.

本發明的一態樣之有機EL元件,係具備陽 極、陰極、及配置在陽極與陰極之間的發光層,前述有機EL元件係具備設置在發光層與陰極之間之多層型電子傳輸層,該多層型電子傳輸層具有:電子傳輸層,其係含有電子輸送材料;及發光層側混合層,其係在電子傳輸層與發光層之間且與發光層相接而設置,而且比電子傳輸層更薄;該發光層側混合層係同時含有電子輸送材料及有機金屬錯合物化合物。 The organic EL device according to one aspect of the present invention has Electrodes, a cathode, and a light-emitting layer disposed between the anode and the cathode, the organic EL element includes a multilayer electron transport layer provided between the light-emitting layer and the cathode, the multilayer electron transport layer having: an electron transport layer, which It contains an electron transport material; and a mixed layer on the light emitting layer side, which is provided between the electron transport layer and the light emitting layer and in contact with the light emitting layer, and is thinner than the electron transport layer; the mixed layer on the light emitting layer side also contains Electron transport materials and organic metal complex compounds.

在上述構成,係具備具有發光層側混合層、及電子傳輸層之多層側電子傳輸層。而且,因為與發光層相接而設置之發光層側混合層,係除了電子輸送材料以外亦含有有機金屬錯合物化合物,所以能夠謀求提升驅動安定性。 In the above configuration, it is provided with a multi-layer side electron transport layer having a light emitting layer side mixed layer and an electron transport layer. Furthermore, since the mixed layer on the light emitting layer side provided in contact with the light emitting layer contains an organometallic complex compound in addition to the electron transport material, it is possible to improve driving stability.

在一實施形態,上述多層型電子傳輸層係進一步具備陰極側混合層,其係比電子傳輸層更靠近陰極側且與電子傳輸層相接而設置,陰極側混合層亦可同時含有電子輸送材料及有機金屬錯合物化合物。 In one embodiment, the multi-layer electron transport layer further includes a cathode side mixed layer, which is closer to the cathode side than the electron transport layer and is provided in contact with the electron transport layer. The cathode side mixed layer may also contain an electron transport material And organometallic complex compounds.

該構成之多層型電子傳輸層,係具在比電子傳輸層更靠近陰極側具有陰極側混合層。因為陰極側混合層除了電子輸送材料以外,亦含有有機金屬錯合物化合物,所以能夠使從陰極往電子傳輸層之電子注入更有效率化。其結果,能夠謀求降低驅動電壓。 The multi-layer electron transport layer of this configuration has a cathode side mixing layer closer to the cathode side than the electron transport layer. Since the cathode-side mixed layer contains an organometallic complex compound in addition to the electron transport material, electron injection from the cathode to the electron transport layer can be made more efficient. As a result, it is possible to reduce the driving voltage.

在一實施形態,多層型電子傳輸層,亦可在發光層側混合層與電子傳輸層之間進一步具有金屬層。藉此,能夠謀求降低驅動電壓。 In one embodiment, the multilayer electron transport layer may further have a metal layer between the light-emitting layer side mixed layer and the electron transport layer. With this, it is possible to reduce the driving voltage.

在一實施形態,上述發光層側混合層的厚度可為2nm至20nm。這是因為發光層側混合層的厚度小於2nm時容易產生針孔,發光層側混合層的厚度大於20nm時多層型電子傳輸層全體的厚度變為較厚且驅動電壓變高之緣故。 In one embodiment, the thickness of the mixed layer on the light-emitting layer side may be 2 nm to 20 nm. This is because pinholes are likely to occur when the thickness of the mixed layer on the light emitting layer side is less than 2 nm, and when the thickness of the mixed layer on the light emitting layer side is greater than 20 nm, the thickness of the entire multilayer electron transport layer becomes thicker and the driving voltage becomes higher.

在一實施形態,在上述發光層側混合層所含有的有機金屬錯合物化合物,亦可為8-喹啉酚鈉。 In one embodiment, the organometallic complex compound contained in the mixed layer on the light-emitting layer side may be 8-quinolinol sodium.

依照本發明,能夠提供一種能夠進一步提升驅動安定性之有機EL元件。 According to the present invention, it is possible to provide an organic EL element capable of further improving driving stability.

1、2‧‧‧有機EL元件 1, 2‧‧‧ organic EL element

11‧‧‧電洞注入層 11‧‧‧hole injection layer

12‧‧‧電洞傳輸層 12‧‧‧Electric tunnel transmission layer

13‧‧‧發光層 13‧‧‧luminous layer

14、14A‧‧‧多層型電子傳輸層 14, 14A‧‧‧Multi-layer electron transport layer

14a‧‧‧電子傳輸層 14a‧‧‧Electronic transmission layer

14b‧‧‧第1混合層(發光層側混合層) 14b‧‧‧The first mixed layer (the mixed layer on the light emitting layer side)

14c‧‧‧第2混合層(陰極側混合層) 14c‧‧‧The second mixed layer (cathode side mixed layer)

14d‧‧‧金屬層 14d‧‧‧Metal layer

E1‧‧‧陽極 E1‧‧‧Anode

E2‧‧‧陰極 E2‧‧‧Cathode

P‧‧‧基板 P‧‧‧Substrate

第1圖係示意性地顯示一實施形態之有機EL元件的結構之圖式。 FIG. 1 is a diagram schematically showing the structure of an organic EL device according to an embodiment.

第2圖係示意性地顯示另外的實施形態之有機EL元件的結構之圖式。 FIG. 2 is a diagram schematically showing the structure of an organic EL device of another embodiment.

以下,邊參照圖式邊說明本發明的實施形態而進行說明。針對相同的要素係附加相同符號。重複的說明係省略。圖式的尺寸比率未必與說明一致。 Hereinafter, the embodiment of the present invention will be described with reference to the drawings. The same symbols are attached to the same elements. Duplicate description is omitted. The size ratio of the drawings may not be consistent with the description.

(第1實施形態) (First embodiment)

如第1圖示意性地顯示之第1實施形態之有機EL元件1,係依照下列順序在基板P上設置陽極E1、電洞注入層11、電洞傳輸層12、發光層13、多層型電子傳輸層14 及陰極E2而構成。有機EL元件1係能夠得到適合使用在面狀或平面狀照明裝置(例如使用作為掃描機的光源之面狀光源)及顯示裝置。 As schematically shown in FIG. 1, the organic EL element 1 of the first embodiment is provided with an anode E1, a hole injection layer 11, a hole transport layer 12, a light emitting layer 13, and a multilayer type on the substrate P in the following order Electron transport layer 14 And cathode E2. The organic EL element 1 can be suitably used in a planar or planar lighting device (for example, a planar light source used as a light source of a scanner) and a display device.

首先,說明基板P、陽極E1、電洞注入層11、電洞傳輸層12、發光層13及陰極E2。 First, the substrate P, anode E1, hole injection layer 11, hole transport layer 12, light emitting layer 13, and cathode E2 will be described.

<基板> <substrate>

基板P係適合使用在有機EL元件1的製造步驟不會產生化學變化的基板,例如可為玻璃基板、矽基板等的硬質基板,亦可為塑膠基板、高分子薄膜等的可撓性基板。藉由使用可撓性基板,能夠使整體成為可撓性的有機EL元件。亦可在基板P預先形成用以驅動有機EL元件1之電極、驅動電路。 The substrate P is suitable for a substrate that does not cause chemical changes in the manufacturing process of the organic EL element 1, and may be a rigid substrate such as a glass substrate or a silicon substrate, or a flexible substrate such as a plastic substrate or a polymer film. By using a flexible substrate, the entire organic EL element can be made flexible. An electrode and a driving circuit for driving the organic EL element 1 may be formed in advance on the substrate P.

<陽極> <anode>

陽極E1係能夠適合使用電阻低的薄膜。陽極E1及陰極E2之中的至少任一方為透明。例如在底部發光(bottom emission)型的有機EL元件,配置在基板P側的陽極E1,係能夠適合使用透明且對可見光區域的光線之透射率較高者。作為陽極E1的材料,係能夠使用具有導電性之金屬氧化物膜、及金屬薄膜等。 For the anode E1 series, a thin film with low resistance can be suitably used. At least one of the anode E1 and the cathode E2 is transparent. For example, an organic EL element of bottom emission type and an anode E1 disposed on the side of the substrate P can be suitably used for those that are transparent and have a high transmittance of light in the visible light region. As the material of the anode E1, a conductive metal oxide film, a metal thin film, or the like can be used.

具體而言,作為陽極E1,係能夠使用由氧化銦、氧化鋅、氧化錫、銦錫氧化物(Indium Tin Oxide:簡稱ITO)及銦鋅氧化物(Indium Zinc Oxide:簡稱IZO)等所構成之薄膜;及含有至少1種類以上的金、鉑、銀、銅、鋁或該等金屬之合金等。 Specifically, the anode E1 can be made of indium oxide, zinc oxide, tin oxide, indium tin oxide (Indium Tin Oxide: ITO for short), indium zinc oxide (Indium Zinc Oxide: IZO), etc. Thin films; and alloys containing at least one type of gold, platinum, silver, copper, aluminum, or alloys of these metals.

該等之中,作為陽極E1,從透射率及圖案化的容易性而言,係能夠適合使用由ITO、IZO、及氧化錫所構成之薄膜。又,從陰極E2側取出光線時,作為陽極E1,係能夠適合使用將來自發光層13的光線反射至陰極E2側之材料所形成為佳,作為此種材料,係以功函數3.0eV以上的金屬、金屬氧化物、金屬硫化物為佳。例如能夠使用有將光線反射程度的膜厚之金屬薄膜。 Among these, as the anode E1, a thin film composed of ITO, IZO, and tin oxide can be suitably used in terms of transmittance and ease of patterning. In addition, when taking out light from the cathode E2 side, as the anode E1, it is preferable to use a material that reflects light from the light-emitting layer 13 to the cathode E2 side. As such a material, a work function of 3.0 eV or more is used. Metals, metal oxides, and metal sulfides are preferred. For example, a metal thin film having a thickness that reflects light can be used.

作為陽極E1的形成方法之例子,能夠舉出真空蒸鍍法、濺鍍法、離子噴鍍法、鍍覆法等。作為陽極E1,亦可使用聚苯胺或其衍生物、聚噻吩或其衍生物等有機物的透明導電膜。 Examples of the method of forming the anode E1 include a vacuum evaporation method, a sputtering method, an ion spraying method, and a plating method. As the anode E1, a transparent conductive film of an organic substance such as polyaniline or its derivative, polythiophene or its derivative, or the like can also be used.

陽極E1的厚度,係能夠考慮光線的透射性、導電度等而適當地決定。陽極E1的厚度係例如10nm至10μm,較佳為20nm至1μm,更佳為50nm至500nm。 The thickness of the anode E1 can be appropriately determined in consideration of light transmittance, electrical conductivity, and the like. The thickness of the anode E1 is, for example, 10 nm to 10 μm, preferably 20 nm to 1 μm, and more preferably 50 nm to 500 nm.

<電洞注入層> <hole injection layer>

電洞注入層11係具有改善從陽極E1的電洞注入效率的功能之功能層。作為構成電洞注入層11之電洞注入材料的例子,能夠舉出氧化釩、氧化鉬、氧化釕、及氧化鋁等的氧化物、苯胺化合物、星爆流(starburst)型胺化合物、酞花青化合物、非晶碳、聚苯胺、及如聚乙烯二氧噻酚(PEDOT)的聚噻吩衍生物等。 The hole injection layer 11 is a functional layer having a function of improving hole injection efficiency from the anode E1. Examples of the hole injection material constituting the hole injection layer 11 include oxides such as vanadium oxide, molybdenum oxide, ruthenium oxide, and alumina, aniline compounds, starburst type amine compounds, and phthalocyanine Green compounds, amorphous carbon, polyaniline, and polythiophene derivatives such as polyethylene dioxythiophene (PEDOT).

先前習知的具有電荷輸送性之有機材料,係藉由將其與電子接受性材料組合,而能夠使用作為電洞注入層材料。 The previously known organic materials with charge transport properties can be used as hole injection layer materials by combining them with electron-accepting materials.

作為電子接受性材料,能夠適合使用異聚酸(heteropoly acid)化合物和芳基磺酸。 As an electron-accepting material, a heteropoly acid compound and arylsulfonic acid can be suitably used.

異聚酸化合物係以Keggin型或Dawson型的化學結構表示之具有雜原子位於分子的中心之結構且為釩(V)、鉬(Mo)、鎢(W)等的含氧酸之同聚酸(isopolyacid)、與異種元素的含氧酸縮合而成之聚酸。作為異種元素的含氧酸,主要可舉出矽(Si)、磷(P)、砷(As)的含氧酸。作為異聚酸化合物的具體例,可舉出磷鉬酸、矽鉬酸、磷鎢酸、磷鎢鉬酸、矽鎢酸等。 Heteropoly acid compounds are homopolymeric acids represented by Keggin-type or Dawson-type chemical structures that have heteroatoms at the center of the molecule and are oxygen-containing acids such as vanadium (V), molybdenum (Mo), and tungsten (W). (isopolyacid), polyacid formed by condensation of oxoacids of different elements. As the oxo acid of the different element, oxo acid of silicon (Si), phosphorus (P), arsenic (As) is mainly mentioned. Specific examples of the heteropoly acid compound include phosphomolybdic acid, silicomolybdic acid, phosphotungstic acid, phosphotungstic molybdic acid, and silicotungstic acid.

作為芳基磺酸,可舉出苯磺酸、對甲苯磺酸(tosic acid)、對苯乙烯磺酸、2-萘磺酸、4-羥基苯磺酸、5-磺基柳酸、對十二基苯磺酸、二己基苯磺酸、2,5-二己基苯磺酸、二丁基萘磺酸、6,7-二丁基-2-萘磺酸、十二基萘磺酸、3-十二基-2-萘磺酸、己基萘磺酸、4-己基-1-萘磺酸、辛基萘磺酸、2-辛基-1-萘磺酸、己基萘磺酸、7-己基-1-萘磺酸、6-己基-2-萘磺酸、二壬基萘磺酸、2,7-二壬基-4-萘磺酸、二壬基萘二磺酸、2,7-二壬基-4,5-萘二磺酸等。 Examples of the arylsulfonic acid include benzenesulfonic acid, p-toluenesulfonic acid (tosic acid), p-styrenesulfonic acid, 2-naphthalenesulfonic acid, 4-hydroxybenzenesulfonic acid, 5-sulfosalicylic acid, and p-decanesulfonic acid. Diylbenzenesulfonic acid, dihexylbenzenesulfonic acid, 2,5-dihexylbenzenesulfonic acid, dibutylnaphthalenesulfonic acid, 6,7-dibutyl-2-naphthalenesulfonic acid, dodecylnaphthalenesulfonic acid, 3-dodecyl-2-naphthalenesulfonic acid, hexylnaphthalenesulfonic acid, 4-hexyl-1-naphthalenesulfonic acid, octylnaphthalenesulfonic acid, 2-octyl-1-naphthalenesulfonic acid, hexylnaphthalenesulfonic acid, 7 -Hexyl-1-naphthalenesulfonic acid, 6-hexyl-2-naphthalenesulfonic acid, dinonylnaphthalenesulfonic acid, 2,7-dinonyl-4-naphthalenesulfonic acid, dinonylnaphthalene disulfonic acid, 2, 7-Dinonyl-4,5-naphthalene disulfonic acid, etc.

亦可將異聚酸化合物與芳基磺酸混合而使用。 The heteropoly acid compound and the aryl sulfonic acid may be mixed and used.

電洞注入層11,係例如藉由使用含有前述電洞注入材料的塗佈液之塗佈法而形成。作為塗佈液的溶劑,係將電洞注入材料溶解者即可,例如可舉出氯仿、水、二氯甲烷、二氯乙烷等的氯系溶劑、四氫呋喃等的醚系溶劑、甲苯、二甲苯等的芳香族烴系溶劑、丙酮、甲基乙基酮等的酮系溶劑、乙酸乙酯、乙酸丁酯、乙基賽路蘇乙酸 酯等的酯系溶劑。 The hole injection layer 11 is formed by, for example, a coating method using a coating solution containing the hole injection material. The solvent of the coating liquid may be one in which the hole injection material is dissolved, and examples thereof include chloroform, water, methylene chloride, dichloroethane and other chlorine-based solvents, tetrahydrofuran and other ether-based solvents, toluene and dichloromethane. Aromatic hydrocarbon-based solvents such as toluene, ketone-based solvents such as acetone and methyl ethyl ketone, ethyl acetate, butyl acetate, ethyl celulose acetic acid Ester-based solvents such as esters.

作為塗佈法,能夠舉出旋轉塗佈法、鑄造法、微凹版塗佈法、凹版塗佈法、棒塗佈法、輥塗佈法、繞線棒塗佈法、浸漬塗佈法、噴霧塗佈法、網版印刷法、柔版印刷法、平版印刷法、及噴墨印刷法等。能夠藉由使用該等塗佈法之中之一,將前述的塗佈液塗佈在形成有陽極E1之基板P上而形成電洞注入層11。 Examples of the coating method include a spin coating method, a casting method, a micro gravure coating method, a gravure coating method, a bar coating method, a roll coating method, a wire bar coating method, a dip coating method, and a spray Coating method, screen printing method, flexographic printing method, lithographic printing method, inkjet printing method, etc. The hole injection layer 11 can be formed by applying one of these coating methods to the aforementioned coating liquid on the substrate P on which the anode E1 is formed.

亦能夠藉由真空蒸鍍法等來成膜形成電洞注入層11。而且,由金屬氧化物所構成之電洞注入層11時,亦能夠使用濺鍍法、離子噴鍍法等。 The hole injection layer 11 can also be formed by vacuum deposition or the like. Furthermore, when the hole injection layer 11 is made of a metal oxide, a sputtering method, an ion sputtering method, or the like can also be used.

電洞注入層11的厚度之最佳值係依照所使用的材料而不同,能夠考慮被要求的特性及成膜的簡易性等而適當地決定。電洞注入層11的厚度係例如1nm至1μm,較佳為2nm至500nm,更佳為5nm至200nm。 The optimal value of the thickness of the hole injection layer 11 differs depending on the material used, and can be appropriately determined in consideration of required characteristics, ease of film formation, and the like. The thickness of the hole injection layer 11 is, for example, 1 nm to 1 μm, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.

<電洞傳輸層> <hole transport layer>

電洞傳輸層12,係具有用以改善來自與電洞傳輸層12的陽極E1側的界面相接之層(在第1圖為電洞注入層11)或較靠近陽極E1的電洞傳輸層12的電洞注入的功能之功能層。 The hole transport layer 12 has a layer for improving contact with the interface with the anode E1 side of the hole transport layer 12 (hole injection layer 11 in FIG. 1) or a hole transport layer closer to the anode E1 12 The functional layer of the hole injection function.

作為構成電洞傳輸層12之電洞輸送材料,能夠舉出聚乙烯基咔唑或是其衍生物、聚矽烷或是其衍生物、在側鏈或是主鏈具有芳香族胺之聚矽氧烷衍生物、吡唑啉衍生物、芳胺衍生物、茋衍生物、三苯基二胺衍生物、聚苯胺或是其衍生物、聚噻吩或是其衍生物、聚芳胺或是 其衍生物、聚吡咯或是其衍生物、聚(對伸苯基乙烯)或是其衍生物、或聚(2,5-伸噻吩基乙烯)或是其衍生物等。作為構成電洞傳輸層12之電洞輸送材料,亦能夠舉出在特開2012-144722號公報所揭示之電洞輸層材料。 Examples of the hole transporting material constituting the hole transport layer 12 include polyvinylcarbazole or its derivatives, polysilane or its derivatives, and polysiloxane having aromatic amines in the side chain or main chain Alkane derivatives, pyrazoline derivatives, aromatic amine derivatives, stilbene derivatives, triphenyldiamine derivatives, polyaniline or its derivatives, polythiophene or its derivatives, polyarylamine or Its derivatives, polypyrrole or its derivatives, poly(p-phenylene vinylene) or its derivatives, or poly(2,5-thienylethylene) or its derivatives, etc. As the hole transport material constituting the hole transport layer 12, the hole transport layer material disclosed in Japanese Patent Laid-Open No. 2012-144722 can also be mentioned.

該等之中,作為電洞輸送材料,係以聚乙烯基咔唑或是其衍生物、聚矽烷或是其衍生物、側鏈或是在主鏈具有芳香族胺化合物基之聚矽氧烷衍生物、聚苯胺或是其衍生物、聚噻吩或是其衍生物、聚芳胺或是其衍生物、聚(對伸苯基乙烯)或是其衍生物、或聚(2,5-伸噻吩基乙烯)或是其衍生物等的高分子電洞輸送材料為佳,更佳是聚乙烯基咔唑或是其衍生物、聚矽烷或是其衍生物、側鏈或是在主鏈具有芳香族胺之聚矽氧烷衍生物。低分子的電洞輸送材料時,係使高分子黏結劑分散而使用為佳。 Among these, as the hole transport material, polyvinyl carbazole or its derivative, polysilane or its derivative, side chain or polysiloxane having aromatic amine compound group in the main chain Derivatives, polyaniline or its derivatives, polythiophene or its derivatives, polyarylamine or its derivatives, poly(p-phenylene vinylene) or its derivatives, or poly(2,5-extended (Thienylethene) or its derivatives, such as polymer hole transport materials, preferably polyvinylcarbazole or its derivatives, polysilane or its derivatives, side chains or in the main chain Polysiloxane derivatives of aromatic amines. When transporting materials with low-molecular holes, it is better to disperse the polymer binder and use it.

作為電洞傳輸層12的形成方法,在低分子的電洞輸送材料,能夠舉出由與高分子黏結劑的混合溶液成膜之方法,在高分子的電洞輸送材料,能夠舉出從溶液成膜之方法。 As a method of forming the hole transport layer 12, a method for forming a film from a mixed solution of a low molecular hole transport material and a polymer binder, and a method of forming a hole transport material in a polymer can be cited from a solution The method of film formation.

作為由溶液成膜所使用的溶劑,係使電洞輸送材料溶解者即可,能夠舉出氯仿、二氯甲烷、二氯乙烷等的氯系溶劑、四氫呋喃等的醚系溶劑、甲苯、二甲苯等的芳香族烴系溶劑、丙酮、甲基乙基酮等的酮系溶劑、乙酸乙酯、乙酸丁酯、乙基賽路蘇乙酸酯等的酯系溶劑。 The solvent used to form the film from the solution may be any one that dissolves the hole transport material, and examples thereof include chlorine-based solvents such as chloroform, methylene chloride, and dichloroethane, ether-based solvents such as tetrahydrofuran, toluene, and dichloromethane. Aromatic hydrocarbon-based solvents such as toluene, ketone-based solvents such as acetone and methyl ethyl ketone, and ester-based solvents such as ethyl acetate, butyl acetate, and ethyl celulose acetate.

作為由溶液成膜的方法,能夠舉出作為成膜形成電洞注入層之方法已舉出的方法同樣的塗佈法。 As a method of forming a film from a solution, a coating method similar to the method already mentioned as a method of forming a hole injection layer by film formation can be mentioned.

作為混合之高分子黏結劑,係以不極度地阻礙電荷輸送者為佳,又,以使用對可見光之吸收較弱者為佳。作為該高分子黏結劑,能夠舉出聚碳酸酯、聚丙烯酸酯、聚丙烯酸甲酯、聚甲基丙烯酸甲酯、聚苯乙烯、聚偏二氯乙烯、聚矽氧烷等。 As a mixed polymer binder, it is better not to extremely hinder charge transport, but also to use a weaker absorption of visible light. Examples of the polymer binder include polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinylidene chloride, and polysiloxane.

作為電洞傳輸層12的膜厚之最佳值係依照所使用的材料而不同,並以使驅動電壓及發光效率係成為適當的值之方式而適當地設定。作為電洞傳輸層12的膜厚,必須至少為不產生針孔的厚度,另一方面,太厚時元件的驅動電壓太高而不佳。因而,該電洞傳輸層12的膜厚係例如1nm至1μm,較佳為2nm至500nm,更佳為5nm至200nm。 The optimal value of the film thickness of the hole transport layer 12 differs depending on the material used, and is appropriately set so that the driving voltage and the luminous efficiency are appropriate values. The film thickness of the hole transport layer 12 must be at least a thickness that does not generate pinholes. On the other hand, when the thickness is too thick, the driving voltage of the element is too high to be good. Therefore, the film thickness of the hole transport layer 12 is, for example, 1 nm to 1 μm, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.

<發光層> <luminescent layer>

發光層13通常主要是含有發出螢光及/或磷光之有機物、或含有該有機物與輔助其之摻雜劑。摻雜劑係例如用以使發光效率提升、或使發光波長變化而添加。從溶解性的觀點而言,作為有機物,係以高分子化合物為佳。發光層13係以含有聚苯乙烯換算的數量平均分子量為103至108之高分子化合物為佳。作為構成發光層13之發光材料,例如能夠舉出下述色素系的發光材料、金屬錯合物系的發光材料或高分子系的發光材料。 The light-emitting layer 13 usually contains mainly organic substances emitting fluorescence and/or phosphorescence, or dopants containing the organic substances and auxiliary substances. The dopant is added, for example, to improve luminous efficiency or to change the luminous wavelength. From the viewpoint of solubility, the organic compound is preferably a polymer compound. Based light emitting layer 13 to contain a number average molecular weight in terms of polystyrene of 10 3 to 10 8 preferably of a polymer compound. Examples of the light-emitting material constituting the light-emitting layer 13 include the following pigment-based light-emitting materials, metal complex-based light-emitting materials, and polymer-based light-emitting materials.

作為色素系的發光材料,例如能夠舉出甲環戊丙胺(cyclopentamine)衍生物、四苯基丁二烯衍生物、三苯胺衍生物、

Figure 105103271-A0202-12-0009-11
二唑衍生物、吡唑喹啉衍生物、二苯乙烯基苯衍生物、二苯乙烯基伸芳基衍生物、吡咯衍生物、噻 吩環化合物、吡啶環化合物、紫環酮衍生物、苝衍生物、寡聚噻吩衍生物、
Figure 105103271-A0202-12-0010-12
二唑二聚物、吡唑啉二聚物、喹吖酮衍生物、香豆素衍生物等。 Examples of the pigment-based light-emitting material include cyclopentamine derivatives, tetraphenylbutadiene derivatives, and triphenylamine derivatives.
Figure 105103271-A0202-12-0009-11
Diazole derivatives, pyrazololine derivatives, distyrylbenzene derivatives, distyryl aryl derivatives, pyrrole derivatives, thiophene ring compounds, pyridine ring compounds, violagen derivatives, perylene derivatives , Oligothiophene derivatives,
Figure 105103271-A0202-12-0010-12
Diazole dimer, pyrazoline dimer, quinacridone derivative, coumarin derivative, etc.

作為金屬錯合物系的發光材料,例如能夠舉出在中心金屬具有Tb、Eu、Dy等的稀土金屬、或Al、Zn、Be、Pt、Ir等且在配位體具有

Figure 105103271-A0202-12-0010-13
二唑、噻二唑、苯基吡啶、苯基苯并咪唑、喹啉結構等之金屬錯合物。作為金屬錯合物,例如可舉出銥錯合物、具有來自鉑錯合物等的三重態激發狀態的發光之金屬錯合物、鋁喹啉酚錯合物、苯并喹啉酚鈹錯合物、苯并
Figure 105103271-A0202-12-0010-14
唑基鋅錯合物、苯并噻唑基鋅錯合物、偶氮甲基鋅錯合物、卟啉鋅錯合物、啡啉銪錯合物等。 Examples of the metal complex-based light-emitting material include rare earth metals such as Tb, Eu, and Dy in the center metal, or Al, Zn, Be, Pt, Ir, and the like in the ligand.
Figure 105103271-A0202-12-0010-13
Metal complexes of diazole, thiadiazole, phenylpyridine, phenylbenzimidazole, quinoline structure, etc. Examples of metal complexes include iridium complexes, luminescent metal complexes having a triplet excited state derived from platinum complexes, aluminum quinolinephenol complexes, and benzoquinoline beryllium complexes. Compound, benzo
Figure 105103271-A0202-12-0010-14
Zolyl zinc complex, benzothiazolyl zinc complex, azomethyl zinc complex, porphyrin zinc complex, morpholine europium complex, etc.

作為高分子系的發光材料,例如能夠舉出聚對伸苯基乙烯衍生物、聚噻吩衍生物、聚對苯衍生物、聚矽烷衍生物、聚乙炔衍生物、聚茀衍生物、聚乙烯基咔唑衍生物、將上述色素材料或金屬錯合物材料高分子化而成之材料等。 Examples of the polymer-based light-emitting material include polyparaphenylene vinyl derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyfusel derivatives, and polyvinyl groups. Carbazole derivatives, materials obtained by polymerizing the above pigment materials or metal complex materials, etc.

上述發光材料之中,作為發出藍色光的材料,能夠舉出二苯乙烯基伸芳基(distyryl arylene)衍生物、

Figure 105103271-A0202-12-0010-15
二唑衍生物、及該等的聚合物、聚乙烯基咔唑衍生物、聚對苯衍生物、聚茀衍生物等。尤其是高分子材料的聚乙烯基咔唑衍生物、聚對苯衍生物、聚茀衍生物等為佳。作為發出藍色光的材料,亦可舉出在特開2012-144722號公報所揭示之材料。 Among the above-mentioned luminescent materials, as the material that emits blue light, a distyryl arylene derivative,
Figure 105103271-A0202-12-0010-15
Diazole derivatives, and such polymers, polyvinylcarbazole derivatives, poly-p-phenylene derivatives, polystilbene derivatives, etc. In particular, polymer materials such as polyvinylcarbazole derivatives, polyparaphenylene derivatives, and polystilbene derivatives are preferred. As the material that emits blue light, the material disclosed in Japanese Patent Laid-Open No. 2012-144722 can also be mentioned.

作為發出綠色光之材料,能夠舉出喹吖酮 (quinacridone)衍生物、香豆素衍生物、及該等的聚合物、聚對伸苯基乙烯衍生物、聚茀衍生物等。尤其是以高分子材料的聚對伸苯基乙烯衍生物、聚茀衍生物等為佳。作為發出綠色光之材料,亦可舉出在特開2012-036388號公報所揭示之材料。 As a material that emits green light, quinacridone can be cited (quinacridone) derivatives, coumarin derivatives, and their polymers, poly-p-phenylene vinyl derivatives, poly-fusel derivatives, etc. In particular, it is preferably a polyparaphenylene vinylene derivative, a polyfluorene derivative, etc. of a polymer material. As the material that emits green light, the material disclosed in Japanese Patent Laid-Open No. 2012-036388 can also be mentioned.

作為發出紅色光之材料,能夠舉出香豆素衍生物、噻吩環化合物、及該等的聚合物、聚對伸苯基乙烯衍生物、聚噻吩衍生物、聚茀衍生物等。尤其是以高分子材料的聚對伸苯基乙烯衍生物、聚噻吩衍生物、聚茀衍生物等為佳。作為發出紅色光之材料,亦可舉出在特開2011-105701號公報所揭示的材料。 Examples of the material that emits red light include coumarin derivatives, thiophene ring compounds, and polymers of these, polyparaphenylene vinylene derivatives, polythiophene derivatives, and polystilbene derivatives. In particular, polymer materials such as poly-p-phenylene vinyl derivatives, polythiophene derivatives, and polyfusel derivatives are preferred. As a material that emits red light, the materials disclosed in Japanese Patent Laid-Open No. 2011-105701 can also be mentioned.

作為摻雜劑材料,例如能夠舉出苝衍生物、香豆素衍生物、紅螢烯(rubrene)衍生物、喹吖酮衍生物、角鯊烯鎓(squalium)衍生物、卟啉衍生物、苯乙烯基色素、稠四苯衍生物、吡唑啉酮(pyrazolone)衍生物、十環烯、吩

Figure 105103271-A0202-12-0011-16
酮(phenoxazone)等。 Examples of the dopant material include perylene derivatives, coumarin derivatives, rubrene derivatives, quinacridone derivatives, squalium derivatives, porphyrin derivatives, Styrene-based pigments, thick tetraphenyl derivatives, pyrazolone derivatives, decacycloene, phen
Figure 105103271-A0202-12-0011-16
Ketone (phenoxazone) and so on.

作為發光層13的形成方法,能夠舉出將含有發光材料的溶液塗佈在電洞傳輸層12上之塗佈法、真空蒸鍍法、轉印法等。該等之中,從製造步驟的容易性而言,係以使用塗佈法來形成發光層為佳。作為含有發光材料的溶液之溶劑,例如能夠使用作為用以形成前述的電洞注入層11之塗佈液的溶劑已舉出的溶劑。 Examples of the method for forming the light-emitting layer 13 include a coating method in which a solution containing a light-emitting material is applied to the hole transport layer 12, a vacuum evaporation method, and a transfer method. Among these, from the ease of manufacturing steps, it is preferable to form the light-emitting layer using a coating method. As the solvent of the solution containing the light-emitting material, for example, the solvents mentioned above as the solvent of the coating liquid for forming the aforementioned hole injection layer 11 can be used.

作為塗佈含有發光材料的溶液之方法,能夠使用旋轉塗佈法、鑄造法、微凹版塗佈法、凹版塗佈法、 棒塗佈法、輥塗佈法、繞線棒塗佈法、浸漬塗佈法、狹縫塗佈法、毛細管塗佈法、噴霧塗佈法、噴嘴塗佈法、凹版印刷法、網版印刷法、柔版印刷法、平版印刷法、反轉印刷法、噴墨印刷法等。從圖案形成和容易分別塗佈多色而言,係以凹版印刷法、網版印刷法、柔版印刷法、平版印刷法、反轉印刷法或噴墨印刷法為佳。顯示昇華性之低分子化合物時,能夠使用真空蒸鍍法。而且,藉由使用雷射和摩擦之轉印、熱轉印等的方法,亦能夠只有在所需要的位置形成發光層13。 As a method of applying a solution containing a light-emitting material, a spin coating method, a casting method, a micro gravure coating method, a gravure coating method, Bar coating method, roll coating method, wire bar coating method, dip coating method, slit coating method, capillary coating method, spray coating method, nozzle coating method, gravure printing method, screen printing Method, flexographic printing method, lithographic printing method, reverse printing method, inkjet printing method, etc. From the perspective of pattern formation and easy application of multiple colors, the gravure printing method, screen printing method, flexographic printing method, lithographic printing method, reverse printing method, or inkjet printing method is preferred. For low-molecular compounds showing sublimation, vacuum evaporation method can be used. In addition, by using methods such as laser and friction transfer, thermal transfer, and the like, the light-emitting layer 13 can also be formed only at desired positions.

發光層13的厚度係通常約2nm至200nm。 The thickness of the light-emitting layer 13 is usually about 2 nm to 200 nm.

<陰極> <cathode>

作為陰極E2的材料,因為功函數較小且容易將電子注入至多層型電子傳輸層14,故以導電度高的材料為佳。將光線從陽極E1側取出時,為了藉由陰極E2將來自發光層13的光線反射至陽極E1側,作為陰極E2的材料,係以可見光反射率高的材料為佳。 As the material of the cathode E2, since the work function is small and electrons are easily injected into the multi-layer type electron transport layer 14, a material with high conductivity is preferable. When the light is taken out from the anode E1 side, in order to reflect the light from the light-emitting layer 13 to the anode E1 side through the cathode E2, the material of the cathode E2 is preferably a material having a high visible light reflectivity.

陰極E2,係例如能夠使用鹼金屬、鹼土金屬、過渡金屬及周期表第13族金屬等。作為陰極E2的材料,例如能夠使用鋰、鈉、鉀、銣、銫、鈹、鎂、鈣、鍶、鋇、鋁、鈧、釩、鋅、釔、銦、鈰、釤、銪、鋱、鐿等的金屬;前述金屬之中的2種以上之合金;前述金屬之中的1種以上、與金、銀、鉑、銅、錳、鈦、鈷、鎳、鎢之中的1種之合金;或使用石墨或石墨層間化合物等。在本說明書,鎂係包含在鹼土金屬。在以下的記載亦同樣。 For the cathode E2, for example, alkali metals, alkaline earth metals, transition metals, Group 13 metals of the periodic table, and the like can be used. As the material of the cathode E2, for example, lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, ytterbium, ytterbium Metals; alloys of two or more of the foregoing metals; alloys of one or more of the foregoing metals and one of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, and tungsten; Or use graphite or graphite interlayer compounds. In this specification, the magnesium series is included in alkaline earth metals. The following description is the same.

作為合金的例子,能夠舉出鎂-銀合金、鎂-銦合金、鎂-鋁合金、銦-銀合金、鋰-鋁合金、鋰-鎂合金、鋰-銦合金、鈣-鋁合金等。 Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, calcium-aluminum alloy, and the like.

構成從陰極E2側將光線取出之元件時,係能夠使用透明導電性電極作為陰極E2,例如能夠使用由氧化銦、氧化鋅、氧化錫、ITO及IZO等的導電性金屬氧化物所構成之薄膜;和由聚苯胺或其衍生物、聚噻吩或其衍生物等的導電性有機物所構成之薄膜。陰極係亦可具有2層以上的積層結構。 When forming an element that extracts light from the cathode E2 side, a transparent conductive electrode can be used as the cathode E2, for example, a thin film composed of conductive metal oxides such as indium oxide, zinc oxide, tin oxide, ITO, and IZO can be used ; And thin films composed of conductive organic materials such as polyaniline or its derivatives, polythiophene or its derivatives. The cathode system may have a laminated structure of two or more layers.

陰極E2的厚度係能夠考慮導電度及耐久性而適當地設定。陰極E2的厚度係例如10nm至10μm,較佳為20nm至1μm,更佳為50nm至500nm。 The thickness of the cathode E2 can be appropriately set in consideration of conductivity and durability. The thickness of the cathode E2 is, for example, 10 nm to 10 μm, preferably 20 nm to 1 μm, and more preferably 50 nm to 500 nm.

作為陰極E2的形成方法,例如能夠舉出真空蒸鍍法、濺鍍法、及將金屬薄膜進行熱壓黏之層合法等。 As a method of forming the cathode E2, for example, a vacuum evaporation method, a sputtering method, and a lamination method of thermocompression bonding a metal thin film, etc. can be mentioned.

其次,說明多層型電子傳輸層14。如在第1圖所顯示,多層型電子傳輸層14係在電子傳輸層14a的兩側設置有第1混合層(發光層側混合層)14b及第2混合層(陰極側混合層)14c之積層體。 Next, the multilayer electron transport layer 14 will be described. As shown in FIG. 1, the multi-layer electron transport layer 14 is provided with a first mixed layer (light emitting layer side mixed layer) 14b and a second mixed layer (cathode side mixed layer) 14c on both sides of the electron transport layer 14a. Layered body.

<電子傳輸層> <electron transport layer>

電子傳輸層14a係對應在多層型電子傳輸層14之本體部。電子傳輸層14a係含有電子輸送材料之另一方面,係不含有在後述第1混合層14b及第2混合層14c所含有的有機金屬錯合物化合物。 The electron transport layer 14a corresponds to the body of the multilayer electron transport layer 14. The electron transport layer 14a contains an electron transport material. On the other hand, it does not contain the organometallic complex compound contained in the first mixed layer 14b and the second mixed layer 14c described later.

作為電子輸送材料,係能夠使用通常被使用 作為電子傳輸層之眾所周知者。例如,作為電子輸送材料,可舉出具有萘、蒽等的縮合芳基環之化合物和其衍生物、以4,4-雙(二苯基乙烯基)聯苯作為代表之苯乙烯基系芳香環衍生物、苝衍生物、紫環酮(perinone)衍生物、香豆素衍生物、萘二甲醯亞胺衍生物、蒽醌、萘醌、聯對苯醌(diphenoquinone)、蒽醌二甲烷、四氰基蒽醌二甲烷等的苯醌衍生物、磷氧化物衍生物、咔唑衍生物、及吲哚衍生物、參(8-喹啉酸鹽)、鋁(III)等的喹啉酚錯合物、及羥苯基

Figure 105103271-A0202-12-0014-17
唑錯合物等的羥基唑錯合物、甲亞胺錯合物、環庚三烯酚酮(tropolone)金屬錯合物及黃酮醇金屬錯合物、具有電子接受性氮之雜芳基環之化合物等。 As the electron transport material, a well-known one which is generally used as an electron transport layer can be used. For example, examples of the electron transport material include compounds having condensed aryl rings such as naphthalene and anthracene and their derivatives, and styryl aromatics represented by 4,4-bis(diphenylvinyl)biphenyl. Cyclic derivatives, perylene derivatives, perinone derivatives, coumarin derivatives, naphthalene derivatives, anthraquinone, naphthoquinone, diphenoquinone, anthraquinone dimethane , Quinoline derivatives such as tetracyanoanthraquinone dimethane, phosphorus oxide derivatives, carbazole derivatives, and indole derivatives, quinoline (8-quinolinate), aluminum (III), etc. Phenol complex and hydroxyphenyl
Figure 105103271-A0202-12-0014-17
Hydroxazole complexes such as azole complexes, methylimine complexes, tropolone metal complexes and flavonol metal complexes, heteroaryl rings with electron-accepting nitrogen Of compounds.

所謂電子接受性氮,係表示在與鄰接原子之間形成有多重鍵之氮原子。因為氮原子係具有較高的電負度,所以多重鍵亦具有接受電子的性質。因而,具有電子接受性氮之雜芳基環,係具有較高的電子親和性。作為具有含有該等電子接受性氮的雜芳基環結構之化合物,例如就較佳化合物而言,可舉出苯并咪唑衍生物、苯并噻唑衍生物、

Figure 105103271-A0202-12-0014-18
二唑衍生物、噻二唑衍生物、三唑衍生物、吡啶衍生物、吡
Figure 105103271-A0202-12-0014-19
衍生物、啡啉衍生物、喹
Figure 105103271-A0202-12-0014-20
啉衍生物、喹啉衍生物、苯并喹啉衍生物、聯吡啶、聯三吡啶等的寡聚吡啶衍生物、喹
Figure 105103271-A0202-12-0014-21
啉衍生物、萘啶衍生物、啡啉衍生物等。 The so-called electron-accepting nitrogen refers to a nitrogen atom in which multiple bonds are formed with adjacent atoms. Because the nitrogen atom system has a high electronegativity, multiple bonds also have the property of accepting electrons. Therefore, the heteroaryl ring with an electron-accepting nitrogen has a high electron affinity. As the compound having a heteroaryl ring structure containing such electron-accepting nitrogen, for example, preferred compounds include benzimidazole derivatives, benzthiazole derivatives,
Figure 105103271-A0202-12-0014-18
Diazole derivatives, thiadiazole derivatives, triazole derivatives, pyridine derivatives, pyridine
Figure 105103271-A0202-12-0014-19
Derivatives, morpholine derivatives, quino
Figure 105103271-A0202-12-0014-20
Oligopyridine derivatives, quinoline derivatives, quinoline derivatives, benzoquinoline derivatives, bipyridine, bipyridine, etc.
Figure 105103271-A0202-12-0014-21
Porphyrin derivatives, naphthyridine derivatives, morpholine derivatives, etc.

電子傳輸層14a的形成方法,使用低分子的電子輸送材料時,係能夠舉出真空蒸鍍法或是從溶液或熔融狀態之成膜。使用高分子的電子輸送材料時,能夠舉出 從溶液或熔融狀態之成膜。實施從溶液或熔融狀態之成膜時,亦可併用高分子黏結劑。 The method for forming the electron transport layer 14a can be a vacuum evaporation method or a film formation from a solution or a molten state when a low-molecular electron transport material is used. When using polymer electron transport materials, it can be cited Film formation from solution or molten state. When performing film formation from a solution or a molten state, a polymer binder may be used together.

<第1混合層> <1st mixed layer>

第1混合層14b係在比電子傳輸層14a更靠近發光層13側,與發光層13相接而設置。第1混合層14b亦與電子傳輸層14a相接。第1混合層14b係同時含有電子傳輸層14a所含有的電子輸送材料及有機金屬錯合物化合物之層,第1混合層14b係能夠是在電子傳輸層14a的組成物中混合有機金屬錯合物化合物而成之層。第1混合層14b所具有之電子輸送材料係能夠是與在電子傳輸層14a所例示的電子輸送材料同樣。 The first mixed layer 14b is provided closer to the light-emitting layer 13 than the electron transport layer 14a and is provided in contact with the light-emitting layer 13. The first mixed layer 14b is also in contact with the electron transport layer 14a. The first mixed layer 14b is a layer containing both the electron transport material and the organometallic complex compound contained in the electron transport layer 14a. The first mixed layer 14b can be a mixture of organometallic complexes in the composition of the electron transport layer 14a Layer of chemical compounds. The electron transport material included in the first mixed layer 14b can be the same as the electron transport material exemplified in the electron transport layer 14a.

作為在有機金屬錯合物化合物所含有的金屬離子,係以含有鹼金屬離子、鹼土金屬離子及稀土金屬離子的至少一者為佳。在有機金屬錯合物化合物所含有的配位體係以喹啉酚、苯并喹啉酚、吖啶醇(acridinol)、菲啶二醇、羥苯基

Figure 105103271-A0202-12-0015-22
唑、羥苯基硫醛、羥基二芳基
Figure 105103271-A0202-12-0015-23
二唑、羥基二芳基噻二唑、羥苯基吡啶、羥苯基苯并咪唑、羥基苯并三唑、羥基氟硼烷、聯砒啶(Bipyridyl)、啡啉、酞花青、卟啉、環戊二烯、β-二酮類、甲亞胺類、及該等的衍生物等為佳。 The metal ion contained in the organometallic complex compound preferably contains at least one of alkali metal ions, alkaline earth metal ions, and rare earth metal ions. The coordination system contained in the organometallic complex compound is quinoline phenol, benzoquinoline phenol, acridinol, phenanthridine diol, hydroxyphenyl
Figure 105103271-A0202-12-0015-22
Azole, hydroxyphenylthioaldehyde, hydroxydiaryl
Figure 105103271-A0202-12-0015-23
Diazole, hydroxydiarylthiadiazole, hydroxyphenylpyridine, hydroxyphenylbenzimidazole, hydroxybenzotriazole, hydroxyfluoroborane, bipyridyl, morpholine, phthalocyanine, porphyrin , Cyclopentadiene, β-diketones, methylimines, and derivatives of these are preferred.

作為有機金屬錯合物化合物,例如,可舉出下述式(1)至式(16)的任一個化合物。 As the organometallic complex compound, for example, any compound of the following formula (1) to formula (16) may be mentioned.

[化1]

Figure 105103271-A0202-12-0016-1
[Chemical 1]
Figure 105103271-A0202-12-0016-1

Figure 105103271-A0202-12-0016-2
Figure 105103271-A0202-12-0016-2

Figure 105103271-A0202-12-0016-3
Figure 105103271-A0202-12-0016-3

[化4]

Figure 105103271-A0202-12-0017-4
[Chemical 4]
Figure 105103271-A0202-12-0017-4

式(1)至式(16)中,M係表示鹼金屬。作為鹼金屬,可舉出鋰、鈉、鉀、銣或銫,該等之中,以鋰、鈉或銫為佳,以鋰或鈉為更佳。 In formula (1) to formula (16), M series represents an alkali metal. Examples of the alkali metal include lithium, sodium, potassium, rubidium, and cesium. Among these, lithium, sodium, or cesium is preferred, and lithium or sodium is more preferred.

在式(1)至式(16)表示之各有機金屬錯合物化合物,鍵結在構成五員環或六員環的碳原子之至少1個氫原子,亦可被碳數1至12的烷基取代。作為碳數1至12的烷基,係以甲基、乙基、丙基、或第三丁基為佳。 Each organometallic complex compound represented by formula (1) to formula (16) is bonded to at least one hydrogen atom of carbon atoms constituting a five-membered ring or a six-membered ring, and may also be Alkyl substitution. The alkyl group having 1 to 12 carbon atoms is preferably methyl, ethyl, propyl, or tertiary butyl.

式(1)至(16)中,作為有機金屬錯合物化合物,係以式(1)、式(2)、式(4)、式(6)、式(7)、或式(9)為佳,以式(1)、式(2)或式(4)為更佳。 In formulae (1) to (16), as the organometallic complex compound, formula (1), formula (2), formula (4), formula (6), formula (7), or formula (9) Preferably, formula (1), formula (2) or formula (4) is more preferable.

作為有機金屬錯合物化合物的具體例,可舉出8-喹啉酚鋰、8-喹啉酚鈉、8-喹啉酚鉀、8-喹啉酚銣、8-喹啉酚銫、苯并-8-喹啉酚鋰、苯并-8-喹啉酚鈉、苯并-8-喹啉酚鉀、苯并-8-喹啉酚銣、苯并-8-喹啉酚銫、2-甲基-8-喹啉酚鋰、2-甲基-8-喹啉酚鈉、2-甲基-8-喹啉酚鉀、2-甲基-8-喹啉酚銣及2-甲基-8-喹啉酚銫。 Specific examples of the organometallic complex compound include lithium 8-quinoline phenol, sodium 8-quinoline phenol, potassium 8-quinoline phenol, rubidium 8-quinoline phenol, cesium 8-quinoline phenol, benzene Lithium-8-quinoline phenol lithium, sodium benzo-8-quinoline phenol, potassium benzo-8-quinoline phenol, rubidium benzo-8-quinoline phenol, cesium benzo-8-quinoline phenol, 2 -Methyl-8-quinolinol lithium, 2-methyl-8-quinolinol sodium, 2-methyl-8-quinolinol potassium, 2-methyl-8-quinolinol rubidium and 2-methyl Base-8-quinolinol cesium.

上述之中,作為有機金屬錯合物化合物,係以8-喹啉酚鋰或8-喹啉酚鈉為佳,以8-喹啉酚鈉為更佳。 Among the above, as the organometallic complex compound, lithium 8-quinolinol or sodium 8-quinolinol is preferred, and sodium 8-quinolinol is more preferred.

電子輸送材料與有機金屬錯合物化合物的混 合比例之例子,將電子輸送材料的質量設為V1,將有機金屬錯合物化合物的質量設為V2時,V1:V2係以1:99至99:1為佳,較佳為5:95至70:30。 Mixture of electron transport materials and organometallic complex compounds In a proportional example, when the mass of the electron transport material is V1 and the mass of the organometallic complex compound is V2, V1:V2 is preferably 1:99 to 99:1, preferably 5:95 Until 70:30.

第1混合層14b的形成方法的例子,在使用低分子的電子輸送材料時,可舉出真空蒸鍍法或是由溶液或熔融狀態的成膜,使用高分子的電子輸送材料時,能夠舉出由溶液或熔融狀態的成膜。實施由溶液或熔融狀態的成膜時,亦可併用高分子黏結劑。例如,在真空蒸鍍法,係將構成第1混合層14b之電子輸送材料及有機金屬錯合物化合物共蒸鍍即可。 An example of the method for forming the first mixed layer 14b is when a low-molecular electron transport material is used, such as vacuum deposition or film formation from a solution or molten state, and when a polymer electron transport material is used, Film formation from solution or molten state. When performing film formation from a solution or a molten state, a polymer binder may be used together. For example, in the vacuum evaporation method, the electron transport material and the organometallic complex compound constituting the first mixed layer 14b may be co-evaporated.

<第2混合層> <2nd mixed layer>

第2混合層14c係與第1混合層14b同樣地為含有電子輸送材料及有機金屬錯合物化合物之層。第2混合層14c係能夠是在電子傳輸層14a的組成物混合有機金屬錯合物化合物而成之層。第2混合層14c係用以改善從陰極E2的電子注入效率之層且發揮作為電子注入層之功能。 Like the first mixed layer 14b, the second mixed layer 14c is a layer containing an electron transport material and an organometallic complex compound. The second mixed layer 14c can be a layer obtained by mixing an organometallic complex compound with the composition of the electron transport layer 14a. The second mixed layer 14c is a layer for improving the efficiency of electron injection from the cathode E2 and functions as an electron injection layer.

在第2混合層14c所含有的電子輸送材料,係能夠設作在電子傳輸層14a的說明已例示之電子輸送材料。在第2混合層14c所含有的有機金屬錯合物化合物,可舉出在第1混合層14b的說明已例示之有機金屬錯合物化合物。在第2混合層14c所含有的電子輸送材料及有機金屬錯合物化合物,能夠與在第1混合層14b所含有的電子輸送材料及有機金屬錯合物化合物相同。 The electron transport material contained in the second mixed layer 14c can be provided as the electron transport material exemplified in the description of the electron transport layer 14a. The organometallic complex compound contained in the second mixed layer 14c includes the organometallic complex compound exemplified in the description of the first mixed layer 14b. The electron transport material and the organometallic complex compound contained in the second mixed layer 14c can be the same as the electron transport material and the organometallic complex compound contained in the first mixed layer 14b.

第2混合層14c係與第1混合層14b以同樣 地方式來形成。於第2混合層14c中,電子輸送材料與有機金屬錯合物化合物的混合比例,係將電子輸送材料的質量設作V3,將有機金屬錯合物化合物的質量設作V4時,V3:V4的例子為5:95至50:50。 The second mixed layer 14c is the same as the first mixed layer 14b Way. In the second mixed layer 14c, when the mixing ratio of the electron transport material and the organometallic complex compound is set to V3, and the mass of the organometallic complex compound is V4, V3: V4 Examples are 5:95 to 50:50.

多層型電子傳輸層14的厚度之最佳值,係依照多層型電子傳輸層14的層結構及使用的材料而不同,以驅動電壓與發光效率成為適當的值之方式選擇即可。多層型電子傳輸層14的厚度必須是至少不產生針孔的厚度,另一方面,太厚時元件的驅動電壓太高而不佳。因而,多層型電子傳輸層14的膜厚係例如7nm至1μm。 The optimal value of the thickness of the multi-layer electron transport layer 14 depends on the layer structure of the multi-layer electron transport layer 14 and the materials used, and the driving voltage and the luminous efficiency may be selected so as to have appropriate values. The thickness of the multi-layer type electron transport layer 14 must be at least a thickness that does not generate pinholes. On the other hand, when it is too thick, the driving voltage of the element is too high to be good. Therefore, the film thickness of the multilayer electron transport layer 14 is, for example, 7 nm to 1 μm.

在此種多層型電子傳輸層14的膜厚,電子傳輸層14a的膜厚係例如3nm至1μm,第1混合層14b的膜厚係例如2nm至20nm,第2混合層14c的膜厚係例如2nm至20nm。第1及第2混合層14b、14c的厚度係比電子傳輸層14a的厚度更薄。第1及第2混合層14b、14c比2nm更薄時,有產生針孔之傾向,又,比20nm更厚時,多層型電子傳輸層14全體膜厚亦有變為較厚之傾向,結果驅動電壓變高。 In such a multilayer electron transport layer 14, the film thickness of the electron transport layer 14a is, for example, 3 nm to 1 μm, the film thickness of the first mixed layer 14 b is, for example, 2 nm to 20 nm, and the film thickness of the second mixed layer 14 c is, for example, 2nm to 20nm. The thickness of the first and second mixed layers 14b and 14c is thinner than the thickness of the electron transport layer 14a. When the first and second mixed layers 14b and 14c are thinner than 2nm, pinholes tend to occur, and when they are thicker than 20nm, the overall thickness of the multilayer electron transport layer 14 tends to become thicker as a result. The driving voltage becomes high.

多層型電子傳輸層14係能夠藉由在發光層13上依照下列順序形成第1混合層14b、電子傳輸層14a及第2混合層14c而得到。從提升製造效率的觀點而言,第1混合層14b、電子傳輸層14a及第2混合層14c係以使用相同成膜方法而形成為佳。 The multilayer electron transport layer 14 can be obtained by forming the first mixed layer 14b, the electron transport layer 14a, and the second mixed layer 14c on the light-emitting layer 13 in the following order. From the viewpoint of improving manufacturing efficiency, the first mixed layer 14b, the electron transport layer 14a, and the second mixed layer 14c are preferably formed using the same film forming method.

多層型電子傳輸層14所具有之第1混合層 14b、電子傳輸層14a及第2混合層14c,係任一者均具有電子輸送材料。因而,例如在由電子輸送材料構成多層型電子傳輸層的全體之電子傳輸層,於多層型電子傳輸層14中,係對應在發光層側界面及陰極層側界面,局部地摻雜有機金屬錯合物化合物而成之構成。在此,所謂「摻雜」,係意味著有意地將2種以上不同的材料混合。 The first mixed layer of the multilayer electron transport layer 14 14b. The electron transport layer 14a and the second mixed layer 14c each have an electron transport material. Therefore, for example, in the electron transport layer composed of the electron transport material and the multilayer electron transport layer, the multilayer electron transport layer 14 corresponds to the interface between the light emitting layer side and the cathode layer side, and is partially doped with organic metal The composition of the compound. Here, "doping" means intentionally mixing two or more different materials.

第1混合層14b、電子傳輸層14a及第2混合層14c所具有之電子輸送材料,係能夠設為相同材料,但是第1混合層14b、電子傳輸層14a及第2混合層14c所具有之電子輸送材料亦可不同。此時,第1混合層14b、電子傳輸層14a及第2混合層14c各自所具有的電子輸送材料,例如能夠使用在電子傳輸層14a的說明已例示的電子輸送材料。第1混合層14b與第2混合層14c亦可不是由相同的材料所構成。 The electron transport materials of the first mixed layer 14b, the electron transport layer 14a, and the second mixed layer 14c can be the same material, but the first mixed layer 14b, the electron transport layer 14a, and the second mixed layer 14c Electronic transport materials can also be different. At this time, as the electron transport material included in each of the first mixed layer 14b, the electron transport layer 14a, and the second mixed layer 14c, for example, the electron transport material exemplified in the description of the electron transport layer 14a can be used. The first mixed layer 14b and the second mixed layer 14c may not be made of the same material.

有機EL元件1,係藉由在基板P上依照下列順序形成陽極E1、電洞注入層11、電洞傳輸層12、發光層13、多層型電子傳輸層14及陰極E2而製造。基板P上的各構成要素之形成方法,因為如前述,所以省略其說明。 The organic EL device 1 is manufactured by forming an anode E1, a hole injection layer 11, a hole transport layer 12, a light-emitting layer 13, a multilayer electron transport layer 14, and a cathode E2 on the substrate P in the following order. The method of forming each component on the substrate P is as described above, and therefore its description is omitted.

在有機EL元件1,藉由具備多層型電子傳輸層14,在發光層13與電子傳輸層14a之間具有第1混合層14b。因為第1混合層14b係除了電子輸送材料以外,亦具有有機金屬錯合物化合物,所以有機EL元件1的元件壽命變長且驅動安定性提升。咸認為這是藉由有機金屬錯合物化合物,能夠抑制例如電荷積蓄後之電荷引起電子 傳輸層產生劣化之緣故。 The organic EL element 1 includes the multi-layer electron transport layer 14 and the first mixed layer 14b between the light-emitting layer 13 and the electron transport layer 14a. Since the first mixed layer 14b has an organometallic complex compound in addition to the electron transport material, the device life of the organic EL device 1 becomes longer and the drive stability is improved. Xian believes that this is through organometallic complex compounds, which can suppress, for example, the charge caused by the charge The transport layer is deteriorated.

多層型電子傳輸層14係具有第2混合層14c,因為第2混合層14c係具有有機金屬錯合物化合物,所以能夠改善從陰極E2往電子傳輸層14a之電子注入效率。其結果,能夠減小驅動電壓。 The multilayer electron transport layer 14 has the second mixed layer 14c. Since the second mixed layer 14c has the organometallic complex compound, the electron injection efficiency from the cathode E2 to the electron transport layer 14a can be improved. As a result, the driving voltage can be reduced.

(第2實施形態) (Second embodiment)

在第2圖所顯示之第2實施形態之有機EL元件2,係具備多層型電子傳輸層14A來代替多層型電子傳輸層14。除了具備多層型電子傳輸層14A之點以外,有機EL元件2的結構係與有機EL元件1的結構同樣。 The organic EL element 2 of the second embodiment shown in FIG. 2 includes a multilayer electron transport layer 14A instead of the multilayer electron transport layer 14. The structure of the organic EL element 2 is the same as the structure of the organic EL element 1 except that the multilayer electron transport layer 14A is provided.

有機EL元件2所具備的多層型電子傳輸層14A在第1混合層14b與電子傳輸層14a之間設置有金屬層14d而言,係與多層型電子傳輸層14不同。 The multilayer electron transport layer 14A included in the organic EL element 2 is different from the multilayer electron transport layer 14 in that the metal layer 14d is provided between the first mixed layer 14b and the electron transport layer 14a.

金屬層14d,係以與第1混合層14b相接之方式層積在第1混合層14b上。金屬層14d亦與電子傳輸層14a相接。 The metal layer 14d is laminated on the first mixed layer 14b so as to be in contact with the first mixed layer 14b. The metal layer 14d is also in contact with the electron transport layer 14a.

金屬層14d的材料之例子,係含有鹼金屬及鹼土金屬。作為金屬層14d的鹼金屬的例子,鋰、鈉、鉀、銣、銫、鉑,鹼土金屬的例子係鎂、鈣、鍶、鋇、鐳。其中係以鎂為佳。金屬層14d的厚度之例子為0.5nm至10nm。金屬層14d係例如能夠使用真空蒸鍍法來形成。 Examples of the material of the metal layer 14d include alkali metals and alkaline earth metals. Examples of the alkali metal of the metal layer 14d are lithium, sodium, potassium, rubidium, cesium, and platinum. Examples of alkaline earth metals are magnesium, calcium, strontium, barium, and radium. Among them, magnesium is preferred. An example of the thickness of the metal layer 14d is 0.5 nm to 10 nm. The metal layer 14d can be formed using, for example, a vacuum evaporation method.

有機EL元件2因為除了具有金屬層14d之點以外與有機EL元件1的結構相同,所以具有至少與有機EL元件1相同的作用效果。而且,藉由具有金屬層14d, 能夠謀求降低驅動電壓且進一步改善元件壽命。其結果,有機EL元件2的驅動安定性係進一步提升。 The organic EL element 2 has the same structure as the organic EL element 1 except for the point of having the metal layer 14d, and therefore has at least the same effect as the organic EL element 1. Moreover, by having the metal layer 14d, It is possible to reduce the driving voltage and further improve the device life. As a result, the driving stability of the organic EL element 2 is further improved.

以上,說明本發明的各種實施形態,但是不被所例示的各種實施形態限定,而是依照申請專利範圍,意圖包含在申請專利範圍及均等的意思及範圍內之全部的變更。 The various embodiments of the present invention have been described above, but are not limited to the illustrated various embodiments, but are intended to include all changes within the scope of patent application and the equivalent meaning and scope in accordance with the scope of patent application.

例如,有機EL元件的結構係不被在第1圖及第2圖所例示的結構限定。 For example, the structure of the organic EL element is not limited to the structure illustrated in FIGS. 1 and 2.

有機EL元件,係在發光層13與陰極E2之間具有多層型電子傳輸層即可。顯示有機EL元件能夠採用的層結構的例子。在以下的說明,亦包含第1及第2實施形態的結構之情況。 The organic EL element only needs to have a multilayer electron transport layer between the light-emitting layer 13 and the cathode E2. An example of the layer structure that an organic EL element can adopt is shown. The following description also includes the configuration of the first and second embodiments.

a)陽極/電洞注入層/發光層/多層型電子傳輸層/陰極 a) Anode/hole injection layer/light emitting layer/multilayer electron transport layer/cathode

b)陽極/電洞注入層/電洞傳輸層/發光層/多層型電子傳輸層/陰極 b) Anode/hole injection layer/hole transport layer/light emitting layer/multilayer electron transport layer/cathode

c)陽極/發光層/多層型電子傳輸層/陰極 c) Anode/luminescent layer/multilayer electron transport layer/cathode

記號「/」係意味著記號「/」的兩側之層之間為接合著。 The symbol "/" means that the layers on both sides of the symbol "/" are joined.

在a)至c),所謂「多層型電子傳輸層」,係意味著下列的任一者:(i)第1積層結構:第1混合層/電子傳輸層,(ii)第2積層結構:第1混合層/電子傳輸層/第2混合層,(iii)第3積層結構:第1混合層/金屬層/電子傳輸層、 及(iv)第4積層結構:第1混合層/金屬層/電子傳輸層/第2混合層。 In a) to c), the so-called "multilayer electron transport layer" means any one of the following: (i) the first layered structure: the first mixed layer/electron transport layer, (ii) the second layered structure: The first mixed layer/electron transport layer/second mixed layer, (iii) the third layered structure: first mixed layer/metal layer/electron transport layer, And (iv) 4th laminated structure: 1st mixed layer/metal layer/electron transport layer/2nd mixed layer.

如上述第2積層結構及第4積層結構,在多層型電子傳輸層包含第2混合層之有機EL元件時,該有機EL元件係對應具有電子注入層。 As described above in the second layered structure and the fourth layered structure, when the multilayer type electron transport layer includes the organic EL element of the second mixed layer, the organic EL element correspondingly has an electron injection layer.

在構成多層型電子傳輸層之至少任一層係具有堵住電洞的輸送的功能之層時,此種具有堵住電洞的輸送的功能之層有時亦稱為電洞阻擋層。 When at least one of the layers constituting the multi-layer electron transport layer is a layer having a function of blocking the transport of holes, such a layer having a function of blocking the transport of holes is sometimes called a hole blocking layer.

所謂電洞阻擋層係具有堵住電洞的輸送的功能,能夠例如製造只有電洞電流流動之有機EL元件,藉由其電流值的減少來確認堵住效果。 The so-called hole blocking layer has a function of blocking the transport of holes, and for example, it is possible to manufacture an organic EL element in which only the hole current flows, and the blocking effect can be confirmed by the reduction of its current value.

於上述a)及b)的層結構中,在電洞注入層及/或電洞傳輸層具有堵住電子的輸送的功能時,有時亦將該等層稱為電子阻擋層。電子阻擋層係具有堵住電子的輸送的功能,例如能夠製造只流動電子電流之有機EL元件,藉由所測得的電流值之減少來確認堵住電子的輸送之效果。亦可在陽極與發光層之間,另外設置有別於與電洞注入層及/或電洞傳輸層的電子阻擋層。 In the layer structures of a) and b) above, when the hole injection layer and/or the hole transport layer have a function of blocking the transport of electrons, these layers are sometimes referred to as electron blocking layers. The electron blocking layer has a function of blocking the transport of electrons. For example, an organic EL element that can flow only an electron current can be manufactured, and the effect of blocking the transport of electrons can be confirmed by the decrease in the measured current value. An electron blocking layer different from the hole injection layer and/or the hole transport layer may also be provided between the anode and the light emitting layer.

而且,有機EL元件可具有單層的發光層,亦可具有2層以上的發光層。於上述a)至c)的層結構之中的任一者中,將在陽極與陰極之間所配置的積層體稱為「結構單元A」時,作為具有2層的發光層之有機EL元件的結構,能夠舉出下述d)所顯示的層結構。2個(結構單元A) 的層結構可互相相同亦可不同。 Furthermore, the organic EL element may have a single light-emitting layer, or may have two or more light-emitting layers. In any of the layer structures of a) to c) above, when the layered body disposed between the anode and the cathode is referred to as "structural unit A", it is an organic EL element having two light-emitting layers The structure can be exemplified by the layer structure shown in d) below. 2 (Structural unit A) The layer structure can be the same as or different from each other.

d)陽極/(結構單元A)/電荷產生層/(結構單元A)/陰極 d) anode/(structural unit A)/charge generation layer/(structural unit A)/cathode

在此所謂電荷產生層,係指藉由施加電場而產生電洞及電子之層。作為電荷產生層,例如能夠舉出由氧化釩、銦錫氧化物(Indium Tin Oxide:簡稱ITO)、氧化鉬等所構成之薄膜。 The charge generation layer here refers to a layer that generates holes and electrons by applying an electric field. As the charge generation layer, for example, a thin film composed of vanadium oxide, indium tin oxide (Indium Tin Oxide: ITO for short), molybdenum oxide, or the like can be mentioned.

將「(結構單元A)/電荷產生層」設作「結構單元B」時,作為具有3層以上的發光層13之有機EL元件的結構,能夠舉出以下的e)所顯示的層結構。 When "(structural unit A)/charge generation layer" is set as "structural unit B", as the structure of an organic EL element having three or more light-emitting layers 13, the layer structure shown in e) below can be mentioned.

e)陽極/(結構單元B)x/(結構單元A)/陰極 e) anode/(structural unit B) x/(structural unit A)/cathode

記號「x」係表示2以上的整數,「(結構單元B)x」係表示將(結構單元B)層積x段而成之積層體。又,複數個(結構單元B)層結構可相同亦可為不同。 The symbol "x" represents an integer of 2 or more, and "(structural unit B)x" represents a laminate formed by stacking (structural unit B) x segments. Moreover, the structure of a plurality of (structural unit B) layers may be the same or different.

亦可不設置電荷產生層,而是使複數個發光層直接層積而構成有機EL元件。 Instead of providing a charge generation layer, a plurality of light-emitting layers may be directly stacked to constitute an organic EL element.

至此為止的說明,係說明將陽極配置在基板側之例,但是亦可在基板側配置有陰極。此時,例如在基板上製造a)至e)的層結構之各有機EL元件時,係在基板上從陰極(各構成a)至e)的右側)依照順序層積各層即可。 The description so far is an example in which the anode is arranged on the substrate side, but the cathode may be arranged on the substrate side. At this time, for example, when manufacturing each organic EL element of the layer structure of a) to e) on the substrate, the layers may be stacked in order from the cathode (to the right of each configuration) to e) on the substrate.

[實施例] [Example]

以下,基於實施例及比較例而更具體地說明本發明,但是本發明係不限於以下任何的實施例。 Hereinafter, the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to any of the following examples.

[實施例1] [Example 1]

作為實施例1,係如第1圖所顯示,製造在基板上依 照下列順序將陽極、電洞注入層、電洞傳輸層、發光層、第1混合層、電子傳輸層、第2混合層及陰極層合而成之有機EL元件。將實施例1的有機EL元件稱為有機EL元件A1。在實施例1,係使用玻璃將有機EL元件A1密封。以下,具體地說明有機EL元件A1之製造方法。 As Example 1, as shown in Figure 1, manufactured on a substrate An organic EL device formed by laminating an anode, a hole injection layer, a hole transport layer, a light emitting layer, a first mixed layer, an electron transport layer, a second mixed layer, and a cathode in the following order. The organic EL element of Example 1 is referred to as an organic EL element A1. In Example 1, the organic EL element A1 was sealed using glass. Hereinafter, a method of manufacturing the organic EL element A1 will be specifically described.

<基板及陽極> <substrate and anode>

準備玻璃基板作為有機EL元件A1的基板。在玻璃基板上,以預定圖案形成ITO薄膜作為陽極。使用濺鍍法形成ITO薄膜,其膜厚為45nm。將在表面形成有ITO薄膜之玻璃基板,使用有機溶劑、鹼洗劑及超純水進行超音波洗淨後,使用有機溶劑煮沸10分鐘且使其乾燥。其次,使用紫外線臭氧(UV-O3)裝置,對形成有ITO薄膜之面進行紫外線臭氧處理約15分鐘。 A glass substrate is prepared as a substrate of the organic EL element A1. On the glass substrate, an ITO thin film is formed as an anode in a predetermined pattern. The ITO thin film is formed using a sputtering method, and its film thickness is 45 nm. The glass substrate with the ITO thin film formed on the surface was washed with an organic solvent, an alkaline detergent and ultrapure water, and then boiled with an organic solvent for 10 minutes and dried. Next, using an ultraviolet ozone (UV-O3) device, the surface on which the ITO film is formed is subjected to ultraviolet ozone treatment for about 15 minutes.

<電洞注入層> <hole injection layer>

將具有電荷輸送性的有機材料與電子接受性材料組合而成之電洞注入材料,藉由旋轉塗佈法塗佈在ITO薄膜上,來形成35nm厚度的塗膜。以下,係將實施例1所使用的電洞注入材料稱為電洞注入材料α 1。在大氣中,使上述塗膜在加熱板上乾燥而形成電洞注入層。在利用加熱板之乾燥,係將上述塗膜首先使其在50℃乾燥4分鐘後,進一步使其在230℃乾燥15分鐘。 A hole injection material composed of an organic material having charge transport properties and an electron-accepting material is applied on the ITO thin film by a spin coating method to form a coating film with a thickness of 35 nm. Hereinafter, the hole injection material used in Example 1 is referred to as a hole injection material α 1. In the atmosphere, the coating film was dried on a hot plate to form a hole injection layer. In the drying using a hot plate, the coating film was first dried at 50°C for 4 minutes, and then further dried at 230°C for 15 minutes.

<電洞傳輸層> <hole transport layer>

將高分子材料之電洞輸送材料與二甲苯混合而得到固態物(電洞輸送材料)濃度為0.6重量%的電洞傳輸層形成 用組成物。以下,係將實施例1所使用的電洞輸送材料稱為電洞輸送材料α 2。使用旋轉塗佈法將得到的電洞傳輸層形成用組成物塗佈在電洞注入層上,而得到膜厚20nm的塗膜。在氮氣環境(惰性環境)下,將設置有該塗膜之玻璃基板,藉由利用加熱板在180℃加熱60分鐘使溶劑蒸發後,自然冷卻至室溫為止而得到電洞傳輸層。 A hole transport layer formed by mixing a hole transport material of a polymer material with xylene to obtain a solid (hole transport material) concentration of 0.6% by weight Composition. Hereinafter, the hole transport material used in Example 1 is referred to as hole transport material α 2. The obtained composition for forming a hole transport layer was applied on the hole injection layer using a spin coating method to obtain a coating film with a thickness of 20 nm. Under a nitrogen environment (inert environment), the glass substrate provided with the coating film was heated at 180° C. for 60 minutes by a hot plate to evaporate the solvent, and then naturally cooled to room temperature to obtain a hole transport layer.

<發光層> <luminescent layer>

將發光性共軛系高分子材料及二甲苯混合,而得到發光性共軛系高分子材料的濃度為1.3%之發光層形成用組成物。在實施例1,係使用藍色發光性共軛系高分子材料作為發光性共軛系高分子材料。以下,係將實施例1所使用的藍色發光性共軛系高分子材料稱為藍色發光性共軛系高分子材料α 3。將所得到的發光層形成用組成物,使用旋轉塗佈法塗佈在電洞傳輸層上而得到膜厚65nm的塗膜。在氮氣環境(惰性環境)下,將設置有該塗膜之玻璃基板利用加熱板,在150℃加熱10分鐘使溶劑蒸發之後,自然冷卻至室溫為止而得到發光層。 The light-emitting conjugated polymer material and xylene were mixed to obtain a composition for forming a light-emitting layer having a concentration of the light-emitting conjugated polymer material of 1.3%. In Example 1, a blue light-emitting conjugated polymer material was used as the light-emitting conjugated polymer material. Hereinafter, the blue light-emitting conjugated polymer material used in Example 1 is referred to as blue light-emitting conjugated polymer material α 3. The obtained composition for forming a light-emitting layer was applied on the hole transport layer using a spin coating method to obtain a coating film with a thickness of 65 nm. Under a nitrogen atmosphere (inert environment), the glass substrate provided with the coating film was heated at 150° C. for 10 minutes using a hot plate to evaporate the solvent, and then naturally cooled to room temperature to obtain a light-emitting layer.

<第1混合層> <1st mixed layer>

將形成有發光層之玻璃基板移至蒸鍍處理室,在發光層上形成第1混合層。具體而言,係進行排氣至蒸鍍處理室內的真空度成為1.0×10-5Pa以下為止,使用真空蒸鍍法將電子輸送材料及有機金屬錯合物化合物共蒸鍍在發光層上,來形成膜厚為5nm之將電子輸送材料與有機金屬錯合物化合物混合而成之第1混合層。以下,係將實施例1所 使用的電子輸送材料及有機金屬錯合物化合物稱為電子輸送材料α 4及有機金屬錯合物化合物α 5。電子輸送材料α 4係TORAY股份公司製的TR-E314。有機金屬錯合物化合物α 5為8-喹啉酚鈉(Naq)。電子輸送材料α 4及有機金屬錯合物化合物α 5的蒸鍍速度係各自設為0.3Å/s。亦即,在第1混合層之電子輸送材料α 4與有機金屬錯合物化合物α 5的質量比為50:50。 The glass substrate on which the light-emitting layer was formed was moved to a vapor deposition processing chamber, and a first mixed layer was formed on the light-emitting layer. Specifically, the system is exhausted until the vacuum degree in the vapor deposition processing chamber becomes 1.0×10 -5 Pa or less, and the electron transport material and the organometallic complex compound are co-evaporated on the light-emitting layer using a vacuum vapor deposition method. To form a first mixed layer with a film thickness of 5 nm, an electron transport material and an organometallic complex compound are mixed. Hereinafter, the electron transport material and the organometallic complex compound used in Example 1 are referred to as the electron transport material α 4 and the organometallic complex compound α 5. The electron transport material α 4 is TR-E314 manufactured by TORAY Corporation. The organometallic complex compound α 5 is 8-quinolinol sodium (Naq). The vapor deposition rates of the electron transport material α 4 and the organometallic complex compound α 5 were each set to 0.3Å/s. That is, the mass ratio of the electron transport material α 4 to the organometallic complex compound α 5 in the first mixed layer is 50:50.

<電子傳輸層> <electron transport layer>

形成第1混合層後,係在相同的蒸鍍處理室內,將電子傳輸層形成在第1混合層上。具體而言,係使用真空蒸鍍法將電子輸送材料α 4進行蒸鍍在第1混合層上,而形成膜厚為60nm的電子傳輸層。電子輸送材料α 4的蒸鍍速度係設為0.5Å/s。 After the first mixed layer is formed, the electron transport layer is formed on the first mixed layer in the same vapor deposition chamber. Specifically, the electron transport material α 4 is vapor-deposited on the first mixed layer using a vacuum vapor deposition method to form an electron transport layer with a film thickness of 60 nm. The vapor deposition rate of the electron transport material α 4 is set to 0.5Å/s.

<第2混合層> <2nd mixed layer>

形成電子傳輸層,在相同的蒸鍍處理室內,將第2混合層形成在電子傳輸層上。具體而言,係使用真空蒸鍍法將電子輸送材料α 4及有機金屬錯合物化合物α 5共蒸鍍在電子傳輸層上,而形成膜厚為5nm之將電子輸送材料α 4與有機金屬錯合物化合物α 5混合而成之第2混合層。電子輸送材料α 4及有機金屬錯合物化合物α 5的蒸鍍速度係各自設為0.3Å/s。亦即,在第2混合層之電子輸送材料α 4與有機金屬錯合物化合物α 5的質量比為50:50。 The electron transport layer is formed, and the second mixed layer is formed on the electron transport layer in the same vapor deposition chamber. Specifically, the electron transport material α 4 and the organometallic complex compound α 5 are co-evaporated on the electron transport layer using a vacuum evaporation method to form the electron transport material α 4 and the organic metal with a thickness of 5 nm The second mixed layer formed by mixing the complex compound α 5. The vapor deposition rates of the electron transport material α 4 and the organometallic complex compound α 5 are each set to 0.3Å/s. That is, the mass ratio of the electron transport material α 4 and the organometallic complex compound α 5 in the second mixed layer is 50:50.

<陰極> <cathode>

形成第2混合層之後,在相同的蒸鍍處理室內形成陰 極。具體而言,係使用真空蒸鍍法將鎂及銀共蒸鍍在第2混合層上,而形成膜厚為20nm的陰極a後,使用真空蒸鍍法將鋁蒸鍍在陰極a上,而形成膜厚為100nm的陰極b。亦即,作為有機EL元件A1的陰極,係在第2混合層上形成將厚度20nm的陰極a及厚度100nm的陰極b層積而成的2層結構之陰極。 After the second mixed layer is formed, the negative electrode is formed in the same vapor deposition chamber pole. Specifically, magnesium and silver are co-evaporated on the second mixed layer using a vacuum evaporation method to form a cathode a with a thickness of 20 nm, and then aluminum is deposited on the cathode a using a vacuum evaporation method, and A cathode b with a film thickness of 100 nm is formed. That is, as the cathode of the organic EL element A1, a cathode having a two-layer structure in which a cathode a having a thickness of 20 nm and a cathode b having a thickness of 100 nm is formed on the second mixed layer is formed.

<玻璃密封> <glass seal>

形成陰極後,係不使其暴露在大氣,而是將陰極形成後的玻璃基板,從蒸鍍室搬運至密封處理室。其次,在氮氣環境(惰性環境)下,將在周圍塗佈有UV硬化樹脂之密封玻璃、與從蒸鍍室搬運的玻璃基板貼合之後,藉由照射UV光使UV硬化樹脂硬化而使用玻璃將有機EL元件A1密封。 After the cathode is formed, the glass substrate after the cathode is formed is transported from the vapor deposition chamber to the sealed processing chamber without being exposed to the atmosphere. Next, in a nitrogen atmosphere (inert environment), after sealing glass coated with UV hardening resin around it and bonding to the glass substrate transported from the vapor deposition chamber, the UV hardening resin is cured by irradiating UV light to use glass The organic EL element A1 is sealed.

將如上述進行而製成的有機EL元件A1進行驅動,而測定元件壽命、電流效率及驅動電壓。 The organic EL element A1 produced as described above was driven, and the element life, current efficiency, and driving voltage were measured.

將驅動開始時的亮度設為100時,元件壽命係採用以從驅動開始至亮度降低為80為止的時間表示之LT80來進行評價。元件壽命的測定,係以10mA/cm2的定電流驅動有機EL元件A1而進行。驅動電壓係以10mA/cm2的一定電流驅動有機EL元件A1時的電壓。電流效率係亮度為1000cd/m2(亦即,1000nit)時之值。 When the brightness at the start of driving is set to 100, the device life is evaluated using LT80, which is the time from the start of driving until the brightness decreases to 80. The measurement of the device life was performed by driving the organic EL device A1 at a constant current of 10 mA/cm 2 . The driving voltage is a voltage when the organic EL element A1 is driven with a constant current of 10 mA/cm 2 . The current efficiency is the value when the brightness is 1000 cd/m 2 (that is, 1000 nit).

在有機EL元件A1的測定結果,元件壽命(LT80)為15.1小時,電流效率為1.0cd/A,驅動電壓為6.0V。 In the measurement results of the organic EL device A1, the device lifetime (LT80) was 15.1 hours, the current efficiency was 1.0 cd/A, and the driving voltage was 6.0V.

[比較例1] [Comparative Example 1]

作為比較例1,係製造在基板上依照下列順序將陽 極、電洞注入層、電洞傳輸層、發光層、電子傳輸層、及陰極層積而成之有機EL元件。將比較例1的有機EL元件稱為有機EL元件B1。有機EL元件B1的結構,除了不具有第1及第2混合層之點及電子傳輸層的膜厚為70nm之點以外,係具有與實施例1的有機EL元件A1同樣的構成。亦即,在比較例1,基板、陽極、電洞注入層、電洞傳輸層、發光層、及陰極各自的材料、厚度及形成方法,係與實施例1之情況相同。因此,針對電子傳輸層的形成方法進行說明,而將其它的說明省略。 As Comparative Example 1, it was fabricated on a substrate in the following order An organic EL device formed by laminating an electrode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode. The organic EL element of Comparative Example 1 is referred to as organic EL element B1. The structure of the organic EL element B1 has the same structure as the organic EL element A1 of Example 1 except that the first and second mixed layers and the film thickness of the electron transport layer are 70 nm. That is, in Comparative Example 1, the materials, thicknesses, and forming methods of the substrate, anode, hole injection layer, hole transport layer, light emitting layer, and cathode are the same as in Example 1. Therefore, the method of forming the electron transport layer will be described, and other description will be omitted.

在比較例1,電子傳輸層係如下列方式形成。亦即,在形成發光層後,將形成有發光層之玻璃基板(基板)移至蒸鍍處理室。然後,進行排氣至蒸鍍處理室內的真空度成為1.0×10-5Pa以下為止,使用真空蒸鍍法將電子輸送材料α 4蒸鍍在發光層上,來形成膜厚為70nm的電子傳輸層。電子輸送材料α 4的蒸鍍速度係設為0.5Å/s。 In Comparative Example 1, the electron transport layer was formed as follows. That is, after the light-emitting layer is formed, the glass substrate (substrate) on which the light-emitting layer is formed is moved to the vapor deposition processing chamber. Then, exhaust was performed until the degree of vacuum in the vapor deposition processing chamber became 1.0×10 -5 Pa or less, and the electron transport material α 4 was vapor-deposited on the light-emitting layer using a vacuum vapor deposition method to form electron transport with a film thickness of 70 nm Floor. The vapor deposition rate of the electron transport material α 4 is set to 0.5Å/s.

在比較例1,係與實施例1同樣地將所製成的有機EL元件B1進行玻璃密封。 In Comparative Example 1, the produced organic EL element B1 was glass-sealed in the same manner as in Example 1.

驅動比較例1的有機EL元件B1且在與實施例1同樣的條件下測定元件壽命、電流效率及驅動電壓。 The organic EL device B1 of Comparative Example 1 was driven and the device life, current efficiency, and driving voltage were measured under the same conditions as in Example 1.

其結果,在比較例1之元件壽命(LT80)為0.1小時,電流效率為1.0cd/A,驅動電壓為6.1V。 As a result, in Comparative Example 1, the device life (LT80) was 0.1 hours, the current efficiency was 1.0 cd/A, and the driving voltage was 6.1V.

[比較例2] [Comparative Example 2]

作為比較例2,係製造在基板上依照下列順序將陽極、電洞注入層、電洞傳輸層、發光層、電子傳輸層、第 2混合層及陰極層積而成之有機EL元件。將比較例2的有機EL元件稱為有機EL元件B2。有機EL元件B2的結構,係除了不具有第1之點及電子傳輸層的膜厚為65nm之點以外,係具有與實施例1的有機EL元件A1同樣的構成。在比較例2,基板、陽極、電洞注入層、電洞傳輸層、發光層、第2混合層陰極各自的材料、厚度及形成方法,係與實施例1時同樣。而且,比較例2的電洞傳輸層的形成方法,係除了將膜厚設為65nm之點以外,係比較例1時同樣。 As Comparative Example 2, the anode, the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, the first 2 Organic EL device formed by mixing layers and cathodes. The organic EL element of Comparative Example 2 is referred to as organic EL element B2. The structure of the organic EL element B2 is the same as the organic EL element A1 of Example 1 except that it does not have the first point and the point that the film thickness of the electron transport layer is 65 nm. In Comparative Example 2, the materials, thicknesses, and formation methods of the substrate, anode, hole injection layer, hole transport layer, light emitting layer, and second mixed layer cathode are the same as in Example 1. In addition, the method of forming the hole transport layer of Comparative Example 2 is the same as that of Comparative Example 1 except that the film thickness is 65 nm.

在比較例2,亦與實施例1同樣地,將有機EL元件B2進行玻璃密封。 In Comparative Example 2, as in Example 1, the organic EL element B2 was glass-sealed.

驅動比較例2有機EL元件B2且在與實施例1同樣的條件下,測定元件壽命、電流效率及驅動電壓。其結果,在比較例2,元件壽命(LT80)為2.3小時,電流效率為1.0cd/A,驅動電壓為5.5V。 The organic EL device B2 of Comparative Example 2 was driven and the device life, current efficiency, and driving voltage were measured under the same conditions as in Example 1. As a result, in Comparative Example 2, the device life (LT80) was 2.3 hours, the current efficiency was 1.0 cd/A, and the driving voltage was 5.5V.

[實施例1及比較例1、2的比較] [Comparison of Example 1 and Comparative Examples 1 and 2]

將前述之實施例1、比較例1、2的有機EL元件A1、B1、B2的元件壽命、電流效率及驅動電壓的測定結果顯示在表1。 Table 1 shows the measurement results of the device life, current efficiency, and driving voltage of the organic EL devices A1, B1, and B2 of the aforementioned Example 1, Comparative Examples 1, and 2.

Figure 105103271-A0202-12-0031-5
Figure 105103271-A0202-12-0031-5

從表1能夠理解,相對於比較例1、2,設置有第1混合層之實施例1,能夠理解於大致同樣的電流效率及驅動電壓時,能夠得到較長的元件壽命。特別是藉由將實施例1與比較例2進行比較,能夠理解因第1混合層的影響而產生此種元件壽命的差異。因而,能夠理解藉由設含有電子輸送材料及有機金屬錯合物化合物之第1混合層,使得有機EL元件的驅動安定性提升。 It can be understood from Table 1 that Example 1 provided with the first mixed layer compared to Comparative Examples 1 and 2 can understand that when the current efficiency and the driving voltage are substantially the same, a long device life can be obtained. In particular, by comparing Example 1 with Comparative Example 2, it can be understood that such a difference in device life due to the influence of the first mixed layer. Therefore, it can be understood that by providing the first mixed layer containing the electron transport material and the organometallic complex compound, the driving stability of the organic EL element is improved.

其次,如第2圖所顯示,針對多層型電子傳輸層進一步具備金屬層時的作用效果之驗證結果進行說明。 Next, as shown in FIG. 2, the verification results of the effect when the multilayer electron transport layer further includes a metal layer will be described.

(實施例2) (Example 2)

作為實施例2,係如第2圖所顯示,製造在基板上依照下列順序將陽極、電洞注入層、電洞傳輸層、發光層、第1混合層、金屬層、電子傳輸層、第2混合層及陰極層積而成之有機EL元件。將實施例2的有機EL元件稱為有機EL元件A2。在實施例2,係與實施例1時同樣地使用玻璃將有機EL元件A2密封。具體地說明有機EL元件A2 之製造方法。 As Example 2, as shown in FIG. 2, the anode, the hole injection layer, the hole transport layer, the light emitting layer, the first mixed layer, the metal layer, the electron transport layer, the second An organic EL device formed by laminating a mixed layer and a cathode. The organic EL element of Example 2 is referred to as organic EL element A2. In Example 2, the organic EL element A2 was sealed with glass in the same manner as in Example 1. Specifically, the organic EL element A2 Of manufacturing methods.

<基板及陽極> <substrate and anode>

準備玻璃基板作為有機EL元件A2的基板。在準備好的玻璃基板上,以預定圖案形成ITO薄膜作為陽極。使用濺鍍法形成ITO薄膜,其膜厚為45nm。將在表面形成有ITO薄膜之玻璃基板,使用有機溶劑、鹼洗劑及超純水進行超音波洗淨後,使用有機溶劑煮沸10分鐘且使其乾燥。其次,使用紫外線臭氧(UV-O3)裝置,對形成有ITO薄膜之面進行紫外線臭氧處理約15分鐘。 A glass substrate is prepared as the substrate of the organic EL element A2. On the prepared glass substrate, an ITO thin film is formed as an anode in a predetermined pattern. The ITO thin film is formed using a sputtering method, and its film thickness is 45 nm. The glass substrate with the ITO thin film formed on the surface was washed with an organic solvent, an alkaline detergent and ultrapure water, and then boiled with an organic solvent for 10 minutes and dried. Next, using an ultraviolet ozone (UV-O3) device, the surface on which the ITO film is formed is subjected to ultraviolet ozone treatment for about 15 minutes.

<電洞注入層> <hole injection layer>

除了將含有電洞注入材料α 1之油墨,藉由旋轉塗佈法塗佈在ITO薄膜上,來形成80nm厚度的塗膜之點以外,係與實施例1同樣地進行形成電洞注入層。 The hole injection layer was formed in the same manner as in Example 1, except that the ink containing the hole injection material α 1 was applied on the ITO film by spin coating to form a coating film with a thickness of 80 nm.

<電洞傳輸層> <hole transport layer>

與實施例1相同地進行而在電洞注入層上形成電洞傳輸層。 The hole transport layer was formed on the hole injection layer in the same manner as in Example 1.

<發光層> <luminescent layer>

將紅色發光性共軛系高分子材料及二甲苯混合,而得到紅色發光性共軛系高分子材料的濃度為2.8%之發光層形成用組成物。以下,係將實施例2所使用的紅色發光性共軛系高分子材料稱為紅色發光性共軛系高分子材料α 6。將所得到的發光層形成用組成物,使用旋轉塗佈法塗佈在電洞傳輸層上而得到膜厚160nm的塗膜。在氮氣環境(惰性環境)下,將設置有該塗膜之玻璃基板利用加熱板,在 150℃加熱10分鐘使溶劑蒸發之後,自然冷卻至室溫為止而得到發光層。 The red light-emitting conjugated polymer material and xylene were mixed to obtain a composition for forming a light-emitting layer having a red light-emitting conjugated polymer material concentration of 2.8%. Hereinafter, the red light-emitting conjugated polymer material used in Example 2 is referred to as red light-emitting conjugated polymer material α 6. The obtained composition for forming a light-emitting layer was applied on the hole transport layer using a spin coating method to obtain a coating film with a thickness of 160 nm. Under a nitrogen atmosphere (inert environment), the glass substrate provided with the coating film is After heating at 150°C for 10 minutes to evaporate the solvent, it was naturally cooled to room temperature to obtain a light-emitting layer.

<第1混合層> <1st mixed layer>

與實施例1同樣地進行而在發光層上形成第1混合層。 The first mixed layer was formed on the light-emitting layer in the same manner as in Example 1.

<金屬層> <metal layer>

形成第1混合層後,在形成第1混合層後之蒸鍍處理室內,使用真空蒸鍍法將鎂蒸鍍在第1混合層上而形成膜厚2nm之金屬層。鎂的蒸鍍速度係設為0.5Å/s。 After the first mixed layer is formed, magnesium is vapor-deposited on the first mixed layer using a vacuum deposition method in the vapor deposition processing chamber after the first mixed layer is formed to form a metal layer with a thickness of 2 nm. The evaporation rate of magnesium is set to 0.5Å/s.

<電子傳輸層> <electron transport layer>

形成金屬層後,在相同的蒸鍍處理室內與實施例1時同樣地進行而形成電子傳輸層。 After the metal layer was formed, the electron transport layer was formed in the same vapor deposition chamber as in Example 1.

<第2混合層> <2nd mixed layer>

形成電子傳輸層後,除了將電子輸送材料α 4及有機金屬錯合物化合物α 5的蒸鍍速度各自設為0.1Å/s及0.9Å/s之點以外,係與實施例1同樣地行而在電子傳輸層上形成第2混合層。亦即,在第2混合層之電子輸送材料α 4與有機金屬錯合物化合物α 5之質量比為10:90。 After the electron transport layer was formed, it was performed in the same manner as in Example 1, except that the deposition rates of the electron transport material α 4 and the organometallic complex compound α 5 were each set to 0.1Å/s and 0.9Å/s. On the other hand, a second mixed layer is formed on the electron transport layer. That is, the mass ratio of the electron transport material α 4 and the organometallic complex compound α 5 in the second mixed layer is 10:90.

<陰極> <cathode>

形成第2混合層後,在相同的蒸鍍處理室內形成陰極。具體而言,係使用真空蒸鍍法將鎂蒸鍍在第2混合層上,而形成膜厚為2nm的陰極a後,使用真空蒸鍍法將銀蒸鍍在陰極a上,而形成膜厚為18nm的陰極b。接著,使用真空蒸鍍法將鋁蒸鍍在陰極b上,而形成膜厚為100nm的陰極c。亦即,作為有機EL元件A2的陰極,係在第2 混合層上形成將厚度2nm的陰極a、厚度18nm的陰極b、及厚度100nm的陰極c層積而成的3層結構之陰極。 After the second mixed layer is formed, the cathode is formed in the same vapor deposition chamber. Specifically, magnesium is vapor-deposited on the second mixed layer using the vacuum vapor deposition method to form the cathode a with a film thickness of 2 nm, and silver is vapor-deposited on the cathode a using the vacuum vapor deposition method to form a film thickness It is 18nm cathode b. Next, aluminum was vapor-deposited on the cathode b using a vacuum evaporation method to form a cathode c with a film thickness of 100 nm. That is, the cathode of the organic EL element A2 is On the mixed layer, a cathode having a three-layer structure is formed by laminating a cathode a with a thickness of 2 nm, a cathode b with a thickness of 18 nm, and a cathode c with a thickness of 100 nm.

<玻璃密封> <glass seal>

形成陰極後,係與實施例1之情況同樣地使用玻璃將有機EL元件A2密封。 After the cathode was formed, the organic EL element A2 was sealed with glass in the same manner as in Example 1.

因為有機EL元件A2係在發光層含有紅色發光性共軛系高分子材料α 6,所以有機EL元件A2係紅色發光元件。 Since the organic EL element A2 contains a red light-emitting conjugated polymer material α 6 in the light-emitting layer, the organic EL element A2 is a red light-emitting element.

驅動如上述進行而製成的有機EL元件A2,而測定元件壽命、電流效率及驅動電壓。元件壽命係與實施例1同樣地以LT80來進行評價。元件壽命的測定,係在以80mA/cm2的一定電流驅動元件的狀態下進行測定。電流效率係亮度為100cd/m2(亦即,100nit)時之值。驅動電壓係電流密度為10mA/cm2時之值。 The organic EL device A2 produced as described above was driven, and the device life, current efficiency, and drive voltage were measured. The device life was evaluated by LT80 in the same manner as in Example 1. The life of the device is measured in a state where the device is driven at a constant current of 80 mA/cm 2 . The current efficiency is the value when the brightness is 100 cd/m 2 (that is, 100 nit). The driving voltage is the value when the current density is 10 mA/cm 2 .

在有機EL元件A2的測定結果,元件壽命(LT80)為156.1小時,電流效率為8.2cd/A,驅動電壓為6.8V。 In the measurement results of the organic EL device A2, the device life (LT80) was 156.1 hours, the current efficiency was 8.2 cd/A, and the driving voltage was 6.8 V.

(實施例3) (Example 3)

作為實施例3,除了不具備金屬層之點以外,係與實施例2之情況同樣地進行而製造有機EL元件且使用玻璃密封。將實施例3的有機EL元件稱為有機EL元件A3。有機EL元件A3亦與有機EL元件A2同樣地是紅色發光元件。 As Example 3, an organic EL element was produced in the same manner as in Example 2 except that the metal layer was not provided, and glass sealing was used. The organic EL element of Example 3 is referred to as organic EL element A3. Like the organic EL element A2, the organic EL element A3 is a red light-emitting element.

將所製成的有機EL元件A3,在與實施例2時同樣的條件下測定元件壽命、電流效率及驅動電壓。在 實施例3,元件壽命(LT80)為52.0小時,電流效率為6.4cd/A,驅動電壓為11.5V。 The produced organic EL device A3 was measured under the same conditions as in Example 2 for the device life, current efficiency, and driving voltage. in In Example 3, the element life (LT80) was 52.0 hours, the current efficiency was 6.4 cd/A, and the driving voltage was 11.5V.

[實施例2及實施例3之比較] [Comparison of Example 2 and Example 3]

將前述的實施例2及實施例3之元件壽命、電流效率及驅動電壓的測定結果顯示在表2。 Table 2 shows the measurement results of the element lifetime, current efficiency, and driving voltage of the foregoing Examples 2 and 3.

Figure 105103271-A0202-12-0035-6
Figure 105103271-A0202-12-0035-6

從表2能夠理解,相對於不設置金屬層之實施例3,能夠理解設置有金屬層之實施例2能夠以較低的驅動電壓進行驅動之同時,能夠實現較長的元件壽命。 It can be understood from Table 2 that, compared to Example 3 without a metal layer, Example 2 with a metal layer can be driven at a lower driving voltage and can achieve a longer device life.

(實施例4) (Example 4)

在實施例4係除了電洞注入層及發光層的結構為不同之點以外,係製造具有與實施例2之情況相同的構成之有機EL元件且與實施例2同樣地使用玻璃密封。將實施例4的有機EL元件稱為有機EL元件A4。針對在有機EL元件A4之電洞注入層及發光層的形成方法進行說明。 In Example 4, an organic EL device having the same configuration as in Example 2 was manufactured except that the structures of the hole injection layer and the light-emitting layer were different, and glass sealing was used in the same manner as in Example 2. The organic EL element of Example 4 is referred to as organic EL element A4. The method of forming the hole injection layer and the light-emitting layer in the organic EL element A4 will be described.

<電洞注入層> <hole injection layer>

除了將在ITO薄膜上塗佈含有電洞注入材料α 1的油墨而形成之塗膜的厚度設為85nm之點以外,係與實施例2之情況同樣地進行而形成電洞注入層。 The hole injection layer was formed in the same manner as in Example 2 except that the thickness of the coating film formed by applying the ink containing the hole injection material α 1 on the ITO thin film was 85 nm.

<發光層> <luminescent layer>

將綠色發光性共軛系高分子材料及二甲苯混合,而得到綠色發光性共軛系高分子材料的濃度為2.2%之發光層形成用組成物。以下,係將實施例4所使用的綠色發光性共軛系高分子材料稱為綠色發光性共軛系高分子材料α 7。將所得到的發光層形成用組成物,使用旋轉塗佈法塗佈在電洞傳輸層上而得到膜厚85nm的塗膜。在氮氣環境(惰性環境)下,將設置有該塗膜之玻璃基板利用加熱板,在150℃加熱10分鐘使溶劑蒸發之後,自然冷卻至室溫為止而得到發光層。 The green light-emitting conjugated polymer material and xylene were mixed to obtain a composition for forming a light-emitting layer having a concentration of 2.2% of the green light-emitting conjugated polymer material. Hereinafter, the green light-emitting conjugated polymer material used in Example 4 is referred to as green light-emitting conjugated polymer material α 7. The obtained composition for forming a light-emitting layer was applied on the hole transport layer using a spin coating method to obtain a coating film with a thickness of 85 nm. Under a nitrogen atmosphere (inert environment), the glass substrate provided with the coating film was heated at 150° C. for 10 minutes using a hot plate to evaporate the solvent, and then naturally cooled to room temperature to obtain a light-emitting layer.

如上述,因為在發光層含有綠色發光性共軛系高分子材料α 7,所以有機EL元件A4為綠色發光元件。 As described above, since the light-emitting layer contains the green light-emitting conjugated polymer material α 7, the organic EL element A4 is a green light-emitting element.

驅動所製成的有機EL元件A4,而測定元件壽命、電流效率及驅動電壓。元件壽命係與實施例1同樣地以LT80來進行評價。元件壽命的測定,係在以25mA/cm2的一定電流驅動元件的狀態下進行測定。電流效率係亮度為100cd/m2(亦即,100nit)時之值。驅動電壓係電流密度為10mA/cm2時之值。 The manufactured organic EL element A4 was driven, and the element life, current efficiency, and driving voltage were measured. The device life was evaluated by LT80 in the same manner as in Example 1. The life of the device is measured in a state where the device is driven with a constant current of 25 mA/cm 2 . The current efficiency is the value when the brightness is 100 cd/m 2 (that is, 100 nit). The driving voltage is the value when the current density is 10 mA/cm 2 .

在有機EL元件A3,元件壽命(LT80)為12.4小時,電流效率為6.1cd/A,驅動電壓為6.2V。 In the organic EL device A3, the device lifetime (LT80) was 12.4 hours, the current efficiency was 6.1 cd/A, and the driving voltage was 6.2V.

(實施例5) (Example 5)

作為實施例5,除了不具備金屬層之點以外,係與實施例4之情況同樣地進行而製造有機EL元件且使用玻璃密封。將實施例5的有機EL元件稱為有機EL元件A5。 有機EL元件A5亦與有機EL元件A4同樣地是綠色發光元件。 As Example 5, an organic EL element was manufactured in the same manner as in Example 4 except that the metal layer was not provided, and glass sealing was used. The organic EL element of Example 5 is referred to as organic EL element A5. Like the organic EL element A4, the organic EL element A5 is a green light-emitting element.

將所製成的有機EL元件A5,在與實施例4時同樣的條件下測定元件壽命、電流效率及驅動電壓。在實施例5,元件壽命(LT80)為1.7小時,電流效率為12.9cd/A,驅動電壓為8.9V。 The produced organic EL device A5 was measured under the same conditions as in Example 4 for the device life, current efficiency, and driving voltage. In Example 5, the device life (LT80) was 1.7 hours, the current efficiency was 12.9 cd/A, and the driving voltage was 8.9V.

[實施例4及實施例5的比較] [Comparison of Example 4 and Example 5]

將在前述的實施例4及實施例5之元件壽命、電流效率及驅動電壓的測定結果顯示在表3。 Table 3 shows the measurement results of the device life, current efficiency, and driving voltage in the foregoing Examples 4 and 5.

Figure 105103271-A0202-12-0037-7
Figure 105103271-A0202-12-0037-7

從表3能夠理解,相對於不設置金屬層之實施例5,能夠理解設置有金屬層之實施例4,雖電流效率降低,但是能夠以較低的驅動電壓進行驅動之同時,能夠實現較長的元件壽命。 It can be understood from Table 3 that, compared to Example 5 without the metal layer, Example 4 with the metal layer can be understood, although the current efficiency is reduced, but it can be driven at a lower driving voltage and can achieve a longer Component life.

(實施例6) (Example 6)

在實施例6,除了電洞注入層及發光層的結構為不同之點以外,係製造具有與實施例2之情況相同的構成之有機EL元件且使用玻璃密封。將實施例6的有機EL元件稱為有機EL元件A6。針對在有機EL元件A6之電洞注入層 及發光層的形成方法進行說明。 In Example 6, except that the structures of the hole injection layer and the light-emitting layer are different, an organic EL element having the same configuration as in the case of Example 2 was manufactured and sealed with glass. The organic EL element of Example 6 is referred to as organic EL element A6. For the hole injection layer in the organic EL element A6 And the formation method of the light emitting layer will be described.

<電洞注入層> <hole injection layer>

除了將在ITO薄膜上塗佈含有電洞注入材料α 1的油墨而形成之塗膜的厚度設為35nm之點以外,係與實施例2時同樣地進行而形成電洞注入層。 The hole injection layer was formed in the same manner as in Example 2 except that the thickness of the coating film formed by applying the ink containing the hole injection material α 1 on the ITO thin film was 35 nm.

<發光層> <luminescent layer>

將藍色發光性共軛系高分子材料α 3及二甲苯混合,而得到藍色發光性共軛系高分子材料α 3的濃度為1.3%之發光層形成用組成物。以下,係將實施例4所使用的藍色發光性共軛系高分子材料稱為藍色發光性共軛系高分子材料α 7。將所得到的發光層形成用組成物,使用旋轉塗佈法塗佈在電洞傳輸層上而得到膜厚65nm的塗膜。在氮氣環境(惰性環境)下,將設置有該塗膜之玻璃基板利用加熱板,在150℃加熱10分鐘使溶劑蒸發之後,自然冷卻至室溫為止而得到發光層。 The blue light-emitting conjugated polymer material α 3 and xylene were mixed to obtain a light-emitting layer forming composition having a blue light-emitting conjugated polymer material α 3 concentration of 1.3%. Hereinafter, the blue light-emitting conjugated polymer material used in Example 4 is referred to as blue light-emitting conjugated polymer material α 7. The obtained composition for forming a light-emitting layer was applied on the hole transport layer using a spin coating method to obtain a coating film with a thickness of 65 nm. Under a nitrogen atmosphere (inert environment), the glass substrate provided with the coating film was heated at 150° C. for 10 minutes using a hot plate to evaporate the solvent, and then naturally cooled to room temperature to obtain a light-emitting layer.

如上述,因為在發光層含有藍色發光性共軛系高分子材料α 3,所以有機EL元件A6為藍色發光元件。 As described above, since the blue light-emitting conjugated polymer material α 3 is contained in the light-emitting layer, the organic EL element A6 is a blue light-emitting element.

驅動所製成的有機EL元件A6,而測定元件壽命、電流效率及驅動電壓。元件壽命係與實施例1同樣地以LT80來進行評價。元件壽命的測定,係在以80mA/cm2的一定電流驅動元件的狀態下進行測定。電流效率係亮度為100cd/m2(亦即,100nit)時之值。驅動電壓係電流密度為10mA/cm2時之值。 The manufactured organic EL element A6 was driven, and the element life, current efficiency, and driving voltage were measured. The device life was evaluated by LT80 in the same manner as in Example 1. The life of the device is measured in a state where the device is driven at a constant current of 80 mA/cm 2 . The current efficiency is the value when the brightness is 100 cd/m 2 (that is, 100 nit). The driving voltage is the value when the current density is 10 mA/cm 2 .

在有機EL元件A6,元件壽命(LT80)為11.8 小時,電流效率為1.7cd/A,驅動電壓為4.9V。 In the organic EL element A6, the element life (LT80) is 11.8 Hours, the current efficiency is 1.7cd/A, and the driving voltage is 4.9V.

(實施例7) (Example 7)

作為實施例7,係除了不具備金屬層之點以外,係與實施例6時同樣地進行而製造有機EL元件且使用玻璃密封。將實施例7的有機EL元件稱為有機EL元件A7。有機EL元件A7亦與有機EL元件A6同樣地是藍色發光元件。 As Example 7, an organic EL element was produced in the same manner as in Example 6 except that the metal layer was not provided, and glass sealing was used. The organic EL element of Example 7 is referred to as organic EL element A7. Like the organic EL element A6, the organic EL element A7 is a blue light-emitting element.

將所製成的有機EL元件A7進行驅動,在與實施例6時同樣的條件下測定元件壽命、電流效率及驅動電壓。在實施例7,元件壽命(LT80)為8.0小時,電流效率為1.7cd/A,驅動電壓為5.1V。 The produced organic EL device A7 was driven, and the device life, current efficiency, and drive voltage were measured under the same conditions as in Example 6. In Example 7, the device life (LT80) was 8.0 hours, the current efficiency was 1.7 cd/A, and the driving voltage was 5.1V.

[實施例6及實施例7之比較] [Comparison of Example 6 and Example 7]

將在前述的實施例6及實施例7之元件壽命、電流效率及驅動電壓的測定結果,顯示在表4。 Table 4 shows the measurement results of the device life, current efficiency, and driving voltage in the foregoing Examples 6 and 7.

Figure 105103271-A0202-12-0039-8
Figure 105103271-A0202-12-0039-8

從表4能夠理解,相對於不設置金屬層之實施例7,能夠理解設置有金屬層之實施例6,能夠以較低的驅動電壓進行驅動之同時,能夠實現較長的元件壽命。 It can be understood from Table 4 that, compared to Example 7 without a metal layer, Example 6 with a metal layer can be understood, which can be driven with a lower driving voltage and can achieve a longer device life.

從表2至表4的結果,能夠確認在紅色發光元件、綠色發光元件及藍色發光元件的任一者,均是藉由 進一步設置金屬層,而能夠謀求元件的長壽命化,而且金屬層係有助於提升驅動安定性。 From the results of Table 2 to Table 4, it can be confirmed that any of the red light-emitting element, the green light-emitting element, and the blue light-emitting element By further providing a metal layer, the life of the device can be increased, and the metal layer system contributes to improving the driving stability.

1‧‧‧有機EL元件 1‧‧‧ organic EL element

11‧‧‧電洞注入層 11‧‧‧hole injection layer

12‧‧‧電洞傳輸層 12‧‧‧Electric tunnel transmission layer

13‧‧‧發光層 13‧‧‧luminous layer

14‧‧‧多層型電子傳輸層 14‧‧‧Multi-layer electron transport layer

14a‧‧‧電子傳輸層 14a‧‧‧Electronic transmission layer

14b‧‧‧第1混合層(發光層側混合層) 14b‧‧‧The first mixed layer (the mixed layer on the light emitting layer side)

14c‧‧‧第2混合層(陰極側混合層) 14c‧‧‧The second mixed layer (cathode side mixed layer)

E1‧‧‧陽極 E1‧‧‧Anode

E2‧‧‧陰極 E2‧‧‧Cathode

P‧‧‧基板 P‧‧‧Substrate

Claims (5)

一種有機EL元件,係具備陽極、陰極、及配置在前述陽極與前述陰極之間的發光層,前述有機EL元件係具備:設置在前述發光層與前述陰極之間之多層型電子傳輸層,前述多層型電子傳輸層具有:電子傳輸層,其係含有電子輸送材料;發光層側混合層,其係在前述電子傳輸層與前述發光層之間與前述發光層相接而設置;及陰極側混合層,其係比前述電子傳輸層更靠近前述陰極側且與前述電子傳輸層相接而設置;前述多層型電子傳輸層係在前述發光層側混合層與前述電子傳輸層之間進一步具有金屬層;前述發光層側混合層係同時含有電子輸送材料及有機金屬錯合物化合物;前述陰極側混合層係同時含有電子輸送材料及有機金屬錯合物化合物。 An organic EL element includes an anode, a cathode, and a light-emitting layer disposed between the anode and the cathode. The organic EL element includes a multilayer electron transport layer provided between the light-emitting layer and the cathode. The multi-layer type electron transport layer has: an electron transport layer containing an electron transport material; a light emitting layer side mixing layer provided between the electron transport layer and the light emitting layer in contact with the light emitting layer; and a cathode side mixing The layer is closer to the cathode side than the electron transport layer and is provided in contact with the electron transport layer; the multilayer electron transport layer further includes a metal layer between the light-emitting layer side mixed layer and the electron transport layer The light emitting layer side mixed layer system contains both the electron transport material and the organometallic complex compound; the cathode side mixed layer system contains both the electron transport material and the organometallic complex compound. 如申請專利範圍第1項所述之有機EL元件,其中,前述發光層側混合層的厚度為2nm至20nm。 The organic EL device according to item 1 of the patent application range, wherein the thickness of the mixed layer on the light-emitting layer side is 2 nm to 20 nm. 如申請專利範圍第1項所述之有機EL元件,其中,前述發光層側混合層所含有的前述有機金屬錯合物化合物為8-喹啉酚鈉。 The organic EL device according to item 1 of the patent application range, wherein the organic metal complex compound contained in the mixed layer on the light-emitting layer side is 8-quinolinol sodium. 如申請專利範圍第2項所述之有機EL元件,其中,前述發光層側混合層所含有的前述有機金屬錯合物化合物為8-喹啉酚鈉。 The organic EL device according to item 2 of the patent application range, wherein the organic metal complex compound contained in the mixed layer on the light-emitting layer side is 8-quinolinol sodium. 如申請專利範圍第1至4項中任一項所述之有機EL元件,其中,前述金屬層係含有鹼金屬或鹼土金屬。 The organic EL device according to any one of claims 1 to 4, wherein the metal layer contains an alkali metal or an alkaline earth metal.
TW105103271A 2015-02-03 2016-02-02 Organic el element TWI692892B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-019367 2015-02-03
JP2015019367A JP6661272B2 (en) 2015-02-03 2015-02-03 Organic EL device

Publications (2)

Publication Number Publication Date
TW201639210A TW201639210A (en) 2016-11-01
TWI692892B true TWI692892B (en) 2020-05-01

Family

ID=56564093

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105103271A TWI692892B (en) 2015-02-03 2016-02-02 Organic el element

Country Status (5)

Country Link
JP (1) JP6661272B2 (en)
KR (1) KR20170109595A (en)
CN (1) CN107210381B (en)
TW (1) TWI692892B (en)
WO (1) WO2016125750A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108417736A (en) * 2018-01-29 2018-08-17 天津大学 A kind of preparation method of transition metal oxide as hole injection layer
CN111697036A (en) 2019-03-15 2020-09-22 株式会社日本有机雷特显示器 Self-luminous element and manufacturing method thereof, self-luminous display device and electronic equipment
CN111224004A (en) * 2019-11-08 2020-06-02 深圳市华星光电半导体显示技术有限公司 OLED display panel and OLED display device
CN112300631A (en) * 2020-11-06 2021-02-02 广东聚华印刷显示技术有限公司 Ink for ink-jet printing, preparation method thereof and light-emitting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1610463A (en) * 2003-04-17 2005-04-27 三星Sdi株式会社 Organic electroluminescent display device
US20090218934A1 (en) * 2008-03-03 2009-09-03 Samsung Sdi Co., Ltd. Organic light-emitting device
US20130313527A1 (en) * 2012-05-22 2013-11-28 Eung-Do Kim Organic light-emitting device and method of producing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006127986A (en) * 2004-10-29 2006-05-18 Sanyo Electric Co Ltd Organic electroluminescent element, its manufacturing method, and organic electroluminescent device
KR100806812B1 (en) * 2005-07-25 2008-02-25 엘지.필립스 엘시디 주식회사 Organic Electroluminescence Device and method for fabricating the same
KR100858816B1 (en) * 2007-03-14 2008-09-17 삼성에스디아이 주식회사 Organic light emitting device comprising anthracene derivative compound
KR20090050369A (en) * 2007-11-15 2009-05-20 삼성모바일디스플레이주식회사 Organic luminescence display device
US20090162644A1 (en) * 2007-12-19 2009-06-25 Ricks Michele L Organic element for low voltage electroluminescent devices
KR101657222B1 (en) * 2010-05-14 2016-09-19 삼성디스플레이 주식회사 Organic light emitting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1610463A (en) * 2003-04-17 2005-04-27 三星Sdi株式会社 Organic electroluminescent display device
US20090218934A1 (en) * 2008-03-03 2009-09-03 Samsung Sdi Co., Ltd. Organic light-emitting device
US20130313527A1 (en) * 2012-05-22 2013-11-28 Eung-Do Kim Organic light-emitting device and method of producing the same

Also Published As

Publication number Publication date
JP2016143797A (en) 2016-08-08
KR20170109595A (en) 2017-09-29
CN107210381A (en) 2017-09-26
TW201639210A (en) 2016-11-01
JP6661272B2 (en) 2020-03-11
WO2016125750A1 (en) 2016-08-11
CN107210381B (en) 2019-04-26

Similar Documents

Publication Publication Date Title
WO2007091548A1 (en) Organic electroluminescent element
TWI692892B (en) Organic el element
KR20170008683A (en) Organic electroluminescence element
JP4554329B2 (en) Organic electronic device and method of manufacturing organic electronic device
WO2010024136A1 (en) Organic electroluminescent element and method for manufacturing same
JP5509530B2 (en) Organic electroluminescence device and method for manufacturing the same
CN110235265B (en) Composition for forming light-emitting layer and organic electroluminescent element containing the same
KR20110007110A (en) Organic electroluminescence element, and method for production thereof
JP6781606B2 (en) Manufacturing method of organic EL element
JP7021906B2 (en) Organic electroluminescence element
JP6440803B1 (en) Color temperature adjusting method and organic EL device manufacturing method
JP6383772B2 (en) Organic EL device
WO2015152148A1 (en) Organic electroluminescent element
JP6440802B1 (en) Manufacturing method of organic device
JP2018117035A (en) Organic electroluminescent element
JP2015038867A (en) Organic el device, light device and organic el device manufacturing method
JP2007242938A (en) Organic el element
JP2016167366A (en) Organic el device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees