JP2015152264A - heat exchanger - Google Patents

heat exchanger Download PDF

Info

Publication number
JP2015152264A
JP2015152264A JP2014027796A JP2014027796A JP2015152264A JP 2015152264 A JP2015152264 A JP 2015152264A JP 2014027796 A JP2014027796 A JP 2014027796A JP 2014027796 A JP2014027796 A JP 2014027796A JP 2015152264 A JP2015152264 A JP 2015152264A
Authority
JP
Japan
Prior art keywords
flow rate
heat exchange
compressed air
primary fluid
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014027796A
Other languages
Japanese (ja)
Other versions
JP6262012B2 (en
JP2015152264A5 (en
Inventor
北口 佳範
Yoshinori Kitaguchi
佳範 北口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2014027796A priority Critical patent/JP6262012B2/en
Priority to CN201580004366.9A priority patent/CN105899907B/en
Priority to US15/110,849 priority patent/US20160341497A1/en
Priority to KR1020167018819A priority patent/KR20160099624A/en
Priority to PCT/JP2015/051370 priority patent/WO2015122244A1/en
Publication of JP2015152264A publication Critical patent/JP2015152264A/en
Publication of JP2015152264A5 publication Critical patent/JP2015152264A5/ja
Application granted granted Critical
Publication of JP6262012B2 publication Critical patent/JP6262012B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger capable of suppressing overcooling or overheating of a secondary fluid by appropriately implementing heat exchange even if a flow volume of a primary fluid varies.SOLUTION: A heat exchanger comprises: a cooling air line 28 in which cooling air AC flows; a compressed-air branch line 27 in which compressed air A2 flows; heat exchange units 41 and 42 implementing heat exchange between the cooling air AC and the compressed air A2 and provided to be aligned in a flow direction of the cooling air AC; a flow regulating valve 43 regulating a flow volume of the compressed air A2 flowing in the second heat exchange units 42 located downstream in the flow direction of the cooling air AC out of the heat exchange units 41 and 42; temperature sensors 71 and 72 detecting a temperature of the compressed air A2; and a control unit 73 adjusting the opening of the flow regulating valve 43 in response to the temperature of the compressed air A2 detected by the temperature sensors 71 and 72.

Description

本発明は、一次流体と二次流体との間で熱交換を行う熱交換器に関するものである。   The present invention relates to a heat exchanger that performs heat exchange between a primary fluid and a secondary fluid.

一次流体と二次流体との間で熱交換を行うことで、二次流体を冷却または加熱する場合、入口ヘッダと出口ヘッダを多数の伝熱管で連結して構成した熱交換器がある。このような熱交換器では、入口ヘッダに供給された二次流体が多数の伝熱管を通って出口ヘッダに流れるときに、伝熱管に接触する一次流体により冷却または加熱される。   When the secondary fluid is cooled or heated by exchanging heat between the primary fluid and the secondary fluid, there is a heat exchanger configured by connecting an inlet header and an outlet header with a large number of heat transfer tubes. In such a heat exchanger, when the secondary fluid supplied to the inlet header flows to the outlet header through a number of heat transfer tubes, it is cooled or heated by the primary fluid that contacts the heat transfer tubes.

例えば、下記特許文献1に記載された構成の熱交換器がある。この特許文献1に記載された熱交換器は、低温流体を加熱または気化させる加熱・気化装置であり、熱交換パネルの両面に沿って熱媒体を流下させることで、このパネルを構成する伝熱管内を流れる低温流体を加熱または気化させる。そして、2個のヘッダまたはマニホールドの入口手前に調節弁を設け、低温流体の供給量の変動に応じて、一部の熱交換器パネルへの低温流体の供給を停止すると共に、残りの熱交換器パネルでは定常負荷時における流量が維持されるように調節弁を操作するものである。   For example, there is a heat exchanger having a configuration described in Patent Document 1 below. The heat exchanger described in Patent Document 1 is a heating / vaporization device that heats or vaporizes a low-temperature fluid, and heat transfer that constitutes the panel by causing a heat medium to flow down along both sides of the heat exchange panel. Heat or vaporize the cryogenic fluid flowing in the tube. A control valve is provided in front of the inlets of the two headers or manifolds to stop the supply of the cryogenic fluid to some of the heat exchanger panels according to fluctuations in the supply amount of the cryogenic fluid and to perform the remaining heat exchange. The control panel operates the control valve so that the flow rate at the steady load is maintained.

特開2009−052724号公報JP 2009-052724 A

入口ヘッダと出口ヘッダを多数の伝熱管で連結した熱交換器は、各伝熱管内に二次流体を流動させる一方、各伝熱管の外部で伝熱管に直交するように一次流体を流動することで、一次流体と二次流体との間で熱交換が行われる。このとき、二次流体の流量が低下すると、各伝熱管に流れる二次流体の流量が少なくなるため、特に一次流体の上流側に配置される伝熱管では、二次流体が過冷却状態または過熱状態になってしまう。このため、入口ヘッダと出口ヘッダを多数の伝熱管で連結した熱交換器においてでも、特許文献1に記載された加熱・気化装置のように低温流体の供給量の変動に応じて熱交換パネルへの低温流体の供給を停止できるような構成とし、二次流体の過冷却または過熱を抑制できることが望ましい。   A heat exchanger in which an inlet header and an outlet header are connected by a large number of heat transfer tubes allows the secondary fluid to flow into each heat transfer tube, while allowing the primary fluid to flow orthogonally to the heat transfer tube outside each heat transfer tube. Thus, heat exchange is performed between the primary fluid and the secondary fluid. At this time, if the flow rate of the secondary fluid decreases, the flow rate of the secondary fluid flowing through each heat transfer tube decreases, so in the heat transfer tube arranged upstream of the primary fluid, the secondary fluid is in a supercooled state or overheated. It becomes a state. For this reason, even in a heat exchanger in which an inlet header and an outlet header are connected by a large number of heat transfer tubes, as in the heating / vaporization apparatus described in Patent Document 1, the heat exchange panel is moved to a heat exchange panel. It is desirable that the supply of the low-temperature fluid can be stopped so that the secondary fluid can be prevented from being overcooled or overheated.

本発明は、上述した課題を解決するものであり、一次流体の流量が変動しても適正に熱交換を行うことで二次流体の過冷却または過熱を抑制することができる熱交換器を提供することを目的とする。   The present invention solves the above-described problems, and provides a heat exchanger that can suppress overcooling or overheating of a secondary fluid by appropriately performing heat exchange even when the flow rate of the primary fluid fluctuates. The purpose is to do.

上記の目的を達成するための本発明の熱交換器は、一次流体が流れる一次流路と、前記一次流路内で二次流体が流れる二次流路と、一次流体と二次流体とで熱交換を行うと共に一次流体の流れ方向に並設された複数の熱交換部と、前記複数の熱交換部に流れる一次流体の流量を調整する流量調整弁と、を有することを特徴とするものである。   In order to achieve the above object, a heat exchanger according to the present invention includes a primary flow path through which a primary fluid flows, a secondary flow path through which a secondary fluid flows in the primary flow path, and a primary fluid and a secondary fluid. A plurality of heat exchanging portions arranged in parallel in the flow direction of the primary fluid while performing heat exchange, and a flow rate adjusting valve for adjusting the flow rate of the primary fluid flowing through the plurality of heat exchanging portions. It is.

従って、複数の熱交換部を流れる一次流体は、二次流体と熱交換することで冷却または加熱される。複数の熱交換部を流れる一次流体の状態が変動すると、一次流体の状態に応じて流量調整弁の開度を調整するため、複数の熱交換部における二次流体の流れ方向の下流側に位置する熱交換部を流れる一次流体の流量が調整される。そのため、二次流体が各熱交換部に与える影響は少なくなり、高温化や低温化が抑制される。その結果、一次流体の状態が変動しても適正に熱交換を行うことで一次流体の過冷却または加熱を抑制することができる。   Therefore, the primary fluid flowing through the plurality of heat exchange units is cooled or heated by exchanging heat with the secondary fluid. When the state of the primary fluid flowing through the plurality of heat exchange units varies, the position of the flow rate adjustment valve is adjusted according to the state of the primary fluid, so that the position of the secondary fluid in the plurality of heat exchange units is downstream of the flow direction. The flow rate of the primary fluid flowing through the heat exchanging section is adjusted. Therefore, the influence which a secondary fluid has on each heat exchange part decreases, and high temperature and low temperature are suppressed. As a result, even if the state of the primary fluid fluctuates, it is possible to suppress overcooling or heating of the primary fluid by appropriately exchanging heat.

また、本発明の熱交換器は、一次流体が流れる一次流路と、前記一次流路内で二次流体が流れる二次流路と、一次流体と二次流体とで熱交換を行うと共に一次流体の流れ方向に並設された複数の熱交換部と、前記複数の熱交換部に流れる一次流体の流量を調整する流量調整弁と、一次流体の状態を検出する状態検出センサと、前記状態検出センサが検出した一次流体の状態に応じて前記流量調整弁の開度を調整する制御部と、を有することを特徴とするものである。   The heat exchanger according to the present invention performs heat exchange between the primary flow path through which the primary fluid flows, the secondary flow path through which the secondary fluid flows in the primary flow path, and the primary fluid and the secondary fluid. A plurality of heat exchange units arranged in parallel in the fluid flow direction, a flow rate adjusting valve for adjusting a flow rate of the primary fluid flowing through the plurality of heat exchange units, a state detection sensor for detecting a state of the primary fluid, and the state And a control unit that adjusts the opening of the flow rate adjusting valve in accordance with the state of the primary fluid detected by the detection sensor.

従って、複数の熱交換部を流れる一次流体は、二次流体と熱交換することで冷却または加熱される。複数の熱交換部を流れる一次流体の状態が変動すると、一次流体の状態に応じて流量調整弁の開度を調整するため、複数の熱交換部における二次流体の流れ方向の下流側に位置する熱交換部を流れる一次流体の流量が調整される。そのため、二次流体が各熱交換部に与える影響は少なくなり、高温化や低温化が抑制される。その結果、一次流体の状態が変動しても適正に熱交換を行うことで二次流体の過冷却または過熱を抑制することができる。   Therefore, the primary fluid flowing through the plurality of heat exchange units is cooled or heated by exchanging heat with the secondary fluid. When the state of the primary fluid flowing through the plurality of heat exchange units varies, the position of the flow rate adjustment valve is adjusted according to the state of the primary fluid, so that the position of the secondary fluid in the plurality of heat exchange units is downstream of the flow direction. The flow rate of the primary fluid flowing through the heat exchanging section is adjusted. Therefore, the influence which a secondary fluid has on each heat exchange part decreases, and high temperature and low temperature are suppressed. As a result, even if the state of the primary fluid fluctuates, it is possible to suppress overcooling or overheating of the secondary fluid by appropriately performing heat exchange.

本発明の熱交換器では、前記複数の熱交換部は、一端部に個別の入口ヘッダが設けられ、他端部に共通の出口ヘッダが設けられ、前記一次流路は、前記入口ヘッダ及び前記出口ヘッダに接続され、前記入口ヘッダに接続される前記一次流体流路に前記流量調整弁が設けられることを特徴としている。   In the heat exchanger according to the present invention, each of the plurality of heat exchange units is provided with an individual inlet header at one end and a common outlet header at the other end, and the primary flow path includes the inlet header and the The flow rate adjusting valve is provided in the primary fluid flow path connected to the outlet header and connected to the inlet header.

従って、複数の熱交換部における上流側に分岐した一次流体流路を接続し、二次流体の流れ方向の下流側に位置する熱交換部に接続される一次流体流路に流量調整弁を設けるので、複数の熱交換部に流れる一次流体の流量を高精度に調整することができる。   Therefore, the primary fluid flow path branched to the upstream side in the plurality of heat exchange sections is connected, and the flow rate adjusting valve is provided in the primary fluid flow path connected to the heat exchange section located downstream in the flow direction of the secondary fluid. Therefore, the flow rate of the primary fluid flowing through the plurality of heat exchange units can be adjusted with high accuracy.

本発明の熱交換器では、前記複数の熱交換部は、一端部に共通の入口ヘッダが設けられ、他端部に個別の出口ヘッダが設けられ、前記一次流路は、前記入口ヘッダ及び前記出口ヘッダに接続され、前記出口ヘッダに接続される前記一次流体流路に前記流量調整弁が設けられることを特徴としている。   In the heat exchanger according to the present invention, the plurality of heat exchanging portions are provided with a common inlet header at one end portion and an individual outlet header at the other end portion, and the primary flow path includes the inlet header and the It is connected to the outlet header, and the flow rate adjusting valve is provided in the primary fluid flow path connected to the outlet header.

従って、複数の熱交換部における下流側に分岐した一次流体を接続し、二次流体の流れ方向の下流側に位置する熱交換部に接続される一次流体流路に流量調整弁を設けるので、複数の熱交換部に流れる一次流体の流量を高精度に調整することができる。   Therefore, the primary fluid branched to the downstream side in the plurality of heat exchange units is connected, and the flow rate adjustment valve is provided in the primary fluid flow path connected to the heat exchange unit located on the downstream side in the flow direction of the secondary fluid. The flow rate of the primary fluid flowing through the plurality of heat exchange units can be adjusted with high accuracy.

本発明の熱交換器では、前記状態検出センサは、前記複数の熱交換部の出口側における一次流体の温度を検出する温度センサであり、前記制御部は、前記複数の熱交換部の出口側における一次流体の温度差が予め設定された所定温度差より大きくなったときに、前記流量調整弁の開度を小さくすることを特徴としている。   In the heat exchanger according to the present invention, the state detection sensor is a temperature sensor that detects a temperature of a primary fluid on an outlet side of the plurality of heat exchange units, and the control unit is an outlet side of the plurality of heat exchange units. When the temperature difference of the primary fluid in is larger than a predetermined temperature difference set in advance, the opening degree of the flow rate adjusting valve is reduced.

従って、複数の熱交換部を流れる一次流体の温度差が所定温度差より大きくなったときに、流量調整弁の開度を小さくするため、二次流体の流れ方向の下流側に位置する熱交換部を流れる一次流体の流量が減少する。そのため、二次流体がその流れ方向の上流側に位置する熱交換部に与える影響は少なくなり、一次流体の過冷却または過熱を抑制することができる。   Therefore, when the temperature difference between the primary fluids flowing through the plurality of heat exchange units becomes larger than the predetermined temperature difference, the heat exchange located downstream in the flow direction of the secondary fluid is performed in order to reduce the opening of the flow rate adjustment valve. The flow rate of the primary fluid flowing through the section decreases. For this reason, the influence of the secondary fluid on the heat exchanging portion located on the upstream side in the flow direction is reduced, and it is possible to suppress overcooling or overheating of the primary fluid.

本発明の熱交換器では、前記状態検出センサは、前記複数の熱交換部の入口側における一次流体の流量を検出する流量センサであり、前記制御部は、前記複数の熱交換部の入口側における一次流体の流量が予め設定された所定流量より少なくなったときに、前記流量調整弁の開度を小さくすることを特徴としている。   In the heat exchanger according to the present invention, the state detection sensor is a flow rate sensor that detects a flow rate of a primary fluid on an inlet side of the plurality of heat exchange units, and the control unit is an inlet side of the plurality of heat exchange units. When the flow rate of the primary fluid in is less than a predetermined flow rate set in advance, the opening of the flow rate adjustment valve is reduced.

従って、複数の熱交換部を流れる一次流体の流量が所定流量より少なくなったときに、流量調整弁の開度を小さくするため、二次流体の流れ方向の下流側に位置する熱交換部を流れる一次流体の流量が減少する。そのため、二次流体がその流れ方向の上流側に位置する熱交換部に与える影響は少なくなり、一次流体の過冷却または過熱を抑制することができる。   Therefore, when the flow rate of the primary fluid flowing through the plurality of heat exchange units is less than a predetermined flow rate, in order to reduce the opening of the flow rate adjustment valve, the heat exchange unit located on the downstream side in the secondary fluid flow direction is provided. The flow rate of the flowing primary fluid is reduced. For this reason, the influence of the secondary fluid on the heat exchanging portion located on the upstream side in the flow direction is reduced, and it is possible to suppress overcooling or overheating of the primary fluid.

本発明の熱交換器では、前記状態検出センサは、前記複数の熱交換部の入口側における一次流体の圧力を検出する圧力センサであり、前記制御部は、前記複数の熱交換部の入口側における一次流体の圧力が予め設定された所定圧力より大きくなったときに、前記流量調整弁の開度を小さくすることを特徴としている。   In the heat exchanger according to the present invention, the state detection sensor is a pressure sensor that detects a pressure of a primary fluid on an inlet side of the plurality of heat exchange units, and the control unit is an inlet side of the plurality of heat exchange units. When the pressure of the primary fluid in is larger than a predetermined pressure set in advance, the opening degree of the flow rate adjusting valve is reduced.

従って、複数の熱交換部を流れる一次流体の圧力が所定圧力より少なくなったときに、流量調整弁の開度を小さくするため、二次流体の流れ方向の下流側に位置する熱交換部を流れる一次流体の流量が減少する。そのため、二次流体がその流れ方向の上流側に位置する熱交換部に与える影響は少なくなり、一次流体の過冷却または過熱を抑制することができる。   Therefore, when the pressure of the primary fluid flowing through the plurality of heat exchange units becomes less than a predetermined pressure, the heat exchange unit located downstream in the flow direction of the secondary fluid is used to reduce the opening of the flow rate adjustment valve. The flow rate of the flowing primary fluid is reduced. For this reason, the influence of the secondary fluid on the heat exchanging portion located on the upstream side in the flow direction is reduced, and it is possible to suppress overcooling or overheating of the primary fluid.

本発明の熱交換器では、前記流量調整弁は、前記複数の熱交換部に対応して複数設けられ、前記制御部は、前記状態検出センサが検出した一次流体の状態に応じて前記複数の熱交換部における二次流体の流れ方向の下流側に位置する前記熱交換部を流れる一次流体の流量が減少するように前記複数の流量調整弁の開度を調整することを特徴としている。   In the heat exchanger of the present invention, a plurality of the flow rate adjustment valves are provided corresponding to the plurality of heat exchange units, and the control unit is configured to change the plurality of flow rate control valves according to the state of the primary fluid detected by the state detection sensor. The opening degree of the plurality of flow rate adjustment valves is adjusted so that the flow rate of the primary fluid flowing through the heat exchange unit located on the downstream side in the flow direction of the secondary fluid in the heat exchange unit is reduced.

従って、複数の熱交換部を流れる一次流体の流量を調整することで、二次流体が各熱交換部に与える影響を少なくし、一次流体の過冷却または過熱を高精度に抑制することができる。   Therefore, by adjusting the flow rate of the primary fluid flowing through the plurality of heat exchange units, the influence of the secondary fluid on each heat exchange unit can be reduced, and the supercooling or overheating of the primary fluid can be suppressed with high accuracy. .

本発明の熱交換器によれば、一次流体の状態に応じて二次流体の流れ方向の下流側に位置する熱交換部を流れる一次流体の流量を調整するので、一次流体の状態が変動しても適正に熱交換を行うことで一次流体の過冷却または過熱を抑制することができる。   According to the heat exchanger of the present invention, since the flow rate of the primary fluid flowing through the heat exchange unit located downstream in the flow direction of the secondary fluid is adjusted according to the state of the primary fluid, the state of the primary fluid varies. However, it is possible to suppress overcooling or overheating of the primary fluid by appropriately performing heat exchange.

図1は、ガスタービンを表す概略構成図である。FIG. 1 is a schematic configuration diagram illustrating a gas turbine. 図2は、熱交換装置を表す概略図である。FIG. 2 is a schematic diagram showing a heat exchange device. 図3は、第1実施形態の熱交換器の概略構成図である。FIG. 3 is a schematic configuration diagram of the heat exchanger according to the first embodiment. 図4は、第1実施形態の変形例を表す熱交換器の概略構成図である。FIG. 4 is a schematic configuration diagram of a heat exchanger that represents a modification of the first embodiment. 図5は、第1実施形態の熱交換器の作用を表す概略図である。FIG. 5 is a schematic diagram illustrating the operation of the heat exchanger according to the first embodiment. 図6は、第2実施形態の熱交換器の概略構成図である。FIG. 6 is a schematic configuration diagram of a heat exchanger according to the second embodiment. 図7は、第2実施形態の変形例を表す熱交換器の概略構成図である。FIG. 7 is a schematic configuration diagram of a heat exchanger that represents a modification of the second embodiment. 図8は、第3実施形態の熱交換器の概略構成図である。FIG. 8 is a schematic configuration diagram of a heat exchanger according to the third embodiment. 図9は、第3実施形態の変形例を表す熱交換器の概略構成図である。FIG. 9 is a schematic configuration diagram of a heat exchanger that represents a modification of the third embodiment. 図10は、第4実施形態の熱交換器の概略構成図である。FIG. 10 is a schematic configuration diagram of a heat exchanger according to the fourth embodiment.

以下に添付図面を参照して、本発明に係る熱交換器の好適な実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。   Exemplary embodiments of a heat exchanger according to the present invention will be described below in detail with reference to the accompanying drawings. In addition, this invention is not limited by this embodiment, and when there are two or more embodiments, what comprises combining each embodiment is also included.

[第1実施形態]
図1は、ガスタービンを表す概略構成図である。
[First Embodiment]
FIG. 1 is a schematic configuration diagram illustrating a gas turbine.

実施形態1において、図1に示すように、ガスタービン10は、圧縮機11と燃焼器12とタービン13により構成されている。このガスタービン10は、発電機14が連結されており、発電可能となっている。   In the first embodiment, as illustrated in FIG. 1, the gas turbine 10 includes a compressor 11, a combustor 12, and a turbine 13. The gas turbine 10 is connected to a generator 14 and can generate power.

圧縮機11とタービン13は、回転軸21により一体回転可能に連結されている。圧縮機11は、空気取り込みライン22から取り込んだ空気Aを圧縮する。燃焼器12は、圧縮機11から圧縮空気供給ライン23を通して供給された圧縮空気A1と、燃料ガス供給ライン24から供給された燃料ガスLとを混合して燃焼する。タービン13は、燃焼器12から燃焼ガス供給ライン25を通して供給された燃焼ガスGにより回転する。   The compressor 11 and the turbine 13 are connected by a rotating shaft 21 so as to be integrally rotatable. The compressor 11 compresses the air A taken in from the air intake line 22. The combustor 12 mixes and combusts the compressed air A1 supplied from the compressor 11 through the compressed air supply line 23 and the fuel gas L supplied from the fuel gas supply line 24. The turbine 13 is rotated by the combustion gas G supplied from the combustor 12 through the combustion gas supply line 25.

また、ガスタービン10は、圧縮機11で圧縮された圧縮空気A1の一部の圧縮空気A2と、外部から取り込んだ冷却空気ACと、燃料ガスLとの間で熱交換を行う熱交換装置26が設けられている。この熱交換装置26は、燃料ガス供給ライン24と、圧縮空気A2を供給する圧縮空気分岐ライン27と、冷却空気ライン28とが集合した位置に設けられている。熱交換装置26は、圧縮空気A2を冷却空気ACにより冷却すると共に、燃料ガスLを温度上昇した加熱空気AHにより加熱する。冷却された圧縮空気A2は、タービン13の車室を通して供給され、冷却空気として翼などを冷却する。   Further, the gas turbine 10 includes a heat exchange device 26 that exchanges heat between the compressed air A2 of the compressed air A1 compressed by the compressor 11, the cooling air AC taken from the outside, and the fuel gas L. Is provided. The heat exchange device 26 is provided at a position where the fuel gas supply line 24, the compressed air branch line 27 for supplying the compressed air A2, and the cooling air line 28 are gathered. The heat exchange device 26 cools the compressed air A2 with the cooling air AC and heats the fuel gas L with the heated air AH whose temperature has increased. The cooled compressed air A2 is supplied through the casing of the turbine 13 and cools the blades as cooling air.

発電機14は、圧縮機11と同軸上の回転軸29により一体回転可能に連結されており、タービン13が回転することで発電することができる。   The generator 14 is connected to the compressor 11 through a coaxial rotary shaft 29 so as to be integrally rotatable, and can generate electric power when the turbine 13 rotates.

図2は、熱交換装置を表す概略図である。   FIG. 2 is a schematic diagram showing a heat exchange device.

熱交換装置26は、図2に示すように、ハウジング31内に2つの熱交換器32,33が配置されている。ハウジング31は、下部に空気取込口34が設けられ、空気取込口34に取込ファン35が設けられる一方、上部に空気排出口36が設けられている。   As shown in FIG. 2, the heat exchange device 26 has two heat exchangers 32 and 33 disposed in a housing 31. The housing 31 is provided with an air intake port 34 at the lower portion, an intake fan 35 is provided at the air intake port 34, and an air exhaust port 36 is provided at the upper portion.

第1熱交換器32は、圧縮機11で圧縮された圧縮空気A2と、外部から取り込んだ冷却空気ACとの間で熱交換を行う。即ち、第1熱交換器32は、常温の冷却空気ACにより圧縮空気A2を冷却する。また、第2熱交換器33は、圧縮空気A2を冷却して高温となった加熱空気AHと燃料ガスLとの間で熱交換を行う。即ち、冷却空気ACは、圧縮空気A2を冷却することで高温の加熱空気AHとなり、第2熱交換器33は、この加熱空気AHにより燃料ガスLを加熱する。   The first heat exchanger 32 exchanges heat between the compressed air A2 compressed by the compressor 11 and the cooling air AC taken from the outside. That is, the first heat exchanger 32 cools the compressed air A2 with the normal temperature cooling air AC. In addition, the second heat exchanger 33 performs heat exchange between the heated air AH and the fuel gas L, which have become a high temperature by cooling the compressed air A2. That is, the cooling air AC becomes the high-temperature heating air AH by cooling the compressed air A2, and the second heat exchanger 33 heats the fuel gas L with the heating air AH.

以下、第1実施形態の熱交換器としての第1熱交換器について説明する。図3は、第1実施形態の熱交換器の概略構成図である。   Hereinafter, the 1st heat exchanger as a heat exchanger of a 1st embodiment is explained. FIG. 3 is a schematic configuration diagram of the heat exchanger according to the first embodiment.

第1実施形態の第1熱交換器32は、図3に示すように、一次流路としての圧縮空気分岐ライン27と、二次流路としての冷却空気ライン28と、複数(本実施形態では、2個)の第1熱交換部41及び第2熱交換部42と、流量調整弁43とを有している。ここで、一次流体は、圧縮空気A2であり、二次流体は、冷却空気ACである。   As shown in FIG. 3, the first heat exchanger 32 of the first embodiment includes a compressed air branch line 27 as a primary flow path, a cooling air line 28 as a secondary flow path, and a plurality of (in this embodiment). 2) first heat exchange unit 41 and second heat exchange unit 42, and a flow rate adjusting valve 43. Here, the primary fluid is compressed air A2, and the secondary fluid is cooling air AC.

圧縮空気分岐ライン27と冷却空気ライン28は、ほぼ直交するように配置されている。そして、第1熱交換部41及び第2熱交換部42は、圧縮空気A2の流れ方向に並設されており、第1熱交換部41に対して、第2熱交換部42が圧縮空気A2の流れ方向の下流側に配置されている。   The compressed air branch line 27 and the cooling air line 28 are arranged so as to be substantially orthogonal to each other. And the 1st heat exchange part 41 and the 2nd heat exchange part 42 are arranged in parallel in the flow direction of compressed air A2, and the 2nd heat exchange part 42 is compressed air A2 to the 1st heat exchange part 41. It is arrange | positioned in the downstream of the flow direction.

第1熱交換部41及び第2熱交換部42は、圧縮空気分岐ライン27に設けられており、圧縮空気A2と冷却空気ACとで熱交換を行うものであり、並列に隣接して設けられると共に、互いに平行をなして配置されている。第1熱交換部41は、一端部に個別の入口ヘッダ51が設けられ、第2熱交換部42は、一端部に個別の入口ヘッダ52が設けられている。また、第1熱交換部41及び第2熱交換部42は、他端部に共通の出口ヘッダ53が設けられている。圧縮空気分岐ライン27は、一次流体供給路として第1分岐流路54aと第2分岐流路54bが分岐され、第1分岐流路54aが第1熱交換部41における入口ヘッダ51のノズル55に接続され、第2分岐流路54bが第2熱交換部42における入口ヘッダ52のノズル56に接続されている。また、圧縮空気分岐ライン27に一次流体排出路としての集合流路54cが設けられ、出口ヘッダ53のノズル57に接続されている。   The 1st heat exchange part 41 and the 2nd heat exchange part 42 are provided in the compressed air branch line 27, and heat-exchange with compressed air A2 and cooling air AC, and are provided adjacent in parallel. In addition, they are arranged in parallel to each other. The first heat exchanging part 41 is provided with an individual inlet header 51 at one end, and the second heat exchanging part 42 is provided with an individual inlet header 52 at one end. Moreover, the 1st heat exchange part 41 and the 2nd heat exchange part 42 are provided with the common exit header 53 in the other end part. The compressed air branch line 27 is divided into a first branch channel 54 a and a second branch channel 54 b as primary fluid supply channels, and the first branch channel 54 a is connected to the nozzle 55 of the inlet header 51 in the first heat exchange unit 41. The second branch flow path 54b is connected to the nozzle 56 of the inlet header 52 in the second heat exchange section 42. Further, the compressed air branch line 27 is provided with a collective flow path 54 c as a primary fluid discharge path, and is connected to the nozzle 57 of the outlet header 53.

流量調整弁43は、第2分岐流路54bに設けられており、この第2分岐流路54bを流れる圧縮空気A2の流量を調整するものである。   The flow rate adjusting valve 43 is provided in the second branch flow path 54b, and adjusts the flow rate of the compressed air A2 flowing through the second branch flow path 54b.

第1熱交換器32は、通常、流量調整弁43の開度を100%(全開)として運転する。即ち、圧縮空気分岐ライン27から第1分岐流路54a及び第2分岐流路54bを介して第1熱交換部41と第2熱交換部42に供給される圧縮空気A2の流量は、同等となっている。圧縮空気A2は、第1熱交換部41と第2熱交換部42を流れるとき、冷却空気ACと熱交換することで冷却され、排出される。   The first heat exchanger 32 is normally operated with the flow rate adjustment valve 43 opened at 100% (fully open). That is, the flow rate of the compressed air A2 supplied from the compressed air branch line 27 to the first heat exchange part 41 and the second heat exchange part 42 via the first branch flow path 54a and the second branch flow path 54b is the same. It has become. When the compressed air A2 flows through the first heat exchange unit 41 and the second heat exchange unit 42, the compressed air A2 is cooled and discharged by exchanging heat with the cooling air AC.

圧縮空気分岐ライン27を流れる圧縮空気A2の流量が減少すると、流量調整弁43の開度を小さくする。すると、第2分岐流路54bを介して第2熱交換部42に供給される圧縮空気A2の流量が減少する一方、第1分岐流路54aを介して第1熱交換部41に供給される圧縮空気A2の流量が相対的に増加する。第1熱交換部41における圧縮空気A2の流量が増加すると、冷却空気ACと圧縮空気A2とが熱交換するとき、第2熱交換部42の熱負荷に比べて第1熱交換部41の熱負荷が高くなり、過冷却が抑制される。   When the flow rate of the compressed air A2 flowing through the compressed air branch line 27 decreases, the opening degree of the flow rate adjustment valve 43 is reduced. Then, the flow rate of the compressed air A2 supplied to the second heat exchange part 42 via the second branch flow path 54b decreases, while being supplied to the first heat exchange part 41 via the first branch flow path 54a. The flow rate of the compressed air A2 increases relatively. When the flow rate of the compressed air A2 in the first heat exchange unit 41 increases, when the cooling air AC and the compressed air A2 exchange heat, the heat of the first heat exchange unit 41 is larger than the heat load of the second heat exchange unit 42. The load becomes high and supercooling is suppressed.

なお、第1熱交換器32の構成は、上述したものに限定されるものではない。図4は、第1実施形態の変形例を表す熱交換器の概略構成図である。   In addition, the structure of the 1st heat exchanger 32 is not limited to what was mentioned above. FIG. 4 is a schematic configuration diagram of a heat exchanger that represents a modification of the first embodiment.

図4に示すように、第1実施形態の変形例を表す第1熱交換器32Aは、圧縮空気分岐ライン27と、冷却空気ライン28と、第1熱交換部41と、第2熱交換部42と、流量調整弁43とを有している。   As shown in FIG. 4, the first heat exchanger 32A representing a modification of the first embodiment includes a compressed air branch line 27, a cooling air line 28, a first heat exchange unit 41, and a second heat exchange unit. 42 and a flow rate adjusting valve 43.

第1熱交換部41及び第2熱交換部42は、一端部に共通の入口ヘッダ61が設けられている。また、第1熱交換部41は、他端部に個別の出口ヘッダ62が設けられ、第2熱交換部42は、他端部に個別の出口ヘッダ63が設けられている。圧縮空気分岐ライン27は、一次流体供給路としての供給流路64aが設けられ、入口ヘッダ61のノズル65に接続されている。また、圧縮空気分岐ライン27は、一次流体排出路として第1分岐流路64bと第2分岐流路64cが分岐され、第1分岐流路64aが第1熱交換部41の出口ヘッダ62のノズル66に接続され、第2分岐流路64cが第2熱交換部42の出口ヘッダ63のノズル67に接続されている。   The first heat exchange part 41 and the second heat exchange part 42 are provided with a common inlet header 61 at one end. The first heat exchanging part 41 is provided with an individual outlet header 62 at the other end, and the second heat exchanging part 42 is provided with an individual outlet header 63 at the other end. The compressed air branch line 27 is provided with a supply flow path 64 a as a primary fluid supply path, and is connected to the nozzle 65 of the inlet header 61. The compressed air branch line 27 is divided into a first branch flow path 64 b and a second branch flow path 64 c as a primary fluid discharge path, and the first branch flow path 64 a is a nozzle of the outlet header 62 of the first heat exchange unit 41. 66, and the second branch flow path 64c is connected to the nozzle 67 of the outlet header 63 of the second heat exchange section.

流量調整弁43は、第2分岐流路64cに設けられており、この第2分岐流路64cを流れる圧縮空気A2の流量を調整するものである。   The flow rate adjusting valve 43 is provided in the second branch flow path 64c and adjusts the flow rate of the compressed air A2 flowing through the second branch flow path 64c.

第1熱交換器32Aは、通常、流量調整弁43の開度を100%(全開)として運転する。即ち、圧縮空気分岐ライン27から供給流路64aを介して第1熱交換部41と第2熱交換部42に供給される圧縮空気A2の流量は、同等となっている。圧縮空気A2は、第1熱交換部41と第2熱交換部42を流れるとき、冷却空気ACと熱交換することで冷却され、排出される。   The first heat exchanger 32A normally operates with the opening of the flow rate adjustment valve 43 set to 100% (fully open). That is, the flow rates of the compressed air A2 supplied from the compressed air branch line 27 to the first heat exchange unit 41 and the second heat exchange unit 42 via the supply flow path 64a are equal. When the compressed air A2 flows through the first heat exchange unit 41 and the second heat exchange unit 42, the compressed air A2 is cooled and discharged by exchanging heat with the cooling air AC.

圧縮空気分岐ライン27を流れる圧縮空気A2の流量が減少すると、流量調整弁43の開度を小さくする。すると、第2分岐流路64cを介して第2熱交換部42から排出される圧縮空気A2の流量が減少する一方、第1分岐流路64bを介して第1熱交換部41から排出される圧縮空気A2の流量が相対的に増加する。第1熱交換部41における圧縮空気A2の流量が増加すると、冷却空気ACと圧縮空気A2とが熱交換するとき、第2熱交換部42の熱負荷に比べて第1熱交換部41の熱負荷が高くなり、過冷却が抑制される。   When the flow rate of the compressed air A2 flowing through the compressed air branch line 27 decreases, the opening degree of the flow rate adjustment valve 43 is reduced. As a result, the flow rate of the compressed air A2 discharged from the second heat exchange section 42 via the second branch flow path 64c decreases, while being discharged from the first heat exchange section 41 via the first branch flow path 64b. The flow rate of the compressed air A2 increases relatively. When the flow rate of the compressed air A2 in the first heat exchange unit 41 increases, when the cooling air AC and the compressed air A2 exchange heat, the heat of the first heat exchange unit 41 is larger than the heat load of the second heat exchange unit 42. The load becomes high and supercooling is suppressed.

ここで、第1熱交換器32,32Aの作用を説明する。第1実施形態の熱交換器の作用を表す概略図である。   Here, the operation of the first heat exchangers 32 and 32A will be described. It is the schematic showing the effect | action of the heat exchanger of 1st Embodiment.

図5に示すように、流量調整弁43の開度が全開であるとき、各入口ヘッダ51,52から各熱交換部41,42に供給される圧縮空気A2の流量が同等となる。そのため、このとき、各熱交換部41,42に対して冷却空気ACが作用すると、一点鎖線で表すように、入口部C1で大気温度Taである冷却空気ACは、圧縮空気A2を冷却することで温度が上昇し、出口部C3で温度Tbとなって排出される。そのため、圧縮空気A2が所定温度まで冷却される。   As shown in FIG. 5, when the opening degree of the flow rate adjusting valve 43 is fully open, the flow rate of the compressed air A2 supplied from the inlet headers 51 and 52 to the heat exchange units 41 and 42 is equal. Therefore, at this time, when the cooling air AC acts on each of the heat exchanging portions 41 and 42, the cooling air AC that is the atmospheric temperature Ta at the inlet portion C1 cools the compressed air A2, as represented by a one-dot chain line. The temperature rises and the temperature reaches Tb at the outlet C3 and is discharged. Therefore, the compressed air A2 is cooled to a predetermined temperature.

一方、圧縮空気分岐ライン27を流れる圧縮空気A2の流量が減少すると、流量調整弁43の開度を小さく(例えば、全閉)することで、入口ヘッダ51から第1熱交換部41に供給される圧縮空気A2の流量に対して、入口ヘッダ52から第2熱交換部42に供給される圧縮空気A2の流量が増加する。そのため、このとき、各熱交換部41,42に対して冷却空気ACが作用すると、実線で表すように、入口部C1で大気温度Taである冷却空気ACは、圧縮空気A2を冷却することで温度が上昇し、第1熱交換部41と第2熱交換部42との間C2で温度Tbとなって排出される。そのため、圧縮空気A2が所定温度まで冷却される。   On the other hand, when the flow rate of the compressed air A2 flowing through the compressed air branch line 27 decreases, the opening amount of the flow rate adjustment valve 43 is reduced (for example, fully closed), so that it is supplied from the inlet header 51 to the first heat exchange unit 41. The flow rate of the compressed air A2 supplied from the inlet header 52 to the second heat exchange unit 42 increases with respect to the flow rate of the compressed air A2. Therefore, at this time, when the cooling air AC acts on the heat exchange units 41 and 42, the cooling air AC having the atmospheric temperature Ta at the inlet portion C1 cools the compressed air A2 as shown by the solid line. The temperature rises and is discharged at a temperature Tb at C2 between the first heat exchange unit 41 and the second heat exchange unit 42. Therefore, the compressed air A2 is cooled to a predetermined temperature.

即ち、流量調整弁43を全閉とすることで、圧縮空気分岐ライン27を流れる圧縮空気A2の全量が第1熱交換部41に供給されるため、第1熱交換部41を単位時間当たりに流れる圧縮空気A2の流量が増加し、圧縮空気A2の流速が高くなる。そのため、圧縮空気A2は、第1熱交換部41を通過する間に冷却空気ACにより多くの熱を吸収することとなり、第1熱交換部41と第2熱交換部42との間C2で温度Tbとなる。そのため、第1熱交換部41での過冷却が抑制される。一方、第2熱交換部42は、圧縮空気A2が流れないが、温度上昇した圧縮空気A2が作用するため、ここでの過冷却も抑制される。   That is, by fully closing the flow rate adjusting valve 43, the entire amount of the compressed air A2 flowing through the compressed air branch line 27 is supplied to the first heat exchanging unit 41, so that the first heat exchanging unit 41 is changed per unit time. The flow rate of the flowing compressed air A2 increases, and the flow rate of the compressed air A2 increases. Therefore, the compressed air A2 absorbs more heat by the cooling air AC while passing through the first heat exchange unit 41, and the temperature of the compressed air A2 is C2 between the first heat exchange unit 41 and the second heat exchange unit 42. Tb. Therefore, overcooling in the first heat exchange unit 41 is suppressed. On the other hand, although the compressed air A2 does not flow in the second heat exchanging section 42, the compressed air A2 whose temperature has increased acts, so that the supercooling here is also suppressed.

このように第1実施形態の熱交換器にあっては、一次流体としての冷却空気ACが流れる一次流路としての冷却空気ライン28と、二次流体としての圧縮空気A2が流れる二次流路としての圧縮空気分岐ライン27と、冷却空気ACと圧縮空気A2とで熱交換を行うと共に冷却空気ACの流れ方向に並設される複数の熱交換部としての第1熱交換部41及び第2熱交換部42と、複数の熱交換部41,42における冷却空気ACの流れ方向の下流側に位置する第2熱交換部42を流れる圧縮空気A2の流量を調整する流量調整弁43とを設けている。   As described above, in the heat exchanger according to the first embodiment, the cooling air line 28 as the primary flow path through which the cooling air AC as the primary fluid flows, and the secondary flow path through which the compressed air A2 as the secondary fluid flows. The first heat exchanging section 41 and the second heat exchanging section 27 as a plurality of heat exchanging sections arranged in parallel in the flow direction of the cooling air AC while performing heat exchange between the compressed air branch line 27 and the cooling air AC and the compressed air A2. A heat exchange unit 42 and a flow rate adjustment valve 43 that adjusts the flow rate of the compressed air A2 that flows through the second heat exchange unit 42 that is located downstream in the flow direction of the cooling air AC in the plurality of heat exchange units 41 and 42 are provided. ing.

従って、複数の熱交換部41,42を流れる圧縮空気A2は、冷却空気ACと熱交換することで冷却される。複数の熱交換部41,42を流れる圧縮空気A2の流量が変動すると、圧縮空気A2の流量に応じて流量調整弁43の開度を調整するため、複数の熱交換部41,42における冷却空気ACの流れ方向の下流側に位置する第2熱交換部42を流れる圧縮空気A2の流量が調整される。そのため、冷却空気ACが各熱交換部41,42に与える影響は少なく、高温化や低温化が抑制される。その結果、圧縮空気A2の流量が変動しても適正に熱交換を行うことで圧縮空気A2の過冷却を抑制することができる。   Therefore, the compressed air A2 flowing through the plurality of heat exchange units 41 and 42 is cooled by exchanging heat with the cooling air AC. When the flow rate of the compressed air A2 flowing through the plurality of heat exchange units 41 and 42 varies, the opening of the flow rate adjustment valve 43 is adjusted in accordance with the flow rate of the compressed air A2, so that the cooling air in the plurality of heat exchange units 41 and 42 The flow rate of the compressed air A2 that flows through the second heat exchange unit 42 that is located on the downstream side in the AC flow direction is adjusted. Therefore, the cooling air AC has little influence on the heat exchanging parts 41 and 42, and high temperature and low temperature are suppressed. As a result, even if the flow rate of the compressed air A2 fluctuates, it is possible to suppress overcooling of the compressed air A2 by appropriately exchanging heat.

[第2実施形態]
図6は、第2実施形態の熱交換器の概略構成図、図7は、第2実施形態の変形例を表す熱交換器の概略構成図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
[Second Embodiment]
FIG. 6 is a schematic configuration diagram of a heat exchanger according to the second embodiment, and FIG. 7 is a schematic configuration diagram of a heat exchanger representing a modification of the second embodiment. In addition, the same code | symbol is attached | subjected to the member which has the same function as embodiment mentioned above, and detailed description is abbreviate | omitted.

第2実施形態において、図6に示すように、第1熱交換器32Bは、圧縮空気分岐ライン27と、冷却空気ライン28と、第1熱交換部41と、第2熱交換部42と、流量調整弁43と、状態検出センサとしての第1温度センサ71及び第2温度センサ72と、制御部73とを有している。   In the second embodiment, as shown in FIG. 6, the first heat exchanger 32B includes a compressed air branch line 27, a cooling air line 28, a first heat exchange unit 41, a second heat exchange unit 42, The flow control valve 43 includes a first temperature sensor 71 and a second temperature sensor 72 as state detection sensors, and a control unit 73.

第1温度センサ71及び第2温度センサ72は、出口ヘッダ53に設けられている。第1温度センサ71は、第1熱交換部41から出口ヘッダ53に排出された圧縮空気A2の温度(状態)を検出し、制御部73に出力する。第2温度センサ72は、第2熱交換部42から出口ヘッダ53に排出された圧縮空気A2の温度(状態)を検出し、制御部73に出力する。制御部73は、第1温度センサ71と第2温度センサ72が検出した圧縮空気A2の温度に応じて流量調整弁43の開度を調整する。即ち、制御部73は、各温度センサ71,72が検出した圧縮空気A2の温度差が予め設定された所定温度差より大きくなったときに、流量調整弁43の開度を小さくする。そして、第1温度センサ71と第2温度センサが検出した圧縮空気A2の温度が所定温度差内になるように流量調整弁43の開度を調整する。   The first temperature sensor 71 and the second temperature sensor 72 are provided on the outlet header 53. The first temperature sensor 71 detects the temperature (state) of the compressed air A <b> 2 discharged from the first heat exchange unit 41 to the outlet header 53 and outputs it to the control unit 73. The second temperature sensor 72 detects the temperature (state) of the compressed air A <b> 2 discharged from the second heat exchange unit 42 to the outlet header 53, and outputs it to the control unit 73. The controller 73 adjusts the opening degree of the flow rate adjustment valve 43 according to the temperature of the compressed air A2 detected by the first temperature sensor 71 and the second temperature sensor 72. That is, the control unit 73 reduces the opening degree of the flow rate adjusting valve 43 when the temperature difference between the compressed air A2 detected by the temperature sensors 71 and 72 becomes larger than a predetermined temperature difference set in advance. Then, the opening degree of the flow rate adjusting valve 43 is adjusted so that the temperature of the compressed air A2 detected by the first temperature sensor 71 and the second temperature sensor is within a predetermined temperature difference.

第1熱交換器32Bは、通常、流量調整弁43の開度を100%(全開)として運転する。即ち、圧縮空気分岐ライン27から第1分岐流路54a及び第2分岐流路54bを介して第1熱交換部41と第2熱交換部42に供給される圧縮空気A2の流量は、同等となっている。圧縮空気A2は、第1熱交換部41と第2熱交換部42を流れるとき、冷却空気ACと熱交換することで冷却され、排出される。   The first heat exchanger 32B normally operates with the opening of the flow rate adjustment valve 43 set to 100% (fully open). That is, the flow rate of the compressed air A2 supplied from the compressed air branch line 27 to the first heat exchange part 41 and the second heat exchange part 42 via the first branch flow path 54a and the second branch flow path 54b is the same. It has become. When the compressed air A2 flows through the first heat exchange unit 41 and the second heat exchange unit 42, the compressed air A2 is cooled and discharged by exchanging heat with the cooling air AC.

制御部73は、第1熱交換部41から排出される圧縮空気A2の温度と、第2熱交換部42から排出される圧縮空気A2の温度との偏差が所定温度差より大きくなると、圧縮空気分岐ライン27を流れる圧縮空気A2の流量が減少したものと判断する。このとき、制御部73は、流量調整弁43の開度を小さくし、第1温度センサ71と第2温度センサが検出した圧縮空気A2の温度が所定温度差内になるように流量調整弁43の開度を調整する。すると、第2分岐流路54bを介して第2熱交換部42に供給される圧縮空気A2の流量が減少する一方、第1分岐流路54aを介して第1熱交換部41に供給される圧縮空気A2の流量が相対的に増加する。第1熱交換部41における圧縮空気A2の流量が増加すると、冷却空気ACと圧縮空気A2とが熱交換するとき、第2熱交換部42の熱負荷に比べて第1熱交換部41の熱負荷が高くなり、過冷却が抑制される。   When the deviation between the temperature of the compressed air A2 discharged from the first heat exchanging unit 41 and the temperature of the compressed air A2 discharged from the second heat exchanging unit 42 becomes larger than a predetermined temperature difference, the control unit 73 compresses the compressed air. It is determined that the flow rate of the compressed air A2 flowing through the branch line 27 has decreased. At this time, the control unit 73 reduces the opening degree of the flow rate adjustment valve 43 so that the temperature of the compressed air A2 detected by the first temperature sensor 71 and the second temperature sensor is within a predetermined temperature difference. Adjust the opening. Then, the flow rate of the compressed air A2 supplied to the second heat exchange part 42 via the second branch flow path 54b decreases, while being supplied to the first heat exchange part 41 via the first branch flow path 54a. The flow rate of the compressed air A2 increases relatively. When the flow rate of the compressed air A2 in the first heat exchange unit 41 increases, when the cooling air AC and the compressed air A2 exchange heat, the heat of the first heat exchange unit 41 is larger than the heat load of the second heat exchange unit 42. The load becomes high and supercooling is suppressed.

なお、第1熱交換器32の構成は、上述したものに限定されるものではない。図7に示すように、第1熱交換器32Cにおいて、第1温度センサ71は、第1熱交換部41における出口ヘッダ62に接続された第1分岐流路64bに設けられ、第1熱交換部41から排出された圧縮空気A2の温度を検出し、制御部73に出力する。第2温度センサ72は、第2熱交換部42における出口ヘッダ63に接続された第2分岐流路64cに設けられ、第2熱交換部42から排出された圧縮空気A2の温度を検出し、制御部73に出力する。制御部73は、第1温度センサ71及び第2温度センサ72が検出した圧縮空気A2の温度に応じて流量調整弁43の開度を調整する。即ち、制御部73は、各温度センサ71,72が検出した圧縮空気A2の温度差が予め設定された所定温度差より大きくなったときに、流量調整弁43の開度を小さくする。そして、第1温度センサ71と第2温度センサが検出した圧縮空気A2の温度が所定温度差内になるように流量調整弁43の開度を調整する。   In addition, the structure of the 1st heat exchanger 32 is not limited to what was mentioned above. As shown in FIG. 7, in the first heat exchanger 32C, the first temperature sensor 71 is provided in the first branch flow path 64b connected to the outlet header 62 in the first heat exchange section 41, and the first heat exchange is performed. The temperature of the compressed air A <b> 2 discharged from the unit 41 is detected and output to the control unit 73. The second temperature sensor 72 is provided in the second branch flow path 64c connected to the outlet header 63 in the second heat exchange unit 42, detects the temperature of the compressed air A2 discharged from the second heat exchange unit 42, Output to the control unit 73. The control unit 73 adjusts the opening degree of the flow rate adjustment valve 43 according to the temperature of the compressed air A2 detected by the first temperature sensor 71 and the second temperature sensor 72. That is, the control unit 73 reduces the opening degree of the flow rate adjusting valve 43 when the temperature difference between the compressed air A2 detected by the temperature sensors 71 and 72 becomes larger than a predetermined temperature difference set in advance. Then, the opening degree of the flow rate adjusting valve 43 is adjusted so that the temperature of the compressed air A2 detected by the first temperature sensor 71 and the second temperature sensor is within a predetermined temperature difference.

このように第2実施形態の熱交換器にあっては、冷却空気ACが流れる冷却空気ライン28と、圧縮空気A2が流れる圧縮空気分岐ライン27と、冷却空気ACと圧縮空気A2とで熱交換を行うと共に冷却空気ACの流れ方向に並設される複数の熱交換部41,42と、複数の熱交換部41,42における冷却空気ACの流れ方向の下流側に位置する第2熱交換部42を流れる圧縮空気A2の流量を調整する流量調整弁43と、圧縮空気A2の温度を検出する温度センサ71,72と、温度センサ71,72が検出した圧縮空気A2の温度に応じて流量調整弁43の開度を調整する制御部73とを設けている。   Thus, in the heat exchanger of the second embodiment, heat is exchanged between the cooling air line 28 through which the cooling air AC flows, the compressed air branch line 27 through which the compressed air A2 flows, and the cooling air AC and the compressed air A2. And a plurality of heat exchanging portions 41 and 42 arranged in parallel in the flow direction of the cooling air AC, and a second heat exchanging portion located downstream of the cooling air AC in the flow direction of the plurality of heat exchanging portions 41 and 42 42, a flow rate adjusting valve 43 that adjusts the flow rate of the compressed air A2 flowing through the temperature sensor 42, temperature sensors 71 and 72 that detect the temperature of the compressed air A2, and flow rate adjustment according to the temperature of the compressed air A2 detected by the temperature sensors 71 and 72. A control unit 73 for adjusting the opening degree of the valve 43 is provided.

従って、複数の熱交換部41,42を流れる圧縮空気A2は、冷却空気ACと熱交換することで冷却される。複数の熱交換部41,42を流れる圧縮空気A2の温度が変動すると、圧縮空気A2の温度に応じて流量調整弁43の開度を調整するため、複数の熱交換部41,42における冷却空気ACの流れ方向の下流側に位置する第2熱交換部42を流れる圧縮空気A2の流量が調整される。そのため、冷却空気ACが各熱交換部41,42に与える影響は少なく、高温化や低温化が抑制される。その結果、圧縮空気A2の流量が変動しても適正に熱交換を行うことで圧縮空気A2の過冷却を抑制することができる。   Therefore, the compressed air A2 flowing through the plurality of heat exchange units 41 and 42 is cooled by exchanging heat with the cooling air AC. When the temperature of the compressed air A2 flowing through the plurality of heat exchanging parts 41 and 42 fluctuates, the cooling air in the plurality of heat exchanging parts 41 and 42 is adjusted to adjust the opening degree of the flow rate adjusting valve 43 according to the temperature of the compressed air A2. The flow rate of the compressed air A2 that flows through the second heat exchange unit 42 that is located on the downstream side in the AC flow direction is adjusted. Therefore, the cooling air AC has little influence on the heat exchanging parts 41 and 42, and high temperature and low temperature are suppressed. As a result, even if the flow rate of the compressed air A2 fluctuates, it is possible to suppress overcooling of the compressed air A2 by appropriately exchanging heat.

実施形態2の熱交換器では、制御部73は、複数の熱交換部41,42の出口側における圧縮空気A2の温度差が予め設定された所定温度差より大きくなったときに、流量調整弁43の開度を小さくし、圧縮空気A2の温度差が所定温度差内になるように流量調整弁43の開度を調整する。流量調整弁43の開度を小さくすると、冷却空気ACの流れ方向の下流側に位置する第2熱交換部42を流れる圧縮空気A2の流量が減少する。そのため、圧縮空気A2が冷却空気ACの流れ方向の上流側に位置する第1熱交換部41に与える影響は少なくなり、圧縮空気A2の過冷却を抑制することができる。   In the heat exchanger according to the second embodiment, the control unit 73 controls the flow rate adjustment valve when the temperature difference of the compressed air A2 on the outlet side of the plurality of heat exchange units 41 and 42 becomes larger than a predetermined temperature difference set in advance. The opening degree of the flow rate adjusting valve 43 is adjusted so that the opening degree of the 43 is reduced and the temperature difference of the compressed air A2 is within a predetermined temperature difference. When the opening degree of the flow rate adjusting valve 43 is reduced, the flow rate of the compressed air A2 flowing through the second heat exchange unit 42 located on the downstream side in the flow direction of the cooling air AC decreases. Therefore, the influence which compressed air A2 has on the 1st heat exchange part 41 located in the upstream of the flow direction of cooling air AC decreases, and it can control overcooling of compressed air A2.

そして、圧縮空気A2の過冷却が抑制されることで、熱交換器41,42の構成部材(例えば、伝熱管など)に大きな熱負荷が作用することはなく、板厚の増加などを不要として製造コストの増加を抑制することができる。また、圧縮空気A2の過冷却が抑制されることから、第2熱交換器42でのドレンの発生が抑制され、このドレンによる錆の発生を防止することができる。   And by suppressing supercooling of compressed air A2, a big heat load does not act on the structural members (for example, heat exchanger tubes, etc.) of the heat exchangers 41, 42, and an increase in plate thickness is unnecessary. An increase in manufacturing cost can be suppressed. Moreover, since overcooling of compressed air A2 is suppressed, generation | occurrence | production of the drain in the 2nd heat exchanger 42 is suppressed, and generation | occurrence | production of the rust by this drain can be prevented.

第1熱交換器32Bでは、第2熱交換部42の入口ヘッダ52に接続される第2分岐流路54bに流量調整弁43を設けている。また、第1熱交換器32Cでは、第2熱交換部42の出口ヘッダ63に接続される第2分岐流路64cに流量調整弁43を設けている。従って、複数の熱交換部41,42に流れる圧縮空気A2の流量を高精度に調整することができる。   In the first heat exchanger 32B, the flow rate adjustment valve 43 is provided in the second branch flow path 54b connected to the inlet header 52 of the second heat exchange unit 42. Further, in the first heat exchanger 32C, the flow rate adjustment valve 43 is provided in the second branch flow path 64c connected to the outlet header 63 of the second heat exchange unit 42. Therefore, the flow rate of the compressed air A2 flowing through the plurality of heat exchange units 41 and 42 can be adjusted with high accuracy.

[第3実施形態]
図8は、第3実施形態の熱交換器の概略構成図、図9は、第3実施形態の変形例を表す熱交換器の概略構成図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
[Third Embodiment]
FIG. 8 is a schematic configuration diagram of a heat exchanger according to the third embodiment, and FIG. 9 is a schematic configuration diagram of a heat exchanger representing a modification of the third embodiment. In addition, the same code | symbol is attached | subjected to the member which has the same function as embodiment mentioned above, and detailed description is abbreviate | omitted.

第3実施形態において、図8に示すように、第1熱交換器32Dは、圧縮空気分岐ライン27と、冷却空気ライン28と、第1熱交換部41と、第2熱交換部42と、流量調整弁43と、状態検出センサとしての流量センサ81と、制御部73とを有している。   In the third embodiment, as shown in FIG. 8, the first heat exchanger 32D includes a compressed air branch line 27, a cooling air line 28, a first heat exchange unit 41, a second heat exchange unit 42, It has a flow rate adjusting valve 43, a flow rate sensor 81 as a state detection sensor, and a control unit 73.

流量センサ81は、圧縮空気分岐ライン27に設けられている。流量センサ81は、圧縮空気分岐ライン27を流れる圧縮空気A2の流量(状態)を検出し、制御部73に出力する。制御部73は、流量センサ81が検出した圧縮空気A2の流量に応じて流量調整弁43の開度を調整する。即ち、制御部73は、流量センサ81が検出した圧縮空気A2の流量が予め設定された所定流量より少なくなったときに、流量調整弁43の開度を小さくする。   The flow sensor 81 is provided in the compressed air branch line 27. The flow sensor 81 detects the flow rate (state) of the compressed air A <b> 2 flowing through the compressed air branch line 27 and outputs it to the control unit 73. The control unit 73 adjusts the opening degree of the flow rate adjustment valve 43 according to the flow rate of the compressed air A2 detected by the flow rate sensor 81. That is, the control unit 73 reduces the opening degree of the flow rate adjusting valve 43 when the flow rate of the compressed air A2 detected by the flow rate sensor 81 becomes smaller than a predetermined flow rate set in advance.

第1熱交換器32は、通常、流量調整弁43の開度を100%(全開)として運転する。即ち、圧縮空気分岐ライン27から第1分岐流路54a及び第2分岐流路54bを介して第1熱交換部41と第2熱交換部42に供給される圧縮空気A2の流量は、同等となっている。圧縮空気A2は、第1熱交換部41と第2熱交換部42を流れるとき、冷却空気ACと熱交換することで冷却され、排出される。   The first heat exchanger 32 is normally operated with the flow rate adjustment valve 43 opened at 100% (fully open). That is, the flow rate of the compressed air A2 supplied from the compressed air branch line 27 to the first heat exchange part 41 and the second heat exchange part 42 via the first branch flow path 54a and the second branch flow path 54b is the same. It has become. When the compressed air A2 flows through the first heat exchange unit 41 and the second heat exchange unit 42, the compressed air A2 is cooled and discharged by exchanging heat with the cooling air AC.

第1熱交換部41に供給される圧縮空気A2の流量が所定流量より少なくなると、制御部73は、流量調整弁43の開度を小さくする。すると、第2分岐流路54bを介して第2熱交換部42に供給される圧縮空気A2の流量が減少する一方、第1分岐流路54aを介して第1熱交換部41に供給される圧縮空気A2の流量が相対的に増加する。第1熱交換部41における圧縮空気A2の流量が増加すると、冷却空気ACと圧縮空気A2とが熱交換するとき、第2熱交換部42の熱負荷に比べて第1熱交換部41の熱負荷が高くなり、過冷却が抑制される。   When the flow rate of the compressed air A2 supplied to the first heat exchange unit 41 is less than the predetermined flow rate, the control unit 73 decreases the opening degree of the flow rate adjustment valve 43. Then, the flow rate of the compressed air A2 supplied to the second heat exchange part 42 via the second branch flow path 54b decreases, while being supplied to the first heat exchange part 41 via the first branch flow path 54a. The flow rate of the compressed air A2 increases relatively. When the flow rate of the compressed air A2 in the first heat exchange unit 41 increases, when the cooling air AC and the compressed air A2 exchange heat, the heat of the first heat exchange unit 41 is larger than the heat load of the second heat exchange unit 42. The load becomes high and supercooling is suppressed.

なお、第1熱交換器32Dの構成は、上述したものに限定されるものではない。図9に示すように、第1熱交換器32Eにおいて、流量センサ81は、圧縮空気分岐ライン27に設けられ、各熱交換部41,42に供給される圧縮空気A2の流量を検出し、制御部73に出力する。制御部73は、流量センサ81が検出した圧縮空気A2の温度に応じて流量調整弁43の開度を調整する。即ち、制御部73は、流量センサ81が検出した圧縮空気A2の流量が予め設定された所定流量より少なくなったときに、流量調整弁43の開度を小さくする。   In addition, the structure of 1st heat exchanger 32D is not limited to what was mentioned above. As shown in FIG. 9, in the first heat exchanger 32E, the flow rate sensor 81 is provided in the compressed air branch line 27 to detect and control the flow rate of the compressed air A2 supplied to the heat exchange units 41 and 42. To the unit 73. The control unit 73 adjusts the opening degree of the flow rate adjustment valve 43 according to the temperature of the compressed air A2 detected by the flow rate sensor 81. That is, the control unit 73 reduces the opening degree of the flow rate adjusting valve 43 when the flow rate of the compressed air A2 detected by the flow rate sensor 81 becomes smaller than a predetermined flow rate set in advance.

このように第3実施形態の熱交換器にあっては、圧縮空気A2の流量を検出する流量センサ81と、流量センサ81が検出した圧縮空気A2の流量が予め設定された所定流量より少なくなったときに、流量調整弁43の開度を小さくする制御部73とを設けている。   As described above, in the heat exchanger according to the third embodiment, the flow rate sensor 81 that detects the flow rate of the compressed air A2 and the flow rate of the compressed air A2 detected by the flow rate sensor 81 are less than a predetermined flow rate that is set in advance. A control unit 73 for reducing the opening degree of the flow rate adjusting valve 43 is provided.

従って、複数の熱交換部41,42を流れる圧縮空気A2の流量が所定流量より少なくなったときに、流量調整弁43の開度を小さくするため、第2熱交換部42を流れる二次流体の流量が減少する。そのため、冷却空気ACが第1熱交換部41に与える影響は少なくなり、圧縮空気A2の過冷却を抑制することができる。   Therefore, when the flow rate of the compressed air A2 flowing through the plurality of heat exchange units 41 and 42 is less than a predetermined flow rate, the secondary fluid flowing through the second heat exchange unit 42 is used to reduce the opening degree of the flow rate adjustment valve 43. The flow rate decreases. Therefore, the influence which cooling air AC has on the 1st heat exchange part 41 decreases, and it can control overcooling of compressed air A2.

なお、この実施形態3では、圧縮空気分岐ライン27に流量センサ81を設け、圧縮空気分岐ライン27を流れる圧縮空気A2の流量(状態)を検出するようにしたが、この構成に限定されるものではない。例えば、圧縮空気分岐ライン27に圧力センサを設け、圧縮空気分岐ライン27を流れる圧縮空気A2の圧力(状態)を検出するようにしてもよい。そして、制御部73は、圧力センサが検出した圧縮空気分岐ライン27を流れる圧縮空気A2の圧力が予め設定された所定圧力より大きくなったときに、流量調整弁43の開度を小さくする。この場合であっても、圧縮空気A2の過冷却を抑制することができる。   In the third embodiment, the flow rate sensor 81 is provided in the compressed air branch line 27 to detect the flow rate (state) of the compressed air A2 flowing through the compressed air branch line 27. However, the present invention is limited to this configuration. is not. For example, a pressure sensor may be provided in the compressed air branch line 27 to detect the pressure (state) of the compressed air A2 flowing through the compressed air branch line 27. And the control part 73 makes the opening degree of the flow regulating valve 43 small, when the pressure of the compressed air A2 which flows through the compressed air branch line 27 which the pressure sensor detected becomes larger than the predetermined pressure set beforehand. Even in this case, overcooling of the compressed air A2 can be suppressed.

[第4実施形態]
図10は、第4実施形態の熱交換器の概略構成図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
[Fourth Embodiment]
FIG. 10 is a schematic configuration diagram of a heat exchanger according to the fourth embodiment. In addition, the same code | symbol is attached | subjected to the member which has the same function as embodiment mentioned above, and detailed description is abbreviate | omitted.

第4実施形態において、図10に示すように、第1熱交換器90は、圧縮空気分岐ライン27と、冷却空気ライン28と、4個の熱交換部91,92,93,94と、流量調整弁95,96,97,98と、流量センサ(状態検出センサ)99と、制御部100とを有している。   In the fourth embodiment, as shown in FIG. 10, the first heat exchanger 90 includes a compressed air branch line 27, a cooling air line 28, four heat exchange units 91, 92, 93, 94, and a flow rate. It has adjustment valves 95, 96, 97, 98, a flow rate sensor (state detection sensor) 99, and a control unit 100.

第1熱交換部91は、一端部に入口ヘッダ101が設けられ、第2熱交換部92は、一端部に入口ヘッダ102が設けられ、第3熱交換部93は、一端部に入口ヘッダ103が設けられ、第4熱交換部94は、一端部に入口ヘッダ104が設けられ、各熱交換器91,92,93,94は、他端部に出口ヘッダ105が設けられている。圧縮空気分岐ライン27は、一次流体供給路として第1分岐流路105aと第2分岐流路105bと第3分岐流路105cと第4分岐流路105dが分岐され、それぞれ入口ヘッダ101,102,103,104に接続されている。また、圧縮空気分岐ライン27に一次流体排出路としての集合流路105eが設けられ、出口ヘッダ105に接続されている。   The first heat exchange part 91 is provided with an inlet header 101 at one end, the second heat exchange part 92 is provided with an inlet header 102 at one end, and the third heat exchange part 93 is provided with an inlet header 103 at one end. The fourth heat exchanging portion 94 is provided with an inlet header 104 at one end, and each of the heat exchangers 91, 92, 93, 94 is provided with an outlet header 105 at the other end. The compressed air branch line 27 is divided into a first branch flow path 105a, a second branch flow path 105b, a third branch flow path 105c, and a fourth branch flow path 105d as primary fluid supply paths. 103 and 104. Further, the compressed air branch line 27 is provided with a collective flow path 105 e as a primary fluid discharge path, and is connected to the outlet header 105.

流量調整弁95,96,97,98は、各分岐流路105a,105b,105c,105dに設けられており、この第2分岐流路105a,105b,105c,105dを流れる圧縮空気A2の流量を調整するものである。流量センサ99は、圧縮空気分岐ライン27に設けられており、圧縮空気分岐ライン27を流れる圧縮空気A2の流量(状態)を検出し、制御部100に出力する。制御部100は、流量センサ99が検出した圧縮空気A2の流量に応じて流量調整弁95,96,97,98の開度を調整する。即ち、制御部100は、流量センサ99が検出した圧縮空気A2の流量が予め設定された所定流量より少なくなったときに、流量調整弁95,96,97,98の開度を小さくする。   The flow rate adjusting valves 95, 96, 97, 98 are provided in the respective branch flow paths 105a, 105b, 105c, 105d, and the flow rate of the compressed air A2 flowing through the second branch flow paths 105a, 105b, 105c, 105d is controlled. To be adjusted. The flow rate sensor 99 is provided in the compressed air branch line 27, detects the flow rate (state) of the compressed air A <b> 2 flowing through the compressed air branch line 27, and outputs it to the control unit 100. The control unit 100 adjusts the opening degree of the flow rate adjusting valves 95, 96, 97, and 98 according to the flow rate of the compressed air A2 detected by the flow rate sensor 99. That is, when the flow rate of the compressed air A2 detected by the flow rate sensor 99 is less than a predetermined flow rate set in advance, the control unit 100 decreases the opening degree of the flow rate adjustment valves 95, 96, 97, and 98.

第1熱交換部91に供給される圧縮空気A2の流量が所定流量より少なくなると、制御部100は、流量調整弁95,96,97,98の開度を調整し、冷却空気ACの流れ方向の下流側の熱交換部91,92,93,94ほど流量が少なくなるように調整する。そのため、冷却空気ACと圧縮空気A2とが熱交換するとき、第1熱交換部91側ほど熱負荷が高くなり、過冷却が抑制される。   When the flow rate of the compressed air A2 supplied to the first heat exchange unit 91 is less than the predetermined flow rate, the control unit 100 adjusts the opening degree of the flow rate adjusting valves 95, 96, 97, 98, and the flow direction of the cooling air AC The flow rate is adjusted so that the heat exchange portions 91, 92, 93, and 94 on the downstream side of the air flow are reduced. Therefore, when the cooling air AC and the compressed air A2 exchange heat, the heat load increases toward the first heat exchanging portion 91 side, and overcooling is suppressed.

なお、この実施形態4では、状態検出器として流量センサ99を適用したが、温度センサや圧力センサであってもよい。   In the fourth embodiment, the flow sensor 99 is applied as the state detector, but a temperature sensor or a pressure sensor may be used.

このように第4実施形態の熱交換器にあっては、流量調整弁95,96,97,98を複数の熱交換部91,92,93,94に対応して複数設け、制御部100は、流量センサ99が検出した圧縮空気A2の流量に応じて各熱交換部91,92,93,94を流れる圧縮空気A2の流量を調整している。   Thus, in the heat exchanger of the fourth embodiment, a plurality of flow rate adjusting valves 95, 96, 97, 98 are provided corresponding to the plurality of heat exchange units 91, 92, 93, 94, and the control unit 100 is The flow rate of the compressed air A2 flowing through the heat exchanging portions 91, 92, 93, 94 is adjusted according to the flow rate of the compressed air A2 detected by the flow rate sensor 99.

従って、複数の熱交換部91,92,93,94を流れる圧縮空気A2の流量を調整することで、冷却空気ACが各熱交換部91,92,93,94に与える影響を少なくし、圧縮空気A2の過冷却を高精度に抑制することができる。   Therefore, by adjusting the flow rate of the compressed air A2 flowing through the plurality of heat exchanging portions 91, 92, 93, 94, the influence of the cooling air AC on the heat exchanging portions 91, 92, 93, 94 is reduced, and the compression is performed. Supercooling of the air A2 can be suppressed with high accuracy.

なお、上述した実施形態では、各熱交換部41,42,91,92,93,94を直管の伝熱管により構成したが、U字形状をなす伝熱管により構成してもよい。   In the above-described embodiment, each heat exchanging portion 41, 42, 91, 92, 93, 94 is configured by a straight heat transfer tube, but may be configured by a U-shaped heat transfer tube.

また、上述した実施形態では、本発明の熱交換器をガスタービン10に適用し、冷却空気(一次流体)ACにより圧縮空気(二次流体)A2を加熱するものとしたが、この構成に限定されるものではない。即ち、本発明の熱交換器は、ガスタービン10における別の部分やガスタービン10以外の分野(例えば、ボイラなど)にも適用することができる。   In the above-described embodiment, the heat exchanger of the present invention is applied to the gas turbine 10 and the compressed air (secondary fluid) A2 is heated by the cooling air (primary fluid) AC. However, the present invention is limited to this configuration. Is not to be done. That is, the heat exchanger of the present invention can be applied to other parts of the gas turbine 10 and other fields (for example, a boiler) than the gas turbine 10.

また、上述した実施形態では、一次流体により二次流体を冷却する熱交換器としたが、一次流体により二次流体を加熱する熱交換器としてもよく、この場合、熱交換器による過熱を抑制することができる。   In the above-described embodiment, the heat exchanger that cools the secondary fluid with the primary fluid is used. However, a heat exchanger that heats the secondary fluid with the primary fluid may be used. In this case, overheating by the heat exchanger is suppressed. can do.

10 ガスタービン
11 圧縮機
12 燃焼器
13 タービン
14 発電機
24 燃料ガス供給ライン
26 熱交換装置
27 圧縮空気分岐ライン(一次流路)
28 冷却空気ライン(二次流路)
32,32A,32B,32C,32D,32E,90 第1熱交換器
33 第2熱交換器(熱交換器)
41,91 第1熱交換部
42,92 第2熱交換部
43,95,96,97,98 流量調整弁
71,72 温度センサ(状態量検出センサ)
73,100 制御部
81,99 流量センサ(状態量検出センサ)
AC 冷却空気(二次流体)
A2 圧縮空気(一次流体)
DESCRIPTION OF SYMBOLS 10 Gas turbine 11 Compressor 12 Combustor 13 Turbine 14 Generator 24 Fuel gas supply line 26 Heat exchange apparatus 27 Compressed air branch line (primary flow path)
28 Cooling air line (secondary flow path)
32, 32A, 32B, 32C, 32D, 32E, 90 First heat exchanger 33 Second heat exchanger (heat exchanger)
41,91 1st heat exchange part 42,92 2nd heat exchange part 43,95,96,97,98 Flow control valve 71,72 Temperature sensor (state quantity detection sensor)
73,100 Control unit 81,99 Flow sensor (state quantity detection sensor)
AC cooling air (secondary fluid)
A2 Compressed air (primary fluid)

Claims (8)

一次流体が流れる一次流路と、
前記一次流路内で二次流体が流れる二次流路と、
一次流体と二次流体とで熱交換を行うと共に一次流体の流れ方向に並設された複数の熱交換部と、
前記複数の熱交換部に流れる一次流体の流量を調整する流量調整弁と、
を有することを特徴とする熱交換器。
A primary flow path through which the primary fluid flows;
A secondary channel through which a secondary fluid flows in the primary channel;
A plurality of heat exchanging units that perform heat exchange between the primary fluid and the secondary fluid and are arranged in parallel in the flow direction of the primary fluid;
A flow rate adjusting valve that adjusts the flow rate of the primary fluid flowing through the plurality of heat exchange units;
The heat exchanger characterized by having.
一次流体が流れる一次流路と、
前記一次流路内で二次流体が流れる二次流路と、
一次流体と二次流体とで熱交換を行うと共に一次流体の流れ方向に並設された複数の熱交換部と、
前記複数の熱交換部に流れる一次流体の流量を調整する流量調整弁と、
一次流体の状態を検出する状態検出センサと、
前記状態検出センサが検出した一次流体の状態に応じて前記流量調整弁の開度を調整する制御部と、
を有することを特徴とする熱交換器。
A primary flow path through which the primary fluid flows;
A secondary channel through which a secondary fluid flows in the primary channel;
A plurality of heat exchanging units that perform heat exchange between the primary fluid and the secondary fluid and are arranged in parallel in the flow direction of the primary fluid;
A flow rate adjusting valve that adjusts the flow rate of the primary fluid flowing through the plurality of heat exchange units;
A state detection sensor for detecting the state of the primary fluid;
A controller that adjusts the opening of the flow rate adjustment valve according to the state of the primary fluid detected by the state detection sensor;
The heat exchanger characterized by having.
前記複数の熱交換部は、一端部に個別の入口ヘッダが設けられ、他端部に共通の出口ヘッダが設けられ、前記一次流路は、前記入口ヘッダ及び前記出口ヘッダに接続され、前記入口ヘッダに接続される前記一次流体流路に前記流量調整弁が設けられることを特徴とする請求項2に記載の熱交換器。   The plurality of heat exchanging units are provided with individual inlet headers at one end and a common outlet header at the other end, and the primary flow path is connected to the inlet header and the outlet header. The heat exchanger according to claim 2, wherein the flow rate adjusting valve is provided in the primary fluid flow path connected to a header. 前記複数の熱交換部は、一端部に共通の入口ヘッダが設けられ、他端部に個別の出口ヘッダが設けられ、前記一次流路は、前記入口ヘッダ及び前記出口ヘッダに接続され、前記出口ヘッダに接続される前記一次流体流路に前記流量調整弁が設けられることを特徴とする請求項2に記載の熱交換器。   The plurality of heat exchanging portions are provided with a common inlet header at one end, and provided with an individual outlet header at the other end, and the primary flow path is connected to the inlet header and the outlet header, and the outlet The heat exchanger according to claim 2, wherein the flow rate adjusting valve is provided in the primary fluid flow path connected to a header. 前記状態検出センサは、前記複数の熱交換部の出口側における一次流体の温度を検出する温度センサであり、前記制御部は、前記複数の熱交換部の出口側における一次流体の温度差が予め設定された所定温度差より大きくなったときに、前記流量調整弁の開度を小さくすることを特徴とする請求項2から請求項4のいずれか一項に記載の熱交換器。   The state detection sensor is a temperature sensor that detects the temperature of the primary fluid on the outlet side of the plurality of heat exchange units, and the control unit is configured so that the temperature difference of the primary fluid on the outlet side of the plurality of heat exchange units is in advance. The heat exchanger according to any one of claims 2 to 4, wherein when the temperature difference becomes larger than a set predetermined temperature difference, the opening degree of the flow rate adjusting valve is reduced. 前記状態検出センサは、前記複数の熱交換部の入口側における一次流体の流量を検出する流量センサであり、前記制御部は、前記複数の熱交換部の入口側における一次流体の流量が予め設定された所定流量より少なくなったときに、前記流量調整弁の開度を小さくすることを特徴とする請求項2から請求項4のいずれか一項に記載の熱交換器。   The state detection sensor is a flow rate sensor that detects the flow rate of the primary fluid on the inlet side of the plurality of heat exchange units, and the control unit presets the flow rate of the primary fluid on the inlet side of the plurality of heat exchange units. The heat exchanger according to any one of claims 2 to 4, wherein when the flow rate becomes smaller than the predetermined flow rate, the opening degree of the flow rate adjustment valve is reduced. 前記状態検出センサは、前記複数の熱交換部の入口側における一次流体の圧力を検出する圧力センサであり、前記制御部は、前記複数の熱交換部の入口側における一次流体の圧力が予め設定された所定圧力より大きくなったときに、前記流量調整弁の開度を小さくすることを特徴とする請求項2から請求項4のいずれか一項に記載の熱交換器。   The state detection sensor is a pressure sensor that detects the pressure of the primary fluid on the inlet side of the plurality of heat exchange units, and the control unit presets the pressure of the primary fluid on the inlet side of the plurality of heat exchange units. The heat exchanger according to any one of claims 2 to 4, wherein when the pressure exceeds a predetermined pressure, the opening of the flow rate adjustment valve is reduced. 前記流量調整弁は、前記複数の熱交換部に対応して複数設けられ、前記制御部は、前記状態検出センサが検出した一次流体の状態に応じて前記複数の熱交換部に流れる一次流体の流量が減少するように前記複数の流量調整弁の開度を調整することを特徴とする請求項2から請求項7のいずれか一項に記載の熱交換器。   A plurality of the flow rate adjusting valves are provided corresponding to the plurality of heat exchange units, and the control unit is configured to control the primary fluid flowing through the plurality of heat exchange units according to the state of the primary fluid detected by the state detection sensor. The heat exchanger according to any one of claims 2 to 7, wherein the openings of the plurality of flow rate adjustment valves are adjusted so that the flow rate decreases.
JP2014027796A 2014-02-17 2014-02-17 Heat exchanger Active JP6262012B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014027796A JP6262012B2 (en) 2014-02-17 2014-02-17 Heat exchanger
CN201580004366.9A CN105899907B (en) 2014-02-17 2015-01-20 Heat exchanger
US15/110,849 US20160341497A1 (en) 2014-02-17 2015-01-20 Heat exchanger
KR1020167018819A KR20160099624A (en) 2014-02-17 2015-01-20 Heat exchanger
PCT/JP2015/051370 WO2015122244A1 (en) 2014-02-17 2015-01-20 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014027796A JP6262012B2 (en) 2014-02-17 2014-02-17 Heat exchanger

Publications (3)

Publication Number Publication Date
JP2015152264A true JP2015152264A (en) 2015-08-24
JP2015152264A5 JP2015152264A5 (en) 2016-12-22
JP6262012B2 JP6262012B2 (en) 2018-01-17

Family

ID=53894714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014027796A Active JP6262012B2 (en) 2014-02-17 2014-02-17 Heat exchanger

Country Status (1)

Country Link
JP (1) JP6262012B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190052118A (en) 2016-11-25 2019-05-15 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Heat exchange systems, cooling systems and cooling methods for gas turbines and gas turbine systems

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3643276A4 (en) 2017-06-22 2021-01-13 Kurume University Mouthpiece

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113002A (en) * 1974-07-24 1976-02-02 Hitachi Ltd KAHENSETSURYUSUGATANETSUKOKANKI
JPS52123541A (en) * 1976-04-09 1977-10-17 Taisei Corp Method of piping of cooling water duct in room cooling system
JPS5618594U (en) * 1979-07-16 1981-02-18
JPS5812997A (en) * 1981-07-16 1983-01-25 Mitsubishi Heavy Ind Ltd Heat exchanger
JPS62160170U (en) * 1986-04-01 1987-10-12
JPS63134292U (en) * 1987-02-24 1988-09-02
JPS648087U (en) * 1987-06-26 1989-01-17
JPH04309765A (en) * 1991-04-04 1992-11-02 Nippondenso Co Ltd Heat exchanger
JP2001091099A (en) * 1999-09-17 2001-04-06 Sanyo Electric Co Ltd Heat exchanger
JP2002129979A (en) * 2000-10-20 2002-05-09 Mitsubishi Heavy Ind Ltd Regenerator for gas turbine
JP2009127888A (en) * 2007-11-20 2009-06-11 Toyota Motor Corp Heat exchanger and engine
US20090183867A1 (en) * 2008-01-23 2009-07-23 Compressor Systems Inc. Varying ambient heat exchanger for a compressor

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113002A (en) * 1974-07-24 1976-02-02 Hitachi Ltd KAHENSETSURYUSUGATANETSUKOKANKI
JPS52123541A (en) * 1976-04-09 1977-10-17 Taisei Corp Method of piping of cooling water duct in room cooling system
JPS5618594U (en) * 1979-07-16 1981-02-18
JPS5812997A (en) * 1981-07-16 1983-01-25 Mitsubishi Heavy Ind Ltd Heat exchanger
JPS62160170U (en) * 1986-04-01 1987-10-12
JPS63134292U (en) * 1987-02-24 1988-09-02
JPS648087U (en) * 1987-06-26 1989-01-17
JPH04309765A (en) * 1991-04-04 1992-11-02 Nippondenso Co Ltd Heat exchanger
JP2001091099A (en) * 1999-09-17 2001-04-06 Sanyo Electric Co Ltd Heat exchanger
JP2002129979A (en) * 2000-10-20 2002-05-09 Mitsubishi Heavy Ind Ltd Regenerator for gas turbine
JP2009127888A (en) * 2007-11-20 2009-06-11 Toyota Motor Corp Heat exchanger and engine
US20090183867A1 (en) * 2008-01-23 2009-07-23 Compressor Systems Inc. Varying ambient heat exchanger for a compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190052118A (en) 2016-11-25 2019-05-15 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Heat exchange systems, cooling systems and cooling methods for gas turbines and gas turbine systems
DE112017005972T5 (en) 2016-11-25 2019-08-14 Mitsubishi Hitachi Power Systems, Ltd. HEAT EXCHANGE SYSTEM AND OPERATING METHOD THEREFOR, COOLING SYSTEM AND COOLING METHOD OF A GAS TURBINE AND GAS TURBINE SYSTEM
DE112017005972B4 (en) 2016-11-25 2021-07-15 Mitsubishi Power, Ltd. HEAT EXCHANGE SYSTEM, COOLING SYSTEM AND COOLING PROCESS OF A GAS TURBINE AND GAS TURBINE SYSTEM
US11441452B2 (en) 2016-11-25 2022-09-13 Mitsubishi Heavy Industries, Ltd. Heat exchange system, cooling system and cooling method of gas turbine, and gas turbine system

Also Published As

Publication number Publication date
JP6262012B2 (en) 2018-01-17

Similar Documents

Publication Publication Date Title
WO2015122244A1 (en) Heat exchanger
TWI542845B (en) System and method for dynamic control of an evaporator
US20140341704A1 (en) Heat exchange arrangement
CN105509364B (en) Air-conditioning system and jet degree of superheat adjusting method
KR101445992B1 (en) Device for estimating flowrate of heating medium, heat source device, and method for estimating flowrate of heating medium
JP2012202672A (en) Expansion valve control device, heat source machine, and expansion valve control method
KR20110081756A (en) Heat pump and heating medium flow rate calculation method of heat pump
KR20180119417A (en) Turbine measuring device
WO2018076934A1 (en) Air conditioner and refrigeration system thereof
JP6262012B2 (en) Heat exchanger
US20140299305A1 (en) Heat Exchanger with Differentiated Resistance Flowpaths
JP2009216332A (en) Precision air conditioner
JP2015152264A5 (en)
JP2011058663A (en) Refrigerating air-conditioning device
US20190137155A1 (en) Chiller system, method for obtaining middle water temperature and control method thereof
JP5486425B2 (en) Water heat source heat pump unit piping system
JPWO2018179050A1 (en) Temperature control device, control method for temperature control device, and control program for temperature control device
US10514183B2 (en) Exhaust gas latent heat recovery device
TWI718985B (en) Multi-stage heat pump performance test system
JP2003130428A (en) Connection type cold/hot water device
CN210463335U (en) Fresh air dehumidifier and fresh air dehumidification system
JP5386199B2 (en) Heat source system
JP6262013B2 (en) Heat exchanger
JP2016080179A (en) Air conditioner
JP2010243044A (en) Method and device for controlling switching of set number of absorption chiller/heater

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171213

R150 Certificate of patent or registration of utility model

Ref document number: 6262012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350