JP2015152491A - Solid phase target substance collection member, solid phase target substance detection system, solid phase target substance collection method and solid phase target substance detection method - Google Patents

Solid phase target substance collection member, solid phase target substance detection system, solid phase target substance collection method and solid phase target substance detection method Download PDF

Info

Publication number
JP2015152491A
JP2015152491A JP2014027788A JP2014027788A JP2015152491A JP 2015152491 A JP2015152491 A JP 2015152491A JP 2014027788 A JP2014027788 A JP 2014027788A JP 2014027788 A JP2014027788 A JP 2014027788A JP 2015152491 A JP2015152491 A JP 2015152491A
Authority
JP
Japan
Prior art keywords
target substance
solid phase
water
phase target
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014027788A
Other languages
Japanese (ja)
Inventor
浩二 三林
Koji Mitsuhayashi
浩二 三林
貴博 荒川
Takahiro Arakawa
貴博 荒川
久美子 宮島
Kumiko Miyajima
久美子 宮島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Medical and Dental University NUC
Original Assignee
Tokyo Medical and Dental University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Medical and Dental University NUC filed Critical Tokyo Medical and Dental University NUC
Priority to JP2014027788A priority Critical patent/JP2015152491A/en
Publication of JP2015152491A publication Critical patent/JP2015152491A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new solid phase target substance collection member capable of collecting a solid phase target substance in a measurement object sample gas into a liquid, a solid phase target substance detection system, a solid phase target substance collection method, and a solid phase target substance detection method.SOLUTION: A solid phase target substance collection member 10 comprises a liquid cell 17 having a storage part 171, a water-repellent porous member 16 which is arranged so as to contact a liquid 175 supplied to the storage part 171 and arranged so as to cover the storage part 171 in order to prevent leakage of the liquid 175 from the storage part 171, and a hydrous member 15 which is arranged so as to contact the water-repellent porous member 16. A solid phase target substance detection system 30 comprises the solid phase target substance collection member 10, supply means 20 which can supply a measurement object sample gas to the hydrous member 15, and detection means which can detect the solid phase target substance in the liquid 175 from the storage part 171.

Description

本発明は、固相標的物質用捕集部材、固相検出システム、固相標的物質の捕集方法及び固相の検出方法に関する。   The present invention relates to a solid phase target substance collection member, a solid phase detection system, a solid phase target substance collection method, and a solid phase detection method.

従来より、浮遊物(例えば、アレルゲンや微生物)等の固相標的物質を捕集する方法や、検出する方法が開発されている。   Conventionally, methods for collecting and detecting solid phase target substances such as suspended matters (for example, allergens and microorganisms) have been developed.

特許文献1には、空気中に浮遊する固相標的物質を粘着シートで捕集する方法が開示されている。   Patent Document 1 discloses a method for collecting a solid phase target substance floating in the air with an adhesive sheet.

特許文献2には、空気中に浮遊するエアロゾル内の固相標的物質を、フィルタにより捕集する方法が開示されている。   Patent Document 2 discloses a method of collecting a solid phase target substance in an aerosol floating in the air with a filter.

特許文献3には、固相標的物質が空気サンプル中に存在する状態で、収束光線を指向し、空気中の粒子の散乱光を利用して、固相標的物質を検出するシステム及び方法が開示されている。   Patent Document 3 discloses a system and method for detecting a solid phase target substance by using a scattered light of particles in the air while directing a convergent beam while the solid phase target substance is present in an air sample. Has been.

特開2007−135476号公報JP 2007-135476 A 特開2005−291987号公報JP 2005-291987 A 特表2006−511822号公報JP 2006-511822 A

本発明は、従来の技術とは異なり、測定対象試料ガス中の固相を液体中に回収することを可能とする新規な固相標的物質用捕集部材、固相標的物質検出システム、固相標的物質の捕集方法及び固相標的物質の検出方法を提供することを目的とする。   Unlike the prior art, the present invention provides a novel solid phase target substance collection member, a solid phase target substance detection system, a solid phase, which can recover a solid phase in a sample gas to be measured in a liquid. It is an object of the present invention to provide a method for collecting a target substance and a method for detecting a solid phase target substance.

本発明者らは、固相標的物質を、撥水性多孔質部材を介して液体中で回収するために、撥水性多孔質部材に固相標的物質を供給して撥水性多孔質部材中を通過させようとしたところ、固相標的物質が撥水性多孔質部材中を通過しにくく、液体中で固相標的物質を回収しにくかったが、含水性部材を撥水性多孔質部材に接するように液体の反対側に配置し、含水性部材の側から固相標的物質を供給することで、固相標的物質が撥水性多孔質部材を通過して液体に移動することを見出し、本発明を完成するに至った。より具体的には、本発明は以下のようなものを提供する。   The present inventors supply the solid phase target substance to the water repellent porous member and pass through the water repellent porous member in order to recover the solid phase target substance in the liquid via the water repellent porous member. As a result, it was difficult for the solid phase target substance to pass through the water-repellent porous member and it was difficult to collect the solid phase target substance in the liquid, but the liquid-containing member was in contact with the water-repellent porous member. The solid phase target substance is found to move to the liquid through the water repellent porous member by supplying the solid phase target substance from the side of the water-containing member, and completing the present invention. It came to. More specifically, the present invention provides the following.

(1)固相標的物質用捕集部材であって、
貯留部を有する液体セルと、
該貯留部に供給される液体に接するように配置され、かつ、前記貯留部からの液体の漏水を防止するように前記貯留部を覆って配置される撥水性多孔質部材と、
該撥水性多孔質部材に接するように配置される含水性部材と、を備える固相標的物質用捕集部材。
(1) A collecting member for a solid phase target substance,
A liquid cell having a reservoir;
A water repellent porous member disposed so as to be in contact with the liquid supplied to the reservoir, and disposed so as to cover the reservoir so as to prevent leakage of liquid from the reservoir;
And a water-containing member disposed so as to be in contact with the water-repellent porous member.

(2)前記含水性部材について前記撥水性多孔質部材の反対側に配置され、かつ、前記含水性部材より高い剛性を有するメッシュ状部材を更に備える(1)記載の固相標的物質用捕集部材。   (2) The solid-phase target substance collection according to (1), further comprising a mesh-like member disposed on the opposite side of the water-repellent porous member with respect to the water-containing member and having higher rigidity than the water-containing member. Element.

(3)前記メッシュ状部材の間隙率は、40〜70%である(2)記載の固相標的物質用捕集部材。   (3) The solid phase target substance collecting member according to (2), wherein the mesh member has a porosity of 40 to 70%.

(4)前記含水性部材について前記撥水性多孔質部材の反対側に配置され、かつ、前記含水性部材の露出した部分を囲んで配置される漏水抑止部材を更に備える、(1)から(3)いずれか記載の固相標的物質用捕集部材。   (4) The water-containing member is further provided with a water leakage inhibiting member that is disposed on the opposite side of the water-repellent porous member and that surrounds the exposed portion of the water-containing member. ) The solid phase target substance collecting member according to any one of the above.

(5)固相標的物質検出システムであって、
(1)から(4)いずれか記載の固相標的物質用捕集部材と、測定対象試料ガスを前記含水性部材に供給可能な供給手段と、前記貯留部からの液体中の前記固相標的物質を検出可能な検出手段と、を備える固相標的物質検出システム。
(5) A solid phase target substance detection system,
(1) to (4) the solid phase target substance collecting member, supply means capable of supplying the sample gas to be measured to the hydrous member, and the solid phase target in the liquid from the reservoir A solid phase target substance detection system comprising: a detection means capable of detecting a substance.

(6)測定対象試料ガス中の固相標的物質の捕集方法であって、
含水性部材は、撥水性多孔質部材に接するように配置され、
液体セルは、貯留部を有し、
前記撥水性多孔質部材は、前記貯留部に供給される液体に接するように配置され、かつ、前記貯留部からの液体の漏水を防止するように前記貯留部を覆って配置され、
前記捕集方法は、前記測定対象試料ガスを前記含水性部材に向けて供給し、前記固相標的物質を前記液体に回収する工程を有する、固相標的物質の捕集方法。
(6) A method for collecting a solid phase target substance in a sample gas to be measured,
The water-containing member is disposed so as to contact the water-repellent porous member,
The liquid cell has a reservoir,
The water-repellent porous member is disposed so as to be in contact with the liquid supplied to the reservoir, and is disposed so as to cover the reservoir so as to prevent leakage of liquid from the reservoir.
The said collection method is a collection method of a solid-phase target substance which has the process of supplying the said measuring object sample gas toward the said hydrous member, and collect | recovering the said solid-phase target substance in the said liquid.

(7)メッシュ状部材が、前記含水性部材について前記撥水性多孔質部材の反対側に配置され、かつ、剛性を有する、(6)記載の捕集方法。   (7) The collection method according to (6), wherein the mesh member is disposed on the opposite side of the water-repellent porous member with respect to the water-containing member and has rigidity.

(8)前記メッシュ状部材の間隙率は、40〜70%である(7)記載の捕集方法。   (8) The collection method according to (7), wherein the mesh member has a porosity of 40 to 70%.

(9)漏水防止部材が、前記含水性部材について前記撥水性多孔質部材の反対側に配置され、かつ、前記含水性部材の露出した部分を囲んで配置される(6)から(8)いずれか記載の捕集方法。   (9) A water leakage preventing member is disposed on the opposite side of the water-repellent porous member with respect to the water-containing member, and is disposed so as to surround an exposed portion of the water-containing member. Or the collection method described.

(10)測定対象試料ガス中の固相標的物質の検出方法であって、
(6)から(9)いずれか記載の方法により前記固相標的物質を前記液体中に捕集する工程と、
捕集後、前記液体中の前記固相標的物質を検出する工程と、を有する、測定対象試料ガス中の固相標的物質の検出方法。
(10) A method for detecting a solid phase target substance in a sample gas to be measured,
Collecting the solid phase target substance in the liquid by the method according to any one of (6) to (9);
Detecting the solid phase target substance in the liquid after collection, and detecting the solid phase target substance in the measurement target sample gas.

本発明によれば、測定対象試料ガス中の固相標的物質を液体中に回収することを可能とする新規な固相標的物質用捕集部材、固相標的物質検出システム、固相標的物質の捕集方法及び固相標的物質の検出方法を提供することができる。   According to the present invention, a novel solid phase target substance collection member, a solid phase target substance detection system, and a solid phase target substance that can recover a solid phase target substance in a sample gas to be measured in a liquid. A collection method and a detection method for a solid phase target substance can be provided.

本発明の一実施例に係る固相標的物質用捕集部材の分解斜視図である。It is a disassembled perspective view of the collection member for solid phase target substances concerning one example of the present invention. 本発明の一実施例に係る固相標的物質検出システムを示す図である。It is a figure which shows the solid-phase target substance detection system which concerns on one Example of this invention. 本発明の一実施例に係る固相標的物質検出システムにおいて、繰り返しの検出を可能とする態様を示す図である。It is a figure which shows the aspect which enables repeated detection in the solid-phase target substance detection system which concerns on one Example of this invention. 図2の固相標的物質検出システムにより、回収した固相標的物質を検出した際の吸光度の相対値を示す図である。It is a figure which shows the relative value of the light absorbency at the time of detecting the collect | recovered solid-phase target substance by the solid-phase target substance detection system of FIG. 図2の固相標的物質検出システムにより、異なる間隙率のメッシュ状部材を用いてそれぞれのメッシュ状部材毎にDer f1を検出した結果を示す図である。It is a figure which shows the result of having detected Der f1 for every mesh-like member using the mesh-like member of different porosity by the solid-phase target substance detection system of FIG. 図2の固相標的物質検出システムを用いて、含水性部材に供給した測定対象試料ガス中のDer f1の濃度と、回収したDer f1を蛍光により検出した結果との関係を示す図である。It is a figure which shows the relationship between the density | concentration of Der f1 in the measurement object sample gas supplied to the hydrous member, and the result of having detected collect | recovered Der f1 by fluorescence using the solid-phase target substance detection system of FIG. 図2の固相標的物質検出システムを用いてハウスダスト中のDer f1の捕集及び検出を行い、検出を免疫化学蛍光法により行った結果と、ハウスダストから直接調整した溶液を用いてELISA法によりDer f1の検出を行った結果とを比較したグラフを示す図である。The Der f1 in house dust was collected and detected using the solid phase target substance detection system of FIG. 2, and the detection was performed by immunochemical fluorescence, and the ELISA method using a solution prepared directly from house dust It is a figure which shows the graph which compared with the result of having detected Der f1 by. 図2の固相標的物質検出システムを用いてハウスダスト中のDer f1の捕集及び検出を行い、検出を免疫化学蛍光法により行った結果と、ハウスダストから直接調整した溶液を用いてELISA法によりDer f1の検出を行った結果との相関性を示す図である。The Der f1 in house dust was collected and detected using the solid phase target substance detection system of FIG. 2, and the detection was performed by immunochemical fluorescence, and the ELISA method using a solution prepared directly from house dust It is a figure which shows the correlation with the result of having detected Der f1 by. 免疫化学蛍光法を用いた検出手段のDer f1に対する選択性を示した図である。It is the figure which showed the selectivity with respect to Der f1 of the detection means using an immunochemical fluorescence method.

以下、本発明の一実施形態について図面を参照しながら説明するが、本発明はこれに限定されるものでない。   Hereinafter, although one embodiment of the present invention is described with reference to drawings, the present invention is not limited to this.

<固相標的物質用捕集部材>
本発明の一実施形態に係る固相標的物質用捕集部材10は、図1に示すように、気相セル11と、排気部材12と、漏水抑止部材13と、メッシュ状部材14と、含水性部材15と、撥水性多孔質部材16と、液相セル17と、を備える。固相標的物質用捕集部材10は、固相標的物質を液相セル17の貯留部171に供給される液体175(図2を参照)に回収するための部材である。それぞれの構成要素は、吸引吐出部材21(図2を参照)の側から、図1に示すように、気相セル11、排気部材12、漏水抑止部材13、メッシュ状部材14、含水性部材15、撥水性多孔質部材16、液相セル17の順に配置される。各構成要素について、以下詳細に説明する。
<Collecting member for solid phase target substance>
As shown in FIG. 1, a solid phase target substance collecting member 10 according to an embodiment of the present invention includes a gas phase cell 11, an exhaust member 12, a water leakage suppression member 13, a mesh-like member 14, and a water content. The permeable member 15, the water repellent porous member 16, and the liquid phase cell 17 are provided. The solid phase target substance collecting member 10 is a member for recovering the solid phase target substance into a liquid 175 (see FIG. 2) supplied to the storage unit 171 of the liquid phase cell 17. As shown in FIG. 1, each component includes a gas phase cell 11, an exhaust member 12, a water leakage suppression member 13, a mesh member 14, and a water-containing member 15 from the suction / discharge member 21 (see FIG. 2) side. The water repellent porous member 16 and the liquid phase cell 17 are arranged in this order. Each component will be described in detail below.

液相セル17は、貯留部171と、固定部172と、液体供給部173(図2を参照)と、液体出口部174(図2を参照)と、を有する。液相セル17の貯留部171には液体175が供給される(図2を参照)。液相セル17の固定部172は、後述する排気部材12の本体部121の固定部1212を介して液相セル17と排気部材12とを接続するための部位である。また、固定部172は、後述する気相セル11の固定部112と、排気部材12の本体部121の固定部1212とともに、気相セル11と液相セル17との間に位置する各構成要素を挟んで固定するために用いられる。より具体的には、後述する、気相セル11と、排気部材12と、液相セル17とは、気相セル11の固定部112と、排気部材12の本体部121の固定部1212と、液相セル17の固定部172とを通るように棒状の部材を配置し、該棒状の部材を介して気相セル11と液相セル17との間に位置する各構成要素を挟むように接続される。これにより、気相セル11と液相セル17との間に配置される各構成要素を固定することができる。液体供給部173は、貯留部171に液体175を供給するための部位であり、液体出口部174は、貯留部171に供給された液体175を貯留部171の外に出すための部位である。   The liquid phase cell 17 includes a storage part 171, a fixing part 172, a liquid supply part 173 (see FIG. 2), and a liquid outlet part 174 (see FIG. 2). A liquid 175 is supplied to the reservoir 171 of the liquid phase cell 17 (see FIG. 2). The fixing part 172 of the liquid phase cell 17 is a part for connecting the liquid phase cell 17 and the exhaust member 12 via a fixing part 1212 of the main body part 121 of the exhaust member 12 described later. In addition, the fixing portion 172 includes the fixing portion 112 of the gas phase cell 11 described later and the fixing portion 1212 of the main body portion 121 of the exhaust member 12, and each component located between the gas phase cell 11 and the liquid phase cell 17. It is used for fixing with a pinch. More specifically, the gas phase cell 11, the exhaust member 12, and the liquid phase cell 17, which will be described later, are a fixing portion 112 of the gas phase cell 11, a fixing portion 1212 of the main body 121 of the exhaust member 12, A rod-shaped member is disposed so as to pass through the fixing portion 172 of the liquid phase cell 17, and the respective components located between the gas phase cell 11 and the liquid phase cell 17 are sandwiched via the rod-shaped member. Is done. Thereby, each component arranged between the gas phase cell 11 and the liquid phase cell 17 can be fixed. The liquid supply part 173 is a part for supplying the liquid 175 to the storage part 171, and the liquid outlet part 174 is a part for taking the liquid 175 supplied to the storage part 171 out of the storage part 171.

撥水性多孔質部材16は、貯留部171からの液体175の漏水を防止する。具体的には、貯留部171からの液体175の漏水を防止するように貯留部171を覆って配置され、かつ、貯留部171に供給される液体175に接するように配置される。含水性部材15は、撥水性多孔質部材16に接するように配置される。なお、本明細書において、「含水性部材」とは、水を含むことが可能な部材のことをいい、水を含んだ状態と、水を含んでいない状態のいずれも含むものをいう。   The water repellent porous member 16 prevents the liquid 175 from leaking from the reservoir 171. Specifically, it is disposed so as to cover the reservoir 171 so as to prevent leakage of the liquid 175 from the reservoir 171, and is in contact with the liquid 175 supplied to the reservoir 171. The water-containing member 15 is disposed in contact with the water-repellent porous member 16. In the present specification, the “water-containing member” refers to a member that can contain water, and includes both a state containing water and a state not containing water.

上述のとおり、撥水性多孔質部材16が、貯留部171に供給される液体175に接するように配置され、かつ、含水性部材15は、撥水性多孔質部材16に接するように配置されていると、含水性部材15は水を含んだ状態が保たれる。ここで、測定対象試料ガスを含水性部材15に供給可能な供給手段20(詳細は後述する)により、含水性部材15に固相標的物質が供給されると、撥水性多孔質部材16を介して、貯留部171中の液体175に固相標的物質が回収される。撥水性多孔質部材16を挟んでいるにもかかわらず、液体175に固相標的物質が回収される理由は、含水性部材15に含まれる水に固相標的物質が含まれることで、液体175との間で濃度勾配が生じ、より固相標的物質の濃度が低い液体175中に固相標的物質が移動するためであると推定される。   As described above, the water repellent porous member 16 is disposed so as to be in contact with the liquid 175 supplied to the storage portion 171, and the water-containing member 15 is disposed so as to be in contact with the water repellent porous member 16. Then, the water-containing member 15 is kept in a state containing water. Here, when the solid phase target substance is supplied to the water-containing member 15 by the supply means 20 (details will be described later) capable of supplying the sample gas to be measured to the water-containing member 15, the water-repellent porous member 16 is interposed. Thus, the solid phase target substance is recovered in the liquid 175 in the reservoir 171. The reason why the solid phase target substance is recovered in the liquid 175 even though the water repellent porous member 16 is sandwiched is that the solid phase target substance is contained in the water contained in the water-containing member 15, so that the liquid 175 It is estimated that this is because a solid phase target substance migrates into the liquid 175 having a lower concentration of the solid phase target substance due to a concentration gradient.

液相セル17を構成する素材は特に限定されないが、例えば、アクリル樹脂(ポリメチルメタクリレート等)、ポリカーボネート、ポリエチレンテレフタレート、ポリスチレン系樹脂、ポリアミド等、フッ素樹脂(パーフルオロアルコキシアルカン(PFA)、ポリテトラフルオロエチレン(PTFE)、エチレン−テトラフルオロエチレンコポリマー(ETFE)等)等の樹脂、ステンレス鋼、ニッケル鋼、クロム鋼、アルミニウム合金、チタン合金等の各種の金属や合金等が挙げられる。   Although the material which comprises the liquid phase cell 17 is not specifically limited, For example, acrylic resin (polymethylmethacrylate etc.), a polycarbonate, a polyethylene terephthalate, a polystyrene-type resin, polyamide, etc., fluororesins (perfluoroalkoxyalkane (PFA), polytetra) Examples thereof include resins such as fluoroethylene (PTFE) and ethylene-tetrafluoroethylene copolymer (ETFE), and various metals and alloys such as stainless steel, nickel steel, chromium steel, aluminum alloy, and titanium alloy.

撥水性多孔質膜16の素材は、例えば、パーフルオロアルコキシアルカン(PFA)、ポリテトラフルオロエチレン(PTFE)、エチレン−テトラフルオロエチレンコポリマー(ETFE)等のフッ素樹脂等が挙げられる。また、撥水性多孔質膜16の孔径は、特に限定されないが、含水性部材17中の水から、固相標的物質を液体175に移動させるための部分が大きくなる点で、30μm以上が好ましく、50μm以上が更に好ましく、70μm以上が最も好ましい。また、液体175の漏水を防止する観点で、撥水性多孔質膜16の孔径は、200μm以下が好ましく、150μm以下が好ましく、120μm以下が好ましく、100μm以下が最も好ましい。   Examples of the material of the water-repellent porous film 16 include fluorine resins such as perfluoroalkoxyalkane (PFA), polytetrafluoroethylene (PTFE), and ethylene-tetrafluoroethylene copolymer (ETFE). The pore size of the water repellent porous membrane 16 is not particularly limited, but is preferably 30 μm or more in that the portion for moving the solid phase target substance from the water in the water-containing member 17 to the liquid 175 becomes large. 50 μm or more is more preferable, and 70 μm or more is most preferable. Further, from the viewpoint of preventing the liquid 175 from leaking, the pore diameter of the water repellent porous membrane 16 is preferably 200 μm or less, preferably 150 μm or less, preferably 120 μm or less, and most preferably 100 μm or less.

含水性部材15の素材は、水を含むことが可能な素材であれば特に限定されないが、例えば、セルロース、コットン等が挙げられる。   Although the raw material of the water-containing member 15 will not be specifically limited if it is a raw material which can contain water, For example, a cellulose, cotton, etc. are mentioned.

メッシュ状部材14は、含水性部材15について撥水性多孔質部材16の反対側に配置される。このように、その形状がメッシュ状であることにより、後述する気相セル11の通気部111、排気部材12の本体部121の通気部1211、漏水抑止部材13の通気部131を通って供給された測定対象試料ガスを、メッシュの隙間から含水性部材15まで通すことができる。   The mesh member 14 is disposed on the opposite side of the water-repellent porous member 16 with respect to the water-containing member 15. Thus, since the shape is a mesh shape, it is supplied through a ventilation portion 111 of the gas phase cell 11 described later, a ventilation portion 1211 of the main body portion 121 of the exhaust member 12, and a ventilation portion 131 of the water leakage suppression member 13. The measured sample gas can be passed from the mesh gap to the water-containing member 15.

含水性部材15は、水を含むと、撓む恐れがある。含水性部材15が撓むと、含水性部材15の撥水性多孔質膜16に対する接触面積が減るため、液体175に回収する固相標的物質の量が減少する恐れがある。そのため、メッシュ状部材14は、含水性部材15の撓みを抑止できる程度の剛性を有する素材を用いるのが好ましく、具体的には、含水性部材15より高い剛性を有する素材が好ましい。   If the water-containing member 15 contains water, it may be bent. When the water-containing member 15 is bent, the contact area of the water-containing member 15 with respect to the water-repellent porous membrane 16 is reduced, and thus the amount of the solid phase target substance recovered in the liquid 175 may be reduced. Therefore, it is preferable to use a material having a rigidity that can suppress the bending of the water-containing member 15 as the mesh member 14, and specifically, a material having a higher rigidity than the water-containing member 15 is preferable.

メッシュ状部材14の素材は、特に限定されないが、上述のとおり、含水性部材15より高い剛性を有する素材を用いるのが好ましい。メッシュ状部材14の素材としては、例えば、フッ素樹脂(エチレン−テトラフルオロエチレンコポリマー(ETFE)、パーフルオロアルコキシアルカン(PFA)、ポリテトラフルオロエチレン(PTFE)等)、アクリル樹脂(ポリメチルメタクリレート等)、ポリカーボネート、ポリエチレンテレフタレート、ポリスチレン系樹脂、ポリアミド等の樹脂、ステンレス鋼、ニッケル鋼、クロム鋼、アルミニウム合金、チタン合金等の各種の金属や合金等が挙げられる。   The material of the mesh member 14 is not particularly limited, but it is preferable to use a material having higher rigidity than the water-containing member 15 as described above. Examples of the material of the mesh member 14 include fluororesin (ethylene-tetrafluoroethylene copolymer (ETFE), perfluoroalkoxyalkane (PFA), polytetrafluoroethylene (PTFE), etc.), acrylic resin (polymethyl methacrylate, etc.). Examples thereof include resins such as polycarbonate, polyethylene terephthalate, polystyrene resin, polyamide, and various metals and alloys such as stainless steel, nickel steel, chromium steel, aluminum alloy, and titanium alloy.

また、メッシュ状部材14の間隙率は、特に限定されないが、低くなるにつれて、供給された測定対象試料ガスを、メッシュの隙間から含水性部材15まで通しにくくなりやすく、回収する固相標的物質の量が低下する恐れがある。メッシュの隙間から含水性部材15まで通しやすくする観点で、メッシュ状部材14の間隙率は、15%以上が好ましく、40%以上がより好ましく、50%以上が最も好ましい。別の観点で、メッシュ状部材14の間隙率が高くなると、撥水性多孔質膜16の撓みを抑制できる部分が減少し、回収する固相の量が低下する恐れがある。撥水性多孔質膜16の撓みをより抑制できる点で、メッシュ状部材14の間隙率は、80%以下が好ましく、70%以下がより好ましく、60%以下が更に好ましい。なお、本発明における「間隙率」とは、含水性部材と接する面における、メッシュ状部材の全体の面積(孔を含む)に対する孔の面積の割合をさす。   Further, the porosity of the mesh member 14 is not particularly limited. However, as the porosity decreases, it becomes difficult to pass the supplied measurement target sample gas from the mesh gap to the water-containing member 15, and the solid phase target substance to be recovered is collected. The amount may be reduced. From the viewpoint of facilitating passage from the mesh gap to the water-containing member 15, the mesh member 14 has a porosity of preferably 15% or more, more preferably 40% or more, and most preferably 50% or more. From another point of view, when the porosity of the mesh-like member 14 is increased, the portion of the water-repellent porous membrane 16 that can be prevented from being bent is reduced, and the amount of the recovered solid phase may be reduced. The porosity of the mesh member 14 is preferably 80% or less, more preferably 70% or less, and still more preferably 60% or less in that the deflection of the water repellent porous film 16 can be further suppressed. The “porosity” in the present invention refers to the ratio of the area of the hole to the entire area (including the hole) of the mesh member on the surface in contact with the water-containing member.

気相セル11は、含水性部材15まで測定対象試料ガスを供給するために用いられる。気相セル11の素材は、特に限定されないが、例えば、アクリル樹脂(ポリメチルメタクリレート等)、ポリカーボネート、ポリエチレンテレフタレート、ポリスチレン系樹脂、ポリアミド等、フッ素樹脂(パーフルオロアルコキシアルカン(PFA)、ポリテトラフルオロエチレン(PTFE)、エチレン−テトラフルオロエチレンコポリマー(ETFE)等)の樹脂、ステンレス鋼、ニッケル鋼、クロム鋼、アルミニウム合金、チタン合金等の各種の金属や合金等が挙げられる。   The gas phase cell 11 is used to supply the measurement target sample gas to the water-containing member 15. The material of the gas phase cell 11 is not particularly limited. For example, acrylic resin (polymethyl methacrylate, etc.), polycarbonate, polyethylene terephthalate, polystyrene resin, polyamide, etc., fluororesin (perfluoroalkoxyalkane (PFA), polytetrafluoro). Examples thereof include resins (ethylene (PTFE), ethylene-tetrafluoroethylene copolymer (ETFE) and the like), various metals and alloys such as stainless steel, nickel steel, chromium steel, aluminum alloy, and titanium alloy.

気相セル11は、通気部111と、固定部112とを有する。通気部111は、後述する吸引吐出部材21から供給された気体試料ガスを、吸引吐出部材21の反対側に配置される排気部材12の本体部121の通気部1211に通す空間を形成する。連結部113は、気相セル11と、吸引吐出部剤24の吐出部243とが接続される部位である。固定部112は、排気部材12の本体部121の固定部1212を介して気相セル11と排気部材12とを接続するための部位である。   The gas phase cell 11 has a ventilation part 111 and a fixing part 112. The ventilation part 111 forms a space through which a gas sample gas supplied from a suction / discharge member 21 described later passes through the ventilation part 1211 of the main body 121 of the exhaust member 12 arranged on the opposite side of the suction / discharge member 21. The connecting part 113 is a part where the gas phase cell 11 and the discharge part 243 of the suction / discharge part agent 24 are connected. The fixing part 112 is a part for connecting the gas phase cell 11 and the exhaust member 12 via the fixing part 1212 of the main body part 121 of the exhaust member 12.

排気部材12は、気相セル11の通気部111から供給された測定対象試料ガスを排気する空間を形成する。また、排気部材12は、図1に示すように、気相セル11と、漏水部材13との間に配置される。排気部材12を構成する素材は、特に限定されないが、例えば、アクリル樹脂(ポリメチルメタクリレート等)、ポリカーボネート、ポリエチレンテレフタレート、ポリスチレン系樹脂、ポリアミド等、フッ素樹脂(パーフルオロアルコキシアルカン(PFA)、ポリテトラフルオロエチレン(PTFE)、エチレン−テトラフルオロエチレンコポリマー(ETFE)等)の樹脂、ステンレス鋼、ニッケル鋼、クロム鋼、アルミニウム合金、チタン合金等の各種の金属や合金等が挙げられる。   The exhaust member 12 forms a space for exhausting the measurement target sample gas supplied from the vent 111 of the gas phase cell 11. Further, the exhaust member 12 is disposed between the gas phase cell 11 and the water leakage member 13 as shown in FIG. The material constituting the exhaust member 12 is not particularly limited. For example, acrylic resin (polymethyl methacrylate, etc.), polycarbonate, polyethylene terephthalate, polystyrene resin, polyamide, etc., fluororesin (perfluoroalkoxyalkane (PFA), polytetra Examples thereof include resins such as fluoroethylene (PTFE) and ethylene-tetrafluoroethylene copolymer (ETFE), and various metals and alloys such as stainless steel, nickel steel, chromium steel, aluminum alloy, and titanium alloy.

排気部材12は、本体部121と、空間形成部122とを有する。本体部121は、通気部1211と、固定部1212とを有する。通気部1211は、気相セル11の通気部111から供給された測定対象試料ガスを、漏水抑止部材13の通気部131に通す空間を形成する。固定部1212は、排気部材12を、一端で気相セル11の固定部112を介して気相セル11に接続し、他端で液相セル17の固定部172を介して固定部172に接続するための部位である。   The exhaust member 12 includes a main body part 121 and a space forming part 122. The main body 121 includes a ventilation part 1211 and a fixing part 1212. The ventilation unit 1211 forms a space through which the measurement target sample gas supplied from the ventilation unit 111 of the gas phase cell 11 passes through the ventilation unit 131 of the water leakage suppression member 13. The fixing part 1212 connects the exhaust member 12 to the gas phase cell 11 at one end via the fixing part 112 of the gas phase cell 11 and connects to the fixing part 172 via the fixing part 172 of the liquid phase cell 17 at the other end. It is a part to do.

空間形成部122は、気体セル11と本体部121との間に配置されることで、気体セル11と本体部121との間に空間を形成するための部材であり、この形成された空間が排気部123である。排気部123から、気相セル11の通気部111から供給された気体試料ガスが排気される。空間形成部122は、排気部123を形成可能なものであれば特に限定されないが、例えば、ワッシャー状の部材を用いて形成することができる。ワッシャー状の部材を用いた場合、気相セル11と排気部材12との間に配置した状態で、ワッシャー状の部材を棒状の部材に通し、この棒状の部材の一端を気相セル11の固定部112に通し、他端を本体部121の固定部1212に通して、気相セル11と排気部材12とでワッシャー状の部材を挟むように気相セル11と本体部121とを固定することで、排気部123が形成される。排気部123は、供給された測定対象試料ガスを固相標的物質用捕集部材10の外部へ逃がすための部分であり、これによって、測定対象試料ガスを含水性部材15に供給することができる。   The space forming part 122 is a member for forming a space between the gas cell 11 and the main body part 121 by being arranged between the gas cell 11 and the main body part 121, and the formed space is This is the exhaust part 123. The gas sample gas supplied from the vent 111 of the gas phase cell 11 is exhausted from the exhaust unit 123. The space forming part 122 is not particularly limited as long as the exhaust part 123 can be formed. For example, the space forming part 122 can be formed using a washer-like member. When a washer-shaped member is used, the washer-shaped member is passed through the rod-shaped member in a state where it is disposed between the gas-phase cell 11 and the exhaust member 12, and one end of the rod-shaped member is fixed to the gas-phase cell 11. The gas phase cell 11 and the main body 121 are fixed so that the washer-shaped member is sandwiched between the gas phase cell 11 and the exhaust member 12 by passing the other end through the fixing portion 1212 of the main body portion 121. Thus, the exhaust part 123 is formed. The exhaust part 123 is a part for escaping the supplied measurement target sample gas to the outside of the solid phase target substance collecting member 10, whereby the measurement target sample gas can be supplied to the water-containing member 15. .

漏水抑止部材13は、含水性部材15について撥水性多孔質部材16の反対側に配置され、かつ、含水性部材15の露出した部分を囲んで配置される。これにより、漏水抑止部材13は、含水性部材15と排気部材12の本体部121との間から水が漏水するのを防止する。含水性部材13の露出した部分とは、含水性部材13の、気相セル11の通気部、排気部材12の本体部121の通気部1211に面した部分を指す。   The water leakage suppression member 13 is disposed on the opposite side of the water repellent porous member 16 with respect to the water-containing member 15 and is disposed so as to surround the exposed portion of the water-containing member 15. Thereby, the water leakage suppression member 13 prevents water from leaking from between the water-containing member 15 and the main body 121 of the exhaust member 12. The exposed part of the water-containing member 13 refers to a part of the water-containing member 13 facing the ventilation part of the gas phase cell 11 and the ventilation part 1211 of the main body part 121 of the exhaust member 12.

漏水抑止部材13は、通気部131を有する。通気部131は、排気部材12の本体部121の通気部1211から供給された測定対象試料ガスを、漏水抑止部材13の通気部131に通す空間を形成する。通気部131が形成する空間は、含水性部材15の露出した部分を囲むことによって形成される空間である。   The water leakage suppression member 13 has a ventilation part 131. The ventilation part 131 forms a space through which the measurement target sample gas supplied from the ventilation part 1211 of the main body part 121 of the exhaust member 12 passes through the ventilation part 131 of the water leakage suppression member 13. The space formed by the ventilation portion 131 is a space formed by surrounding the exposed portion of the water-containing member 15.

漏水抑止部材13を構成する素材は、特に限定されないが、例えば、シリコーンゴム、フッ素ゴム、エチレン−プロピレンゴム、アクリルゴム、ニトリルゴム、クロロプレンゴム、ブチルゴム、スチレン−ブタジエンゴム、ウレタンゴム等のパッキン材が挙げられる。また、漏水抑止部材13の形状は、通気部131を有していれば特に限定されず、シート状であってもよく、O−リングの形状であってもよい。漏水抑止部材13の形状は、液相セル17の貯留部171の上面1711を覆うことができる面積を有するシート状であるのが好ましい。   Although the material which comprises the water leak inhibiting member 13 is not specifically limited, For example, packing materials, such as silicone rubber, fluorine rubber, ethylene-propylene rubber, acrylic rubber, nitrile rubber, chloroprene rubber, butyl rubber, styrene-butadiene rubber, urethane rubber Is mentioned. Moreover, the shape of the water leak suppression member 13 will not be specifically limited if it has the ventilation part 131, A sheet form may be sufficient and the shape of an O-ring may be sufficient. The shape of the water leakage suppression member 13 is preferably a sheet shape having an area that can cover the upper surface 1711 of the storage portion 171 of the liquid phase cell 17.

<固相標的物質検出システム>
固相標的物質検出システム30は、図2に示すように、上述の固相標的物質用捕集部材10と、供給手段20と、検出手段(図示せず)と、を備える。各構成要素について、以下詳細に説明する。なお、固相標的物質用捕集部材10の説明は、上述の説明と重複する部分については省略する。
<Solid phase target substance detection system>
As shown in FIG. 2, the solid phase target substance detection system 30 includes the above-described solid phase target substance collection member 10, supply means 20, and detection means (not shown). Each component will be described in detail below. In addition, description of the solid-phase target substance collection member 10 will be omitted with respect to portions overlapping with the above description.

(供給手段)
供給手段20は、測定対象試料ガスを含水性部材15に供給可能な手段であって、吸引吐出部材21と、を有する。
(Supply means)
The supply unit 20 is a unit that can supply the measurement target sample gas to the water-containing member 15, and includes a suction / discharge member 21.

吸引吐出部材21は、送気部211と、吸引部212と、吐出部213と、を有する。吸引部212は、測定対象試料ガスを吸引する部位である。送気部211は、吸引吐出部材内部に送気する部位である。吸引部212によって吸引された測定対象試料ガスは、送気部211から送気された気体によって、吐出部213から固相標的物質用捕集部材10に供給される。吐出部213は、気体セル11の連結部113に接続される。   The suction / discharge member 21 includes an air supply unit 211, a suction unit 212, and a discharge unit 213. The suction unit 212 is a part that sucks the measurement target sample gas. The air supply unit 211 is a part that supplies air into the suction / discharge member. The measurement target sample gas sucked by the suction unit 212 is supplied from the discharge unit 213 to the solid phase target substance collecting member 10 by the gas fed from the gas feeding unit 211. The discharge part 213 is connected to the connection part 113 of the gas cell 11.

吸引吐出部材21は、測定対象試料ガスを吸引し、固相標的物質用捕集部材10に測定対象試料ガスを供給できるものであれば、従来の公知のものいずれのものを用いてもよく、例えば、ブレスライダーFK−6(ブレス社製)等の粉粒体搬送装置を用いてもよい。   As long as the suction / discharge member 21 is capable of sucking the measurement target sample gas and supplying the measurement target sample gas to the solid phase target substance collecting member 10, any of the conventional known ones may be used. For example, you may use granular material conveyance apparatuses, such as blur slider FK-6 (made by Breath).

吸引された測定対象試料ガスを、固相標的物質用捕集部材10に供給する流速は、特に限定されず、供給する時間等に応じて適宜設定してもよい。例えば、2分間供給する場合、回収される固相標的物質の量を向上させるためには、測定対象試料ガスの供給する流速は、0.5L/min以上が好ましく、1.0L/min以上がより好ましく、1.5L/min以上が更に好ましい。   The flow rate at which the aspirated measurement target sample gas is supplied to the solid phase target substance collecting member 10 is not particularly limited, and may be appropriately set according to the supply time or the like. For example, in the case of supplying for 2 minutes, in order to improve the amount of the solid phase target substance to be recovered, the flow rate of supplying the measurement target sample gas is preferably 0.5 L / min or more, and 1.0 L / min or more. More preferably, 1.5 L / min or more is still more preferable.

(検出手段)
検出手段は、貯留部171からの液体175中の固相標的物質を検出可能な手段をいう。
(Detection means)
The detection means refers to means capable of detecting the solid phase target substance in the liquid 175 from the reservoir 171.

検出手段は、検出する対象となる固相標的物質や、目的に応じて適宜選択することができるものであれば、特に限定されない。検出手段としては、例えば、固相標的物質を捕捉する抗体を用いて検出する手段(ELISA法を用いて検出する手段、酵素標識した検出抗体に基質を反応させて生じる蛍光物質を検出する手段(以降、本明細書において、免疫化学蛍光法という)等)等が挙げられる。免疫化学蛍光法による検出は、例えば、標的酵素としては、ストレプトアビジンペルオキシダーゼ(HRP)を、基質としては10−アセチル−3,7−ジヒドロキシフェノキサジン(ADHP)を用いてもよい、この場合、反応性生成物であるレゾルフィンの蛍光を検出することができる。また、免疫化学蛍光法は、感応部としては、例えば、光ファイバを用いることができる。光ファイバは、ポリスチレン製の光ファイバ端面に鏡面処理(乾式研磨、湿式研磨等)を施したもの用いてもよく、F1000−900 PROBE(Ocean Optics社製)等の市販のガラスファイバーを用いてもよい。免疫化学蛍光法を用いた検出手段は、固相標的物質が低濃度である場合においても高感度で検出できる点で好ましい。また、固相標的物質が核酸プローブである場合、核酸に対する相補性を利用したハイブリダイゼーションを用いて、核酸プローブを検出してもよい。   The detection means is not particularly limited as long as it can be appropriately selected according to the solid phase target substance to be detected and the purpose. As the detection means, for example, a means for detecting using an antibody that captures a solid phase target substance (a means for detecting using an ELISA method, a means for detecting a fluorescent substance produced by reacting a substrate with an enzyme-labeled detection antibody ( Hereinafter, in this specification, it is referred to as immunochemical fluorescence method)) and the like. For detection by immunochemical fluorescence, for example, streptavidin peroxidase (HRP) may be used as a target enzyme, and 10-acetyl-3,7-dihydroxyphenoxazine (ADHP) may be used as a substrate. It is possible to detect fluorescence of resorufin which is a sex product. In the immunochemical fluorescence method, for example, an optical fiber can be used as the sensitive part. The optical fiber may be made by subjecting the end face of a polystyrene optical fiber to mirror treatment (dry polishing, wet polishing, etc.), or a commercially available glass fiber such as F1000-900 PROBE (manufactured by Ocean Optics). Good. Detection means using immunochemical fluorescence is preferable in that detection can be performed with high sensitivity even when the solid phase target substance is at a low concentration. Further, when the solid phase target substance is a nucleic acid probe, the nucleic acid probe may be detected using hybridization utilizing complementarity to the nucleic acid.

検出手段は、上述の免疫化学蛍光によるもののように、貯留部171の液体175中に回収した固相標的物質を、液体175中に保持したまま検出可能な手段であれば、貯留部171に直接備えてもよい。または、貯留部171とは別に検出手段を設けて、液体175中の回収した固相標的物質を取り出して検出手段により検出してもよい。   If the detection means is a means that can detect the solid phase target substance collected in the liquid 175 of the reservoir 171 while being held in the liquid 175, as in the case of immunochemical fluorescence described above, the detection means is directly connected to the reservoir 171. You may prepare. Alternatively, a detection unit may be provided separately from the storage unit 171 and the recovered solid phase target substance in the liquid 175 may be taken out and detected by the detection unit.

従来の空気バブリング(インピンジャー法、サイクロン法)による測定対象試料ガス中の固相標的物質を液体に捕集する方法は、バブリングが発生するために、バブリングした状態では固相標的物質の検出が困難であることが測定技術と連結することが難しく、リアルタイムで連続した検出を行うことが困難である。これに対し、本発明によると、空気バブリングせずとも、測定対象試料ガス中の固相標的物質を回収することができるため、液体に固相標的物質を回収しながら固相標的物質の検出が可能である。すなわち、免疫化学蛍光法による検出手段のように、液体175中の固相標的物質を液体175中に含んだまま固相標的物質の検出が可能な手段であれば、検出手段を貯留部171に直接備えることにより、リアルタイムで連続して固相標的物質を簡便に検出することができる。   The conventional method of collecting the solid phase target substance in the sample gas to be measured by the air bubbling (impinger method, cyclone method) in the liquid is the bubbling, so that the solid phase target substance is detected in the bubbling state. Difficult to connect with measurement technology is difficult, and it is difficult to perform continuous detection in real time. In contrast, according to the present invention, since the solid phase target substance in the measurement target sample gas can be recovered without air bubbling, the solid phase target substance can be detected while recovering the solid phase target substance in the liquid. Is possible. That is, as long as the solid phase target substance can be detected while the solid phase target substance in the liquid 175 is contained in the liquid 175, such as a detection means based on immunochemical fluorescence, the detection means is placed in the reservoir 171. By directly providing, the solid phase target substance can be easily detected continuously in real time.

また、固相標的物質を既に捕捉した補足用抗体を交換するために、該抗体を交換可能に検出手段及び液相セル17を構成してもよい。これにより、繰り返し固相標的物質を検出することが可能である。具体的には、例えば図3に示すように、貯留部171の底面1712に検出手段の感応部1714を設け、感応部1714をその両側から挟むように磁気制御部1713を設け、更に、液体175中の捕捉用抗体Bを磁性化することによって固相標的物質Aを繰り替えし検出することができる。すなわち、磁気制御部1713の磁気をオンすることで、捕捉用抗体Bを感応部1714に固定することができ、捕捉用抗体Bが固相標的物Aを捕捉し、固相標的物Aの検出後に磁気制御部1713の磁気をオフにすることで、捕捉用抗体Bを感応部1714から離し、液体出口部174から除くことができる。更に、その後、磁気制御部1713の磁気を再びオンにすることで、液体供給部173から供給された新たな捕捉抗体を感応部1714に固定することができる。このように、既に固相標的物質を補足した補足用抗体を交換することで、繰り返し固相標的物質の検出が可能である。   Further, in order to replace the supplementary antibody that has already captured the solid phase target substance, the detection means and the liquid phase cell 17 may be configured to be able to replace the antibody. Thereby, it is possible to detect a solid-phase target substance repeatedly. Specifically, for example, as shown in FIG. 3, a sensing unit 1714 serving as a detection unit is provided on the bottom surface 1712 of the storage unit 171, a magnetic control unit 1713 is provided so as to sandwich the sensing unit 1714 from both sides, and a liquid 175 is further provided. By solidifying the capture antibody B therein, the solid phase target substance A can be repeatedly detected. That is, by turning on the magnetism of the magnetic control unit 1713, the capturing antibody B can be fixed to the sensitive unit 1714. The capturing antibody B captures the solid phase target A and detects the solid phase target A. By subsequently turning off the magnetism of the magnetic control unit 1713, the capture antibody B can be separated from the sensitive unit 1714 and removed from the liquid outlet unit 174. Further, by subsequently turning on the magnetism of the magnetic control unit 1713 again, a new capture antibody supplied from the liquid supply unit 173 can be fixed to the sensitive unit 1714. As described above, the solid phase target substance can be repeatedly detected by exchanging the supplementary antibody already supplemented with the solid phase target substance.

固相標的物質とは、本発明の捕集部材によって捕集する対象の固相と、本発明の検出システムによって検出する対象の固相の両方をさす。固相標的物質は、特に限定されないが、例えば、Der f1等のアレルゲン、核酸プローブ、微生物、ウイルスが挙げられる。   The solid phase target substance refers to both the target solid phase to be collected by the collection member of the present invention and the target solid phase to be detected by the detection system of the present invention. The solid phase target substance is not particularly limited, and examples thereof include allergens such as Der f1, nucleic acid probes, microorganisms, and viruses.

<作用効果>
本実施形態によれば、以下のような作用効果が得られる。
<Effect>
According to this embodiment, the following effects can be obtained.

固相標的物質用捕集部材10を、貯留部171を有する液体セル17と、貯留部171に供給される液体175に接するように配置され、かつ、貯留部17からの液体175の漏水を防止するように貯留部171を覆って配置された撥水性多孔質部材16と、撥水性多孔質部材16に接するように配置された含水性部材15とにより、構成した。これにより、含水性部材15に固相標的物質が供給されると、撥水性多孔質部材16を介して、貯留部171中の液体175に固相標的物質を回収することができる。また、空気をバブリングさせずとも、測定対象試料ガス中の固相標的物質を液体175中に回収することができるため、液体175に固相標的物質を回収しながら固相標的物質の検出が可能である。そのため、固相標的物質をリアルタイムで連続して簡便に検出するための捕集部材として使用できる。   The solid-phase target substance collecting member 10 is disposed so as to be in contact with the liquid cell 17 having the reservoir 171 and the liquid 175 supplied to the reservoir 171 and prevents leakage of the liquid 175 from the reservoir 17. Thus, the water-repellent porous member 16 disposed so as to cover the storage portion 171 and the water-containing member 15 disposed so as to be in contact with the water-repellent porous member 16 are configured. Thereby, when the solid phase target substance is supplied to the water-containing member 15, the solid phase target substance can be recovered in the liquid 175 in the reservoir 171 through the water repellent porous member 16. In addition, since the solid phase target substance in the measurement target sample gas can be collected in the liquid 175 without bubbling air, the solid phase target substance can be detected while collecting the solid phase target substance in the liquid 175. It is. Therefore, it can be used as a collecting member for simply and continuously detecting a solid phase target substance in real time.

固相標的物質用捕集部材10において、含水性部材15について撥水性多孔質部材16の反対側にメッシュ状部材14を配置した。これにより、漏水抑止部材13の通気部131を通って供給された測定対象試料ガスを、メッシュの隙間から含水性部材15まで通すことができる。また、メッシュ状部材14を含水性部材15より高い剛性を有するように構成した。これにより、水を含んだ含水性部材15の撓みを抑制し、液体175に回収する固相標的物質の量が向上する。   In the solid phase target substance collecting member 10, the mesh member 14 is disposed on the opposite side of the water repellent porous member 16 with respect to the water-containing member 15. Thereby, the measurement object sample gas supplied through the ventilation part 131 of the water leakage suppression member 13 can be passed from the mesh gap to the water-containing member 15. Further, the mesh member 14 is configured to have higher rigidity than the water-containing member 15. Thereby, bending of the water-containing member 15 containing water is suppressed, and the amount of the solid phase target substance recovered in the liquid 175 is improved.

固相標的物質用捕集部材10において、漏水抑止部材13を、含水性部材15について撥水性多孔質部材16の反対側に配置し、かつ、含水性部材15の露出した部分を囲んで配置した。これにより、漏水抑止部材13は、含水性部材15と排気部材12の本体部121との間から水が漏水するのを防止することができる。   In the solid phase target substance collecting member 10, the water leakage suppressing member 13 is disposed on the opposite side of the water repellent porous member 16 with respect to the water-containing member 15, and is disposed so as to surround the exposed portion of the water-containing member 15. . Thereby, the water leakage suppression member 13 can prevent water from leaking from between the water-containing member 15 and the main body 121 of the exhaust member 12.

固相標的物質検出システム30を、固相標的物質用捕集部材10と、測定対象試料ガスを含水性部材15に供給可能な供給手段20と、貯留部171からの液体175中の固相標的物質を検出可能な検出手段と、により構成した。これにより、測定対象試料ガスに含まれる固相標的物質を、固相標的物質用捕集部材10の液体175中に回収することができ、回収した固相標的物質を検出することができる。   The solid-phase target substance detection system 30 includes a solid-phase target substance collection member 10, a supply unit 20 that can supply a measurement target sample gas to the water-containing member 15, and a solid-phase target in the liquid 175 from the reservoir 171. And a detecting means capable of detecting the substance. Thus, the solid phase target substance contained in the measurement target sample gas can be recovered in the liquid 175 of the solid phase target substance collection member 10, and the recovered solid phase target substance can be detected.

以上、本発明の固相標的物質用捕集部材10及び固相標的物質検出システム30の好ましい一実施形態につき説明したが、本発明は、上述の実施形態に制限されるものではなく、適宜変更が可能である。   The preferred embodiment of the solid-phase target substance collection member 10 and the solid-phase target substance detection system 30 according to the present invention has been described above. However, the present invention is not limited to the above-described embodiment, and may be modified as appropriate. Is possible.

例えば、固相標的物質用捕集部材10において、排気部材12を含んで構成したが、これに限らない。すなわち、供給された測定対象試料ガスを固相標的物質用捕集部材10の外部へ逃がすための部分が、固相標的物質用捕集部材10のいずれかに設けられていればよく、例えば、気相セル11に排気可能な開口を設け、この開口から、測定対象試料ガスを固相標的物質用捕集部材10の外部へ逃がしてもよい。また、排気部材12を含んで構成しない場合、漏水抑止部材13を、気相セル11と、漏水抑止部材13との間に配置してもよく、これにより、漏水抑止部材13により、気相セル11の漏水抑止部材13側の面と、含水性部材15との間からの漏水が抑制される。   For example, although the solid-phase target substance collection member 10 includes the exhaust member 12, the present invention is not limited thereto. That is, it is sufficient that a portion for allowing the supplied measurement target sample gas to escape to the outside of the solid phase target substance collection member 10 is provided in any of the solid phase target substance collection members 10. The gas phase cell 11 may be provided with an opening that can be evacuated, and the measurement target sample gas may be released from the opening to the outside of the solid phase target substance collecting member 10. In the case where the exhaust member 12 is not included, the water leakage suppression member 13 may be disposed between the gas phase cell 11 and the water leakage suppression member 13. 11 is prevented from leaking between the surface of the water leakage suppressing member 13 and the water-containing member 15.

また、固相標的物質用捕集部材10において、貯留部171に液体供給部173と液体出口部174とを設けたが、これに限らない。すなわち、液体供給部173と液体出口部174とを設けなくても、固相標的物質用捕集部材10の使用の際に、あらかじめ貯留部171に液体175を供給してから、液体セル17を他の部材とともに組み立ててもよい。   Further, in the solid phase target substance collecting member 10, the liquid supply part 173 and the liquid outlet part 174 are provided in the storage part 171, but the invention is not limited thereto. That is, even when the liquid supply part 173 and the liquid outlet part 174 are not provided, the liquid cell 17 is supplied after supplying the liquid 175 to the storage part 171 in advance when using the solid phase target substance collection member 10. You may assemble with another member.

液相セル17の貯留部171に供給される液体175は、特に限定されないが、例えば、リン酸カリウム緩衝液等の緩衝液であってもよく、また、検出手段を貯留部171に直接備える場合は、固相標的物質を検出するのに必要な成分を含んでもよい。   Although the liquid 175 supplied to the storage part 171 of the liquid phase cell 17 is not specifically limited, For example, buffer liquids, such as a potassium phosphate buffer, may be sufficient, and the case where a detection means is directly provided in the storage part 171. May contain components necessary for detecting the solid phase target substance.

供給手段20は、吸引吐出部材21を設けて構成したが、これに限定されない。すなわち、気相セル内に固相標的物質を供給可能に構成すれば、どのような構成であってもよく、例えば、吸引吐出部材21を介さず、手動で気相セル内に固相標的物質を供給可能に構成してもよい。   The supply unit 20 is configured by providing the suction / discharge member 21, but is not limited thereto. That is, any configuration may be used as long as the solid phase target substance can be supplied into the gas phase cell. For example, the solid phase target substance can be manually inserted into the gas phase cell without using the suction / discharge member 21. You may comprise so that supply is possible.

供給手段20は、吸引吐出部材21を備えて構成したが、目的に応じて、これ以外の部材を備えてもよい。例えば、固相標的物質検出システム30の捕集能力や、検出の感度を確認するために、図2に示すように噴霧部材22と、気体室23と、気体供給路部材24と、を更に備えてもよい。噴霧部材22、気体室23及び気体供給路部材24について、以下に説明する。   Although the supply unit 20 includes the suction / discharge member 21, the supply unit 20 may include other members depending on the purpose. For example, in order to confirm the collection capability and detection sensitivity of the solid phase target substance detection system 30, a spray member 22, a gas chamber 23, and a gas supply path member 24 are further provided as shown in FIG. May be. The spray member 22, the gas chamber 23, and the gas supply path member 24 will be described below.

噴霧部材22は、噴霧部221を有し、噴霧部221から出口部223に向って、固相標的物質を噴霧する。具体的には、図2に示すように、噴霧液222を噴霧部材22中に溜めて、噴霧部221から噴霧液222を出口部223に向って噴霧する。噴霧液222には、固相標的物質が含まれる。   The spray member 22 has a spray part 221 and sprays the solid phase target substance from the spray part 221 toward the outlet part 223. Specifically, as shown in FIG. 2, the spray liquid 222 is accumulated in the spray member 22, and the spray liquid 222 is sprayed from the spray section 221 toward the outlet section 223. The spray liquid 222 contains a solid phase target substance.

噴霧部材22は、固相標的物質を含む噴霧液222を噴霧可能なものであれば、従来の公知のものいずれのものを用いてもよく、例えば、NE−C26(オムロンヘルスケア社製)等のネブライザを用いてもよい。   The spray member 22 may be any conventionally known one as long as it can spray the spray liquid 222 containing the solid phase target substance. For example, NE-C26 (manufactured by OMRON Healthcare), etc. The nebulizer may be used.

気体室23は、図2に示すように、噴霧部材21の出口部223から供給された固相標的物質を気体中に均一に拡散させる空間を有し、気体室入口部231と、気体室出口部232とを有する。気体室入口部231は、吸引吐出部材21により気体を吸引できるように開口した部分である。噴霧部231から供給された固相標的物質は、気体室23内で気体中に均一に拡散し、この固相標的物質を含む気体(測定対象試料ガス)が、気体室出口部232から気体供給路部材24に供給される。   As shown in FIG. 2, the gas chamber 23 has a space for uniformly diffusing the solid phase target substance supplied from the outlet portion 223 of the spray member 21 into the gas, and includes a gas chamber inlet portion 231 and a gas chamber outlet. Part 232. The gas chamber inlet portion 231 is a portion opened so that gas can be sucked by the suction and discharge member 21. The solid phase target substance supplied from the spray unit 231 is uniformly diffused into the gas in the gas chamber 23, and a gas (measurement target sample gas) containing the solid phase target substance is supplied from the gas chamber outlet 232 as a gas. It is supplied to the road member 24.

気体室23の素材は、特に限定されないが、例えば、アクリル樹脂(ポリメチルメタクリレート等)、ポリカーボネート、ポリエチレンテレフタレート、ポリスチレン系樹脂、ポリアミド等、フッ素樹脂(パーフルオロアルコキシアルカン(PFA)、ポリテトラフルオロエチレン(PTFE)、エチレン−テトラフルオロエチレンコポリマー(ETFE)等)の樹脂、ステンレス鋼、ニッケル鋼、クロム鋼、アルミニウム合金、チタン合金等の各種の金属や合金等が挙げられる。   The material of the gas chamber 23 is not particularly limited. For example, acrylic resin (polymethyl methacrylate, etc.), polycarbonate, polyethylene terephthalate, polystyrene resin, polyamide, etc., fluorine resin (perfluoroalkoxyalkane (PFA), polytetrafluoroethylene, etc.) (PTFE), ethylene-tetrafluoroethylene copolymer (ETFE) and the like), various metals and alloys such as stainless steel, nickel steel, chromium steel, aluminum alloy, and titanium alloy.

気体供給路部材24は、一端が気体室出口部232に接続し、他端が、吸引吐出部材21の吸引部212に接続する。これにより、気体室出口部232から気体供給路部材24に供給された測定対象試料ガスは、気体供給路部材24の内部を通って、吸引吐出部材21の吸引部212に供給される。   The gas supply path member 24 has one end connected to the gas chamber outlet 232 and the other end connected to the suction part 212 of the suction / discharge member 21. Thus, the measurement target sample gas supplied from the gas chamber outlet 232 to the gas supply path member 24 is supplied to the suction part 212 of the suction / discharge member 21 through the inside of the gas supply path member 24.

気体供給路部材の素材は、特に限定されないが、例えば、ポリエチレン、ポリプロピレン、シリコーン樹脂、塩化ビニール、合成ゴム等の可撓性を有する材料等が挙げられる。   The material of the gas supply path member is not particularly limited, and examples thereof include flexible materials such as polyethylene, polypropylene, silicone resin, vinyl chloride, and synthetic rubber.

<実施例1>
固相標的物質検出システムを用いて、固相標的物質の捕集及び検出を行った。固相標的物質検出システムは、上述の実施形態において、吸引吐出部材、噴霧部材、気体室、気体供給路部材を設けずに構成したものを用いた。また、固相標的物質用捕集部材としては、上述の実施形態において、排気部材を設けずに構成したものを用いた。気相セルは、上述の実施形態において、吸引吐出部材の吐出部との連結部を設けずに、該連結部に該当する箇所を塞ぎ、開口しないように構成したものを用いた。撥水性多孔質部材としては、PFAネット(F−3220−01、孔径89μm、フロン工業社製)を使用し、含水性部材としては、含水セルロース膜(M−3II、旭化成せんい社製)を使用し、メッシュ状部材としてはETFEメッシュ(F−3006−9A−1800、フロン工業社製、間隙率44%)を用いた。液相セルは、市販の透析セルの下側(容量:1.5ml、FA−1、サンプラテック社製)を用い、漏水抑止部材としては、O−リング(サイズ:内径25mm、素材:シリコーンゴム)を用いた。
<Example 1>
The solid phase target substance was collected and detected using the solid phase target substance detection system. The solid phase target substance detection system used in the above-described embodiment is configured without providing the suction / discharge member, the spray member, the gas chamber, and the gas supply path member. Further, as the solid phase target substance collecting member, the one configured without providing the exhaust member in the above-described embodiment was used. In the above-described embodiment, the gas phase cell is configured such that a portion corresponding to the connecting portion is closed without being provided with a connecting portion with the discharge portion of the suction / discharge member and is not opened. As the water repellent porous member, PFA net (F-3220-01, pore diameter 89 μm, manufactured by Freon Industries Co., Ltd.) is used, and as the water containing member, a hydrous cellulose membrane (M-3II, manufactured by Asahi Kasei Fibers Co., Ltd.) is used. As the mesh member, ETFE mesh (F-3006-9A-1800, manufactured by Freon Industries, Ltd., porosity 44%) was used. The liquid phase cell uses the lower side of a commercially available dialysis cell (capacity: 1.5 ml, FA-1, manufactured by Sampleratech Co., Ltd.), and an O-ring (size: inner diameter 25 mm, material: silicone rubber) as a water leakage inhibiting member Was used.

固相標的物質をハウスダスト中のDer f1として検出を行った。まず、ハウスダストを気相セル側に封入し、液相セル内の液体(リン酸緩衝液)を30分間撹拌し、その後、液相セル内の液体を回収してDer f1の検出を行った。検出は、ELISA法により行った。具体的には、補足用抗Der f1抗体と、標的酵素として西洋ワサビペルオキシダーゼ(HRP)と、基質としてTMB発色基質(3,3’,5,5’−テトラメチルベンジジン)とを用いて、生成物である3,3’,5,5’−テトラメチルベンジジンジイミンの波長を検出した。また、検出器として、コロナ電気(株)社製のマイクロプレートリーダ(SH−1000Lab)を用いた。   The solid phase target substance was detected as Der f1 in house dust. First, house dust was sealed on the gas phase cell side, the liquid in the liquid phase cell (phosphate buffer solution) was stirred for 30 minutes, and then the liquid in the liquid phase cell was recovered to detect Der f1. . Detection was performed by ELISA. Specifically, using a supplemental anti-Der f1 antibody, horseradish peroxidase (HRP) as a target enzyme, and TMB chromogenic substrate (3,3 ′, 5,5′-tetramethylbenzidine) as a substrate The wavelength of 3,3 ′, 5,5′-tetramethylbenzidinediimine, which is a product, was detected. Further, a microplate reader (SH-1000Lab) manufactured by Corona Electric Co., Ltd. was used as a detector.

<比較例1>
比較例1として、上記含水セルロース膜と、ETFEメッシュを用いない以外、全て実施例1と同じ条件で、Der f1の捕集及び検出を行った。
<Comparative Example 1>
As Comparative Example 1, Der f1 was collected and detected under the same conditions as in Example 1 except that the hydrated cellulose membrane and the ETFE mesh were not used.

Der f1を含まないものをnegative controlとして検出した。実施例1と、比較例1とnegative controlとの検出結果を図4に示す。図4に示すとおり、比較例1では、negative controlより吸収波長の量が少なく、比較例1では、Der f1を吸収できていないことが確認された。これに対し、実施例1は、比較例1、negative controlと比較して、多くのDer f1量が確認されたこと、すなわち、含水性部材に供給されたハウスダスト中のDer f1が、撥水性多孔質部材を介して、貯留部中の液体に回収されたことが確認された。撥水性多孔質部材を挟んでいるにもかかわらず、液体に固相標的物質が回収された理由は、含水性部材に含まれる水に固相標的物質が含まれることで、液体との間で濃度勾配が生じ、より濃度が低い液体中に固相標的物質が移動するためであると推測される。   Those without Der f1 were detected as negative controls. FIG. 4 shows the detection results of Example 1, Comparative Example 1, and negative control. As shown in FIG. 4, in Comparative Example 1, the amount of absorption wavelength was smaller than that of negative control, and in Comparative Example 1, it was confirmed that Der f1 could not be absorbed. On the other hand, in Example 1, compared with Comparative Example 1 and negative control, a large amount of Der f1 was confirmed, that is, Der f1 in the house dust supplied to the water-containing member was water repellent. It was confirmed that the liquid in the reservoir was recovered through the porous member. The reason why the solid phase target substance was recovered in the liquid in spite of sandwiching the water-repellent porous member is that the solid phase target substance is contained in the water contained in the water-containing member. It is presumed that a concentration gradient occurs and the solid phase target substance moves into a liquid having a lower concentration.

<実施例2>
固相標的物質検出システムは、上述の実施形態において、吸引吐出部材、噴霧部材、気体室、気体供給路部材を設けて構成したものを用いた。固相標的物質用捕集部材としては、上記の実施例1の固相標的物質用捕集部材とは、排気部材を設けた点と、漏水抑止部材としてO−リングではなくシリコーンシート(厚さ:0.5mm、液相セルの貯留部の上面を覆うことが可能な面積を有する)を用いた点と、ETFEメッシュの間隙率を29%に変更した点と、気相セルを、液相セルと同様のものの上部側を機械加工し、吸引吐出部材の吐出部と連結可能な連結部を設けて構成した点以外は全て実施例1の固相標的物質用捕集部材と同一のものを用いて、固相標的物質の捕集及び検出を行った。排気部材は、本体部としてアクリル板(厚さ3mm)を用い、空間形成部としてステンレスワッシャー2枚(それぞれの厚さ:1.6mm)を用いた。噴霧部材は、NE−C26(オムロンヘルスケア社製)を用いた。気体室は、導電性樹脂の容器(1000ml、25007、サンプラテック社製)を用いた。気体供給路部材は、ビニールチューブを用いた。吸引吐出部材は、ブレスライダーFK−6(ブレス社製)を用いた。供給は、0.6μg/ml(酵素活性0.06 units/ml)の西洋ワサビペルオキシダーゼ(HRP)溶液を噴霧液として用い、HRP溶液の噴霧速度を400μl/minとして2分間噴霧し、吸引吐出部材から測定対象試料ガスを気相セルに供給する流速を2L/minとして供給して、気相に供給されたHRPを0.48μg(0.048 units)とすることによって行った。液相セル内の液体は実施例1と同様のものを用いた。検出は、液体内に取り込んだHRPを回収し、これに実施例1と同様にTMB発色基質を用いて、生成物である3,3’,5,5’−テトラメチルベンジジンジイミンの波長を、コロナ電気(株)社製のマイクロプレートリーダ(SH−1000Lab)を用いて検出することにより行った。
<Example 2>
In the above-described embodiment, the solid phase target substance detection system is configured by providing a suction / discharge member, a spray member, a gas chamber, and a gas supply path member. As the solid-phase target substance collecting member, the solid-phase target substance collecting member of Example 1 described above is provided with an exhaust member, and the water leakage suppressing member is not an O-ring but a silicone sheet (thickness). : 0.5 mm, having an area that can cover the upper surface of the storage part of the liquid phase cell), the point that the porosity of the ETFE mesh was changed to 29%, and the gas phase cell, The same thing as the collection member for the solid phase target substance of Example 1 is used except that the upper side of the same thing as the cell is machined and a connecting part that can be connected to the discharging part of the suction and discharging member is provided. The solid phase target substance was collected and detected. As the exhaust member, an acrylic plate (thickness 3 mm) was used as the main body, and two stainless steel washers (each thickness: 1.6 mm) were used as the space forming portion. NE-C26 (made by OMRON Healthcare) was used as the spray member. As the gas chamber, a conductive resin container (1000 ml, 25007, manufactured by Sampleratech Co., Ltd.) was used. A vinyl tube was used as the gas supply path member. As a suction and discharge member, a blur slider FK-6 (manufactured by Breath) was used. Supply is performed by using a horseradish peroxidase (HRP) solution of 0.6 μg / ml (enzyme activity 0.06 units / ml) as a spray, spraying the spray rate of the HRP solution at 400 μl / min for 2 minutes, and a suction discharge member The measurement sample gas was supplied to the gas phase cell at a flow rate of 2 L / min, and the HRP supplied to the gas phase was 0.48 μg (0.048 units). The liquid in the liquid phase cell was the same as in Example 1. In the detection, the HRP taken in the liquid is collected, and the wavelength of the product 3,3 ′, 5,5′-tetramethylbenzidinediimine is obtained using a TMB chromogenic substrate in the same manner as in Example 1. The detection was performed using a microplate reader (SH-1000Lab) manufactured by Corona Electric Co., Ltd.

<実施例3>
実施例2のETFEメッシュの間隙率を29%から44%に変更した点以外は、全て同様の条件で、Der f1の捕集及び検出を行った。
<Example 3>
Der f1 was collected and detected under the same conditions except that the porosity of the ETFE mesh of Example 2 was changed from 29% to 44%.

<実施例4>
実施例2のETFEメッシュの間隙率を29%から59%に変更した点以外は、全て同様の条件で、Der f1の捕集及び検出を行った。
<Example 4>
Der f1 was collected and detected under the same conditions except that the porosity of the ETFE mesh of Example 2 was changed from 29% to 59%.

<実施例5>
実施例2のETFEメッシュの間隙率を29%から61%に変更した点以外は、全て同様の条件で、Der f1の捕集及び検出を行った。
<Example 5>
Der f1 was collected and detected under the same conditions except that the porosity of the ETFE mesh of Example 2 was changed from 29% to 61%.

実施例2〜5の検出結果を図5に示す。実施例2〜4を比較すると、ETFEメッシュの間隙率が高い実施例4(59%)が、最もDer f1の回収量が多いことが確認された。これは、実施例4が、実施例2、3より間隙率が高いために、供給された測定対象試料ガスを、メッシュの隙間から含水性部材まで通しやすくなり、回収するDer f1の量が高くなったためであると考えられる。一方で、実施例4(59%)と5(61%)とを比較すると、ETFEメッシュの間隙率が低い実施例4がDer f1の回収量が多いことが確認された。これは、実施例4より実施例5の方が間隙率が高く、メッシュの隙間から含水性部材まで通しやすいが、撥水性多孔質膜の撓みを抑止できる部分が減少したために、回収されるDer f1の量が低下したためであると考えられる。すなわち、実施例5が最もDer f1の回収量が多かったのは、供給された測定対象試料ガスのメッシュの隙間から含水性部材までの通しやすさと、撥水性多孔質膜の撓みの抑止とのバランスに優れていたためであると推察される。   The detection results of Examples 2 to 5 are shown in FIG. When Examples 2 to 4 were compared, it was confirmed that Example 4 (59%), which has a high porosity of the ETFE mesh, has the largest recovery amount of Der f1. This is because the porosity of Example 4 is higher than that of Examples 2 and 3, so it is easy to pass the supplied measurement target sample gas from the mesh gap to the water-containing member, and the amount of Der f1 to be recovered is high. This is thought to be because of On the other hand, when Example 4 (59%) was compared with 5 (61%), it was confirmed that Example 4 having a low porosity of the ETFE mesh has a large amount of Der f1 recovered. This is because the porosity of Example 5 is higher than that of Example 4 and it is easy to pass from the mesh gap to the water-containing member, but the portion that can suppress the deflection of the water-repellent porous membrane is reduced, so that the recovered Der This is probably because the amount of f1 has decreased. That is, Example 5 had the largest amount of Der f1 recovered because of the ease of passing the supplied measurement target sample gas from the mesh gap to the water-containing member and the suppression of the bending of the water-repellent porous membrane. This is presumably because of its excellent balance.

<実施例6>
メッシュ状部材の間隙率を44%とした点以外は、実施例2と同様の固相標的物質用捕集部材を用い、Der f1の捕集及び検出を行った。また、噴霧部材からの噴霧液としてDer f1溶液を用い、Der f1溶液の濃度(噴霧速度:400μl/min)を、下記の表1のとおりに設定した点以外は実施例2と同様に供給を行った。表1の右列は、測定対象試料ガス中のDer f1濃度を示す。
<Example 6>
Der f1 was collected and detected using the same solid phase target substance collecting member as in Example 2 except that the porosity of the mesh member was 44%. In addition, the Der f1 solution was used as the spray liquid from the spray member, and the concentration of the Der f1 solution (spray rate: 400 μl / min) was set in the same manner as in Example 2 except that it was set as shown in Table 1 below. went. The right column of Table 1 shows the Der f1 concentration in the measurement target sample gas.

Figure 2015152491
Figure 2015152491

検出の目的となる固相をDer f1とした点は、実施例2と同様にした。検出は、まず、液相セルの貯留部の液体に回収後の固相標的物質を、液体内で8分間攪拌した後、サンプルを採取し、Der f1の検出を行った。検出は、免疫化学蛍光法により行った。   The point that the solid phase to be detected was changed to Der f1 was the same as in Example 2. First, the solid phase target substance recovered in the liquid in the reservoir of the liquid phase cell was stirred for 8 minutes in the liquid, and then a sample was taken to detect Der f1. Detection was performed by immunochemical fluorescence.

具体的には、まず、ポリエチレン製の測定セルの内壁に、捕捉用抗Der f1抗体を固相化した。次に、ブロッキング処理を行ったのち、回収したそれぞれのDer f1溶液(0.49〜250ng/ml、室温2h)、ビオチン化抗Der f1抗体(室温1h)、ストレプトアビジンペルオキシダーゼ(室温0.5h)の順に反応を行い、免疫複合体を形成した。その後、基質として10−アセチル−3,7−ジヒドロキシフェノキサジン(ADHP)を加え、反応停止後直ちに感応部である光ファイバ端面を測定セルに浸漬し、反応性生成物であるレゾルフィン(励起光:570nm、蛍光:585nm)の蛍光を検出した。感応部としては、ポリスチレン製光ファイバ(Φ1.0mm、12.0cm、Polystyrene plastic optic fiber、 Shenzhen Corpereal Photoelectric社製)の両面に乾式研磨(シリカフィルム、粒子径30μm)及び湿式研磨(シリカフィルム、粒子径:9μm アルミナフィルム、粒子径:0.3μm)を施したものを用いた。本実施例では、LED(OSPG5111P、OptSupply社製)からの励起光をバンドパスフィルタ(BPF:570±10nm(MX0570)、朝日分光社製)を介して二分岐光ファイバの出力側から試料溶液に照射し、試料内に生じたレゾルフィンの蛍光を、蛍光用バンドパスフィルタ(600±10nm(MC600)、朝日分光社製)を介して、光電子増倍管(PMT;H7421、浜松ホトニクス社製)にてDer f1の量を測定した。その結果を図6に示す。   Specifically, first, a capture anti-Der f1 antibody was immobilized on the inner wall of a polyethylene measurement cell. Next, after the blocking treatment, each recovered Der f1 solution (0.49 to 250 ng / ml, room temperature 2 h), biotinylated anti-Der f1 antibody (room temperature 1 h), streptavidin peroxidase (room temperature 0.5 h) The reaction was performed in the order of to form an immune complex. Thereafter, 10-acetyl-3,7-dihydroxyphenoxazine (ADHP) is added as a substrate, and immediately after the reaction is stopped, the end face of the optical fiber, which is the sensitive part, is immersed in a measurement cell, and resorufin (excitation light: excitation light: (570 nm, fluorescence: 585 nm) was detected. As a sensitive part, dry polishing (silica film, particle diameter 30 μm) and wet polishing (silica film, particle diameter 30 μm) on both surfaces of a polystyrene optical fiber (Φ1.0 mm, 12.0 cm, Polystyrene plastic optical fiber, Shenzhen Corporate Photoelectric) (Diameter: 9 μm alumina film, particle diameter: 0.3 μm) was used. In this example, excitation light from an LED (OSPG 5111P, manufactured by OptSupply) is passed through a bandpass filter (BPF: 570 ± 10 nm (MX0570), manufactured by Asahi Spectroscopic Co., Ltd.) from the output side of the bifurcated optical fiber to the sample solution. Irradiation and the fluorescence of resorufin generated in the sample are passed through a fluorescence bandpass filter (600 ± 10 nm (MC600), manufactured by Asahi Spectroscopic Co., Ltd.) to a photomultiplier tube (PMT; H7421, manufactured by Hamamatsu Photonics). The amount of Der f1 was measured. The result is shown in FIG.

図6に示すように、噴霧液として各濃度のDer f1溶液を用いたものにおいて、Derf濃度の増加に伴って、それぞれの蛍光出力も増加したことが確認された(0.125−2.0mg/m)。これにより、検出手段として、光ファイバを利用した免疫化学蛍光法を用いることで、0.49〜250ng/mlの濃度の範囲でDer f1を検出できたことが確認された。また、平均のDer f1の回収率は、測定対象試料ガス中のDer f1の濃度に対して0.23%であることが確認された。 As shown in FIG. 6, it was confirmed that in the case where the Der f1 solution having each concentration was used as the spray solution, the respective fluorescence outputs increased with the increase of the Derf concentration (0.125-2.0 mg). / M 3 ). Thus, it was confirmed that Der f1 could be detected in a concentration range of 0.49 to 250 ng / ml by using an immunochemical fluorescence method using an optical fiber as a detection means. Further, it was confirmed that the average recovery rate of Der f1 was 0.23% with respect to the concentration of Der f1 in the measurement target sample gas.

(試験例1)
実施例6で用いた固相標的物質検出システムを用い、カーペット、マットレス、ブランケット、ピローから4種のダストを電気掃除機で採取し、また、その他のハウスダスト(米国GREER社製、商品番号D9)を準備し、各ダスト5mgずつについて捕集、検出を行った。また、これに対する比較として、各ダスト5mgを0.1%Tween20−PB溶液100μlに添加し、室温で4h浸とうさせ、2000gで10分間遠心して上清を回収し、これを用いてELISA法により検出を行った。その結果を図7に示す。また、実施例6の固相標的物質検出システムによる免疫化学蛍光法によるDer f1の検出結果と、ELISA法による検出結果との相関性を図8に示す。図7中の「house dust」とは、上記のその他のハウスダスト(米国GREER社製、商品番号D9)を示す。なお、図7中の「fiber−optic chemifluorescent immunoassay」とは、実施例6の固相標的物質検出システムを用いて免疫化学蛍光法により検出した結果を示す。
(Test Example 1)
Using the solid phase target substance detection system used in Example 6, four types of dust were collected from carpets, mattresses, blankets, and pillows using a vacuum cleaner, and other house dust (product number D9, manufactured by Greer, USA). ) Was collected and collected for each 5 mg of dust. As a comparison, 5 mg of each dust was added to 100 μl of 0.1% Tween20-PB solution, soaked at room temperature for 4 h, centrifuged at 2000 g for 10 minutes, and the supernatant was collected. Using this, the ELISA method was used. Detection was performed. The result is shown in FIG. FIG. 8 shows the correlation between the detection result of Der f1 by the immunochemical fluorescence method using the solid phase target substance detection system of Example 6 and the detection result by the ELISA method. “House dust” in FIG. 7 indicates the other house dust (product number D9, manufactured by Greer, USA). In addition, "fiber-optic chemistry immunoassay" in FIG. 7 shows the result detected by the immunochemical fluorescence method using the solid-phase target substance detection system of Example 6.

図7に示すとおり、実施例6の固相標的物質検出システムを用いた検出結果(免疫化学蛍光法)と、ELISA法での検出結果とを比較すると、実施例6の免疫化学蛍光法による検出は、ELISA法による検出と同等の定量性を有することが確認され、低濃度側ではより良好な検出感度を有することが確認された。また、図8に示すとおり、両者の検出結果には相関性が確認され、実施例6の免疫化学蛍光法による検出は、ELISA法による検出結果と矛盾しないことが示された。   As shown in FIG. 7, when the detection result (immunochemical fluorescence method) using the solid phase target substance detection system of Example 6 is compared with the detection result by ELISA method, detection by the immunochemical fluorescence method of Example 6 is performed. Was confirmed to have a quantitative property equivalent to that detected by the ELISA method, and to have better detection sensitivity on the low concentration side. Further, as shown in FIG. 8, the correlation between the detection results of both was confirmed, and the detection by the immunochemical fluorescence method of Example 6 was shown to be consistent with the detection result by the ELISA method.

(試験例2)
実施例6で用いた免疫化学蛍光法による検出のDer f1に対する選択性を試験した。試験には、7種の単一抗原溶液と、2つの混合溶液とを用いた。具体的には、Der f1、Der f2、Der p1、Cry j1、Amb a1、Alt a1、Can f1のそれぞれの単一抗原溶液、Der f1とDer f2との混合溶液及びDer f1とDer p1との混合溶液を用い、それぞれの溶液の検出時のアレルゲン濃度が10ng/mlとなるように調整した。その検出結果を図9に示す。
(Test Example 2)
The selectivity for detection by Der f1 of the immunochemical fluorescence method used in Example 6 was tested. Seven single antigen solutions and two mixed solutions were used for the test. Specifically, a single antigen solution of each of Der f1, Der f2, Der p1, Cry j1, Amb a1, Alt a1, and Can f1, a mixed solution of Der f1 and Der f2, and Der f1 and Der p1 Using the mixed solution, the allergen concentration at the time of detection of each solution was adjusted to 10 ng / ml. The detection result is shown in FIG.

その結果、Der f1単一溶液と、その他の単一抗原溶液との出力に有意差(p<0.05)が観察された。更に、Der f1を含む2種の混合溶液の蛍光出力は、Der f1単一抗原溶液と比較すると同程度の出力が得られることが確認された。以上の結果より、免疫化学蛍光法による検出は、Der f1対して高い選択性を有することが確認された。   As a result, a significant difference (p <0.05) was observed in the output between the Der f1 single solution and the other single antigen solutions. Further, it was confirmed that the fluorescence output of the two mixed solutions containing Der f1 was comparable to that of the Der f1 single antigen solution. From the above results, it was confirmed that detection by immunochemical fluorescence has high selectivity for Der f1.

10 固相標的物質用捕集部材
11 気相セル
111 気相セルの通気部
112 気相セルの固定部
113 吸引吐出部材との連結部
12 排気部材
121 本体部
1211 排気部材の通気部
1212 排気部材の固定部
122 空間形成部
123 排気部
13 漏水抑止部材
131 漏水抑止部材の通気部
14 メッシュ状部材
15 含水性部材
16 撥水性多孔質部材
17 液相セル
171 貯留部
1711 貯留部の上面
1712 貯留部の底面
1713 磁気制御部
1714 感応部
172 液相セルの固定部
173 液体供給部
174 液体出口部
175 液体
20 測定対象試料ガス供給手段
21 吸引吐出部材
211 送気部
212 吸引部
213 吐出部
22 噴霧部材
221 噴霧部
222 噴霧液
223 噴霧部材の出口部
23 気体室
231 気体入口部
232 気体出口部
24 気体供給路部材
30 固相標的物質検出システム
A 固相標的物質
B 補足用抗体
DESCRIPTION OF SYMBOLS 10 Collecting member for solid phase target substance 11 Gas phase cell 111 Vent part of gas phase cell 112 Gas phase cell fixing part 113 Connection part with suction / discharge member 12 Exhaust member 121 Main body part 1211 Exhaust member vent part 1212 Exhaust member Fixed portion 122 space forming portion 123 exhaust portion 13 water leakage inhibiting member 131 ventilation portion of water leakage inhibiting member 14 mesh-like member 15 water-containing member 16 water repellent porous member 17 liquid phase cell 171 reservoir portion 1711 upper surface of reservoir portion 1712 reservoir portion 1713 Magnetic control unit 1714 Sensitive unit 172 Liquid phase cell fixing unit 173 Liquid supply unit 174 Liquid outlet unit 175 Liquid 20 Sample gas supply means 21 for measurement 21 Suction discharge member 211 Air supply unit 212 Suction unit 213 Discharge unit 22 Spray member 221 Spraying part 222 Spraying liquid 223 Outlet part of spraying member 23 Gas chamber 231 Gas inlet portion 232 Gas outlet portion 24 Gas supply path member 30 Solid phase target substance detection system A Solid phase target substance B Supplementary antibody

Claims (10)

固相標的物質用捕集部材であって、
貯留部を有する液体セルと、
該貯留部に供給される液体に接するように配置され、かつ、前記貯留部からの液体の漏水を防止するように前記貯留部を覆って配置される撥水性多孔質部材と、
該撥水性多孔質部材に接するように配置される含水性部材と、を備える固相標的物質用捕集部材。
A collecting member for a solid phase target substance,
A liquid cell having a reservoir;
A water repellent porous member disposed so as to be in contact with the liquid supplied to the reservoir, and disposed so as to cover the reservoir so as to prevent leakage of liquid from the reservoir;
And a water-containing member disposed so as to be in contact with the water-repellent porous member.
前記含水性部材について前記撥水性多孔質部材の反対側に配置され、かつ、前記含水性部材より高い剛性を有するメッシュ状部材を更に備える請求項1記載の固相標的物質用捕集部材。   The solid-state target substance collecting member according to claim 1, further comprising a mesh-like member disposed on the opposite side of the water-repellent porous member with respect to the water-containing member and having higher rigidity than the water-containing member. 前記メッシュ状部材の間隙率は、40〜70%である請求項2記載の固相標的物質用捕集部材。   The solid phase target substance collecting member according to claim 2, wherein the mesh member has a porosity of 40 to 70%. 前記含水性部材について前記撥水性多孔質部材の反対側に配置され、かつ、前記含水性部材の露出した部分を囲んで配置される漏水抑止部材を更に備える、請求項1から3いずれか記載の固相標的物質用捕集部材。   4. The water leakage member according to claim 1, further comprising a water leakage suppressing member that is disposed on the opposite side of the water repellent porous member with respect to the water containing member and that surrounds an exposed portion of the water containing member. Collection member for solid phase target substance. 固相標的物質検出システムであって、
請求項1から4いずれか記載の固相標的物質用捕集部材と、測定対象試料ガスを前記含水性部材に供給可能な供給手段と、前記貯留部からの液体中の前記固相標的物質を検出可能な検出手段と、を備える固相標的物質検出システム。
A solid phase target substance detection system comprising:
A solid-state target substance collecting member according to any one of claims 1 to 4, supply means capable of supplying a measurement target sample gas to the hydrous member, and the solid-phase target substance in a liquid from the reservoir A solid phase target substance detection system comprising: a detectable detection means.
測定対象試料ガス中の固相標的物質の捕集方法であって、
含水性部材は、撥水性多孔質部材に接するように配置され、
液体セルは、貯留部を有し、
前記撥水性多孔質部材は、前記貯留部に供給される液体に接するように配置され、かつ、前記貯留部からの液体の漏水を防止するように前記貯留部を覆って配置され、
前記捕集方法は、前記測定対象試料ガスを前記含水性部材に向けて供給し、前記固相標的物質を前記液体に回収する工程を有する、固相標的物質の捕集方法。
A method for collecting a solid phase target substance in a sample gas to be measured,
The water-containing member is disposed so as to contact the water-repellent porous member,
The liquid cell has a reservoir,
The water-repellent porous member is disposed so as to be in contact with the liquid supplied to the reservoir, and is disposed so as to cover the reservoir so as to prevent leakage of liquid from the reservoir.
The said collection method is a collection method of a solid-phase target substance which has the process of supplying the said measuring object sample gas toward the said hydrous member, and collect | recovering the said solid-phase target substance in the said liquid.
メッシュ状部材が、前記含水性部材について前記撥水性多孔質部材の反対側に配置され、かつ、前記含水性部材より高い剛性を有する、請求項6記載の捕集方法。   The collection method according to claim 6, wherein the mesh-shaped member is disposed on the opposite side of the water-repellent porous member with respect to the water-containing member and has higher rigidity than the water-containing member. 前記メッシュ状部材の間隙率は、40〜70%である請求項7記載の捕集方法。   The collection method according to claim 7, wherein the mesh member has a porosity of 40 to 70%. 漏水防止部材が、前記含水性部材について前記撥水性多孔質部材の反対側に配置され、かつ、前記含水性部材の露出した部分を囲んで配置される請求項6から8いずれか記載の捕集方法。   9. The collection according to claim 6, wherein a water leakage preventing member is disposed on the opposite side of the water-repellent porous member with respect to the water-containing member and surrounds an exposed portion of the water-containing member. Method. 測定対象試料ガス中の固相標的物質の検出方法であって、
請求項6から9いずれか記載の方法により前記固相標的物質を前記液体中に捕集する工程と、
捕集後、前記液体中の前記固相標的物質を検出する工程と、を有する、測定対象試料ガス中の固相標的物質の検出方法。
A method for detecting a solid phase target substance in a sample gas to be measured,
Collecting the solid phase target substance in the liquid by the method according to claim 6;
Detecting the solid phase target substance in the liquid after collection, and detecting the solid phase target substance in the measurement target sample gas.
JP2014027788A 2014-02-17 2014-02-17 Solid phase target substance collection member, solid phase target substance detection system, solid phase target substance collection method and solid phase target substance detection method Pending JP2015152491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014027788A JP2015152491A (en) 2014-02-17 2014-02-17 Solid phase target substance collection member, solid phase target substance detection system, solid phase target substance collection method and solid phase target substance detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014027788A JP2015152491A (en) 2014-02-17 2014-02-17 Solid phase target substance collection member, solid phase target substance detection system, solid phase target substance collection method and solid phase target substance detection method

Publications (1)

Publication Number Publication Date
JP2015152491A true JP2015152491A (en) 2015-08-24

Family

ID=53894896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014027788A Pending JP2015152491A (en) 2014-02-17 2014-02-17 Solid phase target substance collection member, solid phase target substance detection system, solid phase target substance collection method and solid phase target substance detection method

Country Status (1)

Country Link
JP (1) JP2015152491A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017149579A1 (en) * 2016-02-29 2017-09-08 株式会社日立製作所 Chemical-substance-sensing system
JP2021162551A (en) * 2020-04-03 2021-10-11 西日本高速道路エンジニアリング四国株式会社 Reinforcing bar corrosion property evaluation method
US11412903B2 (en) 2017-09-28 2022-08-16 Panasonic Intellectual Property Management Co., Ltd. Detection device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017149579A1 (en) * 2016-02-29 2017-09-08 株式会社日立製作所 Chemical-substance-sensing system
US11412903B2 (en) 2017-09-28 2022-08-16 Panasonic Intellectual Property Management Co., Ltd. Detection device
US11918171B2 (en) 2017-09-28 2024-03-05 Panasonic Intellectual Property Management Co., Ltd. Detection device
JP2021162551A (en) * 2020-04-03 2021-10-11 西日本高速道路エンジニアリング四国株式会社 Reinforcing bar corrosion property evaluation method
JP7369659B2 (en) 2020-04-03 2023-10-26 西日本高速道路エンジニアリング四国株式会社 Reinforcement corrosion property evaluation method

Similar Documents

Publication Publication Date Title
US10309876B2 (en) Cartridge for airborne substance sensing device, and airborne substance sensing device
US20150118728A1 (en) Apparatus and method for separating a biological entity from a sample volume
JP5633510B2 (en) Plasmon sensor, method of manufacturing the same, and method of inserting sample into plasmon sensor
US8911955B2 (en) Virus detection device and virus detection method
JP5431644B2 (en) Examination method of respiratory infection
JP2015505966A5 (en)
JP2015152491A (en) Solid phase target substance collection member, solid phase target substance detection system, solid phase target substance collection method and solid phase target substance detection method
JP5860175B2 (en) Airborne substance detection device and cartridge used therefor
JP5650728B2 (en) Chemical sensor
TWI475208B (en) Sensor for detection of a target of interest
JP2008051813A (en) Cell for carrying out electroluminescence measurements
JP2021193395A (en) Immunochromatographic test piece for extracting and measuring carbohydrate antigen, sample adding device, and immunochromatographic method using the same
JP4670084B2 (en) Detector for chemical sensor device and use thereof
US20240248008A1 (en) Methods, devices, and systems for aerosol detection
Miyajima et al. Direct analysis of airborne mite allergen (Der f1) in the residential atmosphere by chemifluorescent immunoassay using bioaerosol sampler
US20220170854A1 (en) System and method for optical detection of pathogens
JP2009079980A (en) Device and method for collecting contaminant in atmosphere
CN205317783U (en) Relevant phospholipase A 2 fluorescent quantitation test paper of lipoprotein and detection card
US11662278B2 (en) System and method for detecting airborne pathogens
US11619571B2 (en) Collection chamber for an air sampling system
Morozov et al. Non-invasive lung disease diagnostics from exhaled microdroplets of lung fluid: perspectives and technical challenges
US20190091608A1 (en) Fluid device
US11719667B2 (en) Electrochemical detector
TWM460273U (en) A blood filtering electrochemical test strip
JP4369629B2 (en) Chemical filter media and chemical filter unit