JP2010243044A - Method and device for controlling switching of set number of absorption chiller/heater - Google Patents

Method and device for controlling switching of set number of absorption chiller/heater Download PDF

Info

Publication number
JP2010243044A
JP2010243044A JP2009091370A JP2009091370A JP2010243044A JP 2010243044 A JP2010243044 A JP 2010243044A JP 2009091370 A JP2009091370 A JP 2009091370A JP 2009091370 A JP2009091370 A JP 2009091370A JP 2010243044 A JP2010243044 A JP 2010243044A
Authority
JP
Japan
Prior art keywords
absorption chiller
heater
control device
hot water
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009091370A
Other languages
Japanese (ja)
Other versions
JP5284850B2 (en
Inventor
Akira Hirai
晃 平井
Takaharu Takahara
隆治 高原
Mikio Kumamoto
幹雄 熊本
Tetsuji Yoshioka
徹治 吉岡
Shoji Murakami
昭二 村上
Yoshinobu Mori
芳信 森
Masaru Hashimoto
大 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Thermal Engineering Co Ltd
Original Assignee
Kawasaki Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Thermal Engineering Co Ltd filed Critical Kawasaki Thermal Engineering Co Ltd
Priority to JP2009091370A priority Critical patent/JP5284850B2/en
Publication of JP2010243044A publication Critical patent/JP2010243044A/en
Application granted granted Critical
Publication of JP5284850B2 publication Critical patent/JP5284850B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

<P>PROBLEM TO BE SOLVED: To improve the accuracy of load estimating calculation by estimating a necessary cooled/heated water flow rate based on the relationship between a combustion amount and a cooled/heated water temperature without installing a sensor for measuring the flow rate. <P>SOLUTION: A number switching control device is composed of individual control devices 31, 32, 33 for controlling respective absorption chiller/heaters and a number control device 35 for outputting start/stop commands to the individual control devices. The number control device determines the number of operating absorption chiller/heaters suitable for a load condition based on cooled/heated water inlet/outlet temperatures and combustion ratios transmitted from the individual control devices, and transmits the start/stop commands to the individual control devices. The individual control devices determine fuel input amounts so that the cooled/heated water outlet temperatures of the absorption chiller/heaters become temperatures set beforehand, and carries out the inputting/blocking of fuel to the absorption chiller/heaters according to the start/stop commands from the number control device. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、複数台の吸収冷温水機の運転台数を適切な台数に選択・切替することができる台数切替制御方法及び装置に関するものである。   The present invention relates to a number switching control method and apparatus capable of selecting / switching the operating number of a plurality of absorption chiller / heaters to an appropriate number.

従来、複数台の吸収冷温水機の台数制御において、空調負荷の変動に応じて、適切な台数で運転する必要がある。空調負荷は冷温水の温度差から推定する方法が一般的であるが、冷温水流量が変更された場合(送水ポンプのインバータ制御、バイパスなど)に、正しく負荷を捉えることができない。
空調負荷を交換熱量であると考えると、吸収冷温水機から送り出された冷温水の温度と入ってくる冷温水の温度との差に流量を乗じたものとなる。一般的に、各吸収冷温水機の冷温水入口・出口温度は計測されているから、予め決まった流量が送水されていれば、この温度差により空調負荷を演算することが可能である。
Conventionally, in the control of the number of a plurality of absorption chiller / heaters, it is necessary to operate with an appropriate number according to the fluctuation of the air conditioning load. The method of estimating the air conditioning load from the temperature difference of cold / hot water is generally used, but when the flow of cold / hot water is changed (inverter control of a water pump, bypass, etc.), the load cannot be correctly captured.
Assuming that the air conditioning load is the amount of exchange heat, the flow rate is multiplied by the difference between the temperature of the cold / hot water sent from the absorption chiller / heater and the temperature of the incoming cold / hot water. Generally, since the cold / hot water inlet / outlet temperature of each absorption chiller / heater is measured, if a predetermined flow rate is supplied, it is possible to calculate the air conditioning load based on this temperature difference.

送水ポンプがインバータ制御されている場合や、吸収冷温水機の入口から出口へ冷温水がバイパスされている場合など、冷温水の流量が変化した場合、空調負荷を演算するには温度差だけではなく、流量の必要となる。送水ポンプのインバータ指令が既知である場合や、流量センサなどにより必要な冷温水流量を計測している場合は、これら情報から流量の情報を得ることが可能である。   When the flow rate of cold / hot water changes, such as when the water pump is controlled by an inverter or when cold / warm water is bypassed from the inlet to the outlet of the absorption chiller / heater, the temperature difference alone can be used to calculate the air conditioning load. Without a flow rate. When the inverter command of the water pump is known, or when the necessary cold / hot water flow rate is measured by a flow rate sensor or the like, it is possible to obtain flow rate information from these information.

従来、負荷を推定するために冷温水流量及びそのバイパス流量を、流量計を用いて計測する空調熱源台数制御装置が知られている(例えば、特許文献1参照)。また、直接負荷側のファイコイルユニットの負荷率を計測する機器を設けた吸収式冷凍機の制御装置が知られている(例えば、特許文献2参照)。しかし、送水ポンプが吸収冷温水機の制御装置とは別で、インバータ指令値が不明な場合や、コストや設置環境の問題から流量センサ及び負荷率を計測ような機器の設置ができない場合には、空調負荷を演算することができない。このため、空調負荷を正しく演算するために必要な冷温水流量が不明となる場合がある。   2. Description of the Related Art Conventionally, there is known an air conditioning heat source number control device that measures a cold / hot water flow rate and a bypass flow rate thereof using a flow meter in order to estimate a load (see, for example, Patent Document 1). Further, there is known an absorption refrigerator control device provided with a device for measuring a load factor of a direct load side phi coil unit (for example, see Patent Document 2). However, if the water supply pump is separate from the absorption chiller / heater control device and the inverter command value is unknown, or if it is not possible to install a device that measures the flow rate sensor and load factor due to cost and installation environment problems The air conditioning load cannot be calculated. For this reason, the cold / hot water flow volume required in order to calculate an air-conditioning load correctly may become unknown.

特開2000−257938号公報(第2頁、図1)Japanese Patent Laid-Open No. 2000-257938 (second page, FIG. 1) 特開平7−71836号公報(第2頁、図1)JP-A-7-71836 (2nd page, FIG. 1)

解決しようとする問題点は、空調負荷演算の精度を向上させるためには、冷温水流量計測用の高価な流量センサを追加しなければならない点である。   The problem to be solved is that an expensive flow rate sensor for measuring the flow rate of cold / hot water must be added in order to improve the accuracy of air conditioning load calculation.

本発明は、吸収冷温水機における燃焼量と冷温水温度の関係から、流量計測用のセンサを追加することなく、必要な冷温水流量を推定し、負荷推定演算精度を向上させることを最も重要な特徴とする。   The most important aspect of the present invention is to estimate the required chilled / hot water flow rate and improve the load estimation calculation accuracy from the relationship between the amount of combustion and the chilled / hot water temperature in the absorption chiller / heater without adding a sensor for flow rate measurement. Features.

燃焼量、温度差から各吸収冷温水機を通水する冷温水流量と、吸収冷温水機をバイパスする冷温水流量を推定し、流量計測のための流量センサ追加無しに、空調負荷演算の精度を向上させる方法について述べる。
(1)各吸収冷温水機を通水する流量を数1により推定する。
Estimate the flow of cold / hot water flowing through each absorption chiller / hot water machine from the combustion amount and temperature difference, and the flow of chilled / hot water bypassing the absorption chiller / hot water machine, without adding a flow sensor for flow measurement, the accuracy of air conditioning load calculation A method for improving the above will be described.
(1) Estimate the flow rate of water flowing through each absorption chiller / heater by Equation 1.

Figure 2010243044
Figure 2010243044

ここで、Gは実際の冷温水流量、G定格は定格冷温水流量、ΔTは温度差(計測)、ΔTest は定格流量とした場合の予想温度差である。エネルギーバランスから実際に吸収冷温水機を通水する流量は、数1から演算できる。ΔTは冷温水機の出入口温度差であるから、既知である。G定格は設計データなので、これも既知である。ΔTest は燃焼量に比例し、燃焼割合100%における仕様温度差をΔT100 とすると、数2が導かれる。ただし、吸収冷温水機は燃焼量に対して遅れを有するので、燃焼量入力に対し、一次遅れ特性を導入する。なお、この遅れはむだ時間や、さらに高次の遅れによって表現しても構わない。 Here, G is the actual cold water flow rate, G rated rated hot and cold water flow, [Delta] T is temperature difference (measurement), [Delta] T est is the estimated temperature difference in the case of a rated flow rate. From the energy balance, the flow rate for actually passing the absorption chiller / heater can be calculated from Equation (1). ΔT is known because it is the temperature difference between the inlet and outlet of the chiller / heater. Since the G rating is design data, it is also known. ΔT est is proportional to the amount of combustion, and assuming that the temperature difference of specification at a combustion rate of 100% is ΔT 100 , Equation 2 is derived. However, since the absorption chiller / heater has a delay with respect to the combustion amount, a first-order lag characteristic is introduced with respect to the combustion amount input. Note that this delay may be expressed by a dead time or a higher-order delay.

Figure 2010243044
Figure 2010243044

ここで、MVFuelは燃焼量割合である。燃焼割合を既知とすると、数1と数2から、数3が得られる。   Here, MVFuel is the combustion amount ratio. If the combustion ratio is known, Equation 3 is obtained from Equation 1 and Equation 2.

Figure 2010243044
Figure 2010243044

この数3から、Gを演算することが可能である。なお、数2は燃焼割合と予想温度差の関係は線形式で表現しているが、この関係は非線形関数(多項式やテーブル関数など)で表現することもできる。   From this equation 3, G can be calculated. In Equation 2, the relationship between the combustion ratio and the predicted temperature difference is expressed in a linear form, but this relationship can also be expressed by a nonlinear function (polynomial, table function, etc.).

(2)つぎにバイパス流量を推定する。吸収冷温水機の上流部の冷温水の一部が、吸収冷温水機に通水されずに下流部へバイパスされるものとし、下流側合流部でのエネルギーバランスを考えると、数4が成立する。 (2) Next, the bypass flow rate is estimated. Suppose that a part of the chilled water in the upstream part of the absorption chiller / heater is bypassed to the downstream part without passing through the absorption chiller / heater, and considering the energy balance in the downstream merging part, Equation 4 is established. To do.

Figure 2010243044
Figure 2010243044

ここで、Gb はバイパス流量、Tok は各吸収冷温水機の出口温度、Titは各吸収冷温水機入口温度の平均値、Totは出口集合部温度である。Tok 、Titは各吸収冷温水機の冷温水出入口温度から求める。Totについては温度センサを設け、計測するものとする。なお、Gb <0の場合は、Gb =0とみなす。 Here, G b is the bypass flow, the To k is the outlet temperature of the absorption chiller heater, Tit the average value of the absorption chiller heater inlet temperature, Tot is the outlet collection unit temperature. To k and Tit are obtained from the cold / hot water inlet / outlet temperature of each absorption cold / hot water machine. For Tot, a temperature sensor is provided and measured. When G b <0, it is considered that G b = 0.

(3)つぎに空調負荷を演算する。定格での空調負荷を100%とした場合、冷水流量の変化を考慮した空調負荷率を以下の数5のように定義する。 (3) Next, the air conditioning load is calculated. When the rated air-conditioning load is 100%, the air-conditioning load factor considering the change in the chilled water flow rate is defined as the following formula 5.

Figure 2010243044
Figure 2010243044

ここで、Ltotは負荷率、Titは各吸収冷温水機入口温度の平均値、SPは収冷温水機出口集合ヘッダ温度設定値、Tit定格は吸収冷温水機入口集合ヘッダ温度定格値、Tot定格は吸収冷温水機出口集合ヘッダ温度定格値、Gk は各吸収冷温水機を通水する流量、Gk 定格は吸収冷温水機を通水する流量(定格)、Gb はバイパス流量である。 Here, Ltot is a load factor, Tit is an average value of the inlet / outlet temperature of each absorption chiller / hot water, SP is a set value of the cooling / hot water outlet outlet header, Tit rating is an absorption chiller / heater inlet header temperature rating, Tot the absorption chiller outlet collection header temperature rated value, G k is the flow rate of water flow to the absorption chiller heater, the flow rate G k ratings for passing water absorption chiller heater (rated), the G b is the bypass flow rate .

(4)つぎに台数を決定する。(3)で示した負荷率を基に、起動する台数を決定することで、冷温水流量が変化した場合でも、変化に応じて負荷を捉えることが可能となる。この負荷率を基に台数を決定することで、流量センサの追加無しに、冷温水流量変化に対して、適切な台数を選択することができる。 (4) Next, the number is determined. By determining the number of units to be activated based on the load factor shown in (3), it is possible to capture the load according to the change even when the cold / hot water flow rate changes. By determining the number of units based on this load factor, it is possible to select an appropriate number with respect to a change in the flow rate of cold and hot water without adding a flow rate sensor.

本発明の吸収冷温水機の台数切替制御方法は、複数台の吸収冷温水機の台数切替を制御する方法であって、各吸収冷温水機における燃焼量、冷温水入口温度と冷温水出口液度との温度差から、各吸収冷温水機を通水させる冷温水流量と、吸収冷温水機をバイパスさせる冷温水流量とを推定し、空調負荷率を演算してこの負荷率を基に起動する台数を選択することを特徴としている。   The method for switching the number of absorption chiller / heaters according to the present invention is a method for controlling the number of chiller / heater units to be switched. The amount of combustion in each absorption chiller / heater, the cold / hot water inlet temperature, and the cold / hot water outlet liquid Based on the difference in temperature, the chilled / hot water flow rate for passing each absorption chiller / hot water machine and the chilled / hot water flow rate for bypassing the absorption chiller / hot water machine are estimated, the air conditioning load factor is calculated, and startup is based on this load factor The number of units to be selected is selected.

また、本発明の吸収冷温水機の台数切替制御装置は、複数台の吸収冷温水機の台数切替を制御する装置であって、各吸収冷温水機を制御する個別制御装置と、個別制御装置に対して起動/停止指令を出力するための台数制御装置とから構成され、台数制御装置では、各個別制御装置から送信される冷温水出入口温度、燃焼割合から、負荷条件に合った運転台数を決定して、各個別制御装置に起動/停止指令を送信するようにし、個別制御装置では各吸収冷温水機の冷温水出口温度が予め設定された温度になるように、燃料投入量を決定し、台数制御装置からの起動/停止指令に応じて、吸収冷温水機への燃料投入/遮断を行うようにしたことを特徴としている。   Moreover, the number switching control device of the absorption chiller / heater of the present invention is a device that controls the switching of the number of a plurality of absorption chiller / heaters, and an individual control device that controls each absorption chiller / heater, and an individual control device The unit control device outputs a start / stop command to the vehicle, and the unit control device determines the number of operating units that meet the load condition from the cold / hot water inlet / outlet temperature and the combustion ratio transmitted from each individual control unit. The start / stop command is transmitted to each individual control device, and the individual control device determines the amount of fuel input so that the cold / hot water outlet temperature of each absorption chiller / heater becomes a preset temperature. In addition, according to a start / stop command from the number control device, fuel is supplied to / cut off from the absorption chiller / hot water machine.

本発明は上記のように構成されているので、つぎのような効果を奏する。
(1)吸収冷温水機において、冷温水流量が変化した場合でも、変化に応じて負荷を捉えることができ、この負荷率を基にして起動台数を決定することで、冷温水の流量センサを設けることなく、冷温水流量変化に対して、適切な起動台数を決めることができる。
Since this invention is comprised as mentioned above, there exist the following effects.
(1) In the absorption chiller / hot water machine, even if the chilled / hot water flow rate changes, the load can be captured according to the change. By determining the number of starting units based on this load factor, Without being provided, it is possible to determine an appropriate number of startups for changes in the flow rate of cold and hot water.

本発明の装置における空調系統を示すフローシートである。It is a flow sheet which shows the air-conditioning system in the device of the present invention. 本発明の装置における制御装置の一例を示す構成図である。It is a block diagram which shows an example of the control apparatus in the apparatus of this invention. 本発明の装置における冷水流量推定演算ブロックの一例を示す構成図である。It is a block diagram which shows an example of the cold water flow volume estimation calculation block in the apparatus of this invention. 本発明の装置における負荷率の演算ブロックの一例を示す構成図である。It is a block diagram which shows an example of the calculation block of the load factor in the apparatus of this invention. 本発明の方法を実施するための台数切替ルールの一例を示す線図である。It is a diagram which shows an example of the number change rule for implementing the method of this invention. 比較例1における時間と空調負荷との関係を示すグラフである。It is a graph which shows the relationship between the time in Comparative Example 1, and an air-conditioning load. 比較例1における時間と集合ヘッダ入口温度、集合ヘッダ出口温度との関係を示すグラフである。It is a graph which shows the relationship between the time in the comparative example 1, an assembly header inlet temperature, and an assembly header exit temperature. 比較例1における時間と冷水流量との関係を示すグラフである。It is a graph which shows the relationship between the time in Comparative Example 1, and a cold water flow volume. 比較例1における時間と負荷率、稼働台数との関係を示すグラフである。It is a graph which shows the relationship between the time in Comparative Example 1, a load factor, and the number of operation. 実施例1における時間と空調負荷との関係を示すグラフである。It is a graph which shows the relationship between the time in Example 1, and an air-conditioning load. 実施例1における時間と集合ヘッダ入口温度、集合ヘッダ出口温度との関係を示すグラフである。It is a graph which shows the relationship between the time in Example 1, an aggregate header inlet temperature, and an aggregate header exit temperature. 実施例1における時間と冷水流量との関係を示すグラフである。It is a graph which shows the relationship between the time in Example 1, and a cold water flow volume. 実施例1における時間と負荷率、稼働台数との関係を示すグラフである。It is a graph which shows the relationship between the time in Example 1, a load factor, and the number of operation.

複数台の吸収冷温水機の運転台数を適切な台数に選択・切替制御するという目的を、燃焼量と冷温水温度の関係から、流量計測用のセンサを設けることなく、必要な冷温水流量を推定することにより実現した。   The purpose of selecting and switching the number of operating absorption chiller / heater units to an appropriate number is to set the required chilled / hot water flow rate without providing a sensor for flow rate measurement from the relationship between the combustion amount and the chilled / hot water temperature. Realized by estimation.

以下、本発明の実施の形態について説明するが、本発明は下記の実施の形態に何ら限定されるものではなく、適宜変更して実施することができるものである。図1は、空調系統を示すフローシートである。   Embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications. FIG. 1 is a flow sheet showing an air conditioning system.

すなわち、図1は一例として、吸収冷温水機3台から構成される空調系統を示している。冷温水機1、2、3の3台から構成されており、負荷に応じて運転台数を決定する。また、系統を流れる冷水流量は、一次冷水ポンプ4、5、6及び二次冷水ポンプ7、8、9の回転数及び、循環バルブ10、11の開によって決まるものとする。12、13は空調負荷。14、15、16は冷却水ポンプ、17は冷水入口ヘッダ、18は冷水出口ヘッダ、20は冷水出口二次ヘッダ、21、22、23は冷却水流量制御弁、24は冷水バイパス配管である。   That is, FIG. 1 shows an air conditioning system including three absorption chiller / heaters as an example. It consists of three units of chilled water heaters 1, 2, and 3, and the number of operating units is determined according to the load. Further, the flow rate of the cold water flowing through the system is determined by the number of rotations of the primary cold water pumps 4, 5, 6 and the secondary cold water pumps 7, 8, 9 and the opening of the circulation valves 10, 11. 12 and 13 are air conditioning loads. Reference numerals 14, 15, and 16 denote cooling water pumps, 17 denotes a cold water inlet header, 18 denotes a cold water outlet header, 20 denotes a cold water outlet secondary header, 21, 22, and 23 denote cooling water flow control valves, and 24 denotes a cold water bypass pipe.

図2は、制御装置の構成例を示しており、各吸収冷温水機1、2、3を制御する個別制御装置31、32、33と、個別制御装置に対して起動/停止指令などを出力する台数制御装置35から構成される。台数制御装置35では、各個別制御装置から送信される情報(冷温水出入口温度、燃焼割合など)から、負荷条件にあった運転台数を決定し、起動/停止指令を各個別制御装置に送信する。個別制御装置では、各吸収冷温水機の冷温水出口温度が予め設定された温度になるように、燃料投入量を決定するが、台数制御装置からの起動/停止指令に応じて、吸収冷温水機への燃料投入/遮断を実施する。   FIG. 2 shows a configuration example of the control device, and outputs individual control devices 31, 32, 33 for controlling the respective absorption chiller water 1, 2, 3 and start / stop commands to the individual control devices. The number control device 35 is configured. The number control device 35 determines the number of operating units that meets the load condition from information (cold water inlet / outlet temperature, combustion ratio, etc.) transmitted from each individual control device, and transmits start / stop commands to each individual control device. . In the individual control device, the amount of fuel input is determined so that the cold / hot water outlet temperature of each absorption chiller / heater becomes a preset temperature, but in accordance with the start / stop command from the unit control device, the absorbed chilled / hot water Implement fuel injection / shut-off to the aircraft.

さらに詳しく説明すると、本実施形態による装置は、各吸収冷温水機1、2、3を制御する個別制御装置31、32、33と、個別制御装置に対して起動/停止指令を出力するための台数制御装置35とから構成され、台数制御装置では、各個別制御装置から送信される冷温水出入口温度、燃焼割合から、負荷条件に合った運転台数を決定して、各個別制御装置に起動/停止指令を送信するようにし、個別制御装置では各吸収冷温水機の冷温水出口温度が予め設定された温度になるように、燃料投入量を決定し、台数制御装置35からの起動/停止指令に応じて、吸収冷温水機への燃料投入/遮断を行うように構成されている。   More specifically, the apparatus according to the present embodiment is used to output individual start / stop commands to the individual control devices 31, 32, 33 that control the respective absorption chiller / heater 1, 2, 3, and the individual control device. The number control device 35 is configured to determine the number of operating units that meet the load condition from the cold / hot water inlet / outlet temperature and the combustion ratio transmitted from each individual control device, and start / A stop command is transmitted, and in the individual control device, the fuel input amount is determined so that the cold / hot water outlet temperature of each absorption chiller / heater becomes a preset temperature, and the start / stop command from the unit control device 35 is determined. In response to this, the fuel is supplied to or cut off from the absorption chiller / heater.

このように構成された装置において、各吸収冷温水機1、2、3における燃焼量、冷温水入口温度と冷温水出口液度との温度差から、各吸収冷温水機を通水させる冷温水流量と、吸収冷温水機をバイパス配管24によりバイパスさせる冷温水流量とを推定し、空調負荷率を演算してこの負荷率を基に起動する台数を選択する。   In the apparatus configured as described above, the cold / hot water that causes each absorption cold / hot water machine to flow from the combustion amount in each absorption cold / hot water machine 1, 2, 3 and the temperature difference between the cold / hot water inlet temperature and the cold / hot water outlet liquidity. The flow rate and the cold / hot water flow rate for bypassing the absorption chiller / heater by the bypass pipe 24 are estimated, the air conditioning load factor is calculated, and the number of units to be activated is selected based on this load factor.

図2における台数制御装置35では、前記の(1)から(4)で示した手法を用いて、運転すべき台数を決定する。図3は冷水流量推定ブロックの一例を示す。冷温水流量割合ブロックでは、数3から冷温水流量割合(定格流量と実際の流量の比)を決定し、各吸収冷温水機を流れる冷温水流量を演算する。各吸収冷温水機を流れる流量と出口温度及び冷温水入口ヘッダ温度から、数4より、バイパス流量を計算する。   In the number control device 35 in FIG. 2, the number of units to be operated is determined using the methods shown in the above (1) to (4). FIG. 3 shows an example of the cold water flow rate estimation block. In the cold / hot water flow rate block, the cold / hot water flow rate ratio (the ratio between the rated flow rate and the actual flow rate) is determined from Equation 3, and the cold / hot water flow rate flowing through each absorption chiller / heater is calculated. From the flow rate flowing through each absorption chiller / heater, the outlet temperature, and the chilled / hot water inlet header temperature, the bypass flow rate is calculated from Equation 4.

各吸収冷温水機を流れる冷温水流量、バイパス流量を計算した後、数5から負荷率を演算する。図4は負荷率の演算ブロックの一例を示している。演算した負荷率を基に、負荷率ごとの運転台数を決めておき、それに基づいて、各吸収冷温水機に起動/停止指令を出力する。なお、台数切替のルールは図5に示すように、負荷が設定された値L1を超えたら2台運転、L2を超えたら3台運転とし、台数を減らす場合は、L1’以下で1台、L2’以下で2台とする。   After calculating the cold / hot water flow rate and bypass flow rate flowing through each absorption chiller / hot water machine, the load factor is calculated from Equation (5). FIG. 4 shows an example of a load factor calculation block. Based on the calculated load factor, the number of operating units for each load factor is determined, and based on this, start / stop commands are output to each absorption chiller / heater. As shown in FIG. 5, the rule for switching the number of units is to operate two units when the load exceeds a set value L1, and to three units when the load exceeds L2, and to reduce the number, one unit is less than L1 ′, L2 'or less and 2 units.

本発明の効果をシミュレーションにて示す。本発明は部分負荷において、冷水流量が変更されたような場合の台数選択において、効果がある。なお、前提として、冷水流量を計測できる流量センサは備えられていないものとする。下記条件の比較例1、実施例1を比較し、その効果を述べる。
比較例1:ヘッダ出口・入口温度差から計算した負荷を用いて、台数を決定する。負荷率=計測温度差/定格温度差×100
実施例1:本発明の方法で台数を決定する。外部入力条件としては、30分の時点で、負荷を100→50%、冷水流量を100→60%に変更する。なお、比較例1、実施例1とも負荷率が55%を下回ると台数を3→2台に変更するものとする。
The effect of the present invention is shown by simulation. The present invention is effective in selecting the number of units when the cold water flow rate is changed at a partial load. As a premise, it is assumed that no flow sensor capable of measuring the cold water flow rate is provided. Comparison Example 1 and Example 1 under the following conditions are compared and the effect is described.
Comparative Example 1: The number of units is determined using the load calculated from the header outlet / inlet temperature difference. Load factor = measured temperature difference / rated temperature difference × 100
Example 1: The number is determined by the method of the present invention. As external input conditions, at 30 minutes, the load is changed from 100 to 50%, and the cold water flow rate is changed from 100 to 60%. In both Comparative Example 1 and Example 1, the number of units is changed from 3 to 2 when the load factor falls below 55%.

図6は比較例1における時間と空調負荷との関係を示し、図7は比較例1における時間と集合ヘッダ入口温度、集合ヘッダ出口温度との関係を示し、図8は比較例1における時間と冷水流量との関係を示し、図9は比較例1における時間と負荷率、稼働台数との関係を示している。
また、図10は実施例1における時間と空調負荷との関係を示し、図11は実施例1における時間と集合ヘッダ入口温度、集合ヘッダ出口温度との関係を示し、図12は実施例1における時間と冷水流量との関係を示し、図13は実施例1における時間と負荷率、稼働台数との関係を示している。
FIG. 6 shows the relationship between time and air conditioning load in Comparative Example 1, FIG. 7 shows the relationship between time in Comparative Example 1 and the aggregate header inlet temperature and aggregate header outlet temperature, and FIG. 9 shows the relationship with the cold water flow rate, and FIG. 9 shows the relationship between the time, the load factor, and the number of operating units in Comparative Example 1.
10 shows the relationship between the time and the air conditioning load in the first embodiment, FIG. 11 shows the relationship between the time in the first embodiment, the aggregate header inlet temperature, and the aggregate header outlet temperature, and FIG. FIG. 13 shows the relationship between time, the load factor, and the number of operating units in Example 1.

比較例1及び実施例1におけるシミュレーションの結果から、比較例1では3台運転が継続し、実施例1では2台運転に切り替わる結果となった。なお、負荷が50%であるから、2台で運転可能な条件である。また、3台運転の場合は、2台運転に比べ、1台あたりは低負荷運転となるため、効率が悪い。このため、2台運転のほうが望ましい。以上から本発明を適用することで、適切な台数の選択が実現できる。   From the simulation results in Comparative Example 1 and Example 1, it was found that the three-unit operation was continued in Comparative Example 1, and the two-unit operation was switched in Example 1. Since the load is 50%, it is a condition that allows two units to be operated. In addition, in the case of three-unit operation, since one unit becomes a low-load operation compared with two-unit operation, the efficiency is poor. For this reason, it is preferable to operate two units. From the above, by applying the present invention, an appropriate number of units can be selected.

吸収冷温水機において、燃焼量と冷温水温度の関係から流量計測用のセンサを設けることなく、必要な冷温水流量を推定し、負荷推定演算精度を向上させることができる。   In the absorption chiller / heater, it is possible to estimate the required chilled / hot water flow rate without providing a sensor for measuring the flow rate from the relationship between the combustion amount and the chilled / hot water temperature, and to improve the load estimation calculation accuracy.

1、2、3 冷温水機
4、5、6 一次冷水ポンプ
7、8、9 二次冷水ポンプ
10、11 循環バルブ
12、13 空調負荷
14、15、16 冷却水ポンプ
17 冷水入口ヘッダ
18 冷水出口ヘッダ
20 冷水出口二次ヘッダ
21、22、23 冷却水流量制御弁
24 冷水バイパス配管
31、32、33 個別制御装置
35 台数制御装置
1, 2, 3 Chilled / hot water machine 4, 5, 6 Primary chilled water pump 7, 8, 9 Secondary chilled water pump 10, 11 Circulating valve 12, 13 Air conditioning load 14, 15, 16 Cooling water pump 17 Chilled water inlet header 18 Chilled water outlet Header 20 Chilled water outlet secondary header 21, 22, 23 Cooling water flow rate control valve 24 Chilled water bypass piping 31, 32, 33 Individual control device 35 Number control device

Claims (2)

複数台の吸収冷温水機の台数切替を制御する方法であって、各吸収冷温水機における燃焼量、冷温水入口温度と冷温水出口液度との温度差から、各吸収冷温水機を通水させる冷温水流量と、吸収冷温水機をバイパスさせる冷温水流量とを推定し、空調負荷率を演算してこの負荷率を基に起動する台数を選択することを特徴とする吸収冷温水機の台数切替制御方法。   This is a method for controlling the switching of the number of absorption chiller / hot water units, and based on the amount of combustion in each absorption chiller / heater and the temperature difference between the cold / hot water inlet temperature and the cold / hot water outlet liquidity, An absorption chiller / heater that estimates the flow rate of chilled / warm water to flow and the flow rate of chilled / warm water that bypasses the absorption chiller / heater, calculates the air conditioning load factor, and selects the number of units to start based on this load factor Number switching control method. 複数台の吸収冷温水機の台数切替を制御する装置であって、各吸収冷温水機を制御する個別制御装置と、個別制御装置に対して起動/停止指令を出力するための台数制御装置とから構成され、台数制御装置では、各個別制御装置から送信される冷温水出入口温度、燃焼割合から、負荷条件に合った運転台数を決定して、各個別制御装置に起動/停止指令を送信するようにし、個別制御装置では各吸収冷温水機の冷温水出口温度が予め設定された温度になるように、燃料投入量を決定し、台数制御装置からの起動/停止指令に応じて、吸収冷温水機への燃料投入/遮断を行うようにしたことを特徴とする吸収冷温水機の台数切替制御装置。   An apparatus for controlling the switching of the number of absorption chiller / heater units, and an individual controller for controlling each absorption chiller / heater, and a unit controller for outputting start / stop commands to the individual controller In the unit control device, the number of operating units meeting the load condition is determined from the cold / hot water inlet / outlet temperature and the combustion ratio transmitted from each individual control device, and the start / stop command is transmitted to each individual control device Thus, in the individual control device, the amount of fuel input is determined so that the cold / hot water outlet temperature of each absorption chiller / heater becomes a preset temperature, and the absorption / cooling temperature is determined according to the start / stop command from the unit control device. An apparatus for switching the number of absorption chiller / heater units, wherein fuel is supplied to or shut off from a water machine.
JP2009091370A 2009-04-03 2009-04-03 Method and apparatus for switching control of number of absorption chiller / heater Active JP5284850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009091370A JP5284850B2 (en) 2009-04-03 2009-04-03 Method and apparatus for switching control of number of absorption chiller / heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009091370A JP5284850B2 (en) 2009-04-03 2009-04-03 Method and apparatus for switching control of number of absorption chiller / heater

Publications (2)

Publication Number Publication Date
JP2010243044A true JP2010243044A (en) 2010-10-28
JP5284850B2 JP5284850B2 (en) 2013-09-11

Family

ID=43096233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009091370A Active JP5284850B2 (en) 2009-04-03 2009-04-03 Method and apparatus for switching control of number of absorption chiller / heater

Country Status (1)

Country Link
JP (1) JP5284850B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015190654A (en) * 2014-03-27 2015-11-02 荏原冷熱システム株式会社 heat source device
CN110986289A (en) * 2019-12-19 2020-04-10 江苏联宏智慧能源股份有限公司 Air conditioner fan coil and modular variable frequency air conditioner host linkage control method
CN112178860A (en) * 2020-09-28 2021-01-05 广东Tcl智能暖通设备有限公司 Operation control method of air-cooled cold and hot water unit and air conditioner

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140236A (en) * 1986-12-01 1988-06-11 Hitachi Ltd Control system for the number of heat source machines
JPH05141806A (en) * 1991-11-20 1993-06-08 Sanyo Electric Co Ltd Controlling device for number of absorption refrigerating machines
JPH10213339A (en) * 1997-01-30 1998-08-11 Mitsubishi Electric Corp Air conditioner
JPH11118281A (en) * 1997-10-16 1999-04-30 Daikin Ind Ltd Method and system for controlling operation of a plurality of absorption chilled/hot water unit
JPH11304278A (en) * 1998-04-23 1999-11-05 Hitachi Ltd Method for controlling number of units of absorption water cooling/heating unit
JP2000257938A (en) * 1999-03-09 2000-09-22 Dai-Dan Co Ltd Controller for operating number of heat source
JP2004028533A (en) * 2002-06-28 2004-01-29 Hitachi Ltd Absorption type water chiller/heater
JP2004347302A (en) * 2003-05-26 2004-12-09 Yazaki Corp Central control system for absorption cool temperature water machine
JP2006046839A (en) * 2004-08-06 2006-02-16 Toho Gas Co Ltd Cold and hot water carrying system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140236A (en) * 1986-12-01 1988-06-11 Hitachi Ltd Control system for the number of heat source machines
JPH05141806A (en) * 1991-11-20 1993-06-08 Sanyo Electric Co Ltd Controlling device for number of absorption refrigerating machines
JPH10213339A (en) * 1997-01-30 1998-08-11 Mitsubishi Electric Corp Air conditioner
JPH11118281A (en) * 1997-10-16 1999-04-30 Daikin Ind Ltd Method and system for controlling operation of a plurality of absorption chilled/hot water unit
JPH11304278A (en) * 1998-04-23 1999-11-05 Hitachi Ltd Method for controlling number of units of absorption water cooling/heating unit
JP2000257938A (en) * 1999-03-09 2000-09-22 Dai-Dan Co Ltd Controller for operating number of heat source
JP2004028533A (en) * 2002-06-28 2004-01-29 Hitachi Ltd Absorption type water chiller/heater
JP2004347302A (en) * 2003-05-26 2004-12-09 Yazaki Corp Central control system for absorption cool temperature water machine
JP2006046839A (en) * 2004-08-06 2006-02-16 Toho Gas Co Ltd Cold and hot water carrying system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015190654A (en) * 2014-03-27 2015-11-02 荏原冷熱システム株式会社 heat source device
CN110986289A (en) * 2019-12-19 2020-04-10 江苏联宏智慧能源股份有限公司 Air conditioner fan coil and modular variable frequency air conditioner host linkage control method
CN110986289B (en) * 2019-12-19 2021-01-26 江苏联宏智慧能源股份有限公司 Air conditioner fan coil and modular variable frequency air conditioner host linkage control method
CN112178860A (en) * 2020-09-28 2021-01-05 广东Tcl智能暖通设备有限公司 Operation control method of air-cooled cold and hot water unit and air conditioner

Also Published As

Publication number Publication date
JP5284850B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
JP5597767B2 (en) Heating device and method for controlling heating device
DK2726792T3 (en) Method and device for balancing a group of consumers in a fluidtransportsystem
KR100826889B1 (en) Constant temperature liquid circulating device and method of controlling temperature in the device
KR101445992B1 (en) Device for estimating flowrate of heating medium, heat source device, and method for estimating flowrate of heating medium
JP4505363B2 (en) Control method of cold / hot water in air conditioning system
EP2261574A1 (en) Heat-pump hot water apparatus
US9562701B2 (en) Temperature control system and air conditioning system
RU2648211C2 (en) Method and devices for balancing a group of consumers in a fluid transport system
JP5801214B2 (en) Control device for district heat energy supply network
JP2009030823A (en) Air conditioning control system and air conditioning control method
RU2535271C1 (en) Heat source
SG194589A1 (en) Operation control system for cold generation apparatus
JP6644559B2 (en) Heat source control system, control method and control device
WO2015122244A1 (en) Heat exchanger
JP2007127321A (en) Cold water load factor controller for refrigerator
WO2012096265A1 (en) Heat source system, control method therfor, and program therefor
JP5284850B2 (en) Method and apparatus for switching control of number of absorption chiller / heater
JP6434848B2 (en) Heat source control system
JP6094231B2 (en) Internal combustion engine cooling system
JP4986701B2 (en) Refrigerant flow rate measurement method, method for determining cooling / heating capacity of refrigeration apparatus, and refrigerant flow rate measurement device
JP2006250445A (en) Operation control method in two pump-type heat source equipment
JP6685602B2 (en) Air conditioning system
JP5677099B2 (en) A method for controlling a heat source system including a plurality of types of heat source devices.
JP6523798B2 (en) Heat source equipment and heat source equipment control method
JP2001241735A (en) Air conditioning system and its controlling method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130530

R150 Certificate of patent or registration of utility model

Ref document number: 5284850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150