WO2017149579A1 - Chemical-substance-sensing system - Google Patents

Chemical-substance-sensing system Download PDF

Info

Publication number
WO2017149579A1
WO2017149579A1 PCT/JP2016/055966 JP2016055966W WO2017149579A1 WO 2017149579 A1 WO2017149579 A1 WO 2017149579A1 JP 2016055966 W JP2016055966 W JP 2016055966W WO 2017149579 A1 WO2017149579 A1 WO 2017149579A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemical substance
sensing system
liquid
sensor
solution
Prior art date
Application number
PCT/JP2016/055966
Other languages
French (fr)
Japanese (ja)
Inventor
真斗 永田
健三 黒土
安藤 正彦
希倫 何
典史 亀代
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2016/055966 priority Critical patent/WO2017149579A1/en
Publication of WO2017149579A1 publication Critical patent/WO2017149579A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS

Definitions

  • the present invention relates to a chemical substance sensing system that collects chemical substances contained in the atmosphere or various gases.
  • Chemical substances sensors that measure molecules in the atmosphere are called gas sensors or odor sensors.
  • semiconductor gas sensors that use sintered metal oxides are widely used in applications such as flammable gas and poison gas alarms. in use.
  • Oxygen in clean air is adsorbed and present as oxygen ions on the metal oxide surface in the semiconductor gas sensor heated by the heater. Since oxygen draws electrons from the metal oxide when ionized, the carrier density decreases in the region near the surface, a depletion layer is formed, and the resistance value of the metal oxide increases.
  • the air in contact with the metal oxide is not clean and contains a reducing gas, it reacts with oxygen ions adsorbed on the surface of the metal oxide and emits electrons to increase the carrier density.
  • the resistance value of objects is reduced compared to clean air. Since this resistance value varies depending on the concentration of reducing gas such as methane, butane, hydrogen, carbon monoxide contained in the air, the semiconductor gas sensor can be used as a combustible gas sensor and a poison gas sensor.
  • the semiconductor gas sensor is small and inexpensive, but it responds if it is a reducing gas that reacts with oxygen ions. Therefore, gas chromatography (GC: Gas Chromatography) is used when there is a contaminated component in the gas or when multi-component analysis of a mixed gas is performed.
  • GC Gas Chromatography
  • GC is separated by selectively delaying each component as it flows through the column due to the difference in adsorption characteristics depending on the boiling point and polarity of the stationary phase or packing material in the column. It is an analytical technique that is introduced and measures the concentration of each component.
  • a flame ionization detector, a thermal conductivity detector, a mass spectrometer, or the like can be used, but the operation principle of each detector is omitted.
  • An analyzer using GC is larger and more expensive than a semiconductor gas sensor, and a delay time is provided for component separation, making it difficult to measure in real time.
  • the chemical substance sensor mentioned above is difficult to satisfy all in terms of device size, molecular selectivity, and response speed, but the olfaction in the living body is a small organ of several centimeters to several millimeters, Using hundreds to thousands of different olfactory receptors, components in the atmosphere can be distinguished with a response speed of 1 second or less.
  • any measurement method depends on the measurement component, but since the living body can be felt even at a concentration of several ppt (part per trillion: 1/1 trillion) or less, the sensitivity of the living body is the GC.
  • the sensitivity is equal to or higher than the sensitivity of a gas chromatograph mass spectrometer (GC-MS) using a mass spectrometer as a detector.
  • GC-MS gas chromatograph mass spectrometer
  • Biosensors using biomaterials such as cells, proteins, or lipid membranes have been studied in order to realize a highly selective sensor with a small size, high sensitivity, and fast response equivalent to the olfactory sense of the living body. Since biomaterials function in water, it is necessary to immerse the sensor in water. Therefore, it is necessary to dissolve in water to detect airborne substances.
  • volatile odor molecules have a strong tendency to be hydrophobic and have low solubility in water.
  • scent-binding proteins are synthesized and used to dissolve hydrophobic molecules in body fluids, but it is not possible to extract and purify odor-binding proteins suitable for various odor molecules in large quantities from living organisms. It's not easy. Therefore, there is a need for molecular solubilization techniques that can replace odor-binding proteins.
  • Patent Document 1 discloses a technique for atomizing a highly soluble solution in order to efficiently dissolve molecules in the air (see Patent Document 1). .
  • Patent Document 1 when a high-solubility solution intended to efficiently collect molecules in the air is used, the chemical substance sensor is denatured, causing changes in characteristics and shortening of the lifetime.
  • the chemical substance sensor is denatured, causing changes in characteristics and shortening of the lifetime.
  • a commonly used solvent shows toxicity as the solvent concentration increases, and biological substances are used. It has become an issue of increasing the sensitivity of biosensors.
  • An object of the present invention is to provide a chemical substance sensing system with high sensitivity and long life.
  • the present invention provides a chemical substance sensor having a detection unit for detecting a chemical substance in a gas, a first liquid in contact with the detection unit, and a measurement object rather than the first liquid.
  • a second liquid having a high solubility of the certain chemical substance and an atomizing device for atomizing the second liquid are provided.
  • a highly sensitive and long-life chemical substance sensing system can be provided.
  • FIG. 1 is a schematic configuration diagram of a spraying type gas molecule continuous collection and sensing system of Example 1.
  • FIG. 6 is a schematic configuration diagram of an electric field type intermittent gas molecule collection / sensing system of Example 2.
  • FIG. 5 is a schematic configuration diagram of a droplet type gas molecule intermittent collection and sensing system of Example 3.
  • a detection unit S1 that operates in a liquid such as a biomolecule, and a conversion unit that converts a change in the detection unit S1 into an electrical signal.
  • a chemical substance sensor provided with S2 in order to detect air molecules difficult to dissolve in the sensor solution L1 necessary for the detection unit S1 to function with high sensitivity, It is effective to introduce the molecules into the sensor solution L1 after dissolving the molecules.
  • the atomization of the collection liquid L2 with the atomizer AT1 causes the gas and the collection liquid L2 to be atomized.
  • FIG. 2 is a schematic configuration diagram of the chemical substance sensing system in the present embodiment.
  • the gas taken in from the outside of the apparatus through the air inlet P1 by the air pump AP1 is introduced into the mixing tube T2 together with the mist solution L3 introduced from the mist introducing tube T1.
  • the atomized solution L3 is generated by finely dividing and collecting the collected liquid L2 discharged from the liquid feed pump LP1 by mechanical vibration excited on the surface of the atomizing device AT2.
  • a SAW device Surface Acoustic Wave: surface acoustic wave
  • the diameter of the generated mist solution L3 can be controlled by the interdigital electrode pattern on the surface of the SAW device AT2 and the frequency of the applied voltage.
  • the number of mists introduced into the mixing tube T2 together with the gas taken in from the outside can be controlled by the power supplied to the SAW device AT2 and the length and cross-sectional area of the mist introducing tube L3. Note that not only the SAW device but also an ultrasonic atomizing unit, a coaxial type or a direct type nebulizer can be used for the atomizing apparatus.
  • the mist solution L3 passes through the inside of the mixing tube T2 (mixing region) while dissolving molecules in the gas introduced together, and is sprayed on the surface of the sensor solution L1.
  • the time for the atomized solution L3 to dissolve the molecules in the air can be controlled by the length of the mixing tube T2 and the air flow rate of the air pump AP1. That is, the air pump AP1 functions as a control unit that controls the mixing time of the molecules in the gas and the mist solution L3 in the mixing tube T2.
  • the air flow rate of the air pump AP1 is variable, so that the measurement sensitivity and response speed can be optimized for each measurement condition. For example, if the concentration of molecules in the gas to be measured cannot be detected due to low concentration, the air flow rate of the air pump AP1 is decreased and the mixing time is extended to remove more molecules in the gas in a mist solution. It can be dissolved in L3 to increase the detection accuracy. However, since the response speed of the measurement decreases as the mixing time is lengthened, it is necessary to increase the air supply flow rate of the air pump AP1 in applications where real-time measurement is important, such as odor source search.
  • the air pump AP1 can be used as a control unit in order to set the detection accuracy and response speed according to the intended use.
  • the collected liquid L2 to be atomized has a high solubility of the measurement target substance contained in the gas, has low toxicity with respect to the detection unit C1 provided with detection cells, and is a sensor solution L1 mainly composed of water. It is desirable that it is easy to mix.
  • Dimethyl sulfoxide (DMSO) or ethanol is known as a material that satisfies such conditions, and a solvent suitable for the measurement object may be selected.
  • DMSO Dimethyl sulfoxide
  • ethanol a material that satisfies such conditions, and a solvent suitable for the measurement object may be selected.
  • DMSO dimethyl sulfoxide
  • ethanol ethanol because of its low solubility in DMSO.
  • the mist solution L3 is mixed when sprayed on the surface of the sensor solution L1, and separated from the gas component not dissolved in the mist solution L3, and the remaining gas component is discharged from the exhaust port P2.
  • the component collected in the sensor solution L1 comes into contact with a receptor expressed in the cell membrane of the detection unit C1 (detection unit including cells and cell membranes) in contact with the sensor solution L1, and changes the ion concentration inside and outside the cell, This change is detected by utilizing the change in the electrical characteristics of the ISFET (Ion Sensitive Field Effect Transistor) I1 in the vicinity of the cell.
  • ISFET Ion Sensitive Field Effect Transistor
  • Detection of collected components is not limited to changes in ion concentration, but uses changes in ionic current that flow inside and outside the cell as a receptor opens and closes in the cell membrane, changes in cell membrane potential, and changes in fluorescence intensity due to fluorescent proteins in the cell. May be detected.
  • the detection unit C1 may be configured to include a protein, a lipid membrane, or a sensitive membrane (a sensitive membrane modified with a polymer or functional group having selectivity for a chemical substance to be measured). As described above, high molecular selectivity can be obtained by using biologically derived substances such as proteins, lipid membranes, and cells. However, since the lifetime is shorter than that of the sensitive membrane, the configuration of the detection unit C1 is set according to the purpose of use. You can choose.
  • the concentration of the collection liquid L2 with respect to the sensor solution L1 increases, the toxicity of the detection unit C1 having cells increases, and the sensor life is shortened. . Therefore, the concentration of the collected liquid L2 with respect to the sensor solution L1 is maintained below a certain level by replenishing the sensor solution L1 as needed by the liquid feed pump LP2 and discharging it from the waste liquid port P3. Therefore, the liquid feed pump LP2 has a function as a liquid control unit that replaces or circulates the sensor solution L1.
  • the collected liquid L2 has low toxicity to cells. Specifically, a solution that does not denature proteins under conditions of 1% by volume or more with respect to water, or the inhibition rate after 24 hours of living cells is 50%. The following solutions are used. If the solubility is 1% by volume or more, it is possible to introduce more molecules in the gas into the water than it is less than that, and the dissolution rate is fast even if the concentration is lower than 1% by volume. It is possible to detect molecules introduced into water earlier. Therefore, the collection liquid L2 has a solubility of 1 atm and a volume of 1% by volume or more under the conditions of 25 ° C.
  • methanol, ethanol, ethylene glycol, acetonitrile, acetone, dimethylformamide, isopropyl alcohol, n-propanol, tetrahydrofuran, dioxane, hexamethylphosphoric triamide, dimethyl sulfoxide, methyl ethyl ketone, triethylamine, ethyl acetate, etc. may be used.
  • a solution having high molecular solubility in the gas to be measured is selected as the collection liquid L2.
  • the solubility in DMSO is low. Therefore, by selecting ethanol, alkane can be detected with high sensitivity.
  • the gas to be measured can be continuously inhaled using the air pump AP1 and measured in real time, it is suitable for applications where a short measurement interval is important, such as odor source search. ing.
  • FIG. 3 is a schematic configuration diagram of the chemical substance sensing system in the present embodiment.
  • Example 1 The difference from the spray-type gas molecule continuous collection and sensing system shown in Example 1 is that the mixing tube T2 is eliminated, and the SAW device AT2 that is an atomizer and the ion-responsive electric field that is a measurement unit of the chemical substance sensor.
  • the effect transistor I1 and the detection unit C1 including cells are disposed in the same space, and the large electrode E1 and the small electrode E2 covered with the insulating film IF1. In this embodiment, an electric field gradient is generated between the large electrode E1 and the small electrode E2.
  • the size of the entire apparatus can be reduced by eliminating the mixing tube T2, but the function of adjusting the mixing time depending on the length of the mixing tube T2 is lost. Therefore, the function of controlling the mixing time according to the operation cycle of the air pump AP1 is substituted by intermittently performing the intake operation by the air pump AP1.
  • the gas introduced into the collection space SP1 (mixing region) by short-time intake by the air pump AP1 is mixed with the mist solution generated by the SAW device AT2, and is retained in the collection space SP1 for an arbitrary time. That is, the air pump AP1 functions as a control unit that controls the mixing time of the solution in the collection space SP1.
  • an electric field gradient is generated inside the collection space SP1 by generating a potential difference between the large electrode E1 and the small electrode E2 using the external power source V1. Since the atomized solution in the electric field is polarized in each droplet and generates a dipole moment, the atomized solution receives an attractive force in the direction of the strong electric field and is attracted to the sensor solution L1 side and collected.
  • the small electrode E2 covered with the insulating film IF1 is arranged on the opposite side of the collection space SP1 across the ion-responsive field effect transistor I1, but the electric field generated by the ion-responsive field effect transistor I1. If the shielding effect of is large, it may be arranged at the boundary between the ion-responsive field-effect transistor I1 and the detection unit C1 including cells, or at the boundary between the detection unit C1 and the sensor solution L1.
  • the mixing time can be accurately controlled, and the mixing time of the molecules in the gas and the atomized solution L3 can be made uniform. Therefore, it is suitable for applications in which measurement accuracy of molecular concentration is important, such as component analysis.
  • FIG. 4 is a schematic configuration diagram of the chemical substance sensing system in the present embodiment.
  • Example 2 The difference from the droplet-type gas molecule intermittent collection and sensing system of Example 2 is that the large and small electrodes E1 and E2 are eliminated, and the liquid supply system that supplies the solution to the atomizer (SAW device) AT2 is the collection liquid L2.
  • SAW device atomizer
  • LP3 that supplies the sensor solution L1 is provided.
  • the sedimentation speed L of the collected liquid L2 that has become fine droplets by the SAW device AT2 is slow, and it is about several tens of ⁇ m / s using Stokes' formula for determining the terminal speed when the microparticles in the fluid settle. It is.
  • the terminal velocity of sedimentation is proportional to the square of the droplet diameter
  • the larger the droplet diameter generated by the atomizer the faster the sedimentation.
  • the smaller the diameter of the collected liquid L2 droplet the more convenient in terms of the contact area. Therefore, if a droplet having a larger diameter can be separately generated, the liquid of the collection L2 can be maintained without adopting the configuration including the electric field application electrode as in Example 2 while keeping the collection area large. Drops can be collected and introduced into the sensor solution.
  • the recovery droplet is the same as the collection liquid L2, the concentration of the collection liquid L2 in the sensor solution L1 increases and the sensor life decreases, so the sensor solution L2 is supplied to the SAW device AT2 and atomized. Thus, an increase in concentration can be avoided. If the droplet diameter for recovery is 100 ⁇ m, the sedimentation termination speed is several tens of cm / s, and the collected liquid can be recovered sufficiently quickly.
  • a solution having a higher solubility than the solution in contact with the chemical substance sensor can be efficiently collected.
  • by atomizing the collection solution and increasing the contact area with the gas it is possible to efficiently collect air molecules with a small amount of solution, and the concentration of the collection solution with respect to the solution in contact with the chemical substance sensor By reducing the above, it is possible to suppress the denaturation of the material used for the detection part of the chemical substance sensor and extend the life.
  • GC-MS In order to analyze components present in the atmospheric environment with high sensitivity, a large-scale device such as GC-MS is conventionally required. However, this example provides portable high sensitivity and high selectivity. Provided chemical sensor, and use it for detection of explosives, narcotics and victims who had to rely on the smell of animals such as trained dogs and mice, and for home use of medical breath analysis be able to.
  • the mixing tube T2 in the first embodiment and the external power supply V2 in the second embodiment are not necessary, and the size of the entire system can be reduced. Suitable for applications where safety and low power consumption are important.
  • AP1 Air pump AT1: Atomizer AT2: SAW device C1: Detection unit E1: Large electrode E2: Small electrode I1: ISFET IF1: Insulating film L1: Sensor solution L2: Collection liquid L3: Atomized solution LP1: Collection liquid feed pump for atomizer LP2: Sensor solution feed pump LP3: Sensor solution feed pump P1 for atomizer Intake port P2: Exhaust port P3: Waste liquid port S1: Chemical substance sensor detection unit S2: Chemical substance sensor conversion unit T1: Fog introduction tube T2: Mixing tube V1: External power supply

Abstract

The purpose is to provide a chemical-substance-sensing system having high sensitivity and a long service life. The present invention is provided with: a chemical substance sensor provided with a detector for detecting a chemical substance in the air; a first solution that contacts the detector; a second solution having a greater solubility with respect to the chemical substance, which is to be measured, than does the first solution; and an atomization device for atomizing the second solution.

Description

化学物質センシングシステムChemical substance sensing system
 本発明は、大気または各種ガス中に含まれる化学物質を捕集する化学物質センシングシステムに関する。 The present invention relates to a chemical substance sensing system that collects chemical substances contained in the atmosphere or various gases.
 大気中の分子を測定する化学物質センサは、ガスセンサあるいは匂いセンサと呼ばれ、特に、金属酸化物の焼結体を利用した半導体式ガスセンサは、可燃性ガスや毒ガスの警報器などの用途で広く使用されている。 Chemical substances sensors that measure molecules in the atmosphere are called gas sensors or odor sensors. In particular, semiconductor gas sensors that use sintered metal oxides are widely used in applications such as flammable gas and poison gas alarms. in use.
 ヒータにより加熱された半導体式ガスセンサ中の金属酸化物表面には、清浄空気中の酸素が吸着し、酸素イオンとして存在する。酸素はイオン化する際に金属酸化物より電子を引き抜くため、表面近傍領域はキャリア密度が低下し空乏層が形成され、金属酸化物の抵抗値が増加する。 Oxygen in clean air is adsorbed and present as oxygen ions on the metal oxide surface in the semiconductor gas sensor heated by the heater. Since oxygen draws electrons from the metal oxide when ionized, the carrier density decreases in the region near the surface, a depletion layer is formed, and the resistance value of the metal oxide increases.
 もし、金属酸化物が接する空気が清浄ではなく、還元性ガスを含んでいる場合、金属酸化物表面に吸着した酸素イオンと反応し電子を放出することでキャリア密度が増加するために、金属酸化物の抵抗値が清浄空気に比べて減少する。この抵抗値は、空気中に含まれるメタン、ブタン、水素、一酸化炭素などの還元性ガス濃度によって変化するために、半導体式ガスセンサは、可燃性ガスセンサ及び毒ガスセンサとして利用できる。 If the air in contact with the metal oxide is not clean and contains a reducing gas, it reacts with oxygen ions adsorbed on the surface of the metal oxide and emits electrons to increase the carrier density. The resistance value of objects is reduced compared to clean air. Since this resistance value varies depending on the concentration of reducing gas such as methane, butane, hydrogen, carbon monoxide contained in the air, the semiconductor gas sensor can be used as a combustible gas sensor and a poison gas sensor.
 半導体式ガスセンサは小型かつ安価であるが、酸素イオンと反応する還元性ガスであれば応答するため、測定分子に選択性が乏しい。したがって、ガスに夾雑成分がある場合や、混合ガスの多成分分析を行う場合は、ガスクロマトグラフィー(GC:Gas Chromatography)が利用される。 The semiconductor gas sensor is small and inexpensive, but it responds if it is a reducing gas that reacts with oxygen ions. Therefore, gas chromatography (GC: Gas Chromatography) is used when there is a contaminated component in the gas or when multi-component analysis of a mixed gas is performed.
 GCは、混合ガスがカラム内の固定相または充填剤に対する沸点や極性に応じた吸着特性の違いにより、各成分がカラム内を流れる際に選択的に遅延することで分離し、順次検出器に導入され、各成分濃度を測定する分析手法である。検出器は、水素炎イオン化検出器、熱伝導度検出器、質量分析計などが使用できるが、各検出器の動作原理については省略する。GCを用いた分析装置は、半導体式ガスセンサに比べて大型かつ高価であり、成分分離のために遅延時間を設けていることから、リアルタイムに測定することが困難である。 GC is separated by selectively delaying each component as it flows through the column due to the difference in adsorption characteristics depending on the boiling point and polarity of the stationary phase or packing material in the column. It is an analytical technique that is introduced and measures the concentration of each component. As the detector, a flame ionization detector, a thermal conductivity detector, a mass spectrometer, or the like can be used, but the operation principle of each detector is omitted. An analyzer using GC is larger and more expensive than a semiconductor gas sensor, and a delay time is provided for component separation, making it difficult to measure in real time.
 上述した化学物質センサは、装置サイズ、分子選択性、応答速度の観点で、全てを満たすことは難しいが、生体における嗅覚は、数センチから数ミリという小型の器官でありながら、分子選択性の異なる数百から数千種の嗅覚受容体を用いて1秒以下の応答速度で大気中の成分を弁別することができる。感度については、どの測定手法も測定成分に依存するが、生体は数ppt(part per trillion:1兆分の1)以下の濃度であっても感じることができるので、生体の感度は、GCの検出器に質量分析計を用いたガスクロマトグラフ質量分析計(GC-MS:Gas Chromatography-Mass Spectrometry)の感度と同等かそれ以上である。 The chemical substance sensor mentioned above is difficult to satisfy all in terms of device size, molecular selectivity, and response speed, but the olfaction in the living body is a small organ of several centimeters to several millimeters, Using hundreds to thousands of different olfactory receptors, components in the atmosphere can be distinguished with a response speed of 1 second or less. As for sensitivity, any measurement method depends on the measurement component, but since the living body can be felt even at a concentration of several ppt (part per trillion: 1/1 trillion) or less, the sensitivity of the living body is the GC. The sensitivity is equal to or higher than the sensitivity of a gas chromatograph mass spectrometer (GC-MS) using a mass spectrometer as a detector.
 生体の嗅覚と同等の、小型かつ高感度、高速応答の高選択性センサを実現するために、細胞やタンパク質または脂質膜等の生体材料を利用したバイオセンサが研究されている。生体材料は水中で機能発現するため、センサを水に浸している必要がある。したがって、気中の物質を検知するには水中に溶解させる必要がある。 Biosensors using biomaterials such as cells, proteins, or lipid membranes have been studied in order to realize a highly selective sensor with a small size, high sensitivity, and fast response equivalent to the olfactory sense of the living body. Since biomaterials function in water, it is necessary to immerse the sensor in water. Therefore, it is necessary to dissolve in water to detect airborne substances.
 しかし、一般に揮発性の匂い分子は疎水性の傾向が強く、水に対する溶解度が低い。生物においては、疎水性分子を体液中に溶解するために匂い結合タンパク質を合成し利用しているが、種々の匂い分子に対して適した匂い結合タンパク質を生物より大量に抽出、精製することは容易ではない。したがって、匂い結合タンパク質の代替となる分子可溶化手法が必要である。 However, in general, volatile odor molecules have a strong tendency to be hydrophobic and have low solubility in water. In living organisms, scent-binding proteins are synthesized and used to dissolve hydrophobic molecules in body fluids, but it is not possible to extract and purify odor-binding proteins suitable for various odor molecules in large quantities from living organisms. It's not easy. Therefore, there is a need for molecular solubilization techniques that can replace odor-binding proteins.
 現状知られている代替法として、特許文献1は、気中の分子を効率的に液中に溶解するために、溶解度の大きな溶液を霧化する技術を開示している(特許文献1参照)。 As an alternative method known at present, Patent Document 1 discloses a technique for atomizing a highly soluble solution in order to efficiently dissolve molecules in the air (see Patent Document 1). .
特開2004-233061号公報JP 2004-233061 A
 特許文献1のように、気中分子を効率的に捕集することを目的とした高溶解度の溶液を使用すると、化学物質センサが変性され、特性の変化や短寿命化が引き起こされる。特に、生細胞に対しては、水溶液中に疎水性分子を溶解させるために、一般的に利用される溶媒においても、溶媒濃度が高いほど毒性を示すことが知られており、生体物質を利用したバイオセンサの高感度化の課題となっている。 As in Patent Document 1, when a high-solubility solution intended to efficiently collect molecules in the air is used, the chemical substance sensor is denatured, causing changes in characteristics and shortening of the lifetime. In particular, for living cells, in order to dissolve hydrophobic molecules in aqueous solution, it is known that even a commonly used solvent shows toxicity as the solvent concentration increases, and biological substances are used. It has become an issue of increasing the sensitivity of biosensors.
 本発明の目的は、高感度かつ長寿命な化学物質センシングシステムを提供することにある。 An object of the present invention is to provide a chemical substance sensing system with high sensitivity and long life.
 上記目的を達成するために本発明は、気体中の化学物質を検出する検出部を備える化学物質センサと、前記検出部と接する第一の液体と、前記第一の液体よりも、測定対象である前記化学物質の溶解度が大きい第二の液体と、前記第二の液体を霧化する霧化装置を備える。 In order to achieve the above object, the present invention provides a chemical substance sensor having a detection unit for detecting a chemical substance in a gas, a first liquid in contact with the detection unit, and a measurement object rather than the first liquid. A second liquid having a high solubility of the certain chemical substance and an atomizing device for atomizing the second liquid are provided.
 本発明によれば、高感度かつ長寿命な化学物質センシングシステムを提供することができる。 According to the present invention, a highly sensitive and long-life chemical substance sensing system can be provided.
本発明の一実施形態である気中分子捕集センシングシステムの概略構成図である。It is a schematic block diagram of the air molecule collection sensing system which is one Embodiment of this invention. 実施例1の吹付け式の気体分子連続捕集センシングシステムの概略構成図である。1 is a schematic configuration diagram of a spraying type gas molecule continuous collection and sensing system of Example 1. FIG. 実施例2の電場式の気体分子間欠捕集センシングシステムの概略構成図である。6 is a schematic configuration diagram of an electric field type intermittent gas molecule collection / sensing system of Example 2. FIG. 実施例3の液滴式の気体分子間欠捕集センシングシステムの概略構成図である。FIG. 5 is a schematic configuration diagram of a droplet type gas molecule intermittent collection and sensing system of Example 3.
 本実施形態では、図1に示す気中分子センシングシステムの概略構成図に示すように、生体分子等の液中で動作する検出部S1と、検出部S1の変化を電気信号に変換する変換部S2とを備えた化学物質センサにおいて、検出部S1が機能するために必要なセンサ溶液L1に溶解しにくい気中分子を高感度に検出するために、より溶解度が高い捕集液L2に気中分子を溶かしてからセンサ溶液L1に導入することが効果的である。 In this embodiment, as shown in the schematic configuration diagram of the air molecule sensing system shown in FIG. 1, a detection unit S1 that operates in a liquid such as a biomolecule, and a conversion unit that converts a change in the detection unit S1 into an electrical signal. In the chemical substance sensor provided with S2, in order to detect air molecules difficult to dissolve in the sensor solution L1 necessary for the detection unit S1 to function with high sensitivity, It is effective to introduce the molecules into the sensor solution L1 after dissolving the molecules.
 一方で、センサ溶液L1に対して捕集液L2が混入することが、センサ寿命の低下を引き起こすため、捕集液L2を霧化装置AT1で霧化することで気体と捕集液L2との接触面積を増大し、捕集効率を改善することで、センサ感度を維持しながらセンサ溶液中に混入する捕集液量を低減し、センサ寿命の低下を抑制することができる。 On the other hand, since the collection liquid L2 is mixed into the sensor solution L1 and the lifetime of the sensor is reduced, the atomization of the collection liquid L2 with the atomizer AT1 causes the gas and the collection liquid L2 to be atomized. By increasing the contact area and improving the collection efficiency, it is possible to reduce the amount of collected liquid mixed in the sensor solution while maintaining the sensor sensitivity, and to suppress a decrease in sensor life.
 以下に、本発明の一実施形態を、実施例を用いて詳細に説明する。 Hereinafter, an embodiment of the present invention will be described in detail using examples.
 本実施例では、化学物質センシングシステムの一形態である吹付け式の気体分子連続捕集センシングシステムについて説明する。図2は、本実施例における化学物質センシングシステムの概略構成図である。 In the present embodiment, a spraying type gas molecule continuous collection sensing system, which is one form of the chemical substance sensing system, will be described. FIG. 2 is a schematic configuration diagram of the chemical substance sensing system in the present embodiment.
 図2において、エアポンプAP1により装置外部より吸気口P1を通して取り込まれた気体は、霧導入管T1より導入される霧状溶液L3とともに、混合管T2に導入される。ここで、霧状溶液L3は、霧化装置AT2の表面に励振した機械的振動により送液ポンプLP1から吐出された捕集液L2を細かく分断し、霧化することで生成される。本実施形態では、霧化装置としてSAWデバイス(Surface Acoustic Wave:表面弾性波)を用いる。 In FIG. 2, the gas taken in from the outside of the apparatus through the air inlet P1 by the air pump AP1 is introduced into the mixing tube T2 together with the mist solution L3 introduced from the mist introducing tube T1. Here, the atomized solution L3 is generated by finely dividing and collecting the collected liquid L2 discharged from the liquid feed pump LP1 by mechanical vibration excited on the surface of the atomizing device AT2. In this embodiment, a SAW device (Surface Acoustic Wave: surface acoustic wave) is used as the atomizing device.
 生成される霧状溶液L3の直径は、SAWデバイスAT2表面のすだれ状電極のパターン、及び印加する電圧の周波数により制御することが可能である。また、外部より取り込んだ気体とともに混合管T2に導入される霧の個数は、SAWデバイスAT2に供給する電力、及び霧導入管L3の長さや断面積により制御することが可能である。なお、霧化装置には、SAWデバイスのみならず、超音波霧化ユニットや同軸型または直行型ネブライザを用いることもできる。 The diameter of the generated mist solution L3 can be controlled by the interdigital electrode pattern on the surface of the SAW device AT2 and the frequency of the applied voltage. The number of mists introduced into the mixing tube T2 together with the gas taken in from the outside can be controlled by the power supplied to the SAW device AT2 and the length and cross-sectional area of the mist introducing tube L3. Note that not only the SAW device but also an ultrasonic atomizing unit, a coaxial type or a direct type nebulizer can be used for the atomizing apparatus.
 霧状溶液L3は、ともに導入された気体中の分子を溶解しながら混合管T2の内部(混合領域)を通過し、センサ溶液L1の表面に吹き付けられる。霧状溶液L3が気中分子を溶解する時間は、混合管T2の長さ、及びエアポンプAP1の送気流量によって制御することができる。つまり、エアポンプAP1は、混合管T2内における気体中の分子と霧状溶液L3との混合時間を制御する制御部として機能する。 The mist solution L3 passes through the inside of the mixing tube T2 (mixing region) while dissolving molecules in the gas introduced together, and is sprayed on the surface of the sensor solution L1. The time for the atomized solution L3 to dissolve the molecules in the air can be controlled by the length of the mixing tube T2 and the air flow rate of the air pump AP1. That is, the air pump AP1 functions as a control unit that controls the mixing time of the molecules in the gas and the mist solution L3 in the mixing tube T2.
 ここで、混合管T2の長さが固定値であるのに対して、エアポンプAP1の送気流量は可変であるため、測定感度と応答速度を各測定条件に対して最適化することができる。例えば、測定対象である気体中の分子の濃度が低いために検出できない場合には、エアポンプAP1の送気流量を低下させ、混合時間を長くすることでより多くの気体中の分子を霧状溶液L3へ溶解し、検出精度を高めることができる。しかし、混合時間を長くする程に測定の応答速度が低下するため、匂い源探索といった測定のリアルタイム性が重要な用途の場合は、エアポンプAP1の送気流量を増加する必要がある。 Here, while the length of the mixing tube T2 is a fixed value, the air flow rate of the air pump AP1 is variable, so that the measurement sensitivity and response speed can be optimized for each measurement condition. For example, if the concentration of molecules in the gas to be measured cannot be detected due to low concentration, the air flow rate of the air pump AP1 is decreased and the mixing time is extended to remove more molecules in the gas in a mist solution. It can be dissolved in L3 to increase the detection accuracy. However, since the response speed of the measurement decreases as the mixing time is lengthened, it is necessary to increase the air supply flow rate of the air pump AP1 in applications where real-time measurement is important, such as odor source search.
 したがって、使用用途に合わせた検出精度と応答速度を設定するために、エアポンプAP1を制御部として使用することができる。 Therefore, the air pump AP1 can be used as a control unit in order to set the detection accuracy and response speed according to the intended use.
 霧化する捕集液L2は、気体に含まれる測定対象物質の溶解度が高く、かつ検知用の細胞を備えた検出部C1に対しての毒性が低く、水を主成分とするセンサ溶液L1に対して混和しやすいことが望まれる。このような条件を満たすものとして、ジメチルスルホキシド(DMSO:Dimethyl sulfoxid)やエタノールなどが知られており、測定対象物に適した溶媒を選択すればよい。例えば、測定対象がアルカンの場合は、DMSOに対して溶解度が低いため、エタノールを使用する方が望ましい。 The collected liquid L2 to be atomized has a high solubility of the measurement target substance contained in the gas, has low toxicity with respect to the detection unit C1 provided with detection cells, and is a sensor solution L1 mainly composed of water. It is desirable that it is easy to mix. Dimethyl sulfoxide (DMSO) or ethanol is known as a material that satisfies such conditions, and a solvent suitable for the measurement object may be selected. For example, when the object to be measured is alkane, it is preferable to use ethanol because of its low solubility in DMSO.
 霧状溶液L3は、センサ溶液L1表面に吹き付けられる際に混和し、霧状溶液L3に溶解しない気体成分と分離し、残った気体成分は排気口P2より排出される。 The mist solution L3 is mixed when sprayed on the surface of the sensor solution L1, and separated from the gas component not dissolved in the mist solution L3, and the remaining gas component is discharged from the exhaust port P2.
 センサ溶液L1に捕集された成分は、センサ溶液L1に接する検出部C1(細胞と細胞膜を備えた検出部)の細胞膜中に発現した受容体と接触し、細胞内外のイオン濃度を変化させ、この変化に伴う、細胞近傍のISFET(Ion Sensitive Field Effect Transistor:イオン応答性電界効果トランジスタ)I1の電気特性の変化を利用することで検出される。 The component collected in the sensor solution L1 comes into contact with a receptor expressed in the cell membrane of the detection unit C1 (detection unit including cells and cell membranes) in contact with the sensor solution L1, and changes the ion concentration inside and outside the cell, This change is detected by utilizing the change in the electrical characteristics of the ISFET (Ion Sensitive Field Effect Transistor) I1 in the vicinity of the cell.
 捕集成分の検出は、イオン濃度変化に限らず、細胞膜中の受容体の開閉に伴う細胞内外を通るイオン電流の変化や、細胞膜電位の変化、細胞内の蛍光タンパク質による蛍光強度の変化を利用して検出してもよい。 Detection of collected components is not limited to changes in ion concentration, but uses changes in ionic current that flow inside and outside the cell as a receptor opens and closes in the cell membrane, changes in cell membrane potential, and changes in fluorescence intensity due to fluorescent proteins in the cell. May be detected.
 なお、検出部C1は、タンパク質、脂質膜、または感応膜(測定対象とする化学物質に対して選択性を有するポリマーあるいは官能基によって修飾される感応膜)等を備える構成であってもよい。このように、タンパク質、脂質膜や細胞といった生体由来物質を用いることで、高い分子選択性を得られるが、感応膜に比べて短寿命であるため、使用目的に合わせて検出部C1の構成を選択することができる。 The detection unit C1 may be configured to include a protein, a lipid membrane, or a sensitive membrane (a sensitive membrane modified with a polymer or functional group having selectivity for a chemical substance to be measured). As described above, high molecular selectivity can be obtained by using biologically derived substances such as proteins, lipid membranes, and cells. However, since the lifetime is shorter than that of the sensitive membrane, the configuration of the detection unit C1 is set according to the purpose of use. You can choose.
 霧状溶液L3をセンサ溶液L1中に混和し続けると、センサ溶液L1に対する捕集液L2の濃度が上昇し、細胞を備えた検出部C1に対して毒性が強まり、センサ寿命の短期化を引き起こす。そのため、送液ポンプLP2によって随時センサ溶液L1を補充し、廃液口P3より排出することで、センサ溶液L1に対する捕集液L2の濃度を一定以下に維持する。従って、送液ポンプLP2は、上記センサ溶液L1を交換または循環する液体制御部としての機能を有する。 If the mist solution L3 is continuously mixed in the sensor solution L1, the concentration of the collection liquid L2 with respect to the sensor solution L1 increases, the toxicity of the detection unit C1 having cells increases, and the sensor life is shortened. . Therefore, the concentration of the collected liquid L2 with respect to the sensor solution L1 is maintained below a certain level by replenishing the sensor solution L1 as needed by the liquid feed pump LP2 and discharging it from the waste liquid port P3. Therefore, the liquid feed pump LP2 has a function as a liquid control unit that replaces or circulates the sensor solution L1.
 捕集液L2は細胞に対して低毒性であることが望ましく、具体的には水に対して1体積%以上の条件においてタンパク質を変性しない溶液、または生細胞の24時間後阻害率が50%以下の溶液を用いる。溶解度が1体積%以上あれば、それ未満に比べて多くの気体中の分子を水中に導入可能であり、また、濃度が1体積%よりも低濃度であっても溶解速度が速いために、水中に導入した分子をより早く検出することが可能である。したがって、捕集液L2は溶解度が1気圧、25℃の条件において1体積%以上のものを用いる。 It is desirable that the collected liquid L2 has low toxicity to cells. Specifically, a solution that does not denature proteins under conditions of 1% by volume or more with respect to water, or the inhibition rate after 24 hours of living cells is 50%. The following solutions are used. If the solubility is 1% by volume or more, it is possible to introduce more molecules in the gas into the water than it is less than that, and the dissolution rate is fast even if the concentration is lower than 1% by volume. It is possible to detect molecules introduced into water earlier. Therefore, the collection liquid L2 has a solubility of 1 atm and a volume of 1% by volume or more under the conditions of 25 ° C.
 具体的には、メタノール、エタノール、エチレングリコール、アセトニトリル、アセトン、ジメチルホルムアミド、イソプロピルアルコール、n-プロパノール、テトラヒドロフラン、ジオキサン、ヘキサメチルリン酸トリアミド、ジメチルスルホキシド、メチルエチルケトン、トリエチルアミン、酢酸エチル等を用いることができ、測定対象となる気体中の分子の溶解度が高い溶液を捕集液L2として選択する。例えば、測定対象がアルカンの場合は、DMSOに対しては溶解度が低いため、エタノールを選択することで高感度にアルカンを検出することができる。 Specifically, methanol, ethanol, ethylene glycol, acetonitrile, acetone, dimethylformamide, isopropyl alcohol, n-propanol, tetrahydrofuran, dioxane, hexamethylphosphoric triamide, dimethyl sulfoxide, methyl ethyl ketone, triethylamine, ethyl acetate, etc. may be used. A solution having high molecular solubility in the gas to be measured is selected as the collection liquid L2. For example, when the object to be measured is alkane, the solubility in DMSO is low. Therefore, by selecting ethanol, alkane can be detected with high sensitivity.
 本実施例における構成では、エアポンプAP1を用いて連続して測定対象となる気体を吸気し、リアルタイムに測定することができるため、匂い源探索のような、短い測定間隔が重要となる用途に適している。 In the configuration of the present embodiment, since the gas to be measured can be continuously inhaled using the air pump AP1 and measured in real time, it is suitable for applications where a short measurement interval is important, such as odor source search. ing.
 本実施例では、化学物質センシングシステムの一形態である、電場式の気体分子間欠捕集センシングシステムについて説明する。図3は、本実施例における化学物質センシングシステムの概略構成図である。 In this embodiment, an electric field type intermittent gas molecule collection sensing system, which is one form of the chemical substance sensing system, will be described. FIG. 3 is a schematic configuration diagram of the chemical substance sensing system in the present embodiment.
 実施例1に示した吹付け式の気体分子連続捕集センシングシステムとの違いは、混合管T2を廃し、霧化装置であるSAWデバイスAT2と、化学物質センサの測定部であるイオン応答性電界効果トランジスタI1と、細胞を備えた検出部C1とを同一空間に配置した点と、絶縁膜IF1により被覆された大電極E1と小電極E2とを備える点である。本実施例においては、大電極E1と小電極E2との間に電場勾配が生じる構成である。 The difference from the spray-type gas molecule continuous collection and sensing system shown in Example 1 is that the mixing tube T2 is eliminated, and the SAW device AT2 that is an atomizer and the ion-responsive electric field that is a measurement unit of the chemical substance sensor. The effect transistor I1 and the detection unit C1 including cells are disposed in the same space, and the large electrode E1 and the small electrode E2 covered with the insulating film IF1. In this embodiment, an electric field gradient is generated between the large electrode E1 and the small electrode E2.
 本実施例では、混合管T2を廃することで装置全体の大きさを小さくすることができるが、混合管T2の長さによって混合時間を調整する機能が失われる。そのため、エアポンプAP1による吸気動作を間欠的に行うことで、エアポンプAP1の動作周期によって混合時間を制御する機能を代替する。 In this embodiment, the size of the entire apparatus can be reduced by eliminating the mixing tube T2, but the function of adjusting the mixing time depending on the length of the mixing tube T2 is lost. Therefore, the function of controlling the mixing time according to the operation cycle of the air pump AP1 is substituted by intermittently performing the intake operation by the air pump AP1.
 エアポンプAP1による短時間の吸気によって捕集空間SP1(混合領域)へ導入された気体は、SAWデバイスAT2によって発生した霧状溶液と混合され、任意の時間、捕集空間SP1に留め置かれる。つまり、エアポンプAP1は、捕集空間SP1内における溶液の混合時間を制御する制御部として機能する。 The gas introduced into the collection space SP1 (mixing region) by short-time intake by the air pump AP1 is mixed with the mist solution generated by the SAW device AT2, and is retained in the collection space SP1 for an arbitrary time. That is, the air pump AP1 functions as a control unit that controls the mixing time of the solution in the collection space SP1.
 霧状溶液中に気中分子が十分溶解した後に、外部電源V1を用いて大電極E1と小電極E2の間に電位差を生じさせることにより、捕集空間SP1内部に電場勾配を生じさせる。電場中の霧状溶液は各々の液滴中で分極し、双極子モーメントを生じるため、霧状溶液は強電場方向に引力を受け、センサ溶液L1側に引き寄せられて回収される。 After the air molecules are sufficiently dissolved in the atomized solution, an electric field gradient is generated inside the collection space SP1 by generating a potential difference between the large electrode E1 and the small electrode E2 using the external power source V1. Since the atomized solution in the electric field is polarized in each droplet and generates a dipole moment, the atomized solution receives an attractive force in the direction of the strong electric field and is attracted to the sensor solution L1 side and collected.
 図3においては、絶縁膜IF1により被覆された小電極E2は、イオン応答性電界効果トランジスタI1を挟んで捕集空間SP1の反対側に配置されているが、イオン応答性電界効果トランジスタI1による電場の遮蔽効果が大きい場合は、イオン応答性電界効果トランジスタI1と細胞を備えた検出部C1との境界部、または検出部C1とセンサ溶液L1との境界部に配置してもよい。 In FIG. 3, the small electrode E2 covered with the insulating film IF1 is arranged on the opposite side of the collection space SP1 across the ion-responsive field effect transistor I1, but the electric field generated by the ion-responsive field effect transistor I1. If the shielding effect of is large, it may be arranged at the boundary between the ion-responsive field-effect transistor I1 and the detection unit C1 including cells, or at the boundary between the detection unit C1 and the sensor solution L1.
 本実施例における構成では、大電極E1と小電極E2に電圧を印加することで、混合時間を精度よく制御し、気体中の分子と霧状溶液L3との混合時間を均一にすることが可能であるため、成分分析のような、分子濃度の測定精度が重要となる用途に適している。 In the configuration of the present embodiment, by applying a voltage to the large electrode E1 and the small electrode E2, the mixing time can be accurately controlled, and the mixing time of the molecules in the gas and the atomized solution L3 can be made uniform. Therefore, it is suitable for applications in which measurement accuracy of molecular concentration is important, such as component analysis.
 本実施例では、化学物質センシングシステムの一形態である、液滴式の気体分子間欠捕集センシングシステムについて説明する。図4は、本実施例における化学物質センシングシステムの概略構成図である。 In this embodiment, a droplet type intermittent gas molecule collection sensing system, which is a form of a chemical substance sensing system, will be described. FIG. 4 is a schematic configuration diagram of the chemical substance sensing system in the present embodiment.
 実施例2の液滴式の気体分子間欠捕集センシングシステムとの違いは、大小電極E1、E2を廃し、霧化装置(SAWデバイス)AT2へ溶液を供給する送液系が、捕集液L2を供給するLP1だけではなく、センサ溶液L1を供給するLP3を備える点である。 The difference from the droplet-type gas molecule intermittent collection and sensing system of Example 2 is that the large and small electrodes E1 and E2 are eliminated, and the liquid supply system that supplies the solution to the atomizer (SAW device) AT2 is the collection liquid L2. In addition to LP1 that supplies the sensor solution, LP3 that supplies the sensor solution L1 is provided.
 SAWデバイスAT2により微小な液滴となった捕集液L2の、重力による沈降速度は遅く、流体中の微小粒子が沈降する際の終端速度を求めるストークスの式を用いると数十μm/s程度である。 The sedimentation speed L of the collected liquid L2 that has become fine droplets by the SAW device AT2 is slow, and it is about several tens of μm / s using Stokes' formula for determining the terminal speed when the microparticles in the fluid settle. It is.
 沈降の終端速度は液滴直径の二乗に比例するため、霧化装置で発生する液滴の直径を大きくするほどに沈降も早くなるが、液滴中に気中分子用を溶解するためには、捕集液L2液滴の直径は小さい方が、接触面積の点で都合がよい。したがって、より直径の大きな液滴を別に発生させることができれば、捕集面積を大きく保ったままで、実施例2のように電場印加用電極を備える構成を採用することなく、捕集用L2の液滴を回収し、センサ溶液中に導入することができる。 Since the terminal velocity of sedimentation is proportional to the square of the droplet diameter, the larger the droplet diameter generated by the atomizer, the faster the sedimentation. However, in order to dissolve the air molecules in the droplet The smaller the diameter of the collected liquid L2 droplet, the more convenient in terms of the contact area. Therefore, if a droplet having a larger diameter can be separately generated, the liquid of the collection L2 can be maintained without adopting the configuration including the electric field application electrode as in Example 2 while keeping the collection area large. Drops can be collected and introduced into the sensor solution.
 回収用の液滴を捕集液L2と同じにすると、センサ溶液L1中の捕集液L2濃度が増加しセンサ寿命が低下するため、センサ溶液L2をSAWデバイスAT2に供給し、霧化することで、濃度増加を回避することができる。回収用の液滴直径を100μmとすると、沈降終端速度は数十cm/sとなり、十分早く捕集液を回収することができる。 If the recovery droplet is the same as the collection liquid L2, the concentration of the collection liquid L2 in the sensor solution L1 increases and the sensor life decreases, so the sensor solution L2 is supplied to the SAW device AT2 and atomized. Thus, an increase in concentration can be avoided. If the droplet diameter for recovery is 100 μm, the sedimentation termination speed is several tens of cm / s, and the collected liquid can be recovered sufficiently quickly.
 上述した各実施例により、生体材料を利用したバイオセンサのような、液中で動作が必須となるガスセンサ及び匂いセンサが共通して直面する課題である、疎水性分子の可溶化を可能とするとともに、捕集液による溶液の汚染を最低限に抑えることで、センサの短寿命化を回避できる。 Each embodiment described above enables solubilization of hydrophobic molecules, which is a common problem faced by gas sensors and odor sensors that must operate in liquids, such as biosensors using biomaterials. At the same time, it is possible to avoid shortening the service life of the sensor by minimizing contamination of the solution by the collected liquid.
 また、本実施例によれば、化学物質センサにおいて気中分子の検出感度を改善するために、化学物質センサと接する溶液よりも、より溶解度の高い溶液を捕集用溶液することで、効率的に気中分子を捕集できる。また、捕集用溶液を霧化し、気体との接触面積を増大することで少量の溶液で効率的に気中分子の捕集を可能とし、化学物質センサと接する溶液に対する捕集用溶液の濃度を低減することで、化学物質センサの検出部に使われている材料の変性を抑制し、長寿命化することができる。 In addition, according to the present embodiment, in order to improve the detection sensitivity of air molecules in the chemical substance sensor, a solution having a higher solubility than the solution in contact with the chemical substance sensor can be efficiently collected. Can collect airborne molecules. In addition, by atomizing the collection solution and increasing the contact area with the gas, it is possible to efficiently collect air molecules with a small amount of solution, and the concentration of the collection solution with respect to the solution in contact with the chemical substance sensor By reducing the above, it is possible to suppress the denaturation of the material used for the detection part of the chemical substance sensor and extend the life.
 大気環境中に存在する成分を高感度に分析するには、従来であればGC-MSのような大型の装置が必要であるが、本実施例により、可搬型の高感度、高選択性を備えた化学物質センサが実現し、訓練を受けた犬やマウスなどの動物の嗅覚に頼らざるを得なかった爆発物、麻薬、遭難者の探知や、医療用呼気分析の家庭向け応用に利用することができる。 In order to analyze components present in the atmospheric environment with high sensitivity, a large-scale device such as GC-MS is conventionally required. However, this example provides portable high sensitivity and high selectivity. Provided chemical sensor, and use it for detection of explosives, narcotics and victims who had to rely on the smell of animals such as trained dogs and mice, and for home use of medical breath analysis be able to.
 本実施例における構成では、実施例1における混合管T2や、実施例2における外部電源V2が不要であり、システム全体の大きさを小さくすることが可能であるため、モバイル機器のような、携行性や低消費電力が重要となる用途に適している。 In the configuration of the present embodiment, the mixing tube T2 in the first embodiment and the external power supply V2 in the second embodiment are not necessary, and the size of the entire system can be reduced. Suitable for applications where safety and low power consumption are important.
AP1:エアポンプ
AT1:霧化装置
AT2:SAWデバイス
C1:検出部
E1:大電極
E2:小電極
I1:ISFET
IF1:絶縁膜
L1:センサ溶液
L2:捕集液
L3:霧状溶液
LP1:霧化装置用捕集液送液ポンプ
LP2:センサ溶液送液ポンプ
LP3:霧化装置用センサ溶液送液ポンプ
P1:吸気口
P2:排気口
P3:廃液口
S1:化学物資センサ検出部
S2:化学物質センサ変換部
T1:霧導入管
T2:混合管
V1:外部電源
AP1: Air pump AT1: Atomizer AT2: SAW device C1: Detection unit E1: Large electrode E2: Small electrode I1: ISFET
IF1: Insulating film L1: Sensor solution L2: Collection liquid L3: Atomized solution LP1: Collection liquid feed pump for atomizer LP2: Sensor solution feed pump LP3: Sensor solution feed pump P1 for atomizer Intake port P2: Exhaust port P3: Waste liquid port S1: Chemical substance sensor detection unit S2: Chemical substance sensor conversion unit T1: Fog introduction tube T2: Mixing tube V1: External power supply

Claims (11)

  1.  気体中の化学物質を検出する検出部を備える化学物質センサと、
     前記検出部と接する第一の液体と、
     前記第一の液体よりも、測定対象である前記化学物質の溶解度が大きい第二の液体と、
     前記第二の液体を霧化する霧化装置を備えることを特徴とする化学物質センシングシステム。
    A chemical substance sensor comprising a detection unit for detecting a chemical substance in the gas;
    A first liquid in contact with the detection unit;
    A second liquid having a higher solubility of the chemical substance to be measured than the first liquid;
    A chemical substance sensing system comprising an atomizing device for atomizing the second liquid.
  2.  前記化学物質センサは、細胞、タンパク質、脂質膜、または、測定対象とする化学物質に対して選択性を有するポリマーあるいは官能基によって修飾される感応膜を備えることを特徴とする請求項1に記載の化学物質センシングシステム。 The said chemical substance sensor is equipped with the sensitive film | membrane modified with the polymer or functional group which has selectivity with respect to the chemical substance used as a cell, protein, a lipid membrane, or a measuring object, The claim 1 characterized by the above-mentioned. Chemical substance sensing system.
  3.  前記化学物質センサは、イオン応答性電界効果トランジスタを備えることを特徴とする請求項1に記載の化学物質センシングシステム。 The chemical substance sensing system according to claim 1, wherein the chemical substance sensor includes an ion-responsive field effect transistor.
  4.  前記第一の液体を交換または循環する液体制御部を備えたことを特徴とする請求項1に記載の化学物質センシングシステム。 The chemical substance sensing system according to claim 1, further comprising a liquid control unit that exchanges or circulates the first liquid.
  5.  前記第二の液体の水に対する溶解度が1気圧、25℃の条件において1体積%以上であることを特徴とする請求項1に記載の化学物質センシングシステム。 The chemical substance sensing system according to claim 1, wherein the solubility of the second liquid in water is 1% by volume or more under the conditions of 1 atm and 25 ° C.
  6.  前記第二の液体は、1体積%以上の条件においてタンパク質を変性しない、または生細胞の24時間後阻害率が50%以下であることを特徴とする請求項1に記載の化学物質センシングシステム。 2. The chemical substance sensing system according to claim 1, wherein the second liquid does not denature the protein under the condition of 1% by volume or more, or the inhibition rate after 24 hours of living cells is 50% or less.
  7.  前記第二の液体の成分にメタノール、エタノール、エチレングリコール、アセトニトリル、アセトン、ジメチルホルムアミド、イソプロピルアルコール、n-プロパノール、テトラヒドロフラン、ジオキサン、ヘキサメチルリン酸トリアミド、ジメチルスルホキシド、メチルエチルケトン、トリエチルアミン、酢酸エチルのいずれかを含むこと特徴とする請求項1に記載の化学物質センシングシステム。 The second liquid component includes any of methanol, ethanol, ethylene glycol, acetonitrile, acetone, dimethylformamide, isopropyl alcohol, n-propanol, tetrahydrofuran, dioxane, hexamethylphosphoric triamide, dimethyl sulfoxide, methyl ethyl ketone, triethylamine, and ethyl acetate. The chemical substance sensing system according to claim 1, further comprising:
  8.  前記霧化ユニットによって霧化した第二の液体および測定対象となる物質を含む気体を導入または保持する混合領域を備えたことを特徴とする請求項1に記載の化学物質センシングシステム。 The chemical substance sensing system according to claim 1, further comprising a mixing region for introducing or holding a gas containing a second liquid atomized by the atomizing unit and a substance to be measured.
  9.  前記混合領域における混合時間を制御する制御部を備えることを特徴とする請求項8に記載の化学物質センシングシステム。 The chemical substance sensing system according to claim 8, further comprising a control unit that controls a mixing time in the mixing region.
  10.  前記混合領域に導入または保持する霧の直径を制御する制御部を備えることを特徴とする請求項8に記載の化学物質センシングシステム。 The chemical substance sensing system according to claim 8, further comprising a control unit that controls a diameter of a mist introduced or held in the mixing region.
  11.  前記混合領域に導入または保持する霧の液量を制御する制御部を備えることを特徴とする請求項8に記載の化学物質センシングシステム。 The chemical substance sensing system according to claim 8, further comprising a control unit that controls a liquid amount of mist introduced or held in the mixing region.
PCT/JP2016/055966 2016-02-29 2016-02-29 Chemical-substance-sensing system WO2017149579A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/055966 WO2017149579A1 (en) 2016-02-29 2016-02-29 Chemical-substance-sensing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/055966 WO2017149579A1 (en) 2016-02-29 2016-02-29 Chemical-substance-sensing system

Publications (1)

Publication Number Publication Date
WO2017149579A1 true WO2017149579A1 (en) 2017-09-08

Family

ID=59743556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055966 WO2017149579A1 (en) 2016-02-29 2016-02-29 Chemical-substance-sensing system

Country Status (1)

Country Link
WO (1) WO2017149579A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020041947A (en) * 2018-09-12 2020-03-19 株式会社東芝 Chemical sensor and method for detecting target material
JP2020046263A (en) * 2018-09-18 2020-03-26 株式会社東芝 Liquid film sustaining device and chemical sensor
JP2021047051A (en) * 2019-09-17 2021-03-25 株式会社東芝 Liquid membrane maintaining device and sensor device
CN113760020A (en) * 2021-09-26 2021-12-07 北京北方华创微电子装备有限公司 Pressure control device for semiconductor device and semiconductor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142318A (en) * 1984-08-02 1986-02-28 Natl Res Inst For Metals Apparatus for collecting ultra-fine particle
JPH1183700A (en) * 1997-07-15 1999-03-26 Nec Corp Gas sampling device, gas analyzer using the gas sampling device and gas analysis method
JP2003106961A (en) * 2001-09-28 2003-04-09 Nohmi Bosai Ltd Environmental condition measuring device
JP2004233061A (en) * 2003-01-28 2004-08-19 National Cancer Center-Japan Continuous concentrated gas sampling apparatus by nebulizer-denuder interlocking, and gas analysis apparatus incorporating the gas sampling apparatus and analysis method
JP2012524267A (en) * 2009-04-15 2012-10-11 ナノミックス・インコーポレーテッド Portable unit for sampling and detecting exhalation and method for detecting an analyte in exhalation
JP2015152491A (en) * 2014-02-17 2015-08-24 国立大学法人 東京医科歯科大学 Solid phase target substance collection member, solid phase target substance detection system, solid phase target substance collection method and solid phase target substance detection method
JP2015210209A (en) * 2014-04-28 2015-11-24 パナソニックIpマネジメント株式会社 Collect device, detector, cleaner, collection method, detection method and cleaning method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142318A (en) * 1984-08-02 1986-02-28 Natl Res Inst For Metals Apparatus for collecting ultra-fine particle
JPH1183700A (en) * 1997-07-15 1999-03-26 Nec Corp Gas sampling device, gas analyzer using the gas sampling device and gas analysis method
JP2003106961A (en) * 2001-09-28 2003-04-09 Nohmi Bosai Ltd Environmental condition measuring device
JP2004233061A (en) * 2003-01-28 2004-08-19 National Cancer Center-Japan Continuous concentrated gas sampling apparatus by nebulizer-denuder interlocking, and gas analysis apparatus incorporating the gas sampling apparatus and analysis method
JP2012524267A (en) * 2009-04-15 2012-10-11 ナノミックス・インコーポレーテッド Portable unit for sampling and detecting exhalation and method for detecting an analyte in exhalation
JP2015152491A (en) * 2014-02-17 2015-08-24 国立大学法人 東京医科歯科大学 Solid phase target substance collection member, solid phase target substance detection system, solid phase target substance collection method and solid phase target substance detection method
JP2015210209A (en) * 2014-04-28 2015-11-24 パナソニックIpマネジメント株式会社 Collect device, detector, cleaner, collection method, detection method and cleaning method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020041947A (en) * 2018-09-12 2020-03-19 株式会社東芝 Chemical sensor and method for detecting target material
JP2020046263A (en) * 2018-09-18 2020-03-26 株式会社東芝 Liquid film sustaining device and chemical sensor
JP2021047051A (en) * 2019-09-17 2021-03-25 株式会社東芝 Liquid membrane maintaining device and sensor device
JP7170613B2 (en) 2019-09-17 2022-11-14 株式会社東芝 Liquid film maintenance device and sensor device
US11874244B2 (en) 2019-09-17 2024-01-16 Kabushiki Kaisha Toshiba Apparatus for maintaining liquid membrane and sensor apparatus
CN113760020A (en) * 2021-09-26 2021-12-07 北京北方华创微电子装备有限公司 Pressure control device for semiconductor device and semiconductor device

Similar Documents

Publication Publication Date Title
JP6578338B2 (en) System and method for rapid evaporation ionization of liquid phase samples
JP5815533B2 (en) Device for preparing samples to be supplied to an ion mobility sensor
WO2017149579A1 (en) Chemical-substance-sensing system
Gómez-Ríos et al. Biocompatible solid-phase microextraction nanoelectrospray ionization: an unexploited tool in bioanalysis
Guo et al. Development of dielectric-barrier-discharge ionization
Zhang et al. Membrane electrospray ionization for direct ultrasensitive biomarker quantitation in biofluids using mass spectrometry
Chen et al. Recent applications of ambient ionization mass spectrometry in environmental analysis
WO2007120373A2 (en) Differential mobility spectrometer analyzer and pre-filter apparatus, methods and systems
EP3012626B1 (en) Method and apparatus for analysis of gases
Kanev et al. Are reactive oxygen species generated in electrospray at low currents?
Shiea et al. Generating multiply charged protein ions by ultrasonic nebulization/multiple channel-electrospray ionization mass spectrometry
Han et al. Venturi-electrosonic spray ionization cataluminescence sensor array for saccharides detection
Rahman et al. Development of sheath‐flow probe electrospray ionization (SF‐PESI)
RU2530783C2 (en) Apparatus for electrospraying chromatographic streams of test solutions of substances for ion sources
CN102636553A (en) Paper-based electrospray ion mobility spectrometry analysis method
Tachibana et al. Robust and simple interface for microchip electrophoresis–mass spectrometry
Song et al. Surface acoustic wave nebulization with atmospheric-pressure chemical ionization for enhanced ion signal
Meisenbichler et al. A 3-in-1 hand-held ambient mass spectrometry interface for identification and 2D localization of chemicals on surfaces
Rahman et al. Development of high‐pressure probe electrospray ionization for aqueous solution
US20200086323A1 (en) Apparatus for maintaining liquid membrane and chemical sensor
Han et al. A subtle change in nanoflow rate alters the ionization response as revealed by scanning voltage ESI-MS
Shimada et al. Rapid Analysis of Ingredients in Cream Using Ultrasonic Mist–Direct Analysis in Real-Time Time-of-Flight Mass Spectrometry
Mordehai et al. Agilent jet stream thermal gradient focusing technology
Sun et al. Capillary self-aspirating electrospray ionization (CSESI) for convenient and versatile mass spectrometry analysis
CN106796866B (en) Atmospheric megavolt electrostatic field ionization desorption (APME-FID) method and system

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892424

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16892424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP